1
|
Bork H, Naße KE, Vorholt AJ, Gröger H. Merging High-Pressure Syngas Metal Catalysis and Biocatalysis in Tandem One-Pot Processes for the Synthesis of Nonchiral and Chiral Alcohols from Alkenes in Water. Angew Chem Int Ed Engl 2024; 63:e202401989. [PMID: 38628134 DOI: 10.1002/anie.202401989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Indexed: 06/12/2024]
Abstract
While simultaneously proceeding reactions are among the most fascinating features of biosynthesis, this concept of tandem processes also offers high potential in the chemical industry in terms of less waste production and improved process efficiency and sustainability. Although examples of one-pot chemoenzymatic syntheses exist, the combination of completely different reaction types is rare. Herein, we demonstrate that extreme "antipodes" of the "worlds of catalysis", such as syngas-based high-pressure hydroformylation and biocatalyzed reduction, can be combined within a tandem-type one-pot process in water. No significant deactivation was found for either the biocatalyst or the chemocatalyst. A proof-of-concept for the one-pot process starting from 1-octene was established with >99 % conversion and 80 % isolated yield of the desired alcohol isomers. All necessary components for hydroformylation and biocatalysis were added to the reactor from the beginning. This concept has been extended to the enantioselective synthesis of chiral products by conducting the hydroformylation of styrene and an enzymatic dynamic kinetic resolution in a tandem mode, leading to an excellent conversion of >99 % and an enantiomeric ratio of 91 : 9 for (S)-2-phenylpropanol. The overall process runs in water under mild and energy-saving conditions, without any need for intermediate isolation.
Collapse
Affiliation(s)
- Hannah Bork
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Kim E Naße
- Department of Molecular Catalysis, Group Multiphase Catalysis, MPI for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Andreas J Vorholt
- Department of Molecular Catalysis, Group Multiphase Catalysis, MPI for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
2
|
Su G, Ran L, Liu C, Qin Z, Teng H, Wu S. Directed Evolution and Immobilization of Lactobacillus brevis Alcohol Dehydrogenase for Chemo-Enzymatic Synthesis of Rivastigmine. Chemistry 2024; 30:e202400454. [PMID: 38568868 DOI: 10.1002/chem.202400454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/05/2024]
Abstract
Rivastigmine is one of the several pharmaceuticals widely prescribed for the treatment of Alzheimer's disease. However, its practical synthesis still faces many issues, such as the involvement of toxic metals and harsh reaction conditions. Herein, we report a chemo-enzymatic synthesis of Rivastigmine. The key chiral intermediate was synthesized by an engineered alcohol dehydrogenase from Lactobacillus brevis (LbADH). A semi-rational approach was employed to improve its catalytic activity and thermal stability. Several LbADH variants were obtained with a remarkable increase in activity and melting temperature. Exploration of the substrate scope of these variants demonstrated improved activities toward various ketones, especially acetophenone analogs. To further recycle and reuse the biocatalyst, one LbADH variant and glucose dehydrogenase were co-immobilized on nanoparticles. By integrating enzymatic and chemical steps, Rivastigmine was successfully synthesized with an overall yield of 66 %. This study offers an efficient chemo-enzymatic route for Rivastigmine and provides several efficient LbADH variants with a broad range of potential applications.
Collapse
Affiliation(s)
- Guorong Su
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, P.R. China
| | - Lu Ran
- College of Chemistry, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, P.R. China
| | - Chang Liu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, P.R. China
| | - Zhaoyang Qin
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, P.R. China
| | - Huailong Teng
- College of Chemistry, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, P.R. China
| | - Shuke Wu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, P.R. China
| |
Collapse
|
3
|
Luo Z, Qiao L, Chen H, Mao Z, Wu S, Ma B, Xie T, Wang A, Pei X, Sheldon RA. Precision Engineering of the Co-immobilization of Enzymes for Cascade Biocatalysis. Angew Chem Int Ed Engl 2024; 63:e202403539. [PMID: 38556813 DOI: 10.1002/anie.202403539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The design and orderly layered co-immobilization of multiple enzymes on resin particles remain challenging. In this study, the SpyTag/SpyCatcher binding pair was fused to the N-terminus of an alcohol dehydrogenase (ADH) and an aldo-keto reductase (AKR), respectively. A non-canonical amino acid (ncAA), p-azido-L-phenylalanine (p-AzF), as the anchor for covalent bonding enzymes, was genetically inserted into preselected sites in the AKR and ADH. Employing the two bioorthogonal counterparts of SpyTag/SpyCatcher and azide-alkyne cycloaddition for the immobilization of AKR and ADH enabled sequential dual-enzyme coating on porous microspheres. The ordered dual-enzyme reactor was subsequently used to synthesize (S)-1-(2-chlorophenyl)ethanol asymmetrically from the corresponding prochiral ketone, enabling the in situ regeneration of NADPH. The reactor exhibited a high catalytic conversion of 74 % and good reproducibility, retaining 80 % of its initial activity after six cycles. The product had 99.9 % ee, which that was maintained in each cycle. Additionally, the double-layer immobilization method significantly increased the enzyme loading capacity, which was approximately 1.7 times greater than that of traditional single-layer immobilization. More importantly, it simultaneously enabled both the purification and immobilization of multiple enzymes on carriers, thus providing a convenient approach to facilitate cascade biocatalysis.
Collapse
Affiliation(s)
- Zhiyuan Luo
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Li Qiao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Haomin Chen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Zhili Mao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Shujiao Wu
- School of Pharmacy, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Bianqin Ma
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Anming Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand PO Wits., 2050, Johannesburg, South Africa
- Department of Biotechnology, Section BOC, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
4
|
Hooe SL, Smith AD, Dean SN, Breger JC, Ellis GA, Medintz IL. Multienzymatic Cascades and Nanomaterial Scaffolding-A Potential Way Forward for the Efficient Biosynthesis of Novel Chemical Products. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309963. [PMID: 37944537 DOI: 10.1002/adma.202309963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Synthetic biology is touted as the next industrial revolution as it promises access to greener biocatalytic syntheses to replace many industrial organic chemistries. Here, it is shown to what synthetic biology can offer in the form of multienzyme cascades for the synthesis of the most basic of new materials-chemicals, including especially designer chemical products and their analogs. Since achieving this is predicated on dramatically expanding the chemical space that enzymes access, such chemistry will probably be undertaken in cell-free or minimalist formats to overcome the inherent toxicity of non-natural substrates to living cells. Laying out relevant aspects that need to be considered in the design of multi-enzymatic cascades for these purposes is begun. Representative multienzymatic cascades are critically reviewed, which have been specifically developed for the synthesis of compounds that have either been made only by traditional organic synthesis along with those cascades utilized for novel compound syntheses. Lastly, an overview of strategies that look toward exploiting bio/nanomaterials for accessing channeling and other nanoscale materials phenomena in vitro to direct novel enzymatic biosynthesis and improve catalytic efficiency is provided. Finally, a perspective on what is needed for this field to develop in the short and long term is presented.
Collapse
Affiliation(s)
- Shelby L Hooe
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
- National Research Council, Washington, DC, 20001, USA
| | - Aaron D Smith
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Scott N Dean
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Joyce C Breger
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Gregory A Ellis
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| |
Collapse
|
5
|
Kröll S, Burgahn T, Rabe KS, Franzreb M, Niemeyer CM. Nano- and Microscale Confinements in DNA-Scaffolded Enzyme Cascade Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304578. [PMID: 37732702 DOI: 10.1002/smll.202304578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Artificial reconstruction of naturally evolved principles, such as compartmentalization and cascading of multienzyme complexes, offers enormous potential for the development of biocatalytic materials and processes. Due to their unique addressability at the nanoscale, DNA origami nanostructures (DON) have proven to be an exceptionally powerful tool for studying the fundamental processes in biocatalytic cascades. To systematically investigate the diffusion-reaction network of (co)substrate transfer in enzyme cascades, a model system of stereoselective ketoreductase (KRED) with cofactor regenerating enzyme is assembled in different spatial arrangements on DNA nanostructures and is located in the sphere of microbeads (MB) as a spatially confining nano- and microenvironment, respectively. The results, obtained through the use of highly sensitive analytical methods, Western blot-based quantification of the enzymes, and mass spectrometric (MS) product detection, along with theoretical modeling, provide strong evidence for the presence of two interacting compartments, the diffusion layers around the microbead and the DNA scaffold, which influence the catalytic efficiency of the cascade. It is shown that the microscale compartment exerts a strong influence on the productivity of the cascade, whereas the nanoscale arrangement of enzymes has no influence but can be modulated by the insertion of a diffusion barrier.
Collapse
Affiliation(s)
- Sandra Kröll
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Teresa Burgahn
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Kersten S Rabe
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Matthias Franzreb
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Zhou J, Han T, Ahmad S, Quinn D, Moody TS, Wu Q, Huang M. Origin of the enantioselectivity of alcohol dehydrogenase. Phys Chem Chem Phys 2023; 25:31292-31300. [PMID: 37955422 DOI: 10.1039/d3cp04019d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Alcohol dehydrogenases (ADH) are a family of enzymes that catalyse the interconversion between ketones/aldehydes and alcohols in the presence of NADPH cofactor. It is challenging to desymmetrise the substituted cyclopentane-1,3-dione by engineering an ADH, while the reaction mechanism of the metal independent ADH remains elusive. Here we measured the conversion of a model substrate 2-benzyl-2-methylcyclopentane-1,3-dione by LbADH and found it predominately gave the (2R,3R) product. Binding mode analysis of the substrate in LbADH from molecular dynamics simulations disclosed the origin of the enantioselectivity of the enzyme; the opening and closing of the loop 191-205 above the substrate are responsible for shaping the binding pocket to orientate the substrate, so as to give different stereoisomer products. Using QM/MM calculations, we elucidated the reaction mechanism of LbADH. Furthermore, we demonstrated the reaction profile corresponding to the production of different stereoisomers, which is in accordance with our experimental observations. This research here will shed a light on the rational engineering of ADH to achieve stereodivergent stereoisomer products.
Collapse
Affiliation(s)
- Jiahui Zhou
- School of Chemistry and Chemical Engineering, Queen's University, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
| | - Tao Han
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Shahbaz Ahmad
- School of Chemistry and Chemical Engineering, Queen's University, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, Almac House, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, Northern Ireland, UK
- Arran Chemical Company Limited, Unit 1 Monksland Industrial Estate, Athlone, Co. Roscommon, Ireland
| | - Derek Quinn
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, Almac House, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, Northern Ireland, UK
- Arran Chemical Company Limited, Unit 1 Monksland Industrial Estate, Athlone, Co. Roscommon, Ireland
| | - Thomas S Moody
- Almac Sciences, Department of Biocatalysis and Isotope Chemistry, Almac House, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, Northern Ireland, UK
- Arran Chemical Company Limited, Unit 1 Monksland Industrial Estate, Athlone, Co. Roscommon, Ireland
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Meilan Huang
- School of Chemistry and Chemical Engineering, Queen's University, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
| |
Collapse
|
7
|
Armstrong FA, Cheng B, Herold RA, Megarity CF, Siritanaratkul B. From Protein Film Electrochemistry to Nanoconfined Enzyme Cascades and the Electrochemical Leaf. Chem Rev 2022; 123:5421-5458. [PMID: 36573907 PMCID: PMC10176485 DOI: 10.1021/acs.chemrev.2c00397] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein film electrochemistry (PFE) has given unrivalled insight into the properties of redox proteins and many electron-transferring enzymes, allowing investigations of otherwise ill-defined or intractable topics such as unstable Fe-S centers and the catalytic bias of enzymes. Many enzymes have been established to be reversible electrocatalysts when attached to an electrode, and further investigations have revealed how unusual dependences of catalytic rates on electrode potential have stark similarities with electronics. A special case, the reversible electrochemistry of a photosynthetic enzyme, ferredoxin-NADP+ reductase (FNR), loaded at very high concentrations in the 3D nanopores of a conducting metal oxide layer, is leading to a new technology that brings PFE to myriad enzymes of other classes, the activities of which become controlled by the primary electron exchange. This extension is possible because FNR-based recycling of NADP(H) can be coupled to a dehydrogenase, and thence to other enzymes linked in tandem by the tight channelling of cofactors and intermediates within the nanopores of the material. The earlier interpretations of catalytic wave-shapes and various analogies with electronics are thus extended to initiate a field perhaps aptly named "cascade-tronics", in which the flow of reactions along an enzyme cascade is monitored and controlled through an electrochemical analyzer. Unlike in photosynthesis where FNR transduces electron transfer and hydride transfer through the unidirectional recycling of NADPH, the "electrochemical leaf" (e-Leaf) can be used to drive reactions in both oxidizing and reducing directions. The e-Leaf offers a natural way to study how enzymes are affected by nanoconfinement and crowding, mimicking the physical conditions under which enzyme cascades operate in living cells. The reactions of the trapped enzymes, often at very high local concentration, are thus studied electrochemically, exploiting the potential domain to control rates and direction and the current-rate analogy to derive kinetic data. Localized NADP(H) recycling is very efficient, resulting in very high cofactor turnover numbers and new opportunities for controlling and exploiting biocatalysis.
Collapse
Affiliation(s)
- Fraser A. Armstrong
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Beichen Cheng
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Ryan A. Herold
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Clare F. Megarity
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Bhavin Siritanaratkul
- Stephenson Institute for Renewable Energy and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, United Kingdom
| |
Collapse
|
8
|
Kröll S, Schneider L, Wadhwani P, Rabe KS, Niemeyer CM. Orthogonal protein decoration of DNA nanostructures based on SpyCatcher-SpyTag interaction. Chem Commun (Camb) 2022; 58:13471-13474. [PMID: 36383063 DOI: 10.1039/d2cc05335g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We present an efficient and readily applicable strategy for the covalent ligation of proteins to DNA origami by using the SpyCatcher-SpyTag (SC-ST) connector system. This approach showed orthogonality with other covalent connectors and has been used exemplarily for the immobilization and study of stereoselective ketoreductases to gain insight into the spatial arrangement of enzymes on DNA nanostructures.
Collapse
Affiliation(s)
- Sandra Kröll
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Karlsruhe, Germany.
| | - Leonie Schneider
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Karlsruhe, Germany.
| | - Parvesh Wadhwani
- Department of Molecular Biophysics (IBG 2), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Karlsruhe, Germany
| | - Kersten S Rabe
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Karlsruhe, Germany.
| | - Christof M Niemeyer
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Karlsruhe, Germany.
| |
Collapse
|
9
|
Ostrihoňová M, Gramblička M, Polakovič M. Industrial hydrophobic adsorbent screening for the separation of 1-phenylethanol and acetophenone. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Basso A, Brown MS, Cruz-Izquierdo A, Martinez CA, Serban S. Optimization of Metal Affinity Ketoreductase Immobilization for Application in Batch and Flow Processes. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alessandra Basso
- Unit D, Purolite Ltd., Llantrisant Business Park, Llantrisant CF72 8LF, U.K
| | - Maria S. Brown
- Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | | | - Carlos A. Martinez
- Pfizer Inc., 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Simona Serban
- Unit D, Purolite Ltd., Llantrisant Business Park, Llantrisant CF72 8LF, U.K
| |
Collapse
|
11
|
Corrado ML, Knaus T, Schwaneberg U, Mutti FG. High-Yield Synthesis of Enantiopure 1,2-Amino Alcohols from l-Phenylalanine via Linear and Divergent Enzymatic Cascades. Org Process Res Dev 2022; 26:2085-2095. [PMID: 35873603 PMCID: PMC9295148 DOI: 10.1021/acs.oprd.1c00490] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Enantiomerically
pure 1,2-amino alcohols are important compounds
due to their biological activities and wide applications in chemical
synthesis. In this work, we present two multienzyme pathways for the
conversion of l-phenylalanine into either 2-phenylglycinol
or phenylethanolamine in the enantiomerically pure form. Both pathways
start with the two-pot sequential four-step conversion of l-phenylalanine into styrene via subsequent deamination, decarboxylation,
enantioselective epoxidation, and enantioselective hydrolysis. For
instance, after optimization, the multienzyme process could convert
507 mg of l-phenylalanine into (R)-1-phenyl-1,2-diol
in an overall isolated yield of 75% and >99% ee. The opposite enantiomer,
(S)-1-phenyl-1,2-diol, was also obtained in a 70%
yield and 98–99% ee following the same approach. At this stage,
two divergent routes were developed to convert the chiral diols into
either 2-phenylglycinol or phenylethanolamine. The former route consisted
of a one-pot concurrent interconnected two-step cascade in which the
diol intermediate was oxidized to 2-hydroxy-acetophenone by an alcohol
dehydrogenase and then aminated by a transaminase to give enantiomerically
pure 2-phenylglycinol. Notably, the addition of an alanine dehydrogenase
enabled the connection of the two steps and made the overall process
redox-self-sufficient. Thus, (S)-phenylglycinol was
isolated in an 81% yield and >99.4% ee starting from ca. 100 mg
of
the diol intermediate. The second route consisted of a one-pot concurrent
two-step cascade in which the oxidative and reductive steps were not
interconnected. In this case, the diol intermediate was oxidized to
either (S)- or (R)-2-hydroxy-2-phenylacetaldehyde
by an alcohol oxidase and then aminated by an amine dehydrogenase
to give the enantiomerically pure phenylethanolamine. The addition
of a formate dehydrogenase and sodium formate was required to provide
the reducing equivalents for the reductive amination step. Thus, (R)-phenylethanolamine was isolated in a 92% yield and >99.9%
ee starting from ca. 100 mg of the diol intermediate. In summary, l-phenylalanine was converted into enantiomerically pure 2-phenylglycinol
and phenylethanolamine in overall yields of 61% and 69%, respectively.
This work exemplifies how linear and divergent enzyme cascades can
enable the synthesis of high-value chiral molecules such as amino
alcohols from a renewable material such as l-phenylalanine
with high atom economy and improved sustainability.
Collapse
Affiliation(s)
- Maria L. Corrado
- Van’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Tanja Knaus
- Van’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Francesco G. Mutti
- Van’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
12
|
Li J, Dinh T, Phillips R. The crystal structure of the S154Y mutant carbonyl reductase from Leifsonia xyli explains enhanced activity for 3,5-Bis(trifluoromethyl)acetophenone reduction. Arch Biochem Biophys 2022; 720:109158. [PMID: 35247363 DOI: 10.1016/j.abb.2022.109158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 11/24/2022]
Abstract
Carbonyl reductase from Leifsonia xyli (LXCAR, UniProtKB - T2FLN4) can stereoselectively catalyze the reduction of 3,5-bis(trifluoromethyl)acetophenone (BTAP) to its corresponding alcohol, (R)-[3,5-bis(trifluoromethyl)phenyl]ethanol ((R)-BTPE), which is a valuable chiral intermediate for the synthesis of antiemetic drugs, Aprepitant and Fosaprepitant. Moreover, this protein was found to have a broad spectrum of substrate specificity and can asymmetrically catalyze the reduction of a variety of ketones and keto esters. Even though molecular modelling of this protein was done by Wang et al. (2014), a crystal structure has not yet obtained. In this study, a single mutant, S154Y, which was shown to have higher catalytic activity toward BTAP than that of the wild type, was overexpressed in Escherichia coli BL21 (DE3), purified, and crystallized. The crystal structure of LXCAR-S154Y explains how the mutant enzyme can work with BTAP more efficiently than wild type carbonyl reductase. Furthermore, the structure explains why LXCAR-S154Y can use either NADH or NADPH efficiently as a cofactor, as well as elucidates a proton relay system present in the enzyme.
Collapse
Affiliation(s)
- Jun Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, PR China.
| | - Tung Dinh
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA.
| | - Robert Phillips
- Department of Chemistry and of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
13
|
Controlling Protein Crystallization by Free Energy Guided Design of Interactions at Crystal Contacts. CRYSTALS 2021. [DOI: 10.3390/cryst11060588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein crystallization can function as an effective method for protein purification or formulation. Such an application requires a comprehensive understanding of the intermolecular protein–protein interactions that drive and stabilize protein crystal formation to ensure a reproducible process. Using alcohol dehydrogenase from Lactobacillus brevis (LbADH) as a model system, we probed in our combined experimental and computational study the effect of residue substitutions at the protein crystal contacts on the crystallizability and the contact stability. Increased or decreased contact stability was calculated using molecular dynamics (MD) free energy simulations and showed excellent qualitative correlation with experimentally determined increased or decreased crystallizability. The MD simulations allowed us to trace back the changes to their physical origins at the atomic level. Engineered charge–charge interactions as well as engineered hydrophobic effects could be characterized and were found to improve crystallizability. For example, the simulations revealed a redesigning of a water mediated electrostatic interaction (“wet contact”) into a water depleted hydrophobic effect (“dry contact”) and the optimization of a weak hydrogen bonding contact towards a strong one. These findings explained the experimentally found improved crystallizability. Our study emphasizes that it is difficult to derive simple rules for engineering crystallizability but that free energy simulations could be a very useful tool for understanding the contribution of crystal contacts for stability and furthermore could help guide protein engineering strategies to enhance crystallization for technical purposes.
Collapse
|
14
|
Voss M, Küng R, Hayashi T, Jonczyk M, Niklaus M, Iding H, Wetzl D, Buller R. Multi‐faceted Set‐up of a Diverse Ketoreductase Library Enables the Synthesis of Pharmaceutically‐relevant Secondary Alcohols. ChemCatChem 2021. [DOI: 10.1002/cctc.202001871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Moritz Voss
- Competence Center for Biocatalysis Institute for Chemistry and Biotechnology Zurich University of Applied Sciences Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - Robin Küng
- Competence Center for Biocatalysis Institute for Chemistry and Biotechnology Zurich University of Applied Sciences Einsiedlerstrasse 31 8820 Wädenswil Switzerland
- Present address: Fisher Clinical Services Thermo Fisher Scientific Steinbühlweg 69 4123 Allschwil Switzerland
| | - Takahiro Hayashi
- Competence Center for Biocatalysis Institute for Chemistry and Biotechnology Zurich University of Applied Sciences Einsiedlerstrasse 31 8820 Wädenswil Switzerland
- Present address: Science & Innovation Center Mitsubishi Chemical Corporation 1000 Kamoshidacho Aoba ward, Yokohama Kanagawa 227-8502 Japan
| | - Magdalena Jonczyk
- Competence Center for Biocatalysis Institute for Chemistry and Biotechnology Zurich University of Applied Sciences Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - Michael Niklaus
- Competence Center for Biocatalysis Institute for Chemistry and Biotechnology Zurich University of Applied Sciences Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - Hans Iding
- Process Chemistry & Catalysis F. Hoffmann-La Roche Ltd. CH-4070 Basel Switzerland
| | - Dennis Wetzl
- Process Chemistry & Catalysis F. Hoffmann-La Roche Ltd. CH-4070 Basel Switzerland
| | - Rebecca Buller
- Competence Center for Biocatalysis Institute for Chemistry and Biotechnology Zurich University of Applied Sciences Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| |
Collapse
|
15
|
Wang L, Diao S, Sun Y, Jiang S, Liu Y, Wang H, Wei D. Rational engineering of Acinetobacter tandoii glutamate dehydrogenase for asymmetric synthesis of l-homoalanine through biocatalytic cascades. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00376c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A high yield of l-homoalanine can be obtained by an engineered dual cofactor-dependent GluDH in a cascade without the addition of NAD(P)H.
Collapse
Affiliation(s)
- Liuzhu Wang
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai
- China
| | - Shiqing Diao
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai
- China
| | - Yangyang Sun
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai
- China
| | - Shuiqin Jiang
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai
- China
| | - Yan Liu
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai
- China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai
- China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
16
|
Ma R, Su P, Jin B, Guo J, Tian M, Mao L, Tang J, Chen T, Lai C, Zeng W, Cui G, Huang L. Molecular cloning and functional identification of a high-efficiency (+)-borneol dehydrogenase from Cinnamomum camphora (L.) Presl. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:363-371. [PMID: 33243711 DOI: 10.1016/j.plaphy.2020.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Cinnamomum camphora (L.) Presl, rich in terpenoids, is an important commercial plant. The monoterpenes borneol and camphor are highly desired compounds that have been widely and diversely used in medicine and spices since ancient times. However, the key enzymes in the biosynthetic pathway of borneol and camphor in C. camphora remains unknown, which limits access to these natural products. Here, the chirality of borneol and camphor were identified in C. camphora leaves. Besides the main (+)-borneol and (+)-camphor, C. camphora also contains small amounts of (-)-borneol and (-)-camphor. Then, CcBDH3 - an efficient (+)-borneol dehydrogenase (BDH) - was identified that catalyzed (+)-borneol into (+)-camphor in the presence of NAD+. The Km value was 25.1 μM with a kcat value of 5.4 × 10-3 s-1 at pH 8.5 and 30 °C. CcBDH3, which also yields (-)-camphor from (-)-borneol as a substrate, had a Km value of 36.9 μM with a kcat of 2.1 × 10-3 s-1, and pH of 8.0 and temperature of 32 °C. We further compared the conformational specificity of two other reported BDHs, ZSD1 and ADH2, and found that ZSD1 had the highest conversion rate with (-)-borneol. These findings provide a new way for the production of camphor with various optical activities by metabolic engineering, and the identified camphor biosynthesis pathway provides the foundation for using genetic engineering to improve the production and purity of (+)-borneol in planta.
Collapse
Affiliation(s)
- Rui Ma
- School of Pharmacy, Henan University of Chinese Medicine, No. 156 Jinshuidong Road, Zhengzhou, 450008, China; State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Ping Su
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China; Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, United States.
| | - Baolong Jin
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Juan Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Mei Tian
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Liuying Mao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Jinfu Tang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Tong Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Changjiangsheng Lai
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Wen Zeng
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Guanghong Cui
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| | - Luqi Huang
- School of Pharmacy, Henan University of Chinese Medicine, No. 156 Jinshuidong Road, Zhengzhou, 450008, China; State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 South Side Street, Dongzhimen, Beijing, 100700, China.
| |
Collapse
|
17
|
Expanding the Application Range of Microbial Oxidoreductases by an Alcohol Dehydrogenase from Comamonas testosteroni with a Broad Substrate Spectrum and pH Profile. Catalysts 2020. [DOI: 10.3390/catal10111281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Alcohol dehydrogenases catalyse the conversion of a large variety of ketone substrates to the corresponding chiral products. Due to their high regio- and stereospecificity, they are key components in a wide range of industrial applications. A novel alcohol dehydrogenase from Comamonas testosteroni (CtADH) was identified in silico, recombinantly expressed and purified, enzymatically and biochemically investigated as well as structurally characterized. These studies revealed a broad pH profile and an extended substrate spectrum with the highest activity for compounds containing halogens as substituents and a moderate activity for bulky–bulky ketones. Biotransformations with selected ketones—performed with a coupled regeneration system for the co-substrate NADPH—resulted in conversions of more than 99% with all tested substrates and with excellent enantioselectivity for the corresponding S-alcohol products. CtADH/NADPH/substrate complexes modelled on the basis of crystal structures of CtADH and its closest homologue suggested preliminary hints to rationalize the enzyme’s substrate preferences
Collapse
|
18
|
Grob P, Huber M, Walla B, Hermann J, Janowski R, Niessing D, Hekmat D, Weuster-Botz D. Crystal Contact Engineering Enables Efficient Capture and Purification of an Oxidoreductase by Technical Crystallization. Biotechnol J 2020; 15:e2000010. [PMID: 32302461 DOI: 10.1002/biot.202000010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/19/2020] [Indexed: 11/10/2022]
Abstract
Technical crystallization is an attractive method to purify recombinant proteins. However, it is rarely applied due to the limited crystallizability of many proteins. To overcome this limitation, single amino acid exchanges are rationally introduced to enhance intermolecular interactions at the crystal contacts of the industrially relevant biocatalyst Lactobacillus brevis alcohol dehydrogenase (LbADH). The wildtype (WT) and the best crystallizing and enzymatically active LbADH mutants K32A, D54F, Q126H, and T102E are produced with Escherichia coli and subsequently crystallized from cell lysate in stirred mL-crystallizers. Notwithstanding the high host cell protein (HCP) concentrations in the lysate, all mutants crystallize significantly faster than the WT. Combinations of mutations result in double mutants with faster crystallization kinetics than the respective single mutants, demonstrating a synergetic effect. The almost entire depletion of the soluble LbADH fraction at crystallization equilibrium is observed, proving high yields. The HCP concentration is reduced to below 0.5% after crystal dissolution and recrystallization, and thus a 100-fold HCP reduction is achieved after two successive crystallization steps. The combination of fast kinetics, high yields, and high target protein purity highlights the potential of crystal contact engineering to transform technical crystallization into an efficient protein capture and purification step in biotechnological downstream processes.
Collapse
Affiliation(s)
- Phillip Grob
- Technische Universität München, Lehrstuhl für Bioverfahrenstechnik, Boltzmannstraße 15, Garching, 85748, Germany
| | - Max Huber
- Technische Universität München, Lehrstuhl für Bioverfahrenstechnik, Boltzmannstraße 15, Garching, 85748, Germany
| | - Brigitte Walla
- Technische Universität München, Lehrstuhl für Bioverfahrenstechnik, Boltzmannstraße 15, Garching, 85748, Germany
| | - Johannes Hermann
- Technische Universität München, Lehrstuhl für Bioverfahrenstechnik, Boltzmannstraße 15, Garching, 85748, Germany
| | - Robert Janowski
- Helmholtz Zentrum München, Institute of Structural Biology, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Dierk Niessing
- Helmholtz Zentrum München, Institute of Structural Biology, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.,Institute of Pharmaceutical Biotechnology, Ulm University, James-Franck-Ring N27, Ulm, 89081, Germany
| | - Dariusch Hekmat
- Technische Universität München, Lehrstuhl für Bioverfahrenstechnik, Boltzmannstraße 15, Garching, 85748, Germany
| | - Dirk Weuster-Botz
- Technische Universität München, Lehrstuhl für Bioverfahrenstechnik, Boltzmannstraße 15, Garching, 85748, Germany
| |
Collapse
|
19
|
Baumer B, Classen T, Pohl M, Pietruszka J. Efficient Nicotinamide Adenine Dinucleotide Phosphate [NADP(H)] Recycling in Closed‐Loop Continuous Flow Biocatalysis. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Benedikt Baumer
- Institut für Bioorganische Chemie der Heinrich-Heine-Universität Düsseldorf imForschungszentrum Jülich Stetternicher Forst, Geb. 15.8 D-52426 Jülich Germany
| | - Thomas Classen
- Institut für Bio- und Geowissenschaften (IBG-1: Biotechnologie)Forschungszentrum Jülich GmbH D-52456 Jülich Germany
| | - Martina Pohl
- Institut für Bio- und Geowissenschaften (IBG-1: Biotechnologie)Forschungszentrum Jülich GmbH D-52456 Jülich Germany
| | - Jörg Pietruszka
- Institut für Bioorganische Chemie der Heinrich-Heine-Universität Düsseldorf imForschungszentrum Jülich Stetternicher Forst, Geb. 15.8 D-52426 Jülich Germany
- Institut für Bio- und Geowissenschaften (IBG-1: Biotechnologie)Forschungszentrum Jülich GmbH D-52456 Jülich Germany
| |
Collapse
|
20
|
Spielmann A, Brack Y, van Beek H, Flachbart L, Sundermeyer L, Baumgart M, Bott M. NADPH biosensor-based identification of an alcohol dehydrogenase variant with improved catalytic properties caused by a single charge reversal at the protein surface. AMB Express 2020; 10:14. [PMID: 31955268 PMCID: PMC6969876 DOI: 10.1186/s13568-020-0946-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/06/2020] [Indexed: 01/29/2023] Open
Abstract
Alcohol dehydrogenases (ADHs) are used in reductive biotransformations for the production of valuable chiral alcohols. In this study, we used a high-throughput screening approach based on the NADPH biosensor pSenSox and fluorescence-activated cell sorting (FACS) to search for variants of the NADPH-dependent ADH of Lactobacillus brevis (LbADH) with improved activity for the reduction of 2,5-hexanedione to (2R,5R)-hexanediol. In a library of approx. 1.4 × 106 clones created by random mutagenesis we identified the variant LbADHK71E. Kinetic analysis of the purified enzyme revealed that LbADHK71E had a ~ 16% lowered KM value and a 17% higher Vmax for 2,5-hexanedione compared to the wild-type LbADH. Higher activities were also observed for the alternative substrates acetophenone, acetylpyridine, 2-hexanone, 4-hydroxy-2-butanone, and methyl acetoacetate. K71 is solvent-exposed on the surface of LbADH and not located within or close to the active site. Therefore, K71 is not an obvious target for rational protein engineering. The study demonstrates that high-throughput screening using the NADPH biosensor pSenSox represents a powerful method to find unexpected beneficial mutations in NADPH-dependent alcohol dehydrogenases that can be favorable in industrial biotransformations.
Collapse
|
21
|
Corrado ML, Knaus T, Mutti FG. Regio- and stereoselective multi-enzymatic aminohydroxylation of β-methylstyrene using dioxygen, ammonia and formate. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2019; 21:6246-6251. [PMID: 33628112 PMCID: PMC7116804 DOI: 10.1039/c9gc03161h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report an enzymatic route for the formal regio- and stereoselective aminohydroxylation of β-methylstyrene that consumes only dioxygen, ammonia and formate; carbonate is the by-product. The biocascade entails highly selective epoxidation, hydrolysis and hydrogen-borrowing alcohol amination. Thus, β-methylstyrene was converted into 1R,2R and 1S,2R-phenylpropanolamine in 59-63% isolated yields, and up to >99.5: <0.5 dr and er.
Collapse
Affiliation(s)
- Maria L Corrado
- Van't Hoff Institute for MolecularSciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Tanja Knaus
- Van't Hoff Institute for MolecularSciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Francesco G Mutti
- Van't Hoff Institute for MolecularSciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Hu Z, Jia P, Bai Y, Fan TP, Zheng X, Cai Y. Characterisation of five alcohol dehydrogenases from Lactobacillus reuteri DSM20016. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Marolt M, Lüdeke S. Studying NAD(P)H cofactor-binding to alcohol dehydrogenases through global analysis of circular dichroism spectra. Phys Chem Chem Phys 2019; 21:1671-1681. [PMID: 30328850 DOI: 10.1039/c8cp04869j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The initial step in reactions catalyzed by NAD(P)H-dependent alcohol dehydrogenases (ADHs) is the binding of the cofactor to the active site. To study this process, we measured NAD(P)H concentration-dependent circular dichroism (CD) in the presence of purified enzymes (ADH from horse liver, HLADH; ADH-A from Rhodococcus ruber; YGL157w from Saccharomyces cerevisiae) or enzyme-containing whole cell extract (ADH from Lactobacillus brevis, LbADH). We determined the proportions of binding and non-binding NAD(P)H and the associated dissociation constants (Kd) from matrix least-squares global fitting of law of mass action-derived model. Furthermore, the fitting allowed the back calculation of CD spectra corresponding to the cofactor in its bound conformation. With increasing pH and/or increasing ionic strength, we detected an increase in Kd for the NADH·HLADH complex with the shape of the bound cofactor conformation spectrum remaining unaffected. While the bound cofactor spectrum for the ADH-A·NADH complex was similar to that for HLADH, the corresponding spectra obtained for the NADPH-dependent enzymes YGL157w and LbADH exhibited opposite signs of the most prominent band. In comparison to CD spectra calculated on cofactor geometries from the crystal structures at the sTD-DFT level, we found that the sign of the bound cofactor spectrum correlates with the orientation of the nicotinamide ring of the cofactor in the active site. These results demonstrate the usefulness of the global analysis of cofactor titration CD spectra to study the role of cofactor binding and its geometry in ADH catalysis.
Collapse
Affiliation(s)
- Marija Marolt
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany.
| | | |
Collapse
|
24
|
Dander JE, Giroud M, Racine S, Darzi ER, Alvizo O, Entwistle D, Garg NK. Chemoenzymatic conversion of amides to enantioenriched alcohols in aqueous medium. Commun Chem 2019; 2:10.1038/s42004-019-0182-8. [PMID: 32042928 PMCID: PMC7010078 DOI: 10.1038/s42004-019-0182-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 01/03/2023] Open
Abstract
One-pot reactions that combine non-enzymatic and biocatalytic transformations represent an emerging strategy in chemical synthesis. Some of the most powerful chemoenzymatic methodologies, although uncommon, are those that form a carbon-carbon (C-C) bond and a stereocenter at one of the reacting carbons, thereby streamlining traditional retrosynthetic disconnections. Here we report the one-pot, chemoenzymatic conversion of amides to enantioenriched alcohols. This transformation combines a nickel-catalyzed Suzuki-Miyaura coupling of amides in aqueous medium with an asymmetric, biocatalytic reduction to provide diarylmethanol derivatives in high yields and enantiomeric excesses. The synthetic utility of this platform is underscored by the formal syntheses of both antipodes of the pharmaceutical orphenadrine, which rely on ketoreductase enzymes that instill complementary stereoselectivities. We provide an explanation for the origins of stereoselectivity based on an analysis of the enzyme binding pockets.
Collapse
Affiliation(s)
- Jacob E Dander
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Maude Giroud
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- These authors contributed equally: Maude Giroud, Sophie Racine
| | - Sophie Racine
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- These authors contributed equally: Maude Giroud, Sophie Racine
| | - Evan R Darzi
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Oscar Alvizo
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94070, USA
| | - David Entwistle
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94070, USA
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
25
|
Houwman JA, Knaus T, Costa M, Mutti FG. Efficient synthesis of enantiopure amines from alcohols using resting E. coli cells and ammonia. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2019; 21:3846-3857. [PMID: 33628111 PMCID: PMC7116806 DOI: 10.1039/c9gc01059a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
α-Chiral amines are pivotal building blocks for chemical manufacturing. Stereoselective amination of alcohols is receiving increased interest due to its higher atom-efficiency and overall improved environmental footprint compared with other chemocatalytic and biocatalytic methods. We previously developed a hydrogen-borrowing amination by combining an alcohol dehydrogenase (ADH) with an amine dehydrogenase (AmDH) in vitro. Herein, we implemented the ADH-AmDH bioamination in resting Escherichia coli cells for the first time. Different genetic constructs were created and tested in order to obtain balanced expression levels of the dehydrogenase enzymes in E. coli. Using the optimized constructs, the influence of several parameters towards the productivity of the system were investigated such as the intracellular NAD+/NADH redox balance, the cell loading, the survival rate of recombinant E. coli cells, the possible toxicity of the components of the reaction at different concentrations and the influence of different substrates and cosolvents. In particular, the cofactor redox-balance for the bioamination was maintained by the addition of moderate and precise amounts of glucose. Higher concentrations of certain amine products resulted in toxicity and cell death, which could be alleviated by the addition of a co-solvent. Notably, amine formation was consistent using several independently grown E. coli batches. The optimized E. coli/ADH-AmDH strains produced enantiopure amines from the alcohols with up to 80% conversion and a molar productivity up to 15 mM. Practical applicability was demonstrated in a gram-scale biotransformation. In summary, the present E. coli-ADH-AmDH system represents an important advancement towards the development of 'green', efficient and selective biocatalytic processes for the amination of alcohols.
Collapse
Affiliation(s)
| | - Tanja Knaus
- Van ’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH, The Netherlands
| | - Magda Costa
- Van ’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH, The Netherlands
| | - Francesco G. Mutti
- Van ’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH, The Netherlands
| |
Collapse
|
26
|
Zhou S, Wang L. Unraveling the structural and chemical features of biological short hydrogen bonds. Chem Sci 2019; 10:7734-7745. [PMID: 31588321 PMCID: PMC6764281 DOI: 10.1039/c9sc01496a] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/30/2019] [Indexed: 02/06/2023] Open
Abstract
Short hydrogen bonds are ubiquitous in biological macromolecules and exhibit distinctive proton potential energy surfaces and proton sharing properties.
The three-dimensional architecture of biomolecules often creates specialized structural elements, notably short hydrogen bonds that have donor–acceptor separations below 2.7 Å. In this work, we statistically analyze 1663 high-resolution biomolecular structures from the Protein Data Bank and demonstrate that short hydrogen bonds are prevalent in proteins, protein–ligand complexes and nucleic acids. From these biological macromolecules, we characterize the preferred location, connectivity and amino acid composition in short hydrogen bonds and hydrogen bond networks, and assess their possible functional importance. Using electronic structure calculations, we further uncover how the interplay of the structural and chemical features determines the proton potential energy surfaces and proton sharing conditions in biological short hydrogen bonds.
Collapse
Affiliation(s)
- Shengmin Zhou
- Department of Chemistry and Chemical Biology , Institute for Quantitative Biomedicine , Rutgers University , Piscataway , NJ 08854 , USA .
| | - Lu Wang
- Department of Chemistry and Chemical Biology , Institute for Quantitative Biomedicine , Rutgers University , Piscataway , NJ 08854 , USA .
| |
Collapse
|
27
|
Shanati T, Lockie C, Beloti L, Grogan G, Ansorge-Schumacher MB. Two Enantiocomplementary Ephedrine Dehydrogenases from Arthrobacter sp. TS-15 with Broad Substrate Specificity. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Tarek Shanati
- Department of Molecular Biotechnology, Technische Universität Dresden, Dresden 01062, Germany
| | - Cameron Lockie
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Lilian Beloti
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Gideon Grogan
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | | |
Collapse
|
28
|
Bridging the gap between transition metal- and bio-catalysis via aqueous micellar catalysis. Nat Commun 2019; 10:2169. [PMID: 31092815 PMCID: PMC6520378 DOI: 10.1038/s41467-019-09751-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/22/2019] [Indexed: 01/16/2023] Open
Abstract
Previous studies have shown that aqueous solutions of designer surfactants enable a wide variety of valuable transformations in synthetic organic chemistry. Since reactions take place within the inner hydrophobic cores of these tailor-made nanoreactors, and products made therein are in dynamic exchange between micelles through the water, opportunities exist to use enzymes to effect secondary processes. Herein we report that ketone-containing products, formed via initial transition metal-catalyzed reactions based on Pd, Cu, Rh, Fe and Au, can be followed in the same pot by enzymatic reductions mediated by alcohol dehydrogenases. Most noteworthy is the finding that nanomicelles present in the water appear to function not only as a medium for both chemo- and bio-catalysis, but as a reservoir for substrates, products, and catalysts, decreasing noncompetitive enzyme inhibition.
Collapse
|
29
|
Dias Gomes M, Bommarius BR, Anderson SR, Feske BD, Woodley JM, Bommarius AS. Bubble Column Enables Higher Reaction Rate for Deracemization of (
R,S
)‐1‐Phenylethanol with Coupled Alcohol Dehydrogenase/NADH Oxidase System. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mafalda Dias Gomes
- Department of Chemical and Biochemical Engineering Technical University of Denmark Building 229, Søltofts Plads DK-2800 Kgs. Lyngby Denmark
| | - Bettina R. Bommarius
- School of Chemical and Biomolecular Engineering, Krone Engineered Biosystems Building Georgia Institute of Technology 950 Atlantic Drive N.W. Atlanta GA 30332 USA
| | - Shelby R. Anderson
- School of Chemical and Biomolecular Engineering, Krone Engineered Biosystems Building Georgia Institute of Technology 950 Atlantic Drive N.W. Atlanta GA 30332 USA
| | - Brent D. Feske
- Department of Chemistry and Biochemistry Georgia Southern University Science Center Suite 1505 11935 Abercorn St., Savannah, GA 31419
| | - John M. Woodley
- Department of Chemical and Biochemical Engineering Technical University of Denmark Building 229, Søltofts Plads DK-2800 Kgs. Lyngby Denmark
| | - Andreas S. Bommarius
- School of Chemical and Biomolecular Engineering, Krone Engineered Biosystems Building Georgia Institute of Technology 950 Atlantic Drive N.W. Atlanta GA 30332 USA
| |
Collapse
|
30
|
Gräff M, Buchholz PC, Stockinger P, Bommarius B, Bommarius AS, Pleiss J. The Short‐chain Dehydrogenase/Reductase Engineering Database (SDRED): A classification and analysis system for a highly diverse enzyme family. Proteins 2019; 87:443-451. [DOI: 10.1002/prot.25666] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/26/2019] [Accepted: 01/31/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Maike Gräff
- Institute of Biochemistry and Technical BiochemistryUniversity of Stuttgart Stuttgart Germany
| | - Patrick C.F. Buchholz
- Institute of Biochemistry and Technical BiochemistryUniversity of Stuttgart Stuttgart Germany
| | - Peter Stockinger
- Institute of Biochemistry and Technical BiochemistryUniversity of Stuttgart Stuttgart Germany
| | - Bettina Bommarius
- Department of Chemical and Biomolecular EngineeringGeorgia Institute of Technology Atlanta Georgia
| | - Andreas S. Bommarius
- Department of Chemical and Biomolecular EngineeringGeorgia Institute of Technology Atlanta Georgia
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical BiochemistryUniversity of Stuttgart Stuttgart Germany
| |
Collapse
|
31
|
Jäger VD, Kloss R, Grünberger A, Seide S, Hahn D, Karmainski T, Piqueray M, Embruch J, Longerich S, Mackfeld U, Jaeger KE, Wiechert W, Pohl M, Krauss U. Tailoring the properties of (catalytically)-active inclusion bodies. Microb Cell Fact 2019; 18:33. [PMID: 30732596 PMCID: PMC6367779 DOI: 10.1186/s12934-019-1081-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/30/2019] [Indexed: 01/02/2023] Open
Abstract
Background Immobilization is an appropriate tool to ease the handling and recycling of enzymes in biocatalytic processes and to increase their stability. Most of the established immobilization methods require case-to-case optimization, which is laborious and time-consuming. Often, (chromatographic) enzyme purification is required and stable immobilization usually includes additional cross-linking or adsorption steps. We have previously shown in a few case studies that the molecular biological fusion of an aggregation-inducing tag to a target protein induces the intracellular formation of protein aggregates, so called inclusion bodies (IBs), which to a certain degree retain their (catalytic) function. This enables the combination of protein production and immobilization in one step. Hence, those biologically-produced immobilizates were named catalytically-active inclusion bodies (CatIBs) or, in case of proteins without catalytic activity, functional IBs (FIBs). While this strategy has been proven successful, the efficiency, the potential for optimization and important CatIB/FIB properties like yield, activity and morphology have not been investigated systematically. Results We here evaluated a CatIB/FIB toolbox of different enzymes and proteins. Different optimization strategies, like linker deletion, C- versus N-terminal fusion and the fusion of alternative aggregation-inducing tags were evaluated. The obtained CatIBs/FIBs varied with respect to formation efficiency, yield, composition and residual activity, which could be correlated to differences in their morphology; as revealed by (electron) microscopy. Last but not least, we demonstrate that the CatIB/FIB formation efficiency appears to be correlated to the solvent-accessible hydrophobic surface area of the target protein, providing a structure-based rationale for our strategy and opening up the possibility to predict its efficiency for any given target protein. Conclusion We here provide evidence for the general applicability, predictability and flexibility of the CatIB/FIB immobilization strategy, highlighting the application potential of CatIB-based enzyme immobilizates for synthetic chemistry, biocatalysis and industry. Electronic supplementary material The online version of this article (10.1186/s12934-019-1081-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- V D Jäger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany.,Bioeconomy Science Center (BioSC), c/o, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - R Kloss
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Bioeconomy Science Center (BioSC), c/o, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - A Grünberger
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Multiscale Bioengineering, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - S Seide
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - D Hahn
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - T Karmainski
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - M Piqueray
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - J Embruch
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - S Longerich
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - U Mackfeld
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - K-E Jaeger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany.,IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Bioeconomy Science Center (BioSC), c/o, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - W Wiechert
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Bioeconomy Science Center (BioSC), c/o, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - M Pohl
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Bioeconomy Science Center (BioSC), c/o, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - U Krauss
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany. .,Bioeconomy Science Center (BioSC), c/o, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
32
|
An J, Nie Y, Xu Y. Structural insights into alcohol dehydrogenases catalyzing asymmetric reductions. Crit Rev Biotechnol 2019; 39:366-379. [DOI: 10.1080/07388551.2019.1566205] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jianhong An
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- School of Ophthalmology and Optometry, and Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Brewing Microbiology, Applied Enzymology at Jiangnan University, Wuxi, China
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Brewing Microbiology, Applied Enzymology at Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
33
|
Schmieg B, Döbber J, Kirschhöfer F, Pohl M, Franzreb M. Advantages of Hydrogel-Based 3D-Printed Enzyme Reactors and Their Limitations for Biocatalysis. Front Bioeng Biotechnol 2019; 6:211. [PMID: 30693280 PMCID: PMC6339869 DOI: 10.3389/fbioe.2018.00211] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/21/2018] [Indexed: 11/16/2022] Open
Abstract
The development of process steps catalyzed by immobilized enzymes usually encompasses the screening of enzyme variants, as well as the optimization of immobilization protocols and process parameters. Direct immobilization of biocatalysts by physical entrapment into hydrogels can be applied to reduce the effort required for immobilization, as the enzyme-specific optimization of the immobilization procedure is omitted. Physical entrapment is applicable for purified enzymes as well as crude cell extracts. Therefore, it can be used to quickly assess and compare activities of immobilized enzymes. For the application in flow reactors, we developed 3D-printed hydrogel lattices for enzyme entrapment as well as matching housings, also manufactured by 3D-printing. Testing the resulting enzyme reactors for three different enzymes, namely alcohol dehydrogenase from Lactobacillus brevis, benzoylformate decarboxylase from Pseudomonas putida and β-galactosidase from Aspergillus oryzae, and four different enzymatic reactions showed the broad applicability of the approach but also its limitations. The activity of the immobilized biocatalysts was measured in batch experiments and compared to the kinetics of the respective free enzymes in solution. This comparison yields an effectiveness factor, which is a key figure to describe the extent the immobilized catalyst is effectively utilized. For the examined systems the effectiveness factor ranged between 6 and 14% and decreased with increasing absolute activity of the entrapped enzymes due to mass transfer limitations. To test the suitability of the hydrogel lattices for continuous operation, they were inserted into 3D-printed reactor housings and operated at constant flow. Stable product formation could be monitored over a period of 72 h for all four enzymatic systems, including two reactions with redox cofactor regeneration. Comparing calculated and experimental conversion in the continuous setup, higher values of the effectiveness factor in batch experiments also hint at good performance in continuous flow. This can be used to optimize complex biocatalytic reactions on a small scale.
Collapse
Affiliation(s)
- Barbara Schmieg
- Karlsruhe Institute of Technology, Institute of Functional Interfaces, Karlsruhe, Germany
| | - Johannes Döbber
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany
| | - Frank Kirschhöfer
- Karlsruhe Institute of Technology, Institute of Functional Interfaces, Karlsruhe, Germany
| | - Martina Pohl
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany
| | - Matthias Franzreb
- Karlsruhe Institute of Technology, Institute of Functional Interfaces, Karlsruhe, Germany
| |
Collapse
|
34
|
Zhou Y, Peng Q, Zhang L, Cheng S, Zeng L, Dong F, Yang Z. Characterization of enzymes specifically producing chiral flavor compounds (R)- and (S)-1-phenylethanol from tea (Camellia sinensis) flowers. Food Chem 2018; 280:27-33. [PMID: 30642496 DOI: 10.1016/j.foodchem.2018.12.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/12/2018] [Accepted: 12/09/2018] [Indexed: 12/30/2022]
Abstract
1-Phenylethanol is a chiral flavor compound that has enantiomers, (R)- and (S)-1-phenylethanol, with different flavor properties. Given that isolating these enantiomers from plants is low yielding and costly, enzymatic synthesis presents an alternative approach. However, the genes/enzymes that specifically produce (R)- and (S)-1-phenylethanol in plants are unknown. To identify these enzymes in tea (Camellia sinensis) flowers, 21 short chain dehydrogenase (SDR) genes were isolated from tea flowers, cloned, and functionally characterized. Several recombinant SDRs in Escherichia coli exhibited activity for converting acetophenone to (S)-1-phenylethanol (CsSPESs, >99.0%), while only one SDR produced (R)-1-phenylethanol (CsRPES, 98.6%). A pair of homologue enzymes (CsSPES and CsRPES) showed a strong preference for NADPH cofactor, with optimal enzymatic reaction conditions of 45-55 °C and pH 8.0. Identification of the tea flower-derived gene responsible for specific synthesis of (R)- and (S)-1-phenylethanolsuggests enzymatic synthesis of enantiopure 1-phenylethanol is possible using a plant-derived gene.
Collapse
Affiliation(s)
- Ying Zhou
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Qiyuan Peng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ling Zhang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
| | - Sihua Cheng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Fang Dong
- Guangdong Food and Drug Vocational College, Longdongbei Road 321, Tianhe District, Guangzhou 510520, China
| | - Ziyin Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
35
|
Hermann J, Nowotny P, Schrader TE, Biggel P, Hekmat D, Weuster-Botz D. Neutron and X-ray crystal structures of Lactobacillus brevis alcohol dehydrogenase reveal new insights into hydrogen-bonding pathways. Acta Crystallogr F Struct Biol Commun 2018; 74:754-764. [PMID: 30511668 PMCID: PMC6277964 DOI: 10.1107/s2053230x18015273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/29/2018] [Indexed: 01/13/2023] Open
Abstract
Lactobacillus brevis alcohol dehydrogenase (LbADH) is a well studied homotetrameric enzyme which catalyzes the enantioselective reduction of prochiral ketones to the corresponding secondary alcohols. LbADH is stable and enzymatically active at elevated temperatures and accepts a broad range of substrates, making it a valuable tool in industrial biocatalysis. Here, the expression, purification and crystallization of LbADH to generate large, single crystals with a volume of up to 1 mm3 suitable for neutron diffraction studies are described. Neutron diffraction data were collected from an H/D-exchanged LbADH crystal using the BIODIFF instrument at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany to a resolution dmin of 2.15 Å in 16 days. This allowed the first neutron crystal structure of LbADH to be determined. The neutron structure revealed new details of the hydrogen-bonding network originating from the ion-binding site of LbADH and provided new insights into the reasons why divalent magnesium (Mg2+) or manganese (Mn2+) ions are necessary for its activity. X-ray diffraction data were obtained from the same crystal at the European Synchrotron Radiation Facility (ESRF), Grenoble, France to a resolution dmin of 1.48 Å. The high-resolution X-ray structure suggested partial occupancy of Mn2+ and Mg2+ at the ion-binding site. This is supported by the different binding affinity of Mn2+ and Mg2+ to the tetrameric structure calculated via free-energy molecular-dynamics simulations.
Collapse
Affiliation(s)
- Johannes Hermann
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching, Germany
| | - Phillip Nowotny
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching, Germany
| | - Tobias E. Schrader
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Centre (MLZ), Research Centre Jülich GmbH, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Philipp Biggel
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching, Germany
| | - Dariusch Hekmat
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching, Germany
| | - Dirk Weuster-Botz
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching, Germany
- Research Centre for Industrial Biotechnology, Technical University of Munich, Ernst-Otto-Fischer-Strasse 3, 85748 Garching, Germany
| |
Collapse
|
36
|
Gong XM, Qin Z, Li FL, Zeng BB, Zheng GW, Xu JH. Development of an Engineered Ketoreductase with Simultaneously Improved Thermostability and Activity for Making a Bulky Atorvastatin Precursor. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03382] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xu-Min Gong
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen Qin
- State Key Laboratory of Bioreactor Engineering and R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Fu-Long Li
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Bu-Bing Zeng
- Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
37
|
Young JY, Westbrook JD, Feng Z, Peisach E, Persikova I, Sala R, Sen S, Berrisford JM, Swaminathan GJ, Oldfield TJ, Gutmanas A, Igarashi R, Armstrong DR, Baskaran K, Chen L, Chen M, Clark AR, Di Costanzo L, Dimitropoulos D, Gao G, Ghosh S, Gore S, Guranovic V, Hendrickx PMS, Hudson BP, Ikegawa Y, Kengaku Y, Lawson CL, Liang Y, Mak L, Mukhopadhyay A, Narayanan B, Nishiyama K, Patwardhan A, Sahni G, Sanz-García E, Sato J, Sekharan MR, Shao C, Smart OS, Tan L, van Ginkel G, Yang H, Zhuravleva MA, Markley JL, Nakamura H, Kurisu G, Kleywegt GJ, Velankar S, Berman HM, Burley SK. Worldwide Protein Data Bank biocuration supporting open access to high-quality 3D structural biology data. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:4844086. [PMID: 29688351 PMCID: PMC5804564 DOI: 10.1093/database/bay002] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/02/2018] [Indexed: 11/24/2022]
Abstract
The Protein Data Bank (PDB) is the single global repository for experimentally determined 3D structures of biological macromolecules and their complexes with ligands. The worldwide PDB (wwPDB) is the international collaboration that manages the PDB archive according to the FAIR principles: Findability, Accessibility, Interoperability and Reusability. The wwPDB recently developed OneDep, a unified tool for deposition, validation and biocuration of structures of biological macromolecules. All data deposited to the PDB undergo critical review by wwPDB Biocurators. This article outlines the importance of biocuration for structural biology data deposited to the PDB and describes wwPDB biocuration processes and the role of expert Biocurators in sustaining a high-quality archive. Structural data submitted to the PDB are examined for self-consistency, standardized using controlled vocabularies, cross-referenced with other biological data resources and validated for scientific/technical accuracy. We illustrate how biocuration is integral to PDB data archiving, as it facilitates accurate, consistent and comprehensive representation of biological structure data, allowing efficient and effective usage by research scientists, educators, students and the curious public worldwide. Database URL: https://www.wwpdb.org/
Collapse
Affiliation(s)
- Jasmine Y Young
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - John D Westbrook
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Zukang Feng
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Ezra Peisach
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Irina Persikova
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Raul Sala
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Sanchayita Sen
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - John M Berrisford
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - G Jawahar Swaminathan
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Thomas J Oldfield
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Aleksandras Gutmanas
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Reiko Igarashi
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - David R Armstrong
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Kumaran Baskaran
- BMRB, BioMagResBank, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Li Chen
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Minyu Chen
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Alice R Clark
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Luigi Di Costanzo
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Dimitris Dimitropoulos
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Guanghua Gao
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Sutapa Ghosh
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Swanand Gore
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Vladimir Guranovic
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Pieter M S Hendrickx
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Brian P Hudson
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Yasuyo Ikegawa
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Yumiko Kengaku
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Catherine L Lawson
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Yuhe Liang
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Lora Mak
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Abhik Mukhopadhyay
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Buvaneswari Narayanan
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Kayoko Nishiyama
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Ardan Patwardhan
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Gaurav Sahni
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Eduardo Sanz-García
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Junko Sato
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Monica R Sekharan
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Chenghua Shao
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Oliver S Smart
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Lihua Tan
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Glen van Ginkel
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Huanwang Yang
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Marina A Zhuravleva
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - John L Markley
- BMRB, BioMagResBank, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Haruki Nakamura
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Genji Kurisu
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Gerard J Kleywegt
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Sameer Velankar
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Helen M Berman
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Stephen K Burley
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA.,RCSB Protein Data Bank, San Diego Supercomputer Center and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.,Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA.,Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, Little Albany St, New Brunswick, NJ 08901, USA
| |
Collapse
|
38
|
Xu GC, Wang Y, Tang MH, Zhou JY, Zhao J, Han RZ, Ni Y. Hydroclassified Combinatorial Saturation Mutagenesis: Reshaping Substrate Binding Pockets of KpADH for Enantioselective Reduction of Bulky–Bulky Ketones. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02286] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Guo-Chao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yue Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ming-Hui Tang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jie-Yu Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jing Zhao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Rui-Zhi Han
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
39
|
A 3D-QSAR assisted activity prediction strategy for expanding substrate spectra of an aldehyde ketone reductase. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Mallette E, Kimber MS. Structure and Kinetics of the S-(+)-1-Amino-2-propanol Dehydrogenase from the RMM Microcompartment of Mycobacterium smegmatis. Biochemistry 2018; 57:3780-3789. [PMID: 29757625 DOI: 10.1021/acs.biochem.8b00464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
S-(+)-1-Amino-2-propanol dehydrogenase (APDH) is a short-chain dehydrogenase/reductase associated with the incompletely characterized Rhodococcus and Mycobacterium bacterial microcompartment (RMM). We enzymatically characterized the APDH from M. smegmatis and showed it is highly selective, with a low micromolar Km for S-(+)-1-amino-2-propanol and specificity for NADP(H). A paralogous enzyme from a nonmicrocompartment-associated operon in the same organism was also shown to have a similar activity. We determined the structure of APDH in both apo form (at 1.7 Å) and as a ternary enzyme complex with NADP+ and aminoacetone (at 1.9 Å). Recognition of aminoacetone was mediated by strong hydrogen bonds to the amino group by Thr145 and by Glu251 from the C-terminus of an adjacent protomer. The substrate binding site entirely encloses the substrate, with close contacts between the aminoacetone methyl group and Phe95, Trp154, and Leu195. Kinetic characterization of several of these residues confirm their importance in enzyme functioning. Bioinformatics analysis of APDH homologues implies that many nonmicrocompartment APDH orthologues partake in an aminoacetone degradation pathway that proceeds via an aminopropanol O-phosphate phospholyase. RMM microcompartments may mediate a similar pathway, though possibly with differences in the details of the pathway that necessitates encapsulation behind a shell.
Collapse
Affiliation(s)
- Evan Mallette
- Department of Molecular and Cellular Biology , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Matthew S Kimber
- Department of Molecular and Cellular Biology , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| |
Collapse
|
41
|
Qin F, Qin B, Zhang W, Liu Y, Su X, Zhu T, Ouyang J, Guo J, Li Y, Zhang F, Tang J, Jia X, You S. Discovery of a Switch Between Prelog and Anti-Prelog Reduction toward Halogen-Substituted Acetophenones in Short-Chain Dehydrogenase/Reductases. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00807] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Fengyu Qin
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic of China
| | - Bin Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic of China
| | - Wenhe Zhang
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic of China
| | - Yalin Liu
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic of China
| | - Xin Su
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic of China
| | - Tianhui Zhu
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic of China
| | - Jingping Ouyang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic of China
| | - Jiyang Guo
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic of China
| | - Yuxin Li
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic of China
| | - Feiting Zhang
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic of China
| | - Jun Tang
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic of China
| | - Xian Jia
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic of China
| | - Song You
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic of China
| |
Collapse
|
42
|
Thai YC, Szekrenyi A, Qi Y, Black GW, Charnock SJ, Fessner WD. Fluorogenic kinetic assay for high-throughput discovery of stereoselective ketoreductases relevant to pharmaceutical synthesis. Bioorg Med Chem 2018; 26:1320-1326. [DOI: 10.1016/j.bmc.2017.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/30/2017] [Accepted: 05/11/2017] [Indexed: 12/26/2022]
|
43
|
Knaus T, Cariati L, Masman MF, Mutti FG. In vitro biocatalytic pathway design: orthogonal network for the quantitative and stereospecific amination of alcohols. Org Biomol Chem 2018; 15:8313-8325. [PMID: 28936532 DOI: 10.1039/c7ob01927k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The direct and efficient conversion of alcohols into amines is a pivotal transformation in chemistry. Here, we present an artificial, oxidation-reduction, biocatalytic network that employs five enzymes (alcohol dehydrogenase, NADP-oxidase, catalase, amine dehydrogenase and formate dehydrogenase) in two concurrent and orthogonal cycles. The NADP-dependent oxidative cycle converts a diverse range of aromatic and aliphatic alcohol substrates to the carbonyl compound intermediates, whereas the NAD-dependent reductive aminating cycle generates the related amine products with >99% enantiomeric excess (R) and up to >99% conversion. The elevated conversions stem from the favorable thermodynamic equilibrium (K'eq = 1.88 × 1042 and 1.48 × 1041 for the amination of primary and secondary alcohols, respectively). This biocatalytic network possesses elevated atom efficiency, since the reaction buffer (ammonium formate) is both the aminating agent and the source of reducing equivalents. Additionally, only dioxygen is needed, whereas water and carbonate are the by-products. For the oxidative step, we have employed three variants of the NADP-dependent alcohol dehydrogenase from Thermoanaerobacter ethanolicus and we have elucidated the origin of the stereoselective properties of these variants with the aid of in silico computational models.
Collapse
Affiliation(s)
- Tanja Knaus
- Van't Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH, The Netherlands.
| | | | | | | |
Collapse
|
44
|
Crystal structure and iterative saturation mutagenesis of ChKRED20 for expanded catalytic scope. Appl Microbiol Biotechnol 2017; 101:8395-8404. [DOI: 10.1007/s00253-017-8556-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/05/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022]
|
45
|
Is literature data useful for identifying enzyme catalysts for new substrates? A case study on reduction of 1-aryl-2-alkanoates. Bioorg Chem 2017; 74:260-271. [DOI: 10.1016/j.bioorg.2017.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 01/04/2023]
|
46
|
Decarlini MF, Aimar ML, Vázquez AM, Vero S, Rossi LI, Yang P. Fungi isolated from food samples for an efficient stereoselective production of phenylethanols. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Peters C, Rudroff F, Mihovilovic MD, T Bornscheuer U. Fusion proteins of an enoate reductase and a Baeyer-Villiger monooxygenase facilitate the synthesis of chiral lactones. Biol Chem 2017; 398:31-37. [PMID: 27289001 DOI: 10.1515/hsz-2016-0150] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/08/2016] [Indexed: 11/15/2022]
Abstract
Nature uses the advantages of fusion proteins for multi-step reactions to facilitate the metabolism in cells as the conversion of substrates through intermediates to the final product can take place more rapidly and with less side-product formation. In a similar fashion, also for enzyme cascade reactions, the fusion of biocatalysts involved can be advantageous. In the present study, we investigated fusion of an alcohol dehydrogenase (ADH), an enoate reductase (ERED) and a Baeyer-Villiger monooxygenase (BVMO) to enable the synthesis of (chiral) lactones starting from unsaturated alcohols as substrates. The domain order and various linkers were studied to find optimal conditions with respect to expression levels and enzymatic activities. Best results were achieved for the ERED xenobiotic reductase B (XenB) from Pseudomonas putida and the cyclohexanone monooxygenase (CHMO) from Acinetobacter sp., whereas none of the ADHs studied could be fused successfully. This fusion protein together with separately supplied ADH resulted in similar reaction rates in in vivo biocatalysis reactions. After 1.5 h we could detect 40% more dihydrocarvone lactone in in vivo reactions with the fusion protein and ADH then with the single enzymes.
Collapse
|
48
|
An NADPH-dependent Lactobacillus composti short-chain dehydrogenase/reductase: characterization and application to (R)-1-phenylethanol synthesis. World J Microbiol Biotechnol 2017. [DOI: 10.1007/s11274-017-2311-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
49
|
Shao C, Yang H, Westbrook JD, Young JY, Zardecki C, Burley SK. Multivariate Analyses of Quality Metrics for Crystal Structures in the PDB Archive. Structure 2017; 25:458-468. [PMID: 28216043 DOI: 10.1016/j.str.2017.01.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/19/2017] [Accepted: 01/29/2017] [Indexed: 11/18/2022]
Abstract
Following deployment of an augmented validation system by the Worldwide Protein Data Bank (wwPDB) partnership, the quality of crystal structures entering the PDB has improved. Of significance are improvements in quality measures now prominently displayed in the wwPDB validation report. Comparisons of PDB depositions made before and after introduction of the new reporting system show improvements in quality measures relating to pairwise atom-atom clashes, side-chain torsion angle rotamers, and local agreement between the atomic coordinate structure model and experimental electron density data. These improvements are largely independent of resolution limit and sample molecular weight. No significant improvement in the quality of associated ligands was observed. Principal component analysis revealed that structure quality could be summarized with three measures (Rfree, real-space R factor Z score, and a combined molecular geometry quality metric), which can in turn be reduced to a single overall quality metric readily interpretable by all PDB archive users.
Collapse
Affiliation(s)
- Chenghua Shao
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers University, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Huanwang Yang
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers University, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - John D Westbrook
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers University, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA; Institute for Quantitative Biomedicine, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jasmine Y Young
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers University, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Christine Zardecki
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers University, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Stephen K Burley
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers University, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA; Institute for Quantitative Biomedicine, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08903, USA; RCSB Protein Databank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
50
|
Lenz M, Meisner J, Quertinmont L, Lutz S, Kästner J, Nestl BM. Asymmetric Ketone Reduction by Imine Reductases. Chembiochem 2016; 18:253-256. [PMID: 27911981 DOI: 10.1002/cbic.201600647] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Indexed: 11/10/2022]
Abstract
The rapidly growing area of asymmetric imine reduction by imine reductases (IREDs) has provided alternative routes to chiral amines. Here we report the expansion of the reaction scope of IREDs by showing the stereoselective reduction of 2,2,2-trifluoroacetophenone. Assisted by an in silico analysis of energy barriers, we evaluated asymmetric hydrogenations of carbonyls and imines while considering the influence of substrate reactivity on the chemoselectivity of this novel class of reductases. We report the asymmetric reduction of C=N as well as C=O bonds catalysed by members of the IRED enzyme family.
Collapse
Affiliation(s)
- Maike Lenz
- Institute of Technical Biochemistry, Universitaet Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jan Meisner
- Institute for Theoretical Chemistry, Universitaet Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Leann Quertinmont
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia, 30322, USA
| | - Stefan Lutz
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia, 30322, USA
| | - Johannes Kästner
- Institute for Theoretical Chemistry, Universitaet Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Bettina M Nestl
- Institute of Technical Biochemistry, Universitaet Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| |
Collapse
|