1
|
Bopp C, Bernet NM, Meyer F, Khan R, Robinson SL, Kohler HPE, Buller R, Hofstetter TB. Elucidating the Role of O 2 Uncoupling for the Adaptation of Bacterial Biodegradation Reactions Catalyzed by Rieske Oxygenases. ACS ENVIRONMENTAL AU 2024; 4:204-218. [PMID: 39035869 PMCID: PMC11258757 DOI: 10.1021/acsenvironau.4c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 07/23/2024]
Abstract
Oxygenation of aromatic and aliphatic hydrocarbons by Rieske oxygenases is the initial step of various biodegradation pathways for environmental organic contaminants. Microorganisms carrying Rieske oxygenases are able to quickly adapt their substrate spectra to alternative carbon and energy sources that are structurally related to the original target substrate, yet the molecular events responsible for this rapid adaptation are not well understood. Here, we evaluated the hypothesis that reactive oxygen species (ROS) generated by unproductive activation of O2, the so-called O2 uncoupling, in the presence of the alternative substrate exert a selective pressure on the bacterium for increasing the oxygenation efficiency of Rieske oxygenases. To that end, we studied wild-type 2-nitrotoluene dioxygenase from Acidovorax sp. strain JS42 and five enzyme variants that have evolved from adaptive laboratory evolution experiments with 3- and 4-nitrotoluene as alternative growth substrates. The enzyme variants showed a substantially increased oxygenation efficiency toward the new target substrates concomitant with a reduction of ROS production, while mechanisms and kinetics of enzymatic O2 activation remained unchanged. Structural analyses and docking studies suggest that amino acid substitutions in enzyme variants occurred at residues lining both substrate and O2 transport tunnels, enabling tighter binding of the target substrates in the active site. Increased oxygenation efficiencies measured in vitro for the various enzyme (variant)-substrate combinations correlated linearly with in vivo changes in growth rates for evolved Acidovorax strains expressing the variants. Our data suggest that the selective pressure from oxidative stress toward more efficient oxygenation by Rieske oxygenases was most notable when O2 uncoupling exceeded 60%.
Collapse
Affiliation(s)
- Charlotte
E. Bopp
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| | - Nora M. Bernet
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| | - Fabian Meyer
- Competence
Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zürich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - Riyaz Khan
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Serina L. Robinson
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Hans-Peter E. Kohler
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Rebecca Buller
- Competence
Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zürich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - Thomas B. Hofstetter
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
2
|
Beech JL, Fecko JA, Yennawar N, DuBois JL. Functional and spectroscopic approaches to determining thermal limitations of Rieske oxygenases. Methods Enzymol 2024; 703:299-328. [PMID: 39261001 PMCID: PMC11521362 DOI: 10.1016/bs.mie.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The biotechnological potential of Rieske Oxygenases (ROs) and their cognate reductases remains unmet, in part because these systems can be functionally short-lived. Here, we describe a set of experiments aimed at identifying both the functional and structural stability limitations of ROs, using terephthalate (TPA) dioxygenase (from Comamonas strain E6) as a model system. Successful expression and purification of a cofactor-complete, histidine-tagged TPA dioxygenase and reductase protein system requires induction with the Escherichia coli host at stationary phase as well as a chaperone inducing cold-shock and supplementation with additional iron, sulfur, and flavin. The relative stability of the Rieske cluster and mononuclear iron center can then be assessed using spectroscopic and functional measurements following dialysis in an iron chelating buffer. These experiments involve measurements of the overall lifetime of the system via total turnover number using both UV-Visible absorbance and HPLC analyses, as well specific activity as a function of temperature. Important methods for assessing the stability of these multi-cofactor, multi-protein dependent systems at multiple levels of structure (secondary to quaternary) include differential scanning calorimetry, circular dichroism, and metallospectroscopy. Results can be rationalized in terms of three-dimensional structures and bioinformatics. The experiments described here provide a roadmap to a detailed characterization of the limitations of ROs. With a few notable exceptions, these issues are not widely addressed in current literature.
Collapse
Affiliation(s)
- Jessica Lusty Beech
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Julia Ann Fecko
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Neela Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States.
| |
Collapse
|
3
|
Xu J, Li T, Huang WE, Zhou NY. Semi-rational design of nitroarene dioxygenase for catalytic ability toward 2,4-dichloronitrobenzene. Appl Environ Microbiol 2024; 90:e0143623. [PMID: 38709097 PMCID: PMC11218619 DOI: 10.1128/aem.01436-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
Rieske non-heme dioxygenase family enzymes play an important role in the aerobic biodegradation of nitroaromatic pollutants, but no active dioxygenases are available in nature for initial reactions in the degradation of many refractory pollutants like 2,4-dichloronitrobenzene (24DCNB). Here, we report the engineering of hotspots in 2,3-dichloronitrobenzene dioxygenase from Diaphorobacter sp. strain JS3051, achieved through molecular dynamic simulation analysis and site-directed mutagenesis, with the aim of enhancing its catalytic activity toward 24DCNB. The computationally predicted activity scores were largely consistent with the detected activities in wet experiments. Among them, the two most beneficial mutations (E204M and M248I) were obtained, and the combined mutant reached up to a 62-fold increase in activity toward 24DCNB, generating a single product, 3,5-dichlorocatechol, which is a naturally occurring compound. In silico analysis confirmed that residue 204 affected the substrate preference for meta-substituted nitroarenes, while residue 248 may influence substrate preference by interaction with residue 295. Overall, this study provides a framework for manipulating nitroarene dioxygenases using computational methods to address various nitroarene contamination problems.IMPORTANCEAs a result of human activities, various nitroaromatic pollutants continue to enter the biosphere with poor degradability, and dioxygenation is an important kickoff step to remove toxic nitro-groups and convert them into degradable products. The biodegradation of many nitroarenes has been reported over the decades; however, many others still lack corresponding enzymes to initiate their degradation. Although rieske non-heme dioxygenase family enzymes play extraordinarily important roles in the aerobic biodegradation of various nitroaromatic pollutants, prediction of their substrate specificity is difficult. This work greatly improved the catalytic activity of dioxygenase against 2,4-dichloronitrobenzene by computer-aided semi-rational design, paving a new way for the evolution strategy of nitroarene dioxygenase. This study highlights the potential for using enzyme structure-function information with computational pre-screening methods to rapidly tailor the catalytic functions of enzymes toward poorly biodegradable contaminants.
Collapse
Affiliation(s)
- Jia Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei E. Huang
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Bopp CE, Bernet NM, Pati SG, Hofstetter TB. Characterization of O 2 uncoupling in biodegradation reactions of nitroaromatic contaminants catalyzed by rieske oxygenases. Methods Enzymol 2024; 703:3-28. [PMID: 39261002 DOI: 10.1016/bs.mie.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Rieske oxygenases are known as catalysts that enable the cleavage of aromatic and aliphatic C-H bonds in structurally diverse biomolecules and recalcitrant organic environmental pollutants through substrate oxygenations and oxidative heteroatom dealkylations. Yet, the unproductive O2 activation, which is concomitant with the release of reactive oxygen species (ROS), is typically not taken into account when characterizing Rieske oxygenase function. Even if considered an undesired side reaction, this O2 uncoupling allows for studying active site perturbations, enzyme mechanisms, and how enzymes evolve as environmental microorganisms adapt their substrates to alternative carbon and energy sources. Here, we report on complementary methods for quantifying O2 uncoupling based on mass balance or kinetic approaches that relate successful oxygenations to total O2 activation and ROS formation. These approaches are exemplified with data for two nitroarene dioxygenases (nitrobenzene and 2-nitrotoluene dioxygenase) which have been shown to mono- and dioxygenate substituted nitroaromatic compounds to substituted nitrobenzylalcohols and catechols, respectively.
Collapse
Affiliation(s)
- Charlotte E Bopp
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, Zürich, Switzerland
| | - Nora M Bernet
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, Zürich, Switzerland
| | - Sarah G Pati
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Thomas B Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
5
|
Tian J, Boggs DG, Donnan PH, Barroso GT, Garcia AA, Dowling DP, Buss JA, Bridwell-Rabb J. The NADH recycling enzymes TsaC and TsaD regenerate reducing equivalents for Rieske oxygenase chemistry. J Biol Chem 2023; 299:105222. [PMID: 37673337 PMCID: PMC10579966 DOI: 10.1016/j.jbc.2023.105222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023] Open
Abstract
Many microorganisms use both biological and nonbiological molecules as sources of carbon and energy. This resourcefulness means that some microorganisms have mechanisms to assimilate pollutants found in the environment. One such organism is Comamonas testosteroni, which metabolizes 4-methylbenzenesulfonate and 4-methylbenzoate using the TsaMBCD pathway. TsaM is a Rieske oxygenase, which in concert with the reductase TsaB consumes a molar equivalent of NADH. Following this step, the annotated short-chain dehydrogenase/reductase and aldehyde dehydrogenase enzymes TsaC and TsaD each regenerate a molar equivalent of NADH. This co-occurrence ameliorates the need for stoichiometric addition of reducing equivalents and thus represents an attractive strategy for integration of Rieske oxygenase chemistry into biocatalytic applications. Therefore, in this work, to overcome the lack of information regarding NADH recycling enzymes that function in partnership with Rieske non-heme iron oxygenases (Rieske oxygenases), we solved the X-ray crystal structure of TsaC to a resolution of 2.18 Å. Using this structure, a series of substrate analog and protein variant combination reactions, and differential scanning fluorimetry experiments, we identified active site features involved in binding NAD+ and controlling substrate specificity. Further in vitro enzyme cascade experiments demonstrated the efficient TsaC- and TsaD-mediated regeneration of NADH to support Rieske oxygenase chemistry. Finally, through in-depth bioinformatic analyses, we illustrate the widespread co-occurrence of Rieske oxygenases with TsaC-like enzymes. This work thus demonstrates the utility of these NADH recycling enzymes and identifies a library of short-chain dehydrogenase/reductase enzyme prospects that can be used in Rieske oxygenase pathways for in situ regeneration of NADH.
Collapse
Affiliation(s)
- Jiayi Tian
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - David G Boggs
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Patrick H Donnan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Gage T Barroso
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Daniel P Dowling
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Joshua A Buss
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
6
|
Tian J, Liu J, Knapp M, Donnan PH, Boggs DG, Bridwell-Rabb J. Custom tuning of Rieske oxygenase reactivity. Nat Commun 2023; 14:5858. [PMID: 37730711 PMCID: PMC10511449 DOI: 10.1038/s41467-023-41428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 08/27/2023] [Indexed: 09/22/2023] Open
Abstract
Rieske oxygenases use a Rieske-type [2Fe-2S] cluster and a mononuclear iron center to initiate a range of chemical transformations. However, few details exist regarding how this catalytic scaffold can be predictively tuned to catalyze divergent reactions. Therefore, in this work, using a combination of structural analyses, as well as substrate and rational protein-based engineering campaigns, we elucidate the architectural trends that govern catalytic outcome in the Rieske monooxygenase TsaM. We identify structural features that permit a substrate to be functionalized by TsaM and pinpoint active-site residues that can be targeted to manipulate reactivity. Exploiting these findings allowed for custom tuning of TsaM reactivity: substrates are identified that support divergent TsaM-catalyzed reactions and variants are created that exclusively catalyze dioxygenation or sequential monooxygenation chemistry. Importantly, we further leverage these trends to tune the reactivity of additional monooxygenase and dioxygenase enzymes, and thereby provide strategies to custom tune Rieske oxygenase reaction outcomes.
Collapse
Affiliation(s)
- Jiayi Tian
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jianxin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Madison Knapp
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Patrick H Donnan
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David G Boggs
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | | |
Collapse
|
7
|
Runda ME, de Kok NAW, Schmidt S. Rieske Oxygenases and Other Ferredoxin-Dependent Enzymes: Electron Transfer Principles and Catalytic Capabilities. Chembiochem 2023; 24:e202300078. [PMID: 36964978 DOI: 10.1002/cbic.202300078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/27/2023]
Abstract
Enzymes that depend on sophisticated electron transfer via ferredoxins (Fds) exhibit outstanding catalytic capabilities, but despite decades of research, many of them are still not well understood or exploited for synthetic applications. This review aims to provide a general overview of the most important Fd-dependent enzymes and the electron transfer processes involved. While several examples are discussed, we focus in particular on the family of Rieske non-heme iron-dependent oxygenases (ROs). In addition to illustrating their electron transfer principles and catalytic potential, the current state of knowledge on structure-function relationships and the mode of interaction between the redox partner proteins is reviewed. Moreover, we highlight several key catalyzed transformations, but also take a deeper dive into their engineerability for biocatalytic applications. The overall findings from these case studies highlight the catalytic capabilities of these biocatalysts and could stimulate future interest in developing additional Fd-dependent enzyme classes for synthetic applications.
Collapse
Affiliation(s)
- Michael E Runda
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Niels A W de Kok
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
8
|
Tian J, Garcia AA, Donnan PH, Bridwell-Rabb J. Leveraging a Structural Blueprint to Rationally Engineer the Rieske Oxygenase TsaM. Biochemistry 2023. [PMID: 37188334 DOI: 10.1021/acs.biochem.3c00150] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Rieske nonheme iron oxygenases use two metallocenters, a Rieske-type [2Fe-2S] cluster and a mononuclear iron center, to catalyze oxidation reactions on a broad range of substrates. These enzymes are widely used by microorganisms to degrade environmental pollutants and to build complexity in a myriad of biosynthetic pathways that are industrially interesting. However, despite the value of this chemistry, there is a dearth of understanding regarding the structure-function relationships in this enzyme class, which limits our ability to rationally redesign, optimize, and ultimately exploit the chemistry of these enzymes. Therefore, in this work, by leveraging a combination of available structural information and state-of-the-art protein modeling tools, we show that three "hotspot" regions can be targeted to alter the site selectivity, substrate preference, and substrate scope of the Rieske oxygenase p-toluenesulfonate methyl monooxygenase (TsaM). Through mutation of six to 10 residues distributed between three protein regions, TsaM was engineered to behave as either vanillate monooxygenase (VanA) or dicamba monooxygenase (DdmC). This engineering feat means that TsaM was rationally engineered to catalyze an oxidation reaction at the meta and ortho positions of an aromatic substrate, rather than its favored native para position, and that TsaM was redesigned to perform chemistry on dicamba, a substrate that is not natively accepted by the enzyme. This work thus contributes to unlocking our understanding of structure-function relationships in the Rieske oxygenase enzyme class and expands foundational principles for future engineering of these metalloenzymes.
Collapse
Affiliation(s)
- Jiayi Tian
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Patrick H Donnan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jennifer Bridwell-Rabb
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Engineering Rieske oxygenase activity one piece at a time. Curr Opin Chem Biol 2023; 72:102227. [PMID: 36410250 PMCID: PMC9939785 DOI: 10.1016/j.cbpa.2022.102227] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
Enzyme engineering plays a central role in the development of biocatalysts for biotechnology, chemical and pharmaceutical manufacturing, and environmental remediation. Rational design of proteins has historically relied on targeting active site residues to confer a protein with desirable catalytic properties. However, additional "hotspots" are also known to exist beyond the active site. Structural elements such as subunit-subunit interactions, entrance tunnels, and flexible loops influence enzyme catalysis and serve as potential "hotspots" for engineering. For the Rieske oxygenases, which use a Rieske cluster and mononuclear iron center to catalyze a challenging set of reactions, these outside of the active site regions are increasingly being shown to drive catalytic outcomes. Therefore, here, we highlight recent work on structurally characterized Rieske oxygenases that implicates architectural pieces inside and outside of the active site as key dictators of catalysis, and we suggest that these features may warrant attention in efforts aimed at Rieske oxygenase engineering.
Collapse
|
10
|
Molecular Basis and Evolutionary Origin of 1-Nitronaphthalene Catabolism in Sphingobium sp. Strain JS3065. Appl Environ Microbiol 2023; 89:e0172822. [PMID: 36622195 PMCID: PMC9888181 DOI: 10.1128/aem.01728-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) enter the environment from natural sources and anthropogenic activities. To date, microorganisms able to mineralize nitro-PAHs have not been reported. Here, Sphingobium sp. strain JS3065 was isolated by selective enrichment for its ability to grow on 1-nitronaphthalene as the sole carbon, nitrogen, and energy source. Analysis of the complete genome of strain JS3065 indicated that the gene cluster encoding 1-nitronaphthalene catabolism (nin) is located on a plasmid. Based on the genetic and biochemical evidence, the nin genes share an origin with the nag-like genes encoding naphthalene degradation in Ralstonia sp. strain U2. The initial step in degradation of 1-nitronaphthalene is catalyzed by a three-component dioxygenase, NinAaAbAcAd, resulting in formation of 1,2-dihydroxynaphthalene which is also an early intermediate in the naphthalene degradation pathway. Introduction of the ninAaAbAcAd genes into strain U2 enabled its growth on 1-nitronaphthalene. Phylogenic analysis of NinAc suggested that an ancestral 1-nitronaphthalene dioxygenase was an early step in the evolution of nitroarene dioxygenases. Based on bioinformatic analysis and enzyme assays, the subsequent assimilation of 1,2-dihydroxynaphthalene seems to follow the well-established pathway for naphthalene degradation by Ralstonia sp. strain U2. This is the first report of catabolic pathway for 1-nitronaphthalene and is another example of how expanding the substrate range of Rieske type dioxygenase enables bacteria to grow on recalcitrant nitroaromatic compounds. IMPORTANCE Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) have been widely detected in the environment and they are more toxic than their corresponding parent PAHs. Although biodegradation of many PAHs has been extensively described at genetic and biochemical levels, little is known about the microbial degradation of nitro-PAHs. This work reports the isolation of a Sphingobium strain growing on 1-nitronaphthalene and the genetic basis for the catabolic pathway. The pathway evolved from an ancestral naphthalene catabolic pathway by a remarkably small modification in the specificity of the initial dioxygenase. Data presented here not only shed light on the biochemical processes involved in the microbial degradation of globally important nitrated polycyclic aromatic hydrocarbons, but also provide an evolutionary paradigm for how bacteria evolve a novel catabolic pathway with minimal alteration of preexisting pathways for natural organic compounds.
Collapse
|
11
|
Rogers MS, Gordon AM, Rappe TM, Goodpaster JD, Lipscomb JD. Contrasting Mechanisms of Aromatic and Aryl-Methyl Substituent Hydroxylation by the Rieske Monooxygenase Salicylate 5-Hydroxylase. Biochemistry 2023; 62:507-523. [PMID: 36583545 PMCID: PMC9854337 DOI: 10.1021/acs.biochem.2c00610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The hydroxylase component (S5HH) of salicylate-5-hydroxylase catalyzes C5 ring hydroxylation of salicylate but switches to methyl hydroxylation when a C5 methyl substituent is present. The use of 18O2 reveals that both aromatic and aryl-methyl hydroxylations result from monooxygenase chemistry. The functional unit of S5HH comprises a nonheme Fe(II) site located 12 Å across a subunit boundary from a one-electron reduced Rieske-type iron-sulfur cluster. Past studies determined that substrates bind near the Fe(II), followed by O2 binding to the iron to initiate catalysis. Stopped-flow-single-turnover reactions (STOs) demonstrated that the Rieske cluster transfers an electron to the iron site during catalysis. It is shown here that fluorine ring substituents decrease the rate constant for Rieske electron transfer, implying a prior reaction of an Fe(III)-superoxo intermediate with a substrate. We propose that the iron becomes fully oxidized in the resulting Fe(III)-peroxo-substrate-radical intermediate, allowing Rieske electron transfer to occur. STO using 5-CD3-salicylate-d8 occurs with an inverse kinetic isotope effect (KIE). In contrast, STO of a 1:1 mixture of unlabeled and 5-CD3-salicylate-d8 yields a normal product isotope effect. It is proposed that aromatic and aryl-methyl hydroxylation reactions both begin with the Fe(III)-superoxo reaction with a ring carbon, yielding the inverse KIE due to sp2 → sp3 carbon hybridization. After Rieske electron transfer, the resulting Fe(III)-peroxo-salicylate intermediate can continue to aromatic hydroxylation, whereas the equivalent aryl-methyl intermediate formation must be reversible to allow the substrate exchange necessary to yield a normal product isotope effect. The resulting Fe(III)-(hydro)peroxo intermediate may be reactive or evolve through a high-valent iron intermediate to complete the aryl-methyl hydroxylation.
Collapse
Affiliation(s)
- Melanie S. Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Adrian M. Gordon
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Todd M. Rappe
- Minnesota NMR Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jason D. Goodpaster
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
12
|
Bopp CE, Bernet NM, Kohler HPE, Hofstetter TB. Elucidating the Role of O 2 Uncoupling in the Oxidative Biodegradation of Organic Contaminants by Rieske Non-heme Iron Dioxygenases. ACS ENVIRONMENTAL AU 2022; 2:428-440. [PMID: 36164353 PMCID: PMC9502038 DOI: 10.1021/acsenvironau.2c00023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Oxygenations of aromatic
soil and water contaminants with molecular
O2 catalyzed by Rieske dioxygenases are frequent initial
steps of biodegradation in natural and engineered environments. Many
of these non-heme ferrous iron enzymes are known to be involved in
contaminant metabolism, but the understanding of enzyme–substrate
interactions that lead to successful biodegradation is still elusive.
Here, we studied the mechanisms of O2 activation and substrate
hydroxylation of two nitroarene dioxygenases to evaluate enzyme- and
substrate-specific factors that determine the efficiency of oxygenated
product formation. Experiments in enzyme assays of 2-nitrotoluene
dioxygenase (2NTDO) and nitrobenzene dioxygenase (NBDO) with methyl-,
fluoro-, chloro-, and hydroxy-substituted nitroaromatic substrates
reveal that typically 20–100% of the enzyme’s activity
involves unproductive paths of O2 activation with generation
of reactive oxygen species through so-called O2 uncoupling.
The 18O and 13C kinetic isotope effects of O2 activation and nitroaromatic substrate hydroxylation, respectively,
suggest that O2 uncoupling occurs after generation of FeIII-(hydro)peroxo species in the catalytic cycle. While 2NTDO
hydroxylates ortho-substituted nitroaromatic substrates
more efficiently, NBDO favors meta-substituted, presumably
due to distinct active site residues of the two enzymes. Our data
implies, however, that the O2 uncoupling and hydroxylation
activity cannot be assessed from simple structure–reactivity
relationships. By quantifying O2 uncoupling by Rieske dioxygenases,
our work provides a mechanistic link between contaminant biodegradation,
the generation of reactive oxygen species, and possible adaptation
strategies of microorganisms to the exposure of new contaminants.
Collapse
Affiliation(s)
- Charlotte E. Bopp
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| | - Nora M. Bernet
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Hans-Peter E. Kohler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Thomas B. Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
13
|
The α- and β-Subunit Boundary at the Stem of the Mushroom-Like α
3
β
3
-Type Oxygenase Component of Rieske Non-Heme Iron Oxygenases Is the Rieske-Type Ferredoxin-Binding Site. Appl Environ Microbiol 2022; 88:e0083522. [PMID: 35862661 PMCID: PMC9361823 DOI: 10.1128/aem.00835-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cumene dioxygenase (CumDO) is an initial enzyme in the cumene degradation pathway of Pseudomonas fluorescens IP01 and is a Rieske non-heme iron oxygenase (RO) that comprises two electron transfer components (reductase [CumDO-R] and Rieske-type ferredoxin [CumDO-F]) and one catalytic component (α3β3-type oxygenase [CumDO-O]). Catalysis is triggered by electrons that are transferred from NAD(P)H to CumDO-O by CumDO-R and CumDO-F. To investigate the binding mode between CumDO-F and CumDO-O and to identify the key CumDO-O amino acid residues for binding, we simulated docking between the CumDO-O crystal structure and predicted model of CumDO-F and identified two potential binding sites: one is at the side-wise site and the other is at the top-wise site in mushroom-like CumDO-O. Then, we performed alanine mutagenesis of 16 surface amino acid residues at two potential binding sites. The results of reduction efficiency analyses using the purified components indicated that CumDO-F bound at the side-wise site of CumDO-O, and K117 of the α-subunit and R65 of the β-subunit were critical for the interaction. Moreover, these two positively charged residues are well conserved in α3β3-type oxygenase components of ROs whose electron donors are Rieske-type ferredoxins. Given that these residues were not conserved if the electron donors were different types of ferredoxins or reductases, the side-wise site of the mushroom-like structure is thought to be the common binding site between Rieske-type ferredoxin and α3β3-type oxygenase components in ROs. IMPORTANCE We clarified the critical amino acid residues of the oxygenase component (Oxy) of Rieske non-heme iron oxygenase (RO) for binding with Rieske-type ferredoxin (Fd). Our results showed that Rieske-type Fd-binding site is commonly located at the stem (side-wise site) of the mushroom-like α3β3 quaternary structure in many ROs. The resultant binding site was totally different from those reported at the top-wise site of the doughnut-like α3-type Oxy, although α3-type Oxys correspond to the cap (α3 subunit part) of the mushroom-like α3β3-type Oxys. Critical amino acid residues detected in this study were not conserved if the electron donors of Oxys were different types of Fds or reductases. Altogether, we can suggest that unique binding modes between Oxys and electron donors have evolved, depending on the nature of the electron donors, despite Oxy molecules having shared α3β3 quaternary structures.
Collapse
|
14
|
Pati SG, Bopp CE, Kohler HPE, Hofstetter TB. Substrate-Specific Coupling of O 2 Activation to Hydroxylations of Aromatic Compounds by Rieske Non-heme Iron Dioxygenases. ACS Catal 2022; 12:6444-6456. [PMID: 35692249 PMCID: PMC9171724 DOI: 10.1021/acscatal.2c00383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/09/2022] [Indexed: 02/07/2023]
Abstract
![]()
Rieske dioxygenases
catalyze the initial steps in the hydroxylation
of aromatic compounds and are critical for the metabolism of xenobiotic
substances. Because substrates do not bind to the mononuclear non-heme
FeII center, elementary steps leading to O2 activation
and substrate hydroxylation are difficult to delineate, thus making
it challenging to rationalize divergent observations on enzyme mechanisms,
reactivity, and substrate specificity. Here, we show for nitrobenzene
dioxygenase, a Rieske dioxygenase capable of transforming nitroarenes
to nitrite and substituted catechols, that unproductive O2 activation with the release of the unreacted substrate and reactive
oxygen species represents an important path in the catalytic cycle.
Through correlation of O2 uncoupling for a series of substituted
nitroaromatic compounds with 18O and 13C kinetic
isotope effects of dissolved O2 and aromatic substrates,
respectively, we show that O2 uncoupling occurs after the
rate-limiting formation of FeIII-(hydro)peroxo species
from which substrates are hydroxylated. Substituent effects on the
extent of O2 uncoupling suggest that the positioning of
the substrate in the active site rather than the susceptibility of
the substrate for attack by electrophilic oxygen species is responsible
for unproductive O2 uncoupling. The proposed catalytic
cycle provides a mechanistic basis for assessing the very different
efficiencies of substrate hydroxylation vs unproductive O2 activation and generation of reactive oxygen species in reactions
catalyzed by Rieske dioxygenases.
Collapse
Affiliation(s)
- Sarah G. Pati
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| | - Charlotte E. Bopp
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| | - Hans-Peter E. Kohler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Thomas B. Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
15
|
Biodegradation of 3-Chloronitrobenzene and 3-Bromonitrobenzene by Diaphorobacter sp. Strain JS3051. Appl Environ Microbiol 2022; 88:e0243721. [PMID: 35343758 DOI: 10.1128/aem.02437-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Halonitrobenzenes are toxic chemical intermediates used widely for industrial synthesis of dyes and pesticides. Bacteria able to degrade 2- and 4-chloronitrobenzene have been isolated and characterized; in contrast, no natural isolate has been reported to degrade meta-halonitrobenzenes. In this study, Diaphorobacter sp. strain JS3051, previously reported to degrade 2,3-dichloronitrobenzene, grew readily on 3-chloronitrobenzene and 3-bromonitrobenzene, but not on 3-fluoronitrobenzene, as sole sources of carbon, nitrogen, and energy. A Rieske nonheme iron dioxygenase (DcbAaAbAcAd) catalyzed the dihydroxylation of 3-chloronitrobenzene and 3-bromonitrobenzene, resulting in the regiospecific production of ring-cleavage intermediates 4-chlorocatechol and 4-bromocatechol. The lower activity and relaxed regiospecificity of DcbAaAbAcAd toward 3-fluoronitrobenzene is likely due to the higher electronegativity of the fluorine atom, which hinders it from interacting with E204 residue at the active site. DccA, a chlorocatechol 1,2-dioxygenase, converts 4-chlorocatechol and 4-bromocatechol into the corresponding halomuconic acids with high catalytic efficiency, but with much lower Kcat/Km values for fluorocatechol analogues. The results indicate that the Dcb and Dcc enzymes of Diaphorobacter sp. strain JS3051 can catalyze the degradation of 3-chloro- and 3-bromonitrobenzene in addition to 2,3-dichloronitrobenzene. The ability to utilize multiple substrates would provide a strong selective advantage in a habitat contaminated with mixtures of chloronitrobenzenes. IMPORTANCE Halonitroaromatic compounds are persistent environmental contaminants, and some of them have been demonstrated to be degraded by bacteria. Natural isolates that degrade 3-chloronitrobenzene and 3-bromonitrobenzene have not been reported. In this study, we report that Diaphorobacter sp. strain JS3051 can degrade 2,3-dichloronitrobenzene, 3-chloronitrobenzene, and 3-bromonitrobenzene using the same catabolic pathway, whereas it is unable to grow on 3-fluoronitrobenzene. Based on biochemical analyses, it can be concluded that the initial dioxygenase and lower pathway enzymes are inefficient for 3-fluoronitrobenzene and even misroute the intermediates, which is likely responsible for the failure to grow. These results advance our understanding of how the broad substrate specificities of catabolic enzymes allow bacteria to adapt to habitats with mixtures of xenobiotic contaminants.
Collapse
|
16
|
Csizi K, Eckert L, Brunken C, Hofstetter TB, Reiher M. The Apparently Unreactive Substrate Facilitates the Electron Transfer for Dioxygen Activation in Rieske Dioxygenases. Chemistry 2022; 28:e202103937. [PMID: 35072969 PMCID: PMC9306888 DOI: 10.1002/chem.202103937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 12/29/2022]
Abstract
Rieske dioxygenases belong to the non-heme iron family of oxygenases and catalyze important cis-dihydroxylation as well as O-/N-dealkylation and oxidative cyclization reactions for a wide range of substrates. The lack of substrate coordination at the non-heme ferrous iron center, however, makes it particularly challenging to delineate the role of the substrate for productive O 2 activation. Here, we studied the role of the substrate in the key elementary reaction leading to O 2 activation from a theoretical perspective by systematically considering (i) the 6-coordinate to 5-coordinate conversion of the non-heme FeII upon abstraction of a water ligand, (ii) binding of O 2 , and (iii) transfer of an electron from the Rieske cluster. We systematically evaluated the spin-state-dependent reaction energies and structural effects at the active site for all combinations of the three elementary processes in the presence and absence of substrate using naphthalene dioxygenase as a prototypical Rieske dioxygenase. We find that reaction energies for the generation of a coordination vacancy at the non-heme FeII center through thermoneutral H2 O reorientation and exothermic O 2 binding prior to Rieske cluster oxidation are largely insensitive to the presence of naphthalene and do not lead to formation of any of the known reactive Fe-oxygen species. By contrast, the role of the substrate becomes evident after Rieske cluster oxidation and exclusively for the 6-coordinate non-heme FeII sites in that the additional electron is found at the substrate instead of at the iron and oxygen atoms. Our results imply an allosteric control of the substrate on Rieske dioxygenase reactivity to happen prior to changes at the non-heme FeII in agreement with a strategy that avoids unproductive O 2 activation.
Collapse
Affiliation(s)
- Katja‐Sophia Csizi
- EawagSwiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 1338600DübendorfSwitzerland
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| | - Lina Eckert
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| | - Christoph Brunken
- EawagSwiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 1338600DübendorfSwitzerland
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| | - Thomas B. Hofstetter
- EawagSwiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 1338600DübendorfSwitzerland
| | - Markus Reiher
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| |
Collapse
|
17
|
Design principles for site-selective hydroxylation by a Rieske oxygenase. Nat Commun 2022; 13:255. [PMID: 35017498 PMCID: PMC8752792 DOI: 10.1038/s41467-021-27822-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/15/2021] [Indexed: 01/12/2023] Open
Abstract
Rieske oxygenases exploit the reactivity of iron to perform chemically challenging C–H bond functionalization reactions. Thus far, only a handful of Rieske oxygenases have been structurally characterized and remarkably little information exists regarding how these enzymes use a common architecture and set of metallocenters to facilitate a diverse range of reactions. Herein, we detail how two Rieske oxygenases SxtT and GxtA use different protein regions to influence the site-selectivity of their catalyzed monohydroxylation reactions. We present high resolution crystal structures of SxtT and GxtA with the native β-saxitoxinol and saxitoxin substrates bound in addition to a Xenon-pressurized structure of GxtA that reveals the location of a substrate access tunnel to the active site. Ultimately, this structural information allowed for the identification of six residues distributed between three regions of SxtT that together control the selectivity of the C–H hydroxylation event. Substitution of these residues produces a SxtT variant that is fully adapted to exhibit the non-native site-selectivity and substrate scope of GxtA. Importantly, we also found that these selectivity regions are conserved in other structurally characterized Rieske oxygenases, providing a framework for predictively repurposing and manipulating Rieske oxygenases as biocatalysts. SxtT and GxtA are Rieske oxygenases that are involved in paralytic shellfish toxin biosynthesis and catalyze monohydroxylation reactions at different positions on the toxin scaffold. Here, the authors present crystal structures of SxtT and GxtA with the native substrates β-saxitoxinol and saxitoxin as well as a Xenon-pressurized structure of GxtA, which reveal a substrate access tunnel to the active site. Through structure-based mutagenesis studies the authors identify six residues in three different protein regions that determine the substrate specificity and site selectivity of SxtT and GxtA. These findings will aid the rational engineering of other Rieske oxygenases.
Collapse
|
18
|
Structural insights into dihydroxylation of terephthalate, a product of polyethylene terephthalate degradation. J Bacteriol 2022; 204:e0054321. [PMID: 35007143 DOI: 10.1128/jb.00543-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biodegradation of terephthalate (TPA) is a highly desired catabolic process for the bacterial utilization of this Polyethylene terephthalate (PET) depolymerization product, but to date, the structure of terephthalate dioxygenase (TPDO), a Rieske oxygenase (RO) that catalyzes the dihydroxylation of TPA to a cis-diol is unavailable. In this study, we characterized the steady-state kinetics and first crystal structure of TPDO from Comamonas testosteroni KF1 (TPDOKF1). The TPDOKF1 exhibited the substrate specificity for TPA (kcat/Km = 57 ± 9 mM-1s-1). The TPDOKF1 structure harbors characteristics RO features as well as a unique catalytic domain that rationalizes the enzyme's function. The docking and mutagenesis studies reveal that its substrate specificity to TPA is mediated by Arg309 and Arg390 residues, two residues positioned on opposite faces of the active site. Additionally, residue Gln300 is also proven to be crucial for the activity, its substitution to alanine decreases the activity (kcat) by 80%. Together, this study delineates the structural features that dictate the substrate recognition and specificity of TPDO. Importance The global plastic pollution has become the most pressing environmental issue. Recent studies on enzymes depolymerizing polyethylene terephthalate plastic into terephthalate (TPA) show some potential in tackling this. Microbial utilization of this released product, TPA is an emerging and promising strategy for waste-to-value creation. Research from the last decade has discovered terephthalate dioxygenase (TPDO), as being responsible for initiating the enzymatic degradation of TPA in a few Gram-negative and Gram-positive bacteria. Here, we have determined the crystal structure of TPDO from Comamonas testosteroni KF1 and revealed that it possesses a unique catalytic domain featuring two basic residues in the active site to recognize TPA. Biochemical and mutagenesis studies demonstrated the crucial residues responsible for the substrate specificity of this enzyme.
Collapse
|
19
|
A Recently Assembled Degradation Pathway for 2,3-Dichloronitrobenzene in Diaphorobacter sp. Strain JS3051. mBio 2021; 12:e0223121. [PMID: 34425699 PMCID: PMC8406286 DOI: 10.1128/mbio.02231-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Diaphorobacter sp. strain JS3051 utilizes 2,3-dichloronitrobenzene (23DCNB), a toxic anthropogenic compound, as the sole carbon, nitrogen, and energy source for growth, but the metabolic pathway and its origins are unknown. Here, we establish that a gene cluster (dcb), encoding a Nag-like dioxygenase, is responsible for the initial oxidation of the 23DCNB molecule. The 2,3-dichloronitrobenzene dioxygenase system (DcbAaAbAcAd) catalyzes conversion of 23DCNB to 3,4-dichlorocatechol (34DCC). Site-directed mutagenesis studies indicated that residue 204 of DcbAc is crucial for the substrate specificity of 23DCNB dioxygenase. The presence of glutamic acid at position 204 of 23DCNB dioxygenase is unique among Nag-like dioxygenases. Genetic, biochemical, and structural evidence indicate that the 23DCNB dioxygenase is more closely related to 2-nitrotoluene dioxygenase from Acidovorax sp. strain JS42 than to the 34DCNB dioxygenase from Diaphorobacter sp. strain JS3050, which was isolated from the same site as strain JS3051. A gene cluster (dcc) encoding the enzymes for 34DCC catabolism, homologous to a clc operon in Pseudomonas knackmussii strain B13, is also on the chromosome at a distance of 2.5 Mb from the dcb genes. Heterologously expressed DccA catalyzed ring cleavage of 34DCC with high affinity and catalytic efficiency. This work not only establishes the molecular mechanism for 23DCNB mineralization, but also enhances the understanding of the recent evolution of the catabolic pathways for nitroarenes.
Collapse
|
20
|
Structural and Biochemical Analysis Reveals a Distinct Catalytic Site of Salicylate 5-Monooxygenase NagGH from Rieske Dioxygenases. Appl Environ Microbiol 2021; 87:AEM.01629-20. [PMID: 33452034 DOI: 10.1128/aem.01629-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022] Open
Abstract
Rieske nonheme iron oxygenases (ROs) catalyze the oxidation of a wide variety of substrates and play important roles in aromatic compound degradation and polycyclic aromatic hydrocarbon degradation. Those Rieske dioxygenases that usually act on hydrophobic substrates have been extensively studied and structurally characterized. Here, we report the crystal structure of a novel Rieske monooxygenase, NagGH, the oxygenase component of a salicylate 5-monooxygenase from Ralstonia sp. strain U2 that catalyzes the hydroxylation of a hydrophilic substrate salicylate (2-hydroxybenzoate), forming gentisate (2, 5-dihydroxybenzoate). The large subunit NagG and small subunit NagH share the same fold as that for their counterparts of Rieske dioxygenases and assemble the same α3β3 hexamer, despite that they share low (or no identity for NagH) sequence identities with these dioxygenase counterparts. A potential substrate-binding pocket was observed in the vicinity of the nonheme iron site. It featured a positively charged residue Arg323 that was surrounded by hydrophobic residues. The shift of nonheme iron atom caused by residue Leu228 disrupted the usual substrate pocket observed in other ROs. Residue Asn218 at the usual substrate pocket observed in other ROs was likewise involved in substrate binding and oxidation, yet residues Gln316 and Ser367, away from the usual substrate pocket of other ROs, were shown to play a more important role in substrate oxidation than Asn218. The unique binding pocket and unusual substrate-protein hydrophilic interaction provide new insights into Rieske monooxygenases.IMPORTANCE Rieske oxygenases are involved in the degradation of various aromatic compounds. These dioxygenases usually carry out hydroxylation of hydrophobic aromatic compounds and supply substrates with hydroxyl groups for extradiol/intradiol dioxygenases to cleave rings, and have been extensively studied. Salicylate 5-hydroxylase NagGH is a novel Rieske monooxygenase with high similarity to Rieske dioxygenases, and also shares reductase and ferredoxin similarity with a Rieske dioxygenase naphthalene 1,2-dioxygenase (NagAcAd) in Ralstonia sp. strain U2. The structure of NagGH, the oxygenase component of salicylate 5-monooxygenase, gives a representative of those monooxygenases and will help us understand the mechanism of their substrate binding and product regio-selectivity.
Collapse
|
21
|
Sen A, Vyas N, Pandey B, Rajaraman G. Deciphering the mechanism of oxygen atom transfer by non-heme Mn IV-oxo species: an ab initio and DFT exploration. Dalton Trans 2020; 49:10380-10393. [PMID: 32613212 DOI: 10.1039/d0dt01785j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Oxygen atom transfer (OAT) reactions employing transition metal-oxo species have tremendous significance in homogeneous catalysis for industrial use. Understanding the structural and mechanistic aspects of OAT reactions using high-valent metal-oxo species is of great importance to fine-tune their reactivity. Herein we examine the reactivity of a non-heme high-valent oxo-manganese(iv) complex, [MnIVH3buea(O)]- towards a variety of substrates such as PPh2Me, PPhMe2, PCy3, PPh3, and PMe3 using density functional theory as well as ab initio CASSCF/NEVPT2 methods. We have initially explored the structure and bonding of [MnIVH3buea(O)]- and its congener [MnIVH3buea(S)]-. Our calculations affirm an S = 3/2 ground state of the catalyst with the S = 5/2 and S = 1/2 excited states predicted to be too high lying in energy to participate in the reaction mechanism. Our ab initio CASSCF/NEVPT2 calculations, however, reveal a strong multi-reference character for the ground S = 3/2 state with many low-lying quartets mixing significantly with the ground state. This opens up various reaction channels, and the admixed wave-function evolves during the reaction with the excited triplet dominating the ground state wave-function at the reactant complex. Our calculations predict the following pattern of reactivity, PCy3 < PMe3 < PPh3 < PPhMe2 < PPh2Me for the OAT reaction with the MnIV[double bond, length as m-dash]O species which correlates well with the experimental observations. Detailed electronic structure analysis of the transitions states reveal that these substrates react via an unusual low-energy δ-type pathway where a spin-up electron from the substrate is transferred to the δ*x2-y2 orbital of the MnIV[double bond, length as m-dash]O facilitated by its multi-reference character. The unusual reactivity observed here has implications in understanding the reactivity of [Mn4Ca] species in photosystem II.
Collapse
Affiliation(s)
- Asmita Sen
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | | | | | | |
Collapse
|
22
|
Structural basis for divergent C-H hydroxylation selectivity in two Rieske oxygenases. Nat Commun 2020; 11:2991. [PMID: 32532989 PMCID: PMC7293229 DOI: 10.1038/s41467-020-16729-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/15/2020] [Indexed: 12/05/2022] Open
Abstract
Biocatalysts that perform C–H hydroxylation exhibit exceptional substrate specificity and site-selectivity, often through the use of high valent oxidants to activate these inert bonds. Rieske oxygenases are examples of enzymes with the ability to perform precise mono- or dioxygenation reactions on a variety of substrates. Understanding the structural features of Rieske oxygenases responsible for control over selectivity is essential to enable the development of this class of enzymes for biocatalytic applications. Decades of research has illuminated the critical features common to Rieske oxygenases, however, structural information for enzymes that functionalize diverse scaffolds is limited. Here, we report the structures of two Rieske monooxygenases involved in the biosynthesis of paralytic shellfish toxins (PSTs), SxtT and GxtA, adding to the short list of structurally characterized Rieske oxygenases. Based on these structures, substrate-bound structures, and mutagenesis experiments, we implicate specific residues in substrate positioning and the divergent reaction selectivity observed in these two enzymes. Rieske oxygenases are iron-dependent enzymes that catalyse C–H mono- and dihydroxylation reactions. Here, the authors characterise two cyanobacterial Rieske oxygenases, SxtT and GxtA that are involved in the biosynthesis of paralytic shellfish toxins and determine their substrate free and saxitoxin analog-bound crystal structures and by using mutagenesis experiments identify residues, which are important for substrate positioning and reaction selectivity.
Collapse
|
23
|
Chen BS, Ribeiro de Souza FZ. Enzymatic synthesis of enantiopure alcohols: current state and perspectives. RSC Adv 2019; 9:2102-2115. [PMID: 35516160 PMCID: PMC9059855 DOI: 10.1039/c8ra09004a] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
Enantiomerically pure alcohols, as key intermediates, play an essential role in the pharmaceutical, agrochemical and chemical industries. Among the methods used for their production, biotechnological approaches are generally considered a green and effective alternative due to their mild reaction conditions and remarkable enantioselectivity. An increasing number of enzymatic strategies for the synthesis of these compounds has been developed over the years, among which seven primary methodologies can be distinguished as follows: (1) enantioselective water addition to alkenes, (2) enantioselective aldol addition, (3) enantioselective coupling of ketones with hydrogen cyanide, (4) asymmetric reduction of carbonyl compounds, (5) (dynamic) kinetic resolution of racemates, (6) enantioselective hydrolysis of epoxides, and (7) stereoselective hydroxylation of unactivated C-H bonds. Some recent reviews have examined these approaches separately; however, to date, no review has included all the above mentioned strategies. The aim of this mini-review is to provide an overview of all seven enzymatic strategies and draw conclusions on the effect of each approach.
Collapse
Affiliation(s)
- Bi-Shuang Chen
- School of Marine Sciences, Sun Yat-Sen University Guangzhou 510275 China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University Guangzhou 510275 China
| | | |
Collapse
|
24
|
Verma N, Kantiwal U, Nitika, Yadav YK, Teli S, Goyal D, Pandey J. Catalytic Promiscuity of Aromatic Ring-Hydroxylating Dioxygenases and Their Role in the Plasticity of Xenobiotic Compound Degradation. MICROORGANISMS FOR SUSTAINABILITY 2019. [DOI: 10.1007/978-981-13-7462-3_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Zamiran F, Ghaderi A. Nickel-catalyzed denitrative etherification of activated nitrobenzenes. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1510-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Sutherlin KD, Rivard BS, Böttger LH, Liu LV, Rogers MS, Srnec M, Park K, Yoda Y, Kitao S, Kobayashi Y, Saito M, Seto M, Hu M, Zhao J, Lipscomb JD, Solomon EI. NRVS Studies of the Peroxide Shunt Intermediate in a Rieske Dioxygenase and Its Relation to the Native Fe II O 2 Reaction. J Am Chem Soc 2018; 140:5544-5559. [PMID: 29618204 PMCID: PMC5973823 DOI: 10.1021/jacs.8b01822] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The Rieske dioxygenases are a major subclass of mononuclear nonheme iron enzymes that play an important role in bioremediation. Recently, a high-spin FeIII-(hydro)peroxy intermediate (BZDOp) has been trapped in the peroxide shunt reaction of benzoate 1,2-dioxygenase. Defining the structure of this intermediate is essential to understanding the reactivity of these enzymes. Nuclear resonance vibrational spectroscopy (NRVS) is a recently developed synchrotron technique that is ideal for obtaining vibrational, and thus structural, information on Fe sites, as it gives complete information on all vibrational normal modes containing Fe displacement. In this study, we present NRVS data on BZDOp and assign its structure using these data coupled to experimentally calibrated density functional theory calculations. From this NRVS structure, we define the mechanism for the peroxide shunt reaction. The relevance of the peroxide shunt to the native FeII/O2 reaction is evaluated. For the native FeII/O2 reaction, an FeIII-superoxo intermediate is found to react directly with substrate. This process, while uphill thermodynamically, is found to be driven by the highly favorable thermodynamics of proton-coupled electron transfer with an electron provided by the Rieske [2Fe-2S] center at a later step in the reaction. These results offer important insight into the relative reactivities of FeIII-superoxo and FeIII-hydroperoxo species in nonheme Fe biochemistry.
Collapse
Affiliation(s)
- Kyle D. Sutherlin
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Brent S. Rivard
- Department of Biochemistry, Molecular Biology, & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lars H. Böttger
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Lei V. Liu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Melanie S. Rogers
- Department of Biochemistry, Molecular Biology, & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Martin Srnec
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- J. HeyrovskýInstitute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Kiyoung Park
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Yoshitaka Yoda
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
| | - Shinji Kitao
- Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
| | | | - Makina Saito
- Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
| | - Makoto Seto
- Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
| | - Michael Hu
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
27
|
Khara P, Roy M, Chakraborty J, Dutta A, Dutta TK. Characterization of a topologically unique oxygenase from Sphingobium sp. PNB capable of catalyzing a broad spectrum of aromatics. Enzyme Microb Technol 2018; 111:74-80. [DOI: 10.1016/j.enzmictec.2017.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/25/2017] [Accepted: 10/16/2017] [Indexed: 11/25/2022]
|
28
|
Kumari A, Singh D, Ramaswamy S, Ramanathan G. Structural and functional studies of ferredoxin and oxygenase components of 3-nitrotoluene dioxygenase from Diaphorobacter sp. strain DS2. PLoS One 2017; 12:e0176398. [PMID: 28448625 PMCID: PMC5407579 DOI: 10.1371/journal.pone.0176398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/10/2017] [Indexed: 11/23/2022] Open
Abstract
3-nitrotoluene dioxygenase (3NTDO) from Diaphorobacter sp. strain DS2 catalyses the conversion of 3-nitrotoluene (3NT) into a mixture of 3- and 4-methylcatechols with release of nitrite. We report here, X-ray crystal structures of oxygenase and ferredoxin components of 3NTDO at 2.9 Å and 2.4 Å, respectively. The residues responsible for nitrite release in 3NTDO were further probed by four single and two double mutations in the catalytic site of α-subunit of the dioxygenase. Modification of Val 350 to Phe, Ile 204 to Ala, and Asn258 to Val by site directed mutagenesis resulted in inactive enzymes revealing the importance of these residues in catalysis. Docking studies of meta nitrotoluene to the active site of 3NTDO suggested possible orientations of binding that favor the formation of 3-methylcatechol (3MC) over 4-methylcatechol energetically. The electron transfer pathway from ferredoxin subunit to the active site of the oxygenase subunit is also proposed.
Collapse
Affiliation(s)
- Archana Kumari
- Department of Chemistry, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh, India
| | - Deepak Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh, India
| | - S Ramaswamy
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Science, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Gurunath Ramanathan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
29
|
Pati SG, Kohler HPE, Pabis A, Paneth P, Parales RE, Hofstetter TB. Substrate and Enzyme Specificity of the Kinetic Isotope Effects Associated with the Dioxygenation of Nitroaromatic Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6708-16. [PMID: 26895026 DOI: 10.1021/acs.est.5b05084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Compound-specific isotope analysis (CSIA) is a promising approach for tracking biotransformation of organic pollutants, but isotope fractionation associated with aromatic oxygenations is only poorly understood. We investigated the dioxygenation of a series of nitroaromatic compounds to the corresponding catechols by two enzymes, namely, nitrobenzene and 2-nitrotoluene dioxygenase (NBDO and 2NTDO) to elucidate the enzyme- and substrate-specificity of C and H isotope fractionation. While the apparent (13)C- and (2)H-kinetic isotope effects of nitrobenzene, nitrotoluene isomers, 2,6-dinitrotoluene, and naphthalene dioxygenation by NBDO varied considerably, the correlation of C and H isotope fractionation revealed a common mechanism for nitrobenzene and nitrotoluenes. Similar observations were made for the dioxygenation of these substrates by 2NTDO. Evaluation of reaction kinetics, isotope effects, and commitment-to-catalysis based on experiment and theory showed that rates of dioxygenation are determined by the enzymatic O2 activation and aromatic C oxygenation. The contribution of enzymatic O2 activation to the reaction rate varies for different nitroaromatic substrates of NBDO and 2NTDO. Because aromatic dioxygenation by nonheme iron dioxygenases is frequently the initial step of biodegradation, O2 activation kinetics may also have been responsible for the minor isotope fractionation reported for the oxygenation of other aromatic contaminants.
Collapse
Affiliation(s)
- Sarah G Pati
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich , 8092 Zürich, Switzerland
| | - Hans-Peter E Kohler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Anna Pabis
- Institute of Applied Radiation Chemistry, Lodz University of Technology , 90-924 Lodz, Poland
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Lodz University of Technology , 90-924 Lodz, Poland
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, University of California , Davis, California 95616, United States
| | - Thomas B Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich , 8092 Zürich, Switzerland
| |
Collapse
|
30
|
The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part III. {[Fe2S2](Cys)3(X)} (X=Asp, Arg, His) and {[Fe2S2](Cys)2(His)2} proteins. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Rivard BS, Rogers MS, Marell DJ, Neibergall MB, Chakrabarty S, Cramer CJ, Lipscomb JD. Rate-Determining Attack on Substrate Precedes Rieske Cluster Oxidation during Cis-Dihydroxylation by Benzoate Dioxygenase. Biochemistry 2015; 54:4652-64. [PMID: 26154836 DOI: 10.1021/acs.biochem.5b00573] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rieske dearomatizing dioxygenases utilize a Rieske iron-sulfur cluster and a mononuclear Fe(II) located 15 Å across a subunit boundary to catalyze O2-dependent formation of cis-dihydrodiol products from aromatic substrates. During catalysis, O2 binds to the Fe(II) while the substrate binds nearby. Single-turnover reactions have shown that one electron from each metal center is required for catalysis. This finding suggested that the reactive intermediate is Fe(III)-(H)peroxo or HO-Fe(V)═O formed by O-O bond scission. Surprisingly, several kinetic phases were observed during the single-turnover Rieske cluster oxidation. Here, the Rieske cluster oxidation and product formation steps of a single turnover of benzoate 1,2-dioxygenase are investigated using benzoate and three fluorinated analogues. It is shown that the rate constant for product formation correlates with the reciprocal relaxation time of only the fastest kinetic phase (RRT-1) for each substrate, suggesting that the slower phases are not mechanistically relevant. RRT-1 is strongly dependent on substrate type, suggesting a role for substrate in electron transfer from the Rieske cluster to the mononuclear iron site. This insight, together with the substrate and O2 concentration dependencies of RRT-1, indicates that a reactive species is formed after substrate and O2 binding but before electron transfer from the Rieske cluster. Computational studies show that RRT-1 is correlated with the electron density at the substrate carbon closest to the Fe(II), consistent with initial electrophilic attack by an Fe(III)-superoxo intermediate. The resulting Fe(III)-peroxo-aryl radical species would then readily accept an electron from the Rieske cluster to complete the cis-dihydroxylation reaction.
Collapse
Affiliation(s)
- Brent S Rivard
- †Department of Biochemistry, Molecular Biology, and Biophysics and the Center for Metals in Biocatalysis, ‡Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Melanie S Rogers
- †Department of Biochemistry, Molecular Biology, and Biophysics and the Center for Metals in Biocatalysis, ‡Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daniel J Marell
- †Department of Biochemistry, Molecular Biology, and Biophysics and the Center for Metals in Biocatalysis, ‡Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Matthew B Neibergall
- †Department of Biochemistry, Molecular Biology, and Biophysics and the Center for Metals in Biocatalysis, ‡Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sarmistha Chakrabarty
- †Department of Biochemistry, Molecular Biology, and Biophysics and the Center for Metals in Biocatalysis, ‡Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J Cramer
- †Department of Biochemistry, Molecular Biology, and Biophysics and the Center for Metals in Biocatalysis, ‡Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John D Lipscomb
- †Department of Biochemistry, Molecular Biology, and Biophysics and the Center for Metals in Biocatalysis, ‡Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
32
|
Selection for growth on 3-nitrotoluene by 2-nitrotoluene-utilizing Acidovorax sp. strain JS42 identifies nitroarene dioxygenases with altered specificities. Appl Environ Microbiol 2014; 81:309-19. [PMID: 25344236 DOI: 10.1128/aem.02772-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acidovorax sp. strain JS42 uses 2-nitrotoluene as a sole source of carbon and energy. The first enzyme of the degradation pathway, 2-nitrotoluene 2,3-dioxygenase, adds both atoms of molecular oxygen to 2-nitrotoluene, forming nitrite and 3-methylcatechol. All three mononitrotoluene isomers serve as substrates for 2-nitrotoluene dioxygenase, but strain JS42 is unable to grow on 3- or 4-nitrotoluene. Using both long- and short-term selections, we obtained spontaneous mutants of strain JS42 that grew on 3-nitrotoluene. All of the strains obtained by short-term selection had mutations in the gene encoding the α subunit of 2-nitrotoluene dioxygenase that changed isoleucine 204 at the active site to valine. Those strains obtained by long-term selections had mutations that changed the same residue to valine, alanine, or threonine or changed the alanine at position 405, which is just outside the active site, to glycine. All of these changes altered the regiospecificity of the enzymes with 3-nitrotoluene such that 4-methylcatechol was the primary product rather than 3-methylcatechol. Kinetic analyses indicated that the evolved enzymes had enhanced affinities for 3-nitrotoluene and were more catalytically efficient with 3-nitrotoluene than the wild-type enzyme. In contrast, the corresponding amino acid substitutions in the closely related enzyme nitrobenzene 1,2-dioxygenase were detrimental to enzyme activity. When cloned genes encoding the evolved dioxygenases were introduced into a JS42 mutant lacking a functional dioxygenase, the strains acquired the ability to grow on 3-nitrotoluene but with significantly longer doubling times than the evolved strains, suggesting that additional beneficial mutations occurred elsewhere in the genome.
Collapse
|
33
|
Pati SG, Kohler HPE, Bolotin J, Parales RE, Hofstetter TB. Isotope effects of enzymatic dioxygenation of nitrobenzene and 2-nitrotoluene by nitrobenzene dioxygenase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:10750-10759. [PMID: 25101486 DOI: 10.1021/es5028844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Oxygenation of aromatic rings is a frequent initial step in the biodegradation of persistent contaminants, and the accompanying isotope fractionation is increasingly used to assess the extent of transformation in the environment. Here, we systematically investigated the dioxygenation of two nitroaromatic compounds (nitrobenzene and 2-nitrotoluene) by nitrobenzene dioxygenase (NBDO) to obtain insights into the factors governing its C, H, and N isotope fractionation. Experiments were carried out at different levels of biological complexity from whole bacterial cells to pure enzyme. C, H, and N isotope enrichment factors and kinetic isotope effects (KIEs) were derived from the compound-specific isotope analysis of nitroarenes, whereas C isotope fractionation was also quantified in the oxygenated reaction products. Dioxygenation of nitrobenzene to catechol and 2-nitrotoluene to 3-methylcatechol showed large C isotope enrichment factors, ϵC, of -4.1 ± 0.2‰ and -2.5 ± 0.2‰, respectively, and was observed consistently in the substrates and dioxygenation products. ϵH- and ϵN-values were smaller, that is -5.7 ± 1.3‰ and -1.0 ± 0.3‰, respectively. C isotope fractionation was also identical in experiments with whole bacterial cells and pure enzymes. The corresponding (13)C-KIEs for the dioxygenation of nitrobenzene and 2-nitrotoluene were 1.025 ± 0.001 and 1.018 ± 0.001 and suggest a moderate substrate specificity. Our study illustrates that dioxygenation of nitroaromatic contaminants exhibits a large C isotope fractionation, which is not masked by substrate transport and uptake processes and larger than dioxygenation of other aromatic hydrocarbons.
Collapse
Affiliation(s)
- Sarah G Pati
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Biotechnological production of chiral organic sulfoxides: current state and perspectives. Appl Microbiol Biotechnol 2014; 98:7699-706. [PMID: 25073518 DOI: 10.1007/s00253-014-5932-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
Chiral organic sulfoxides (COSs) are important compounds that act as chiral auxiliaries in numerous asymmetric reactions and as intermediates in chiral drug synthesis. In addition to their optical resolution, stereoselective oxidation of sulfides can be used for COS production. This reaction is facilitated by oxygenases and peroxidases from various microbial resources. To meet the current demand for esomeprazole, a proton pump inhibitor used in the treatment of gastric-acid-related disorders, and the (S)-isomer of an organic sulfoxide compound, omeprazole, a successful biotechnological production method using a Baeyer-Villiger monooxygenase (BVMO), was developed. In this review, we summarize the recent advancements in COS production using biocatalysts, including enzyme identification, protein engineering, and process development.
Collapse
|
35
|
Pabis A, Geronimo I, York DM, Paneth P. Molecular Dynamics Simulation of Nitrobenzene Dioxygenase Using AMBER Force Field. J Chem Theory Comput 2014; 10:2246-2254. [PMID: 24955078 PMCID: PMC4059247 DOI: 10.1021/ct500205z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Indexed: 12/03/2022]
Abstract
Molecular dynamics simulation of the oxygenase component of nitrobenzene dioxygenase (NBDO) system, a member of the naphthalene family of Rieske nonheme iron dioxygenases, has been carried out using the AMBER force field combined with a new set of parameters for the description of the mononuclear nonheme iron center and iron-sulfur Rieske cluster. Simulation results provide information on the structure and dynamics of nitrobenzene dioxygenase in an aqueous environment and shed light on specific interactions that occur in its catalytic center. The results suggest that the architecture of the active site is stabilized by key hydrogen bonds, and Asn258 positions the substrate for oxidation. Analysis of protein-water interactions reveal the presence of a network of solvent molecules at the entrance to the active site, which could be of potential catalytic importance.
Collapse
Affiliation(s)
- Anna Pabis
- Institute
of Applied Radiation Chemistry, Lodz University
of Technology, Zeromskiego
116, 90-924 Lodz, Poland
- Department
of Chemistry and Chemical Biology, Center for Integrative Proteomics
Research and BioMaPS Institute for Quantitative Biology, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| | - Inacrist Geronimo
- Institute
of Applied Radiation Chemistry, Lodz University
of Technology, Zeromskiego
116, 90-924 Lodz, Poland
| | - Darrin M. York
- Department
of Chemistry and Chemical Biology, Center for Integrative Proteomics
Research and BioMaPS Institute for Quantitative Biology, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| | - Piotr Paneth
- Institute
of Applied Radiation Chemistry, Lodz University
of Technology, Zeromskiego
116, 90-924 Lodz, Poland
| |
Collapse
|
36
|
3-Ketosteroid 9α-hydroxylase enzymes: Rieske non-heme monooxygenases essential for bacterial steroid degradation. Antonie van Leeuwenhoek 2014; 106:157-72. [PMID: 24846050 PMCID: PMC4064121 DOI: 10.1007/s10482-014-0188-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/25/2014] [Indexed: 12/26/2022]
Abstract
Various micro-organisms are able to use sterols/steroids as carbon- and energy sources for growth. 3-Ketosteroid 9α-hydroxylase (KSH), a two component Rieske non-heme monooxygenase comprised of the oxygenase KshA and the reductase KshB, is a key-enzyme in bacterial steroid degradation. It initiates opening of the steroid polycyclic ring structure. The enzyme has industrial relevance in the synthesis of pharmaceutical steroids. Deletion of KSH activity in sterol degrading bacteria results in blockage of steroid ring opening and is used to produce valuable C19-steroids such as 4-androstene-3,17-dione and 1,4-androstadiene-3,17-dione. Interestingly, KSH activity is essential for the pathogenicity of Mycobacterium tuberculosis. Detailed information about KSH thus is of medical relevance, and KSH inhibitory compounds may find application in combatting tuberculosis. In recent years, the 3D structure of the KshA protein of M. tuberculosis H37Rv has been elucidated and various studies report biochemical characteristics and possible physiological roles of KSH. The current knowledge is reviewed here and forms a solid basis for further studies on this highly interesting enzyme. Future work may result in the construction of KSH mutants capable of production of specific bioactive steroids. Furthermore, KSH provides an promising target for drugs against the pathogenic agent M. tuberculosis.
Collapse
|
37
|
Pabis A, Geronimo I, Paneth P. A DFT study of the cis-dihydroxylation of nitroaromatic compounds catalyzed by nitrobenzene dioxygenase. J Phys Chem B 2014; 118:3245-56. [PMID: 24624972 PMCID: PMC3970850 DOI: 10.1021/jp4076299] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
The
mechanism of cis-dihydroxylation of nitrobenzene
and 2-nitrotoluene catalyzed by nitrobenzene 1,2-dioxygenase (NBDO),
a member of the naphthalene family of Rieske non-heme iron dioxygenases,
was studied by means of the density functional theory method using
four models of the enzyme active site. Different possible reaction
pathways for the substrate dioxygenation initiated either by the FeIII–OOH or HO–FeV=O attack
on the aromatic ring were considered and the computed activation barriers
compared with the Gibbs free energy of activation for the oxygen–oxygen
cleavage leading to the formation of the iron(V)–oxo species
from its ferric hydroperoxo precursor. The mechanism of the substrate cis-dihydroxylation leading to the formation of a cis-dihydrodiol was then investigated, and the most feasible
mechanism was found to be starting with the attack of the high-valent
iron–oxo species on the substrate ring yielding a radical intermediate,
which further evolves toward the final product.
Collapse
Affiliation(s)
- Anna Pabis
- Institute of Applied Radiation Chemistry, Lodz University of Technology , Zeromskiego 116, 90-924 Lodz, Poland
| | | | | |
Collapse
|
38
|
Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proc Natl Acad Sci U S A 2014; 111:4268-73. [PMID: 24591617 DOI: 10.1073/pnas.1316569111] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dietary intake of L-carnitine can promote cardiovascular diseases in humans through microbial production of trimethylamine (TMA) and its subsequent oxidation to trimethylamine N-oxide by hepatic flavin-containing monooxygenases. Although our microbiota are responsible for TMA formation from carnitine, the underpinning molecular and biochemical mechanisms remain unclear. In this study, using bioinformatics approaches, we first identified a two-component Rieske-type oxygenase/reductase (CntAB) and associated gene cluster proposed to be involved in carnitine metabolism in representative genomes of the human microbiota. CntA belongs to a group of previously uncharacterized Rieske-type proteins and has an unusual "bridging" glutamate but not the aspartate residue, which is believed to facilitate intersubunit electron transfer between the Rieske center and the catalytic mononuclear iron center. Using Acinetobacter baumannii as the model, we then demonstrate that cntAB is essential in carnitine degradation to TMA. Heterologous overexpression of cntAB enables Escherichia coli to produce TMA, confirming that these genes are sufficient in TMA formation. Site-directed mutagenesis experiments have confirmed that this unusual "bridging glutamate" residue in CntA is essential in catalysis and neither mutant (E205D, E205A) is able to produce TMA. Taken together, the data in our study reveal the molecular and biochemical mechanisms underpinning carnitine metabolism to TMA in human microbiota and assign the role of this novel group of Rieske-type proteins in microbial carnitine metabolism.
Collapse
|
39
|
Structural basis of the divergent oxygenation reactions catalyzed by the rieske nonheme iron oxygenase carbazole 1,9a-dioxygenase. Appl Environ Microbiol 2014; 80:2821-32. [PMID: 24584240 DOI: 10.1128/aem.04000-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Carbazole 1,9a-dioxygenase (CARDO), a Rieske nonheme iron oxygenase (RO), is a three-component system composed of a terminal oxygenase (Oxy), ferredoxin, and a ferredoxin reductase. Oxy has angular dioxygenation activity against carbazole. Previously, site-directed mutagenesis of the Oxy-encoding gene from Janthinobacterium sp. strain J3 generated the I262V, F275W, Q282N, and Q282Y Oxy derivatives, which showed oxygenation capabilities different from those of the wild-type enzyme. To understand the structural features resulting in the different oxidation reactions, we determined the crystal structures of the derivatives, both free and complexed with substrates. The I262V, F275W, and Q282Y derivatives catalyze the lateral dioxygenation of carbazole with higher yields than the wild type. A previous study determined the crystal structure of Oxy complexed with carbazole and revealed that the carbonyl oxygen of Gly178 hydrogen bonds with the imino nitrogen of carbazole. In these derivatives, the carbazole was rotated approximately 15, 25, and 25°, respectively, compared to the wild type, creating space for a water molecule, which hydrogen bonds with the carbonyl oxygen of Gly178 and the imino nitrogen of carbazole. In the crystal structure of the F275W derivative complexed with fluorene, C-9 of fluorene, which corresponds to the imino nitrogen of carbazole, was oriented close to the mutated residue Trp275, which is on the opposite side of the binding pocket from the carbonyl oxygen of Gly178. Our structural analyses demonstrate that the fine-tuning of hydrophobic residues on the surface of the substrate-binding pocket in ROs causes a slight shift in the substrate-binding position that, in turn, favors specific oxygenation reactions toward various substrates.
Collapse
|
40
|
Directed evolution of nitrobenzene dioxygenase for the synthesis of the antioxidant hydroxytyrosol. Appl Microbiol Biotechnol 2014; 98:4975-85. [DOI: 10.1007/s00253-013-5505-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/20/2013] [Accepted: 12/26/2013] [Indexed: 01/07/2023]
|
41
|
Geronimo I, Paneth P. A DFT and ONIOM study of C–H hydroxylation catalyzed by nitrobenzene 1,2-dioxygenase. Phys Chem Chem Phys 2014; 16:13889-99. [DOI: 10.1039/c4cp01030b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The DFT and ONIOM calculations show that C–H hydroxylation by nitrobenzene 1,2-dioxygenase proceeds through a HO–FeVO intermediate.
Collapse
Affiliation(s)
- Inacrist Geronimo
- Institute of Applied Radiation Chemistry
- Lodz University of Technology
- 90-924 Łódź, Poland
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry
- Lodz University of Technology
- 90-924 Łódź, Poland
| |
Collapse
|
42
|
Dutta A, Chakraborty J, Dutta TK. Episodic positive selection during the evolution of naphthalene dioxygenase to nitroarene dioxygenase. Biochem Biophys Res Commun 2013; 440:68-75. [PMID: 24041690 DOI: 10.1016/j.bbrc.2013.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/05/2013] [Indexed: 06/02/2023]
Abstract
Using different maximum-likelihood models of adaptive evolution, signatures of natural selective pressure, operating across the naphthalene family of dioxygenases, were examined. A lineage- and branch-site specific combined analysis revealed that purifying selection pressure dominated the evolutionary history of the enzyme family. Specifically, episodic positive Darwinian selection pressure, affecting only a few sites in a subset of lineages, was found to be responsible for the evolution of nitroarene dioxygenases (NArDO) from naphthalene dioxygenase (NDO). Site-specific analysis confirmed the absence of diversifying selection pressure at any particular site. Different sets of positively selected residues, obtained from branch-site specific analysis, were detected for the evolution of each NArDO. They were mainly located around the active site, the catalytic pocket and their adjacent regions, when mapped onto the 3D structure of the α-subunit of NDO. The present analysis enriches the current understanding of adaptive evolution and also broadens the scope for rational alteration of substrate specificity of enzyme by directed evolution.
Collapse
Affiliation(s)
- Arindam Dutta
- Department of Microbiology, Bose Institute, Kolkata 700054, India
| | | | | |
Collapse
|
43
|
Wijker RS, Bolotin J, Nishino SF, Spain JC, Hofstetter TB. Using compound-specific isotope analysis to assess biodegradation of nitroaromatic explosives in the subsurface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:6872-6883. [PMID: 23547531 DOI: 10.1021/es3051845] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Assessing the fate of nitroaromatic explosives in the subsurface is challenging because contaminants are present in different phases (e.g., bound to soil or sediment matrix or as solid-phase residues) and transformation takes place via several potentially competing pathways over time-scales of decades. We developed a procedure for compound-specific analysis of stable C, N, and H isotopes in nitroaromatic compounds (NACs) and characterized biodegradation of 2,4,6-trinitrotoluene (TNT) and two dinitrotoluene isomers (2,4-DNT and 2,6-DNT) in subsurface material of a contaminated site. The type and relative contribution of reductive and oxidative pathways to the degradation of the three contaminants was inferred from the combined evaluation of C, N, and H isotope fractionation. Indicative trends of Δδ(15)N vs Δδ(13)C and Δδ(2)H vs Δδ(13)C were obtained from laboratory model systems for biodegradation pathways initiated via (i) dioxygenation, (ii) reduction, and (iii) CH3-group oxidation. The combined evaluation of NAC isotope fractionation in subsurface materials and in laboratory experiments suggests that in the field, 86-89% of 2,4-DNT transformation was due to dioxygenation while TNT was mostly reduced and 2,6-DNT reacted via a combination of reduction and CH3-group oxidation. Based on historic information on site operation, our data imply biodegradation of 2,4-DNT with half-lives of up to 9-17 years compared to 18-34 years for cometabolic transformation of TNT and 2,6-DNT.
Collapse
Affiliation(s)
- Reto S Wijker
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | | | | | | | | |
Collapse
|
44
|
Shainsky J, Bernath-Levin K, Isaschar-Ovdat S, Glaser F, Fishman A. Protein engineering of nirobenzene dioxygenase for enantioselective synthesis of chiral sulfoxides. Protein Eng Des Sel 2013; 26:335-45. [PMID: 23442445 DOI: 10.1093/protein/gzt005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nitrobenzene dioxygenase (NBDO) from Comamonas sp. is shown here to perform enantioselective oxidation of aromatic sulfides. Several para-substituted alkyl aryl sulfides were examined and it was found that the activity of the enzyme is dependent on the size of the substrate. Saturation mutagenesis was performed on different residues in the active site in order to improve activity and selectivity. Mutagenesis at position 258 in the α-hydroxylase subunit of NBDO improved both activity and enantioselectivity. Substitutions in position 293 improved the activity on all substrates and had diverse influence on enantioselectivity. Mutagenesis in position 207 provided two interesting variants, V207I and V207A, with opposite enantioselectivities. Furthermore, combining two favorable mutations, N258A and F293H, provided an improved variant with both higher activity (5.20 ± 0.01, 2.12 ± 0.21, 2.64 ± 0.14 and 4.01 ± 0.34 nmol min(-1) mg protein(-1) on thioanisole, ptolyl, Cl-thioanisole and Br-thioanisole, respectively, which is 1.7, 4.6, 7.1 and 26.7-fold compared with wild type) and improved enantioselectivity (e.g. 67% enantiomeric excess for Cl-thioanisole vs. 5% for wild type). Molecular docking and active site volume calculations were used to correlate between the structure of the substrates and the function of the enzymes. The results from this work suggest that the location of pro-chiral sulfides in the active site is coordinated by hydrophobic interactions and by steric considerations, which in turn influences the activity and enantioselectivity of NBDO.
Collapse
Affiliation(s)
- Janna Shainsky
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | |
Collapse
|
45
|
Pati SG, Shin K, Skarpeli-Liati M, Bolotin J, Eustis SN, Spain JC, Hofstetter TB. Carbon and nitrogen isotope effects associated with the dioxygenation of aniline and diphenylamine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:11844-11853. [PMID: 23017098 DOI: 10.1021/es303043t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Dioxygenation of aromatic rings is frequently the initial step of biodegradation of organic subsurface pollutants. This process can be tracked by compound-specific isotope analysis to assess the extent of contaminant transformation, but the corresponding isotope effects, especially for dioxygenation of N-substituted, aromatic contaminants, are not well understood. We investigated the C and N isotope fractionation associated with the biodegradation of aniline and diphenylamine using pure cultures of Burkholderia sp. strain JS667, which can biodegrade both compounds, each by a distinct dioxygenase enzyme. For diphenylamine, the C and N isotope enrichment was normal with ε(C)- and ε(N)-values of -0.6 ± 0.1‰ and -1.0 ± 0.1‰, respectively. In contrast, N isotopes of aniline were subject to substantial inverse fractionation (ε(N) of +13 ± 0.5‰), whereas the ε(C)-value was identical to that of diphenylamine. A comparison of the apparent kinetic isotope effects for aniline and diphenylamine dioxygenation with those from abiotic oxidation by manganese oxide (MnO(2)) suggest that the oxidation of a diarylamine system leads to distinct C-N bonding changes compared to aniline regardless of reaction mechanism and oxidant involved. Combined evaluation of the C and N isotope signatures of the contaminants reveals characteristic Δδ(15)N/Δδ(13)C-trends for the identification of diphenylamine and aniline oxidation in contaminated subsurfaces and for the distinction of aniline oxidation from its formation by microbial and/or abiotic reduction of nitrobenzene.
Collapse
Affiliation(s)
- Sarah G Pati
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | | | | | | | | | | | | |
Collapse
|
46
|
Dror A, Fishman A. Engineering non-heme mono- and dioxygenases for biocatalysis. Comput Struct Biotechnol J 2012; 2:e201209011. [PMID: 24688652 PMCID: PMC3962191 DOI: 10.5936/csbj.201209011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 10/02/2012] [Accepted: 10/12/2012] [Indexed: 11/25/2022] Open
Abstract
Oxygenases are ubiquitous enzymes that catalyze the introduction of one or two oxygen atoms to unreactive chemical compounds. They require reduction equivalents from NADH or NADPH and comprise metal ions, metal ion complexes, or coenzymes in their active site. Thus, for industrial purposes, oxygenases are most commonly employed using whole cell catalysis, to alleviate the need for co-factor regeneration. Biotechnological applications include bioremediation, chiral synthesis, biosensors, fine chemicals, biofuels, pharmaceuticals, food ingredients and polymers. Controlling activity and selectivity of oxygenases is therefore of great importance and of growing interest to the scientific community. This review focuses on protein engineering of non-heme monooxygenases and dioxygenases for generating improved or novel functionalities. Rational mutagenesis based on x-ray structures and sequence alignment, as well as random methods such as directed evolution, have been utilized. It is concluded that knowledge-based protein engineering accompanied with targeted libraries, is most efficient for the design and tuning of biocatalysts towards novel substrates and enhanced catalytic activity while minimizing the screening efforts.
Collapse
Affiliation(s)
- Adi Dror
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
47
|
Ashikawa Y, Fujimoto Z, Usami Y, Inoue K, Noguchi H, Yamane H, Nojiri H. Structural insight into the substrate- and dioxygen-binding manner in the catalytic cycle of rieske nonheme iron oxygenase system, carbazole 1,9a-dioxygenase. BMC STRUCTURAL BIOLOGY 2012; 12:15. [PMID: 22727022 PMCID: PMC3423008 DOI: 10.1186/1472-6807-12-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/24/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND Dihydroxylation of tandemly linked aromatic carbons in a cis-configuration, catalyzed by multicomponent oxygenase systems known as Rieske nonheme iron oxygenase systems (ROs), often constitute the initial step of aerobic degradation pathways for various aromatic compounds. Because such RO reactions inherently govern whether downstream degradation processes occur, novel oxygenation mechanisms involving oxygenase components of ROs (RO-Os) is of great interest. Despite substantial progress in structural and physicochemical analyses, no consensus exists on the chemical steps in the catalytic cycles of ROs. Thus, determining whether conformational changes at the active site of RO-O occur by substrate and/or oxygen binding is important. Carbazole 1,9a-dioxygenase (CARDO), a RO member consists of catalytic terminal oxygenase (CARDO-O), ferredoxin (CARDO-F), and ferredoxin reductase. We have succeeded in determining the crystal structures of oxidized CARDO-O, oxidized CARDO-F, and both oxidized and reduced forms of the CARDO-O: CARDO-F binary complex. RESULTS In the present study, we determined the crystal structures of the reduced carbazole (CAR)-bound, dioxygen-bound, and both CAR- and dioxygen-bound CARDO-O: CARDO-F binary complex structures at 1.95, 1.85, and 2.00 Å resolution. These structures revealed the conformational changes that occur in the catalytic cycle. Structural comparison between complex structures in each step of the catalytic mechanism provides several implications, such as the order of substrate and dioxygen bindings, the iron-dioxygen species likely being Fe(III)-(hydro)peroxo, and the creation of room for dioxygen binding and the promotion of dioxygen binding in desirable fashion by preceding substrate binding. CONCLUSIONS The RO catalytic mechanism is proposed as follows: When the Rieske cluster is reduced, substrate binding induces several conformational changes (e.g., movements of the nonheme iron and the ligand residue) that create room for oxygen binding. Dioxygen bound in a side-on fashion onto nonheme iron is activated by reduction to the peroxo state [Fe(III)-(hydro)peroxo]. This state may react directly with the bound substrate, or O-O bond cleavage may occur to generate Fe(V)-oxo-hydroxo species prior to the reaction. After producing a cis-dihydrodiol, the product is released by reducing the nonheme iron. This proposed scheme describes the catalytic cycle of ROs and provides important information for a better understanding of the mechanism.
Collapse
Affiliation(s)
- Yuji Ashikawa
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Tøndervik A, Bruheim P, Berg L, Ellingsen TE, Kotlar HK, Valla S, Throne-Holst M. Ralstonia sp. U2 naphthalene dioxygenase and Comamonas sp. JS765 nitrobenzene dioxygenase show differences in activity towards methylated naphthalenes. J Biosci Bioeng 2012; 113:173-8. [DOI: 10.1016/j.jbiosc.2011.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/28/2011] [Accepted: 10/02/2011] [Indexed: 11/26/2022]
|
49
|
Daughtry KD, Xiao Y, Stoner-Ma D, Cho E, Orville AM, Liu P, Allen KN. Quaternary ammonium oxidative demethylation: X-ray crystallographic, resonance Raman, and UV-visible spectroscopic analysis of a Rieske-type demethylase. J Am Chem Soc 2012; 134:2823-34. [PMID: 22224443 DOI: 10.1021/ja2111898] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, the structure resulting from in situ turnover in a chemically challenging quaternary ammonium oxidative demethylation reaction was captured via crystallographic analysis and analyzed via single-crystal spectroscopy. Crystal structures were determined for the Rieske-type monooxygenase, stachydrine demethylase, in the unliganded state (at 1.6 Å resolution) and in the product complex (at 2.2 Å resolution). The ligand complex was obtained from enzyme aerobically cocrystallized with the substrate stachydrine (N,N-dimethylproline). The ligand electron density in the complex was interpreted as proline, generated within the active site at 100 K by the absorption of X-ray photon energy and two consecutive demethylation cycles. The oxidation state of the Rieske iron-sulfur cluster was characterized by UV-visible spectroscopy throughout X-ray data collection in conjunction with resonance Raman spectra collected before and after diffraction data. Shifts in the absorption band wavelength and intensity as a function of absorbed X-ray dose demonstrated that the Rieske center was reduced by solvated electrons generated by X-ray photons; the kinetics of the reduction process differed dramatically for the liganded complex compared to unliganded demethylase, which may correspond to the observed turnover in the crystal.
Collapse
Affiliation(s)
- Kelly D Daughtry
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02218, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Chen Y, Chen C, Wu X. Dicarbonyl reduction by single enzyme for the preparation of chiral diols. Chem Soc Rev 2012; 41:1742-53. [DOI: 10.1039/c1cs15230k] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|