1
|
González-Delgado J, Bernadó P, Neuvial P, Cortés J. Weighted families of contact maps to characterize conformational ensembles of (highly-)flexible proteins. Bioinformatics 2024; 40:btae627. [PMID: 39432675 PMCID: PMC11530230 DOI: 10.1093/bioinformatics/btae627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024] Open
Abstract
MOTIVATION Characterizing the structure of flexible proteins, particularly within the realm of intrinsic disorder, presents a formidable challenge due to their high conformational variability. Currently, their structural representation relies on (possibly large) conformational ensembles derived from a combination of experimental and computational methods. The detailed structural analysis of these ensembles is a difficult task, for which existing tools have limited effectiveness. RESULTS This study proposes an innovative extension of the concept of contact maps to the ensemble framework, incorporating the intrinsic probabilistic nature of disordered proteins. Within this framework, a conformational ensemble is characterized through a weighted family of contact maps. To achieve this, conformations are first described using a refined definition of contact that appropriately accounts for the geometry of the inter-residue interactions and the sequence context. Representative structural features of the ensemble naturally emerge from the subsequent clustering of the resulting contact-based descriptors. Importantly, transiently populated structural features are readily identified within large ensembles. The performance of the method is illustrated by several use cases and compared with other existing approaches, highlighting its superiority in capturing relevant structural features of highly flexible proteins. AVAILABILITY AND IMPLEMENTATION An open-source implementation of the method is provided together with an easy-to-use Jupyter notebook, available at https://gitlab.laas.fr/moma/WARIO.
Collapse
Affiliation(s)
- Javier González-Delgado
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
- Institut de Mathématiques de Toulouse, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Pau Bernadó
- Centre de Biologie Structurale, Université de Montpellier, INSERM, CNRS, 34090 Montpellier, France
| | - Pierre Neuvial
- Institut de Mathématiques de Toulouse, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| |
Collapse
|
2
|
Mussulini BHM, Wasilewski M, Chacinska A. Methods to monitor mitochondrial disulfide bonds. Methods Enzymol 2024; 706:125-158. [PMID: 39455213 DOI: 10.1016/bs.mie.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Mitochondria contain numerous proteins that utilize the chemistry of cysteine residues, which can be reversibly oxidized. These proteins are involved in mitochondrial biogenesis, protection against oxidative stress, metabolism, energy transduction to adenosine triphosphate, signaling and cell death among other functions. Many proteins located in the mitochondrial intermembrane space are imported by the mitochondrial import and assembly pathway the activity of which is based on the reversible oxidation of cysteine residues and oxidative trapping of substrates. Oxidative modifications of cysteine residues are particularly difficult to study because of their labile character. Here we present techniques that allow for monitoring the oxidative state of mitochondrial proteins as well as to investigate the mitochondrial import and assembly pathway. This chapter conveys basic concepts on sample preparation and techniques to monitor the redox state of cysteine residues in mitochondrial proteins as well as the strategies to study mitochondrial import and assembly pathway.
Collapse
|
3
|
Tokatlidis K, Haider A. Analysis of targeting signals for mitochondrial intermembrane space import. Methods Enzymol 2024; 706:243-262. [PMID: 39455218 DOI: 10.1016/bs.mie.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
The mitochondrial intermembrane space (IMS) is the smallest sub-mitochondrial compartment, containing only 5%-10% of mitochondrial proteins. Despite its size, it exhibits the most diverse array of protein import mechanisms. These are underpinned by several different types of targeting signals that are quite distinct from targeting signals for other mitochondrial sub-compartments. In this chapter we outlined our current understanding of some of the main IMS import pathways, the primary oxidative protein folding targeting signal, and explore the remarkable variety of alternative import methods. Unlike proteins destined for the matrix or inner membrane (IM), IMS proteins need only traverse the outer mitochondrial membrane. This process doesn't require energy from ATP hydrolysis in the matrix or the IM electrochemical potential. We also examine unconventional IMS import pathways that remain poorly understood, often guided by ill-defined or unknown targeting peptides. Many IMS proteins are implicated in human diseases, making it crucial to comprehend how they reach their functional location within the IMS. The chapter concludes by discussing current insights into how understanding IMS targeting pathways can contribute to improved understanding of a wide range of human disorders.
Collapse
Affiliation(s)
- Kostas Tokatlidis
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom.
| | - Amiyo Haider
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
4
|
Fagnani E, Cocomazzi P, Pellegrino S, Tedeschi G, Scalvini FG, Cossu F, Da Vela S, Aliverti A, Mastrangelo E, Milani M. CHCHD4 binding affects the active site of apoptosis inducing factor (AIF): Structural determinants for allosteric regulation. Structure 2024; 32:594-602.e4. [PMID: 38460521 DOI: 10.1016/j.str.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/08/2024] [Accepted: 02/13/2024] [Indexed: 03/11/2024]
Abstract
Apoptosis-inducing factor (AIF), which is confined to mitochondria of normal healthy cells, is the first identified caspase-independent cell death effector. Moreover, AIF is required for the optimal functioning of the respiratory chain machinery. Recent findings have revealed that AIF fulfills its pro-survival function by interacting with CHCHD4, a soluble mitochondrial protein which promotes the entrance and the oxidative folding of different proteins in the inner membrane space. Here, we report the crystal structure of the ternary complex involving the N-terminal 27-mer peptide of CHCHD4, NAD+, and AIF harboring its FAD (flavin adenine dinucleotide) prosthetic group in oxidized form. Combining this information with biophysical and biochemical data on the CHCHD4/AIF complex, we provide a detailed structural description of the interaction between the two proteins, validated by both chemical cross-linking mass spectrometry analysis and site-directed mutagenesis.
Collapse
Affiliation(s)
- Elisa Fagnani
- Biophysics Institute, CNR-IBF, Via Corti 12, 20133 Milan, Italy; Department of Bioscience, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Paolo Cocomazzi
- Biophysics Institute, CNR-IBF, Via Corti 12, 20133 Milan, Italy; Department of Bioscience, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Sara Pellegrino
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy; Cimaina, Università degli Studi di Milano, Milan, Italy
| | - Francesca Grassi Scalvini
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Federica Cossu
- Biophysics Institute, CNR-IBF, Via Corti 12, 20133 Milan, Italy; Department of Bioscience, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Stefano Da Vela
- Hochschule Bremerhaven, Karlstadt 8, 27568 Bremerhaven, Germany
| | - Alessandro Aliverti
- Department of Bioscience, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy.
| | - Eloise Mastrangelo
- Biophysics Institute, CNR-IBF, Via Corti 12, 20133 Milan, Italy; Department of Bioscience, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy.
| | - Mario Milani
- Biophysics Institute, CNR-IBF, Via Corti 12, 20133 Milan, Italy; Department of Bioscience, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
5
|
Ma J, Wang PY, Zhuang J, Son AY, Karius AK, Syed AM, Nishi M, Wu Z, Mori MP, Kim YC, Hwang PM. CHCHD4-TRIAP1 regulation of innate immune signaling mediates skeletal muscle adaptation to exercise. Cell Rep 2024; 43:113626. [PMID: 38157298 PMCID: PMC10851177 DOI: 10.1016/j.celrep.2023.113626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/20/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024] Open
Abstract
Exercise training can stimulate the formation of fatty-acid-oxidizing slow-twitch skeletal muscle fibers, which are inversely correlated with obesity, but the molecular mechanism underlying this transformation requires further elucidation. Here, we report that the downregulation of the mitochondrial disulfide relay carrier CHCHD4 by exercise training decreases the import of TP53-regulated inhibitor of apoptosis 1 (TRIAP1) into mitochondria, which can reduce cardiolipin levels and promote VDAC oligomerization in skeletal muscle. VDAC oligomerization, known to facilitate mtDNA release, can activate cGAS-STING/NFKB innate immune signaling and downregulate MyoD in skeletal muscle, thereby promoting the formation of oxidative slow-twitch fibers. In mice, CHCHD4 haploinsufficiency is sufficient to activate this pathway, leading to increased oxidative muscle fibers and decreased fat accumulation with aging. The identification of a specific mediator regulating muscle fiber transformation provides an opportunity to understand further the molecular underpinnings of complex metabolic conditions such as obesity and could have therapeutic implications.
Collapse
Affiliation(s)
- Jin Ma
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Ping-Yuan Wang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Jie Zhuang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA; School of Medicine, Nankai University, Tianjin 300071, China
| | - Annie Y Son
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Alexander K Karius
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Abu Mohammad Syed
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Masahiro Nishi
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Zhichao Wu
- Laboratory of Pathology, National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Mateus P Mori
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Young-Chae Kim
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Paul M Hwang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Muzzioli R, Gallo A. The Interaction and Effect of a Small MitoBlock Library as Inhibitor of ALR Protein-Protein Interaction Pathway. Int J Mol Sci 2024; 25:1174. [PMID: 38256258 PMCID: PMC10816046 DOI: 10.3390/ijms25021174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
MIA40 and ALR of the MIA pathway mediate the import of protein precursors that form disulfides into the mitochondrial intermembrane space. This import pathway is suggested to be a linear pathway in which MIA40 first binds to the precursor via a disulfide linkage and oxidizes it. Subsequently, ALR re-oxidizes MIA40 and then ALR transfers electrons to terminal electron acceptors. However, the precise mechanism by which ALR and MIA40 coordinate translocation is unknown. With a collection of small molecule modulators (MB-5 to MB-9 and MB-13) that inhibit ALR activity, we characterized the import mechanism in mitochondria. NMR studies show that most of the compounds bind to a similar region in ALR. Mechanistic studies with small molecules demonstrate that treatment with compound MB-6 locks the precursor in a state bound to MIA40, blocking re-oxidation of MIA40 by ALR. Thus, small molecules that target a similar region in ALR alter the dynamics of the MIA import pathway differently, resulting in a set of probes that are useful for studying the catalysis of the redox-regulated import pathway in model systems.
Collapse
Affiliation(s)
- Riccardo Muzzioli
- CERM, University of Florence, Via L Sacconi 9, 50019 Sesto Fiorentino, Italy
| | - Angelo Gallo
- CERM, University of Florence, Via L Sacconi 9, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Peker E, Weiss K, Song J, Zarges C, Gerlich S, Boehm V, Trifunovic A, Langer T, Gehring NH, Becker T, Riemer J. A two-step mitochondrial import pathway couples the disulfide relay with matrix complex I biogenesis. J Cell Biol 2023; 222:e202210019. [PMID: 37159021 PMCID: PMC10174193 DOI: 10.1083/jcb.202210019] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/03/2023] [Accepted: 04/06/2023] [Indexed: 05/10/2023] Open
Abstract
Mitochondria critically rely on protein import and its tight regulation. Here, we found that the complex I assembly factor NDUFAF8 follows a two-step import pathway linking IMS and matrix import systems. A weak targeting sequence drives TIM23-dependent NDUFAF8 matrix import, and en route, allows exposure to the IMS disulfide relay, which oxidizes NDUFAF8. Import is closely surveyed by proteases: YME1L prevents accumulation of excess NDUFAF8 in the IMS, while CLPP degrades reduced NDUFAF8 in the matrix. Therefore, NDUFAF8 can only fulfil its function in complex I biogenesis if both oxidation in the IMS and subsequent matrix import work efficiently. We propose that the two-step import pathway for NDUFAF8 allows integration of the activity of matrix complex I biogenesis pathways with the activity of the mitochondrial disulfide relay system in the IMS. Such coordination might not be limited to NDUFAF8 as we identified further proteins that can follow such a two-step import pathway.
Collapse
Affiliation(s)
- Esra Peker
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Konstantin Weiss
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christine Zarges
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Sarah Gerlich
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Volker Boehm
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Aleksandra Trifunovic
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Thomas Langer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Department of Mitochondrial Proteostasis, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Niels H. Gehring
- Institute for Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jan Riemer
- Institute for Biochemistry, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Zheng X, Xiang M. Mitochondrion-located peptides and their pleiotropic physiological functions. FEBS J 2022; 289:6919-6935. [PMID: 35599630 DOI: 10.1111/febs.16532] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 01/13/2023]
Abstract
With the development of advanced technologies, many small open reading frames (sORFs) have been found to be translated into micropeptides. Interestingly, a considerable proportion of micropeptides are located in mitochondria, which are designated here as mitochondrion-located peptides (MLPs). These MLPs often contain a transmembrane domain and show a high degree of conservation across species. They usually act as co-factors of large proteins and play regulatory roles in mitochondria such as electron transport in the respiratory chain, reactive oxygen species (ROS) production, metabolic homeostasis, and so on. Deficiency of MLPs disturbs diverse physiological processes including immunity, differentiation, and metabolism both in vivo and in vitro. These findings reveal crucial functions for MLPs and provide fresh insights into diverse mitochondrion-associated biological processes and diseases.
Collapse
Affiliation(s)
- Xintong Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Salscheider SL, Gerlich S, Cabrera-Orefice A, Peker E, Rothemann RA, Murschall LM, Finger Y, Szczepanowska K, Ahmadi ZA, Guerrero-Castillo S, Erdogan A, Becker M, Ali M, Habich M, Petrungaro C, Burdina N, Schwarz G, Klußmann M, Neundorf I, Stroud DA, Ryan MT, Trifunovic A, Brandt U, Riemer J. AIFM1 is a component of the mitochondrial disulfide relay that drives complex I assembly through efficient import of NDUFS5. EMBO J 2022; 41:e110784. [PMID: 35859387 PMCID: PMC9434101 DOI: 10.15252/embj.2022110784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
The mitochondrial intermembrane space protein AIFM1 has been reported to mediate the import of MIA40/CHCHD4, which forms the import receptor in the mitochondrial disulfide relay. Here, we demonstrate that AIFM1 and MIA40/CHCHD4 cooperate beyond this MIA40/CHCHD4 import. We show that AIFM1 and MIA40/CHCHD4 form a stable long‐lived complex in vitro, in different cell lines, and in tissues. In HEK293 cells lacking AIFM1, levels of MIA40 are unchanged, but the protein is present in the monomeric form. Monomeric MIA40 neither efficiently interacts with nor mediates the import of specific substrates. The import defect is especially severe for NDUFS5, a subunit of complex I of the respiratory chain. As a consequence, NDUFS5 accumulates in the cytosol and undergoes rapid proteasomal degradation. Lack of mitochondrial NDUFS5 in turn results in stalling of complex I assembly. Collectively, we demonstrate that AIFM1 serves two overlapping functions: importing MIA40/CHCHD4 and constituting an integral part of the disulfide relay that ensures efficient interaction of MIA40/CHCHD4 with specific substrates.
Collapse
Affiliation(s)
| | - Sarah Gerlich
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Esra Peker
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | | | | | - Yannik Finger
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Karolina Szczepanowska
- Medical Faculty, Institute for Mitochondrial Diseases and Aging, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Zeinab Alsadat Ahmadi
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sergio Guerrero-Castillo
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alican Erdogan
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Mark Becker
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Muna Ali
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Markus Habich
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | | | - Nele Burdina
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Guenter Schwarz
- Institute for Biochemistry, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Merlin Klußmann
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Ines Neundorf
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - David A Stroud
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| | - Aleksandra Trifunovic
- Medical Faculty, Institute for Mitochondrial Diseases and Aging, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Ulrich Brandt
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jan Riemer
- Institute for Biochemistry, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Chiappetta G, Gamberi T, Faienza F, Limaj X, Rizza S, Messori L, Filomeni G, Modesti A, Vinh J. Redox proteome analysis of auranofin exposed ovarian cancer cells (A2780). Redox Biol 2022; 52:102294. [PMID: 35358852 PMCID: PMC8966199 DOI: 10.1016/j.redox.2022.102294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 01/03/2023] Open
Abstract
The effects of Auranofin (AF) on protein expression and protein oxidation in A2780 cancer cells were investigated through a strategy based on simultaneous expression proteomics and redox proteomics determinations. Bioinformatics analysis of the proteomics data supports the view that the most critical cellular changes elicited by AF treatment consist of thioredoxin reductase inhibition, alteration of the cell redox state, impairment of the mitochondrial functions, metabolic changes associated with conversion to a glycolytic phenotype, induction of ER stress. The occurrence of the above cellular changes was extensively validated by performing direct biochemical assays. Our data are consistent with the concept that AF produces its effects through a multitarget mechanism that mainly affects the redox metabolism and the mitochondrial functions and results into severe ER stress. Results are discussed in the context of the current mechanistic knowledge existing on AF. Redox proteomics allows to underline cell adaptation mechanisms in response to Auranofin treatment in ovarian cancer cells. BRCA1 is one of the major candidates of the ovarian cancer cell adaptation to Auranofin treatment. Auranofin alters the oxidative phosphorylation and mitochondrial protein import machinery. TRAP1 C501 modulates Auranofin toxicity. Auranofin induces severe stress of the endoplasmic reticulum.
Collapse
Affiliation(s)
- Giovanni Chiappetta
- Biological Mass Spectrometry and Proteomics Group, SMBP, PDC CNRS UMR, 8249, ESPCI Paris, Université PSL, 10 rue Vauquelin, 75005, Paris, France.
| | - Tania Gamberi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134, Florence, Italy.
| | - Fiorella Faienza
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Xhesika Limaj
- Biological Mass Spectrometry and Proteomics Group, SMBP, PDC CNRS UMR, 8249, ESPCI Paris, Université PSL, 10 rue Vauquelin, 75005, Paris, France
| | - Salvatore Rizza
- Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Luigi Messori
- Metmed Lab, Department of Chemistry, University of Florence, via della lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Giuseppe Filomeni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, Copenhagen, Denmark; Center for Healthy Aging, University of Copenhagen, Denmark
| | - Alessandra Modesti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134, Florence, Italy
| | - Joelle Vinh
- Biological Mass Spectrometry and Proteomics Group, SMBP, PDC CNRS UMR, 8249, ESPCI Paris, Université PSL, 10 rue Vauquelin, 75005, Paris, France
| |
Collapse
|
11
|
Geldon S, Fernández-Vizarra E, Tokatlidis K. Redox-Mediated Regulation of Mitochondrial Biogenesis, Dynamics, and Respiratory Chain Assembly in Yeast and Human Cells. Front Cell Dev Biol 2021; 9:720656. [PMID: 34557489 PMCID: PMC8452992 DOI: 10.3389/fcell.2021.720656] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
Mitochondria are double-membrane organelles that contain their own genome, the mitochondrial DNA (mtDNA), and reminiscent of its endosymbiotic origin. Mitochondria are responsible for cellular respiration via the function of the electron oxidative phosphorylation system (OXPHOS), located in the mitochondrial inner membrane and composed of the four electron transport chain (ETC) enzymes (complexes I-IV), and the ATP synthase (complex V). Even though the mtDNA encodes essential OXPHOS components, the large majority of the structural subunits and additional biogenetical factors (more than seventy proteins) are encoded in the nucleus and translated in the cytoplasm. To incorporate these proteins and the rest of the mitochondrial proteome, mitochondria have evolved varied, and sophisticated import machineries that specifically target proteins to the different compartments defined by the two membranes. The intermembrane space (IMS) contains a high number of cysteine-rich proteins, which are mostly imported via the MIA40 oxidative folding system, dependent on the reduction, and oxidation of key Cys residues. Several of these proteins are structural components or assembly factors necessary for the correct maturation and function of the ETC complexes. Interestingly, many of these proteins are involved in the metalation of the active redox centers of complex IV, the terminal oxidase of the mitochondrial ETC. Due to their function in oxygen reduction, mitochondria are the main generators of reactive oxygen species (ROS), on both sides of the inner membrane, i.e., in the matrix and the IMS. ROS generation is important due to their role as signaling molecules, but an excessive production is detrimental due to unwanted oxidation reactions that impact on the function of different types of biomolecules contained in mitochondria. Therefore, the maintenance of the redox balance in the IMS is essential for mitochondrial function. In this review, we will discuss the role that redox regulation plays in the maintenance of IMS homeostasis as well as how mitochondrial ROS generation may be a key regulatory factor for ETC biogenesis, especially for complex IV.
Collapse
Affiliation(s)
| | - Erika Fernández-Vizarra
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
12
|
Dixit B, Vanhoozer S, Anti NA, O'Connor MS, Boominathan A. Rapid enrichment of mitochondria from mammalian cell cultures using digitonin. MethodsX 2021; 8:101197. [PMID: 34434723 PMCID: PMC8374178 DOI: 10.1016/j.mex.2020.101197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/20/2020] [Indexed: 11/14/2022] Open
Abstract
We describe here a simple method to enrich mitochondrial fractions from mammalian cells for downstream analyses in the lab. Mitochondria purification involves cell lysis followed by separation of the organelles from the rest of the cellular components. Here, we use detergent to rupture the cell membrane of mammalian cells followed by differential centrifugation to enrich the organelles. Optimum conditions with respect to detergent concentration, time, sample size, and yield are discussed. The method's utility in downstream analyses and ease of processing multiple samples simultaneously is also described. All the reagents in this method can be assembled in-house, are economical, and are comparable, if not superior, to commercially available kits in terms of mitochondrial yield and integrity. • Rapid enrichment of mitochondria from mammalian cells using commonly available reagents. • Multiple samples can be processed simultaneously. • Works over a wide range of sample size (1 million to 100 million cells).
Collapse
Affiliation(s)
- Bhavna Dixit
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 95051 USA
| | - Shon Vanhoozer
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 95051 USA
| | - Nana Abena Anti
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 95051 USA
| | - Matthew S O'Connor
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 95051 USA
| | - Amutha Boominathan
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 95051 USA
| |
Collapse
|
13
|
Sladowska M, Turek M, Kim MJ, Drabikowski K, Mussulini BHM, Mohanraj K, Serwa RA, Topf U, Chacinska A. Proteasome activity contributes to pro-survival response upon mild mitochondrial stress in Caenorhabditis elegans. PLoS Biol 2021; 19:e3001302. [PMID: 34252079 PMCID: PMC8274918 DOI: 10.1371/journal.pbio.3001302] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
Defects in mitochondrial function activate compensatory responses in the cell. Mitochondrial stress that is caused by unfolded proteins inside the organelle induces a transcriptional response (termed the "mitochondrial unfolded protein response" [UPRmt]) that is mediated by activating transcription factor associated with stress 1 (ATFS-1). The UPRmt increases mitochondrial protein quality control. Mitochondrial dysfunction frequently causes defects in the import of proteins, resulting in the accumulation of mitochondrial proteins outside the organelle. In yeast, cells respond to mistargeted mitochondrial proteins by increasing activity of the proteasome in the cytosol (termed the "unfolded protein response activated by mistargeting of proteins" [UPRam]). The presence and relevance of this response in higher eukaryotes is unclear. Here, we demonstrate that defects in mitochondrial protein import in Caenorhabditis elegans lead to proteasome activation and life span extension. Both proteasome activation and life span prolongation partially depend on ATFS-1, despite its lack of influence on proteasomal gene transcription. Importantly, life span prolongation depends on the fully assembled proteasome. Our data provide a link between mitochondrial dysfunction and proteasomal activity and demonstrate its direct relevance to mechanisms that promote longevity.
Collapse
Affiliation(s)
- Maria Sladowska
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Michał Turek
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Min-Ji Kim
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Krzysztof Drabikowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Karthik Mohanraj
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland
| | - Remigiusz A. Serwa
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Ulrike Topf
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Chacinska
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- IMol Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Finger Y, Riemer J. Protein import by the mitochondrial disulfide relay in higher eukaryotes. Biol Chem 2021; 401:749-763. [PMID: 32142475 DOI: 10.1515/hsz-2020-0108] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022]
Abstract
The proteome of the mitochondrial intermembrane space (IMS) contains more than 100 proteins, all of which are synthesized on cytosolic ribosomes and consequently need to be imported by dedicated machineries. The mitochondrial disulfide relay is the major import machinery for soluble proteins in the IMS. Its major component, the oxidoreductase MIA40, interacts with incoming substrates, retains them in the IMS, and oxidatively folds them. After this reaction, MIA40 is reoxidized by the sulfhydryl oxidase augmenter of liver regeneration, which couples disulfide formation by this machinery to the activity of the respiratory chain. In this review, we will discuss the import of IMS proteins with a focus on recent findings showing the diversity of disulfide relay substrates, describing the cytosolic control of this import system and highlighting the physiological relevance of the disulfide relay machinery in higher eukaryotes.
Collapse
Affiliation(s)
- Yannik Finger
- Institute for Biochemistry, Redox Biochemistry, University of Cologne, Zülpicher Str. 47a/R. 3.49, D-50674 Cologne, Germany
| | - Jan Riemer
- Department of Chemistry, Institute for Biochemistry, Redox Biochemistry, University of Cologne, and Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, Zülpicher Str. 47a/R. 3.49, D-50674 Cologne, Germany
| |
Collapse
|
15
|
Edwards R, Gerlich S, Tokatlidis K. The biogenesis of mitochondrial intermembrane space proteins. Biol Chem 2021; 401:737-747. [PMID: 32061164 DOI: 10.1515/hsz-2020-0114] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/13/2020] [Indexed: 01/09/2023]
Abstract
The mitochondrial intermembrane space (IMS) houses a large spectrum of proteins with distinct and critical functions. Protein import into this mitochondrial sub-compartment is underpinned by an intriguing variety of pathways, many of which are still poorly understood. The constricted volume of the IMS and the topological segregation by the inner membrane cristae into a bulk area surrounded by the boundary inner membrane and the lumen within the cristae is an important factor that adds to the complexity of the protein import, folding and assembly processes. We discuss the main import pathways into the IMS, but also how IMS proteins are degraded or even retro-translocated to the cytosol in an integrated network of interactions that is necessary to maintain a healthy balance of IMS proteins under physiological and cellular stress conditions. We conclude this review by highlighting new and exciting perspectives in this area with a view to develop a better understanding of yet unknown, likely unconventional import pathways, how presequence-less proteins can be targeted and the basis for dual localisation in the IMS and the cytosol. Such knowledge is critical to understanding the dynamic changes of the IMS proteome in response to stress, and particularly important for maintaining optimal mitochondrial fitness.
Collapse
Affiliation(s)
- Ruairidh Edwards
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ Scotland, UK
| | - Sarah Gerlich
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ Scotland, UK.,Department for Chemistry, Institute for Biochemistry, University of Cologne, 50674 Cologne, Germany
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ Scotland, UK
| |
Collapse
|
16
|
The Mia40/CHCHD4 Oxidative Folding System: Redox Regulation and Signaling in the Mitochondrial Intermembrane Space. Antioxidants (Basel) 2021; 10:antiox10040592. [PMID: 33921425 PMCID: PMC8069373 DOI: 10.3390/antiox10040592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are critical for several cellular functions as they control metabolism, cell physiology, and cell death. The mitochondrial proteome consists of around 1500 proteins, the vast majority of which (about 99% of them) are encoded by nuclear genes, with only 13 polypeptides in human cells encoded by mitochondrial DNA. Therefore, it is critical for all the mitochondrial proteins that are nuclear-encoded to be targeted precisely and sorted specifically to their site of action inside mitochondria. These processes of targeting and sorting are catalysed by protein translocases that operate in each one of the mitochondrial sub-compartments. The main protein import pathway for the intermembrane space (IMS) recognises proteins that are cysteine-rich, and it is the only import pathway that chemically modifies the imported precursors by introducing disulphide bonds to them. In this manner, the precursors are trapped in the IMS in a folded state. The key component of this pathway is Mia40 (called CHCHD4 in human cells), which itself contains cysteine motifs and is subject to redox regulation. In this review, we detail the basic components of the MIA pathway and the disulphide relay mechanism that underpins the electron transfer reaction along the oxidative folding mechanism. Then, we discuss the key protein modulators of this pathway and how they are interlinked to the small redox-active molecules that critically affect the redox state in the IMS. We present also evidence that the mitochondrial redox processes that are linked to iron–sulfur clusters biogenesis and calcium homeostasis coalesce in the IMS at the MIA machinery. The fact that the MIA machinery and several of its interactors and substrates are linked to a variety of common human diseases connected to mitochondrial dysfunction highlight the potential of redox processes in the IMS as a promising new target for developing new treatments for some of the most complex and devastating human diseases.
Collapse
|
17
|
Edwards R, Eaglesfield R, Tokatlidis K. The mitochondrial intermembrane space: the most constricted mitochondrial sub-compartment with the largest variety of protein import pathways. Open Biol 2021; 11:210002. [PMID: 33715390 PMCID: PMC8061763 DOI: 10.1098/rsob.210002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mitochondrial intermembrane space (IMS) is the most constricted sub-mitochondrial compartment, housing only about 5% of the mitochondrial proteome, and yet is endowed with the largest variability of protein import mechanisms. In this review, we summarize our current knowledge of the major IMS import pathway based on the oxidative protein folding pathway and discuss the stunning variability of other IMS protein import pathways. As IMS-localized proteins only have to cross the outer mitochondrial membrane, they do not require energy sources like ATP hydrolysis in the mitochondrial matrix or the inner membrane electrochemical potential which are critical for import into the matrix or insertion into the inner membrane. We also explore several atypical IMS import pathways that are still not very well understood and are guided by poorly defined or completely unknown targeting peptides. Importantly, many of the IMS proteins are linked to several human diseases, and it is therefore crucial to understand how they reach their normal site of function in the IMS. In the final part of this review, we discuss current understanding of how such IMS protein underpin a large spectrum of human disorders.
Collapse
Affiliation(s)
- Ruairidh Edwards
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Ross Eaglesfield
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
18
|
CHCHD4 (MIA40) and the mitochondrial disulfide relay system. Biochem Soc Trans 2021; 49:17-27. [PMID: 33599699 PMCID: PMC7925007 DOI: 10.1042/bst20190232] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/19/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Mitochondria are pivotal for normal cellular physiology, as they perform a crucial role in diverse cellular functions and processes, including respiration and the regulation of bioenergetic and biosynthetic pathways, as well as regulating cellular signalling and transcriptional networks. In this way, mitochondria are central to the cell's homeostatic machinery, and as such mitochondrial dysfunction underlies the pathology of a diverse range of diseases including mitochondrial disease and cancer. Mitochondrial import pathways and targeting mechanisms provide the means to transport into mitochondria the hundreds of nuclear-encoded mitochondrial proteins that are critical for the organelle's many functions. One such import pathway is the highly evolutionarily conserved disulfide relay system (DRS) within the mitochondrial intermembrane space (IMS), whereby proteins undergo a form of oxidation-dependent protein import. A central component of the DRS is the oxidoreductase coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing protein 4 (CHCHD4, also known as MIA40), the human homologue of yeast Mia40. Here, we summarise the recent advances made to our understanding of the role of CHCHD4 and the DRS in physiology and disease, with a specific focus on the emerging importance of CHCHD4 in regulating the cellular response to low oxygen (hypoxia) and metabolism in cancer.
Collapse
|
19
|
Palmer CS, Anderson AJ, Stojanovski D. Mitochondrial protein import dysfunction: mitochondrial disease, neurodegenerative disease and cancer. FEBS Lett 2021; 595:1107-1131. [PMID: 33314127 DOI: 10.1002/1873-3468.14022] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
The majority of proteins localised to mitochondria are encoded by the nuclear genome, with approximately 1500 proteins imported into mammalian mitochondria. Dysfunction in this fundamental cellular process is linked to a variety of pathologies including neuropathies, cardiovascular disorders, myopathies, neurodegenerative diseases and cancer, demonstrating the importance of mitochondrial protein import machinery for cellular function. Correct import of proteins into mitochondria requires the co-ordinated activity of multimeric protein translocation and sorting machineries located in both the outer and inner mitochondrial membranes, directing the imported proteins to the destined mitochondrial compartment. This dynamic process maintains cellular homeostasis, and its dysregulation significantly affects cellular signalling pathways and metabolism. This review summarises current knowledge of the mammalian mitochondrial import machinery and the pathological consequences of mutation of its components. In addition, we will discuss the role of mitochondrial import in cancer, and our current understanding of the role of mitochondrial import in neurodegenerative diseases including Alzheimer's disease, Huntington's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Catherine S Palmer
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Alexander J Anderson
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| |
Collapse
|
20
|
Thiriveedi VR, Mattam U, Pattabhi P, Bisoyi V, Talari NK, Krishnamoorthy T, Sepuri NBV. Glutathionylated and Fe-S cluster containing hMIA40 (CHCHD4) regulates ROS and mitochondrial complex III and IV activities of the electron transport chain. Redox Biol 2020; 37:101725. [PMID: 32971361 PMCID: PMC7511737 DOI: 10.1016/j.redox.2020.101725] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Human MIA40, an intermembrane space (IMS) import receptor of mitochondria harbors twin CX9C motifs for stability while its CPC motif is known to facilitate the import of IMS bound proteins. Site-directed mutagenesis complemented by MALDI on in vivo hMIA40 protein shows that a portion of MIA40 undergoes reversible S-glutathionylation at three cysteines in the twin CX9C motifs and the lone cysteine 4 residue. We find that HEK293T cells expressing hMIA40 mutant defective for glutathionylation are compromised in the activities of complexes III and IV of the Electron Transport Chain (ETC) and enhance Reactive Oxygen Species (ROS) levels. Immunocapture studies show MIA40 interacting with complex III. Interestingly, glutathionylated MIA40 can transfer electrons to cytochrome C directly. However, Fe–S clusters associated with the CPC motif are essential to facilitate the two-electron to one-electron transfer for reducing cytochrome C. These results suggest that hMIA40 undergoes glutathionylation to maintain ROS levels and for optimum function of complexes III and IV of ETC. Our studies shed light on a novel post-translational modification of hMIA40 and its ability to act as a redox switch to regulate the ETC and cellular redox homeostasis.
Collapse
Affiliation(s)
| | - Ushodaya Mattam
- Department of Biochemistry, University of Hyderabad, Gachibowli, Hyderabad, TS, 500046, India
| | - Prasad Pattabhi
- Department of Biochemistry, University of Hyderabad, Gachibowli, Hyderabad, TS, 500046, India
| | - Vandana Bisoyi
- Department of Biochemistry, University of Hyderabad, Gachibowli, Hyderabad, TS, 500046, India
| | - Noble Kumar Talari
- Department of Biochemistry, University of Hyderabad, Gachibowli, Hyderabad, TS, 500046, India
| | - Thanuja Krishnamoorthy
- Vectrogen Biologicals Pvt.Ltd., BioNEST, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, TS, 500046, India
| | - Naresh Babu V Sepuri
- Department of Biochemistry, University of Hyderabad, Gachibowli, Hyderabad, TS, 500046, India.
| |
Collapse
|
21
|
Yatsuka Y, Kishita Y, Formosa LE, Shimura M, Nozaki F, Fujii T, Nitta KR, Ohtake A, Murayama K, Ryan MT, Okazaki Y. A homozygous variant in NDUFA8 is associated with developmental delay, microcephaly, and epilepsy due to mitochondrial complex I deficiency. Clin Genet 2020; 98:155-165. [PMID: 32385911 DOI: 10.1111/cge.13773] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
Mitochondrial complex I deficiency is caused by pathogenic variants in mitochondrial and nuclear genes associated with complex I structure and assembly. We report the case of a patient with NDUFA8-related mitochondrial disease. The patient presented with developmental delay, microcephaly, and epilepsy. His fibroblasts showed apparent biochemical defects in mitochondrial complex I. Whole-exome sequencing revealed that the patient carried a homozygous variant in NDUFA8. His fibroblasts showed a reduction in the protein expression level of not only NDUFA8, but also the other complex I subunits, consistent with assembly defects. The enzyme activity of complex I and oxygen consumption rate were restored by reintroducing wild-typeNDUFA8 cDNA into patient fibroblasts. The functional properties of the variant in NDUFA8 were also investigated using NDUFA8 knockout cells expressing wild-type or mutated NDUFA8 cDNA. These experiments further supported the pathogenicity of the variant in complex I assembly. This is the first report describing that the loss of NDUFA8, which has not previously been associated with mitochondrial disease, causes severe defect in the assembly of mitochondrial complex I, leading to progressive neurological and developmental abnormalities.
Collapse
Affiliation(s)
- Yukiko Yatsuka
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Diagnostics and Therapeutics of Intractable Diseases, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yoshihito Kishita
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Diagnostics and Therapeutics of Intractable Diseases, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Masaru Shimura
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Fumihito Nozaki
- Department of Pediatrics, Shiga Medical Center for Children, Moriyama, Japan
| | - Tatsuya Fujii
- Department of Pediatrics, Shiga Medical Center for Children, Moriyama, Japan
| | - Kazuhiro R Nitta
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Diagnostics and Therapeutics of Intractable Diseases, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Akira Ohtake
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan.,Department of Pediatrics and Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Yasushi Okazaki
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Diagnostics and Therapeutics of Intractable Diseases, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
22
|
Habich M, Salscheider SL, Murschall LM, Hoehne MN, Fischer M, Schorn F, Petrungaro C, Ali M, Erdogan AJ, Abou-Eid S, Kashkar H, Dengjel J, Riemer J. Vectorial Import via a Metastable Disulfide-Linked Complex Allows for a Quality Control Step and Import by the Mitochondrial Disulfide Relay. Cell Rep 2020; 26:759-774.e5. [PMID: 30650365 DOI: 10.1016/j.celrep.2018.12.092] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/15/2018] [Accepted: 12/20/2018] [Indexed: 01/31/2023] Open
Abstract
Disulfide formation in the mitochondrial intermembrane space (IMS) is an essential process. It is catalyzed by the disulfide relay machinery, which couples substrate import and oxidation. The machinery relies on the oxidoreductase and chaperone CHCHD4-Mia40. Here, we report on the driving force for IMS import and on a redox quality control mechanism. We demonstrate that unfolded reduced proteins, upon translocation into the IMS, initiate formation of a metastable disulfide-linked complex with CHCHD4. If this interaction does not result in productive oxidation, then substrates are released to the cytosol and degraded by the proteasome. Based on these data, we propose a redox quality control step at the level of the disulfide-linked intermediate that relies on the vectorial nature of IMS import. Our findings also provide the mechanistic framework to explain failures in import of numerous human disease mutants in CHCHD4 substrates.
Collapse
Affiliation(s)
- Markus Habich
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
| | - Silja Lucia Salscheider
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
| | - Lena Maria Murschall
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
| | - Michaela Nicole Hoehne
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
| | - Manuel Fischer
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
| | - Fabian Schorn
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) and Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, CECAD Research Center, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Carmelina Petrungaro
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
| | - Muna Ali
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
| | - Alican J Erdogan
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
| | - Shadi Abou-Eid
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Hamid Kashkar
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) and Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, CECAD Research Center, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Joern Dengjel
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Jan Riemer
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany.
| |
Collapse
|
23
|
AIF meets the CHCHD4/Mia40-dependent mitochondrial import pathway. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165746. [PMID: 32105825 DOI: 10.1016/j.bbadis.2020.165746] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
In the mitochondria of healthy cells, Apoptosis-Inducing factor (AIF) is required for the optimal functioning of the respiratory chain machinery, mitochondrial integrity, cell survival, and proliferation. In all analysed species, it was revealed that the downregulation or depletion of AIF provokes mainly the post-transcriptional loss of respiratory chain Complex I protein subunits. Recent progress in the field has revealed that AIF fulfils its mitochondrial pro-survival function by interacting physically and functionally with CHCHD4, the evolutionarily-conserved human homolog of yeast Mia40. The redox-regulated CHCHD4/Mia40-dependent import machinery operates in the intermembrane space of the mitochondrion and controls the import of a set of nuclear-encoded cysteine-motif carrying protein substrates. In addition to their participation in the biogenesis of specific respiratory chain protein subunits, CHCHD4/Mia40 substrates are also implicated in the control of redox regulation, antioxidant response, translation, lipid homeostasis and mitochondrial ultrastructure and dynamics. Here, we discuss recent insights on the AIF/CHCHD4-dependent protein import pathway and review current data concerning the CHCHD4/Mia40 protein substrates in metazoan. Recent findings and the identification of disease-associated mutations in AIF or in specific CHCHD4/Mia40 substrates have highlighted these proteins as potential therapeutic targets in a variety of human disorders.
Collapse
|
24
|
Abstract
Mitochondria are essential organelles of eukaryotic cells. They consist of hundreds of different proteins that exhibit crucial activities in respiration, catabolic metabolism and the synthesis of amino acids, lipids, heme and iron-sulfur clusters. With the exception of a handful of hydrophobic mitochondrially encoded membrane proteins, all these proteins are synthesized on cytosolic ribosomes, targeted to receptors on the mitochondrial surface, and transported across or inserted into the outer and inner mitochondrial membrane before they are folded and assembled into their final native structure. This review article provides a comprehensive overview of the mechanisms and components of the mitochondrial protein import systems with a particular focus on recent developments in the field.
Collapse
Affiliation(s)
- Katja G Hansen
- Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663, Kaiserslautern, Germany
| | - Johannes M Herrmann
- Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663, Kaiserslautern, Germany.
| |
Collapse
|
25
|
O'Doherty C, Keenan J, Henry M, Meleady P, Sinkunaite I, Clynes M, O'Sullivan F, Horgan K, Murphy R. Characterisation and proteomic profiling of continuously exposed Cu-resistant variants of the Caco-2 cell line. Toxicol In Vitro 2020; 65:104773. [PMID: 31981602 DOI: 10.1016/j.tiv.2020.104773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 12/21/2022]
Abstract
Studies in hepatic systems identify multiple factors involved in the generation of copper resistance. As the intestine is the route of exposure to dietary copper, we wanted to understand how intestinal cells overcome the toxic effects of high copper and what mechanisms of resistance develop. Using the intestinal cell line Caco-2, resistance was developed by serial subculture in 50 μM copper in inorganic (CuSO4) or organic (Cu proteinate) forms. Caco-2 variants exhibited resistance to copper and retained the non-monotonic dose response while displaying stable phenotypes following repeated subculture in the absence of copper. Phenotypic changes on exposure to copper in parental Caco-2 cells included significantly increased total protein yield, ROS, SOD, metallothionein expression, GSH and total glutathione. These phenotypic changes were not replicated in resistant variants on a per cell basis. Quantitative label-free LC-MS/MS proteomic analysis identified 1113 differentially expressed proteins (DEPs) between parental Caco-2 and resistant cells. With some exceptions, most of the DEPs were overexpressed to a low level around 2-fold suggesting resistance was supported by multiple small changes in protein expression. These variants may be a useful tool in studying the toxicity of stress responses in further Cu-related studies.
Collapse
Affiliation(s)
- Charles O'Doherty
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland.
| | - Joanne Keenan
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland
| | - Indre Sinkunaite
- Alltech Ireland, European Bioscience Centre, Summerhill Rd, Sarney, Dunboyne, Co. Meath, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland
| | - Finbarr O'Sullivan
- National Institute for Cellular Biotechnology and SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Glasnevin, Dublin D09 W6Y4, Ireland
| | - Karina Horgan
- Alltech Ireland, European Bioscience Centre, Summerhill Rd, Sarney, Dunboyne, Co. Meath, Ireland
| | - Richard Murphy
- Alltech Ireland, European Bioscience Centre, Summerhill Rd, Sarney, Dunboyne, Co. Meath, Ireland
| |
Collapse
|
26
|
Mohanraj K, Wasilewski M, Benincá C, Cysewski D, Poznanski J, Sakowska P, Bugajska Z, Deckers M, Dennerlein S, Fernandez‐Vizarra E, Rehling P, Dadlez M, Zeviani M, Chacinska A. Inhibition of proteasome rescues a pathogenic variant of respiratory chain assembly factor COA7. EMBO Mol Med 2019; 11:emmm.201809561. [PMID: 30885959 PMCID: PMC6505684 DOI: 10.15252/emmm.201809561] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Nuclear and mitochondrial genome mutations lead to various mitochondrial diseases, many of which affect the mitochondrial respiratory chain. The proteome of the intermembrane space (IMS) of mitochondria consists of several important assembly factors that participate in the biogenesis of mitochondrial respiratory chain complexes. The present study comprehensively analyzed a recently identified IMS protein cytochrome c oxidase assembly factor 7 (COA7), or RESpiratory chain Assembly 1 (RESA1) factor that is associated with a rare form of mitochondrial leukoencephalopathy and complex IV deficiency. We found that COA7 requires the mitochondrial IMS import and assembly (MIA) pathway for efficient accumulation in the IMS We also found that pathogenic mutant versions of COA7 are imported slower than the wild-type protein, and mislocalized proteins are degraded in the cytosol by the proteasome. Interestingly, proteasome inhibition rescued both the mitochondrial localization of COA7 and complex IV activity in patient-derived fibroblasts. We propose proteasome inhibition as a novel therapeutic approach for a broad range of mitochondrial pathologies associated with the decreased levels of mitochondrial proteins.
Collapse
Affiliation(s)
- Karthik Mohanraj
- Laboratory of Mitochondrial BiogenesisCentre of New TechnologiesUniversity of WarsawWarsawPoland,ReMedy International Research Agenda UnitCentre of New TechnologiesUniversity of WarsawWarsawPoland,Laboratory of Mitochondrial BiogenesisInternational Institute of Molecular and Cell BiologyWarsawPoland
| | - Michal Wasilewski
- Laboratory of Mitochondrial BiogenesisCentre of New TechnologiesUniversity of WarsawWarsawPoland,Laboratory of Mitochondrial BiogenesisInternational Institute of Molecular and Cell BiologyWarsawPoland
| | | | - Dominik Cysewski
- Mass Spectrometry LabDepartment of BiophysicsInstitute of Biochemistry and BiophysicsWarsawPoland
| | - Jaroslaw Poznanski
- Department of BiophysicsInstitute of Biochemistry and BiophysicsWarsawPoland
| | - Paulina Sakowska
- Laboratory of Mitochondrial BiogenesisInternational Institute of Molecular and Cell BiologyWarsawPoland
| | - Zaneta Bugajska
- Laboratory of Mitochondrial BiogenesisCentre of New TechnologiesUniversity of WarsawWarsawPoland
| | - Markus Deckers
- Department of Cellular BiochemistryUniversity of GöttingenGöttingenGermany
| | - Sven Dennerlein
- Department of Cellular BiochemistryUniversity of GöttingenGöttingenGermany
| | | | - Peter Rehling
- Department of Cellular BiochemistryUniversity of GöttingenGöttingenGermany,Max Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Michal Dadlez
- Mass Spectrometry LabDepartment of BiophysicsInstitute of Biochemistry and BiophysicsWarsawPoland
| | - Massimo Zeviani
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Agnieszka Chacinska
- Laboratory of Mitochondrial BiogenesisCentre of New TechnologiesUniversity of WarsawWarsawPoland,ReMedy International Research Agenda UnitCentre of New TechnologiesUniversity of WarsawWarsawPoland,Laboratory of Mitochondrial BiogenesisInternational Institute of Molecular and Cell BiologyWarsawPoland
| |
Collapse
|
27
|
Thomas LW, Stephen JM, Esposito C, Hoer S, Antrobus R, Ahmed A, Al-Habib H, Ashcroft M. CHCHD4 confers metabolic vulnerabilities to tumour cells through its control of the mitochondrial respiratory chain. Cancer Metab 2019; 7:2. [PMID: 30886710 PMCID: PMC6404347 DOI: 10.1186/s40170-019-0194-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/05/2019] [Indexed: 12/15/2022] Open
Abstract
Background Tumour cells rely on glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) to survive. Thus, mitochondrial OXPHOS has become an increasingly attractive area for therapeutic exploitation in cancer. However, mitochondria are required for intracellular oxygenation and normal physiological processes, and it remains unclear which mitochondrial molecular mechanisms might provide therapeutic benefit. Previously, we discovered that coiled-coil-helix-coiled-coil-helix domain-containing protein 4 (CHCHD4) is critical for regulating intracellular oxygenation and required for the cellular response to hypoxia (low oxygenation) in tumour cells through molecular mechanisms that we do not yet fully understand. Overexpression of CHCHD4 in human cancers correlates with increased tumour progression and poor patient survival. Results Here, we show that elevated CHCHD4 expression provides a proliferative and metabolic advantage to tumour cells in normoxia and hypoxia. Using stable isotope labelling with amino acids in cell culture (SILAC) and analysis of the whole mitochondrial proteome, we show that CHCHD4 dynamically affects the expression of a broad range of mitochondrial respiratory chain subunits from complex I-V, including multiple subunits of complex I (CI) required for complex assembly that are essential for cell survival. We found that loss of CHCHD4 protects tumour cells from respiratory chain inhibition at CI, while elevated CHCHD4 expression in tumour cells leads to significantly increased sensitivity to CI inhibition, in part through the production of mitochondrial reactive oxygen species (ROS). Conclusions Our study highlights an important role for CHCHD4 in regulating tumour cell metabolism and reveals that CHCHD4 confers metabolic vulnerabilities to tumour cells through its control of the mitochondrial respiratory chain and CI biology.
Collapse
Affiliation(s)
- Luke W. Thomas
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
| | - Jenna M. Stephen
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
| | - Cinzia Esposito
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
- Present address: Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Simon Hoer
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY UK
| | - Afshan Ahmed
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
- Present address: AstraZeneca Ltd., Cambridge, UK
| | - Hasan Al-Habib
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
| | - Margaret Ashcroft
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
| |
Collapse
|
28
|
Briston T, Stephen JM, Thomas LW, Esposito C, Chung YL, Syafruddin SE, Turmaine M, Maddalena LA, Greef B, Szabadkai G, Maxwell PH, Vanharanta S, Ashcroft M. VHL-Mediated Regulation of CHCHD4 and Mitochondrial Function. Front Oncol 2018; 8:388. [PMID: 30338240 PMCID: PMC6180203 DOI: 10.3389/fonc.2018.00388] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/29/2018] [Indexed: 12/30/2022] Open
Abstract
Dysregulated mitochondrial function is associated with the pathology of a wide range of diseases including renal disease and cancer. Thus, investigating regulators of mitochondrial function is of particular interest. Previous work has shown that the von Hippel-Lindau tumor suppressor protein (pVHL) regulates mitochondrial biogenesis and respiratory chain function. pVHL is best known as an E3-ubiquitin ligase for the α-subunit of the hypoxia inducible factor (HIF) family of dimeric transcription factors. In normoxia, pVHL recognizes and binds hydroxylated HIF-α (HIF-1α and HIF-2α), targeting it for ubiquitination and proteasomal degradation. In this way, HIF transcriptional activity is tightly controlled at the level of HIF-α protein stability. At least 80% of clear cell renal carcinomas exhibit inactivation of the VHL gene, which leads to HIF-α protein stabilization and constitutive HIF activation. Constitutive HIF activation in renal carcinoma drives tumor progression and metastasis. Reconstitution of wild-type VHL protein (pVHL) in pVHL-defective renal carcinoma cells not only suppresses HIF activation and tumor growth, but also enhances mitochondrial respiratory chain function via mechanisms that are not fully elucidated. Here, we show that pVHL regulates mitochondrial function when re-expressed in pVHL-defective 786O and RCC10 renal carcinoma cells distinct from its regulation of HIF-α. Expression of CHCHD4, a key component of the disulphide relay system (DRS) involved in mitochondrial protein import within the intermembrane space (IMS) was elevated by pVHL re-expression alongside enhanced expression of respiratory chain subunits of complex I (NDUFB10) and complex IV (mtCO-2 and COX IV). These changes correlated with increased oxygen consumption rate (OCR) and dynamic changes in glucose and glutamine metabolism. Knockdown of HIF-2α also led to increased OCR, and elevated expression of CHCHD4, NDUFB10, and COXIV in 786O cells. Expression of pVHL mutant proteins (R200W, N78S, D126N, and S183L) that constitutively stabilize HIF-α but differentially promote glycolytic metabolism, were also found to differentially promote the pVHL-mediated mitochondrial phenotype. Parallel changes in mitochondrial morphology and the mitochondrial network were observed. Our study reveals a new role for pVHL in regulating CHCHD4 and mitochondrial function in renal carcinoma cells.
Collapse
Affiliation(s)
- Thomas Briston
- Division of Medicine, Centre for Cell Signalling and Molecular Genetics, University College London, London, United Kingdom
| | - Jenna M. Stephen
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Luke W. Thomas
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Cinzia Esposito
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yuen-Li Chung
- Cancer Research UK Cancer Imaging Centre, Institute of Cancer Research London, London, United Kingdom
| | - Saiful E. Syafruddin
- Medical Research Council Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Mark Turmaine
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Lucas A. Maddalena
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Basma Greef
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Gyorgy Szabadkai
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Patrick H. Maxwell
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Sakari Vanharanta
- Medical Research Council Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Margaret Ashcroft
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
29
|
Mitochondrial diseases caused by dysfunctional mitochondrial protein import. Biochem Soc Trans 2018; 46:1225-1238. [PMID: 30287509 DOI: 10.1042/bst20180239] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/20/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria are essential organelles which perform complex and varied functions within eukaryotic cells. Maintenance of mitochondrial health and functionality is thus a key cellular priority and relies on the organelle's extensive proteome. The mitochondrial proteome is largely encoded by nuclear genes, and mitochondrial proteins must be sorted to the correct mitochondrial sub-compartment post-translationally. This essential process is carried out by multimeric and dynamic translocation and sorting machineries, which can be found in all four mitochondrial compartments. Interestingly, advances in the diagnosis of genetic disease have revealed that mutations in various components of the human import machinery can cause mitochondrial disease, a heterogenous and often severe collection of disorders associated with energy generation defects and a multisystem presentation often affecting the cardiovascular and nervous systems. Here, we review our current understanding of mitochondrial protein import systems in human cells and the molecular basis of mitochondrial diseases caused by defects in these pathways.
Collapse
|
30
|
Erdogan AJ, Ali M, Habich M, Salscheider SL, Schu L, Petrungaro C, Thomas LW, Ashcroft M, Leichert LI, Roma LP, Riemer J. The mitochondrial oxidoreductase CHCHD4 is present in a semi-oxidized state in vivo. Redox Biol 2018; 17:200-206. [PMID: 29704824 PMCID: PMC6007816 DOI: 10.1016/j.redox.2018.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 11/30/2022] Open
Abstract
Disulfide formation in the mitochondrial intermembrane space is an essential process catalyzed by a disulfide relay machinery. In mammalian cells, the key enzyme in this machinery is the oxidoreductase CHCHD4/Mia40. Here, we determined the in vivo CHCHD4 redox state, which is the major determinant of its cellular activity. We found that under basal conditions, endogenous CHCHD4 redox state in cultured cells and mouse tissues was predominantly oxidized, however, degrees of oxidation in different tissues varied from 70% to 90% oxidized. To test whether differences in the ratio between CHCHD4 and ALR might explain tissue-specific differences in the CHCHD4 redox state, we determined the molar ratio of both proteins in different mouse tissues. Surprisingly, ALR is superstoichiometric over CHCHD4 in most tissues. However, the levels of CHCHD4 and the ratio of ALR over CHCHD4 appear to correlate only weakly with the redox state, and although ALR is present in superstoichiometric amounts, it does not lead to fully oxidized CHCHD4.
Collapse
Affiliation(s)
- Alican J Erdogan
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Muna Ali
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany; Department of Biology, Cellular Biochemistry, University of Kaiserslautern, Erwin-Schroedinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Markus Habich
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Silja L Salscheider
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Laura Schu
- Department of Biology, Cellular Biochemistry, University of Kaiserslautern, Erwin-Schroedinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Carmelina Petrungaro
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Luke W Thomas
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Margaret Ashcroft
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Lars I Leichert
- Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr-Universität Bochum, 44797 Bochum, Germany
| | - Leticia Prates Roma
- Biophysics Department, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Saar, Germany
| | - Jan Riemer
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany.
| |
Collapse
|
31
|
Chisholm SA, Kalanon M, Nebl T, Sanders PR, Matthews KM, Dickerman BK, Gilson PR, de Koning-Ward TF. The malaria PTEX component PTEX88 interacts most closely with HSP101 at the host-parasite interface. FEBS J 2018; 285:2037-2055. [PMID: 29637707 DOI: 10.1111/febs.14463] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/08/2018] [Accepted: 04/03/2018] [Indexed: 12/28/2022]
Abstract
The pathogenic nature of malaria infections is due in part to the export of hundreds of effector proteins that actively remodel the host erythrocyte. The Plasmodium translocon of exported proteins (PTEX) has been shown to facilitate the trafficking of proteins into the host cell, a process that is essential for the survival of the parasite. The role of the auxiliary PTEX component PTEX88 remains unclear, as previous attempts to elucidate its function through reverse genetic approaches showed that in contrast to the core components PTEX150 and HSP101, knockdown of PTEX88 did not give rise to an export phenotype. Here, we have used biochemical approaches to understand how PTEX88 assembles within the translocation machinery. Proteomic analysis of the PTEX88 interactome showed that PTEX88 interacts closely with HSP101 but has a weaker affinity with the other core constituents of PTEX. PTEX88 was also found to associate with other PV-resident proteins, including chaperones and members of the exported protein-interacting complex that interacts with the major virulence factor PfEMP1, the latter contributing to cytoadherence and parasite virulence. Despite being expressed for the duration of the blood-stage life cycle, PTEX88 was only discretely observed at the parasitophorous vacuole membrane during ring stages and could not always be detected in the major high molecular weight complex that contains the other core components of PTEX, suggesting that its interaction with the PTEX complex may be dynamic. Together, these data have enabled the generation of an updated model of PTEX that now includes how PTEX88 assembles within the complex.
Collapse
Affiliation(s)
| | - Ming Kalanon
- School of Medicine, Deakin University, Waurn Ponds, Australia
| | - Thomas Nebl
- The Walter and Eliza Hall Institute, Parkville, Australia
| | - Paul R Sanders
- Burnet Institute, Prahran, Australia.,Monash University, Melbourne, Australia
| | | | | | - Paul R Gilson
- Burnet Institute, Prahran, Australia.,Monash University, Melbourne, Australia
| | | |
Collapse
|
32
|
A single-cysteine mutant and chimeras of essential Leishmania Erv can complement the loss of Erv1 but not of Mia40 in yeast. Redox Biol 2017; 15:363-374. [PMID: 29310075 PMCID: PMC5760468 DOI: 10.1016/j.redox.2017.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 11/21/2022] Open
Abstract
Mia40/CHCHD4 and Erv1/ALR are essential for oxidative protein folding in the mitochondrial intermembrane space of yeast and mammals. In contrast, many protists, including important apicomplexan and kinetoplastid parasites, lack Mia40. Furthermore, the Erv homolog of the model parasite Leishmania tarentolae (LtErv) was shown to be incompatible with Saccharomyces cerevisiae Mia40 (ScMia40). Here we addressed structure-function relationships of ScErv1 and LtErv as well as their compatibility with the oxidative protein folding system in yeast using chimeric, truncated, and mutant Erv constructs. Chimeras between the N-terminal arm of ScErv1 and a variety of truncated LtErv constructs were able to rescue yeast cells that lack ScErv1. Yeast cells were also viable when only a single cysteine residue was replaced in LtErvC17S. Thus, the presence and position of the C-terminal arm and the kinetoplastida-specific second (KISS) domain of LtErv did not interfere with its functionality in the yeast system, whereas a relatively conserved cysteine residue before the flavodomain rendered LtErv incompatible with ScMia40. The question whether parasite Erv homologs might also exert the function of Mia40 was addressed in another set of complementation assays. However, neither the KISS domain nor other truncated or mutant LtErv constructs were able to rescue yeast cells that lack ScMia40. The general relevance of Erv and its candidate substrate small Tim1 was analyzed for the related parasite L. infantum. Repeated unsuccessful knockout attempts suggest that both genes are essential in this human pathogen and underline the potential of mitochondrial protein import pathways for future intervention strategies.
Collapse
|
33
|
Cardenas-Rodriguez M, Tokatlidis K. Cytosolic redox components regulate protein homeostasis via additional localisation in the mitochondrial intermembrane space. FEBS Lett 2017; 591:2661-2670. [PMID: 28746987 PMCID: PMC5601281 DOI: 10.1002/1873-3468.12766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/15/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
Abstract
Oxidative protein folding is confined to the bacterial periplasm, endoplasmic reticulum and the mitochondrial intermembrane space. Maintaining a redox balance requires the presence of reductive pathways. The major thiol‐reducing pathways engage the thioredoxin and the glutaredoxin systems which are involved in removal of oxidants, protein proofreading and folding. Alterations in redox balance likely affect the flux of these redox pathways and are related to ageing and diseases such as neurodegenerative disorders and cancer. Here, we first review the well‐studied oxidative and reductive processes in the bacterial periplasm and the endoplasmic reticulum, and then discuss the less understood process in the mitochondrial intermembrane space, highlighting its importance for the proper function of the cell.
Collapse
Affiliation(s)
- Mauricio Cardenas-Rodriguez
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Kostas Tokatlidis
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
34
|
Kang Y, Fielden LF, Stojanovski D. Mitochondrial protein transport in health and disease. Semin Cell Dev Biol 2017; 76:142-153. [PMID: 28765093 DOI: 10.1016/j.semcdb.2017.07.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 01/17/2023]
Abstract
Mitochondria are fundamental structures that fulfil important and diverse functions within cells, including cellular respiration and iron-sulfur cluster biogenesis. Mitochondrial function is reliant on the organelles proteome, which is maintained and adjusted depending on cellular requirements. The majority of mitochondrial proteins are encoded by nuclear genes and must be trafficked to, and imported into the organelle following synthesis in the cytosol. These nuclear-encoded mitochondrial precursors utilise dynamic and multimeric translocation machines to traverse the organelles membranes and be partitioned to the appropriate mitochondrial subcompartment. Yeast model systems have been instrumental in establishing the molecular basis of mitochondrial protein import machines and mechanisms, however unique players and mechanisms are apparent in higher eukaryotes. Here, we review our current knowledge on mitochondrial protein import in human cells and how dysfunction in these pathways can lead to disease.
Collapse
Affiliation(s)
- Yilin Kang
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Laura F Fielden
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
35
|
Sorrentino L, Cossu F, Milani M, Aliverti A, Mastrangelo E. Structural bases of the altered catalytic properties of a pathogenic variant of apoptosis inducing factor. Biochem Biophys Res Commun 2017; 490:1011-1017. [PMID: 28666871 DOI: 10.1016/j.bbrc.2017.06.156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 10/19/2022]
Abstract
The apoptosis-inducing factor (AIF) is a FAD-containing protein playing critical roles in caspase-independent apoptosis and mitochondrial respiratory chain biogenesis and maintenance. While its lethal role is well known, the details of its mitochondrial function remain elusive. So far, nineteen allelic variants of AIF have been associated to human diseases, mainly affecting the nervous system. A strict correlation is emerging between the degree of impairment of its ability to stabilize the charge-transfer (CT) complex between FAD and NAD+ and the severity of the resulting pathology. Recently, we demonstrated that the G307E replacement in murine AIF (equivalent to the pathogenic G308E in the human protein) dramatically decreases the rate of CT complex formation through the destabilization of the flavoprotein interaction with NAD(H). To provide further insights into the structural bases of its altered functional properties, here we report the first crystal structure of an AIF pathogenic mutant variant in complex with NAD+ (murine AIF-G307ECT) in comparison with its oxidized form. With respect to wild type AIF, the mutation leads to an altered positioning of NAD+ adenylate moiety, which slows down CT complex formation. Moreover, the altered balance between the binding of the adenine/nicotinamide portions of the coenzyme determines a large drop in AIF-G307E ability to discriminate between NADH and NADPH.
Collapse
Affiliation(s)
- Luca Sorrentino
- Biophysics Institute, National Research Council c/o Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy; Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Federica Cossu
- Biophysics Institute, National Research Council c/o Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy; Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Mario Milani
- Biophysics Institute, National Research Council c/o Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy; Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Alessandro Aliverti
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| | - Eloise Mastrangelo
- Biophysics Institute, National Research Council c/o Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy; Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
36
|
Cesselli D, Aleksova A, Sponga S, Cervellin C, Di Loreto C, Tell G, Beltrami AP. Cardiac Cell Senescence and Redox Signaling. Front Cardiovasc Med 2017; 4:38. [PMID: 28612009 PMCID: PMC5447053 DOI: 10.3389/fcvm.2017.00038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022] Open
Abstract
Aging is characterized by a progressive loss of the ability of the organism to cope with stressors and to repair tissue damage. As a result, chronic diseases, including cardiovascular disease, increase their prevalence with aging, underlining the existence of common mechanisms that lead to frailty and age-related diseases. In this frame, the progressive decline of the homeostatic and reparative function of primitive cells has been hypothesized to play a major role in the evolution of cardiac pathology to heart failure. Although initially it was believed that reactive oxygen species (ROS) were produced in an unregulated manner as a byproduct of cellular metabolism, causing macromolecular damage and aging, accumulating evidence indicate the major role played by redox signaling in physiology. Aim of this review is to critically revise evidence linking ROS to cell senescence and aging and to provide evidence of the primary role played by redox signaling, with a particular emphasis on the multifunctional protein APE1/Ref in stem cell biology. Finally, we will discuss evidence supporting the role of redox signaling in cardiovascular cells.
Collapse
Affiliation(s)
| | - Aneta Aleksova
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata di Trieste, University of Trieste, Trieste, Italy
| | - Sandro Sponga
- Cardiothoracic Surgery, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | | | | | - Gianluca Tell
- Department of Medicine, University of Udine, Udine, Italy
| | | |
Collapse
|
37
|
Friederich MW, Erdogan AJ, Coughlin CR, Elos MT, Jiang H, O’Rourke CP, Lovell MA, Wartchow E, Gowan K, Chatfield KC, Chick WS, Spector EB, Van Hove JL, Riemer J. Mutations in the accessory subunit NDUFB10 result in isolated complex I deficiency and illustrate the critical role of intermembrane space import for complex I holoenzyme assembly. Hum Mol Genet 2017; 26:702-716. [PMID: 28040730 PMCID: PMC6251674 DOI: 10.1093/hmg/ddw431] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/27/2016] [Accepted: 12/16/2016] [Indexed: 12/17/2022] Open
Abstract
An infant presented with fatal infantile lactic acidosis and cardiomyopathy, and was found to have profoundly decreased activity of respiratory chain complex I in muscle, heart and liver. Exome sequencing revealed compound heterozygous mutations in NDUFB10, which encodes an accessory subunit located within the PD part of complex I. One mutation resulted in a premature stop codon and absent protein, while the second mutation replaced the highly conserved cysteine 107 with a serine residue. Protein expression of NDUFB10 was decreased in muscle and heart, and less so in the liver and fibroblasts, resulting in the perturbed assembly of the holoenzyme at the 830 kDa stage. NDUFB10 was identified together with three other complex I subunits as a substrate of the intermembrane space oxidoreductase CHCHD4 (also known as Mia40). We found that during its mitochondrial import and maturation NDUFB10 transiently interacts with CHCHD4 and acquires disulfide bonds. The mutation of cysteine residue 107 in NDUFB10 impaired oxidation and efficient mitochondrial accumulation of the protein and resulted in degradation of non-imported precursors. Our findings indicate that mutations in NDUFB10 are a novel cause of complex I deficiency associated with a late stage assembly defect and emphasize the role of intermembrane space proteins for the efficient assembly of complex I.
Collapse
Affiliation(s)
- Marisa W. Friederich
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Alican J. Erdogan
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Curtis R. Coughlin
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Mihret T. Elos
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Hua Jiang
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Courtney P. O’Rourke
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Mark A. Lovell
- Department of Pathology, University of Colorado, Aurora, CO, USA
- Department of Pathology, Children’s Hospital of Colorado, Aurora, CO, USA
| | - Eric Wartchow
- Department of Pathology, University of Colorado, Aurora, CO, USA
- Department of Pathology, Children’s Hospital of Colorado, Aurora, CO, USA
| | - Katherine Gowan
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, USA
| | - Kathryn C. Chatfield
- Department of Pediatrics, Section of Cardiology, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Wallace S. Chick
- Department of Cell and Developmental Biology, University of Colorado, Aurora, CO, USA
| | - Elaine B. Spector
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Johan L.K. Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Jan Riemer
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| |
Collapse
|
38
|
Wasilewski M, Chojnacka K, Chacinska A. Protein trafficking at the crossroads to mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:125-137. [PMID: 27810356 DOI: 10.1016/j.bbamcr.2016.10.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022]
Abstract
Mitochondria are central power stations in the cell, which additionally serve as metabolic hubs for a plethora of anabolic and catabolic processes. The sustained function of mitochondria requires the precisely controlled biogenesis and expression coordination of proteins that originate from the nuclear and mitochondrial genomes. Accuracy of targeting, transport and assembly of mitochondrial proteins is also needed to avoid deleterious effects on protein homeostasis in the cell. Checkpoints of mitochondrial protein transport can serve as signals that provide information about the functional status of the organelles. In this review, we summarize recent advances in our understanding of mitochondrial protein transport and discuss examples that involve communication with the nucleus and cytosol.
Collapse
Affiliation(s)
- Michal Wasilewski
- International Institute of Molecular and Cell Biology in Warsaw, Poland.
| | | | | |
Collapse
|
39
|
Zhou ZD, Saw WT, Tan EK. Mitochondrial CHCHD-Containing Proteins: Physiologic Functions and Link with Neurodegenerative Diseases. Mol Neurobiol 2016; 54:5534-5546. [PMID: 27631878 DOI: 10.1007/s12035-016-0099-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/02/2016] [Indexed: 12/13/2022]
Abstract
The coiled-coil-helix-coiled-coil-helix domain (CHCHD)-containing proteins are evolutionarily conserved nucleus-encoded small mitochondrial proteins with important functions. So far, nine members have been identified in this protein family. All CHCHD proteins have at least one functional coiled-coil-helix-coiled-coil-helix (CHCH) domain, which is stabilized by two pairs of disulfide bonds between two helices. CHCHD proteins have various important pathophysiological roles in mitochondria and other key cellular processes. Mutations of CHCHD proteins have been associated with various human neurodegenerative diseases. Mutations of CHCHD10 are associated with amyotrophic lateral sclerosis (ALS) and/or frontotemporal lobe dementia (FTD), motor neuron disease, and late-onset spinal muscular atrophy and autosomal dominant mitochondrial myopathy. CHCHD10 stabilizes mitochondrial crista ultrastructure and maintains its integrity. In patients with CHCHD10 mutations, there are abnormal mitochondrial crista structure, deficiencies of respiratory chain complexes, impaired mitochondrial respiration, and multiple mitochondrial DNA (mtDNA) deletions. Recently, CHCHD2 mutations are linked with autosomal dominant and sporadic Parkinson's disease (PD). The CHCHD2 is a multifunctional protein and plays roles in regulation of mitochondrial metabolism, synthesis of respiratory chain components, and modulation of cell apoptosis. With a better understanding of the pathophysiologic roles of CHCHD proteins, they may be potential novel therapeutic targets for human neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhi-Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore.
| | - Wuan-Ting Saw
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Eng-King Tan
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore. .,Department of Neurology, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore.
| |
Collapse
|
40
|
Mitochondrial disulfide relay and its substrates: mechanisms in health and disease. Cell Tissue Res 2016; 367:59-72. [DOI: 10.1007/s00441-016-2481-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/18/2016] [Indexed: 01/06/2023]
|
41
|
Modjtahedi N, Tokatlidis K, Dessen P, Kroemer G. Mitochondrial Proteins Containing Coiled-Coil-Helix-Coiled-Coil-Helix (CHCH) Domains in Health and Disease. Trends Biochem Sci 2016; 41:245-260. [PMID: 26782138 DOI: 10.1016/j.tibs.2015.12.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 11/19/2022]
Abstract
Members of the coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing protein family that carry (CX9C) type motifs are imported into the mitochondrion with the help of the disulfide relay-dependent MIA import pathway. These evolutionarily conserved proteins are emerging as new cellular factors that control mitochondrial respiration, redox regulation, lipid homeostasis, and membrane ultrastructure and dynamics. We discuss recent insights on the activity of known (CX9C) motif-carrying proteins in mammals and review current data implicating the Mia40/CHCHD4 import machinery in the regulation of their mitochondrial import. Recent findings and the identification of disease-associated mutations in specific (CX9C) motif-carrying proteins have highlighted members of this family of proteins as potential therapeutic targets in a variety of human disorders.
Collapse
Affiliation(s)
- Nazanine Modjtahedi
- Institut National de la Santé et de la Recherche Médicale, U1030, Villejuif, France; Gustave Roussy Cancer Campus, Villejuif, France; Faculty of Medicine, Université Paris-Saclay, Kremlin-Bicêtre, France.
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Philippe Dessen
- Gustave Roussy Cancer Campus, Villejuif, France; Faculty of Medicine, Université Paris-Saclay, Kremlin-Bicêtre, France; Groupe bioinformatique Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Equipe 11 Labellisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, AP-HP, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
42
|
Sorrentino L, Calogero AM, Pandini V, Vanoni MA, Sevrioukova IF, Aliverti A. Key Role of the Adenylate Moiety and Integrity of the Adenylate-Binding Site for the NAD(+)/H Binding to Mitochondrial Apoptosis-Inducing Factor. Biochemistry 2015; 54:6996-7009. [PMID: 26535916 DOI: 10.1021/acs.biochem.5b00898] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein with pro-life and pro-death activities, which plays critical roles in mitochondrial energy metabolism and caspase-independent apoptosis. Defects in AIF structure or expression can cause mitochondrial abnormalities leading to mitochondrial defects and neurodegeneration. The mechanism of AIF-induced apoptosis was extensively investigated, whereas the mitochondrial function of AIF is poorly understood. A unique feature of AIF is the ability to form a tight, air-stable charge-transfer (CT) complex upon reaction with NADH and to undergo a conformational switch leading to dimerization, proposed to be important for its vital and lethal functions. Although some aspects of interaction of AIF with NAD(+)/H have been analyzed, its precise mechanism is not fully understood. We investigated how the oxidized and photoreduced wild-type and G307A and -E variants of murine AIF associate with NAD(+)/H and nicotinamide mononucleotide (NMN(+)/H) to determine the role of the adenylate moiety in the binding process. Our results indicate that (i) the adenylate moiety of NAD(+)/H is crucial for the association with AIF and for the subsequent structural reorganization of the complex, but not for protein dimerization, (ii) FAD reduction rather than binding of NAD(+)/H to AIF initiates conformational rearrangement, and (iii) alteration of the adenylate-binding site by the G307E (equivalent to a pathological G308E mutation in human AIF) or G307A replacements decrease the affinity and association rate of NAD(+)/H, which, in turn, perturbs CT complex formation and protein dimerization but has no influence on the conformational switch in the regulatory peptide.
Collapse
Affiliation(s)
- Luca Sorrentino
- Department of Biosciences, Università degli Studi di Milano , via Celoria 26, 20133 Milano, Italy
| | | | - Vittorio Pandini
- Department of Biosciences, Università degli Studi di Milano , via Celoria 26, 20133 Milano, Italy
| | - Maria Antonietta Vanoni
- Department of Biosciences, Università degli Studi di Milano , via Celoria 26, 20133 Milano, Italy
| | - Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-3900, United States
| | - Alessandro Aliverti
- Department of Biosciences, Università degli Studi di Milano , via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
43
|
The Oxidation Status of Mic19 Regulates MICOS Assembly. Mol Cell Biol 2015; 35:4222-37. [PMID: 26416881 PMCID: PMC4648825 DOI: 10.1128/mcb.00578-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/04/2015] [Indexed: 02/04/2023] Open
Abstract
The function of mitochondria depends on the proper organization of mitochondrial membranes. The morphology of the inner membrane is regulated by the recently identified mitochondrial contact site and crista organizing system (MICOS) complex. MICOS mutants exhibit alterations in crista formation, leading to mitochondrial dysfunction. However, the mechanisms that underlie MICOS regulation remain poorly understood. MIC19, a peripheral protein of the inner membrane and component of the MICOS complex, was previously reported to be required for the proper function of MICOS in maintaining the architecture of the inner membrane. Here, we show that human and Saccharomyces cerevisiae MIC19 proteins undergo oxidation in mitochondria and require the mitochondrial intermembrane space assembly (MIA) pathway, which couples the oxidation and import of mitochondrial intermembrane space proteins for mitochondrial localization. Detailed analyses identified yeast Mic19 in two different redox forms. The form that contains an intramolecular disulfide bond is bound to Mic60 of the MICOS complex. Mic19 oxidation is not essential for its integration into the MICOS complex but plays a role in MICOS assembly and the maintenance of the proper inner membrane morphology. These findings suggest that Mic19 is a redox-dependent regulator of MICOS function.
Collapse
|
44
|
Human mitochondrial MIA40 (CHCHD4) is a component of the Fe-S cluster export machinery. Biochem J 2015; 471:231-41. [PMID: 26275620 DOI: 10.1042/bj20150012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 08/14/2015] [Indexed: 02/07/2023]
Abstract
Mitochondria play an essential role in synthesis and export of iron-sulfur (Fe-S) clusters to other sections of a cell. Although the mechanism of Fe-S cluster synthesis is well elucidated, information on the identity of the proteins involved in the export pathway is limited. The present study identifies hMIA40 (human mitochondrial intermembrane space import and assembly protein 40), also known as CHCHD4 (coiled-coil-helix-coiled-coil-helix domain-containing 4), as a component of the mitochondrial Fe-S cluster export machinery. hMIA40 is an iron-binding protein with the ability to bind iron in vivo and in vitro. hMIA40 harbours CPC (Cys-Pro-Cys) motif-dependent Fe-S clusters that are sensitive to oxidation. Depletion of hMIA40 results in accumulation of iron in mitochondria concomitant with decreases in the activity and stability of Fe-S-containing cytosolic enzymes. Intriguingly, overexpression of either the mitochondrial export component or cytosolic the Fe-S cluster assembly component does not have any effect on the phenotype of hMIA40-depleted cells. Taken together, our results demonstrate an indispensable role for hMIA40 for the export of Fe-S clusters from mitochondria.
Collapse
|
45
|
Modjtahedi N, Hangen E, Gonin P, Kroemer G. Metabolic epistasis among apoptosis-inducing factor and the mitochondrial import factor CHCHD4. Cell Cycle 2015; 14:2743-7. [PMID: 26178476 DOI: 10.1080/15384101.2015.1068477] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hypomorphic mutation of apoptosis-inducing factor (AIF) in the whole body or organ-specific knockout of AIF compromises the activity of respiratory chain complexes I and IV, as it confers resistance to obesity and diabetes induced by high-fat diet. The mitochondrial defect induced by AIF deficiency can be explained by reduced AIF-dependent mitochondrial import of CHCHD4, which in turn is required for optimal import and assembly of respiratory chain complexes. Here we show that, as compared to wild type control littermates, mice with a heterozygous knockout of CHCHD4 exhibit reduced weight gain when fed with a Western style high-fat diet. This finding suggests widespread metabolic epistasis among AIF and CHCHD4. Targeting either of these proteins or their functional interaction might constitute a novel strategy to combat obesity.
Collapse
Affiliation(s)
- Nazanine Modjtahedi
- a Equipe 11 labellisée Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers ; Paris , France
| | | | | | | |
Collapse
|
46
|
Hangen E, Féraud O, Lachkar S, Mou H, Doti N, Fimia GM, Lam NV, Zhu C, Godin I, Muller K, Chatzi A, Nuebel E, Ciccosanti F, Flamant S, Bénit P, Perfettini JL, Sauvat A, Bennaceur-Griscelli A, Ser-Le Roux K, Gonin P, Tokatlidis K, Rustin P, Piacentini M, Ruvo M, Blomgren K, Kroemer G, Modjtahedi N. Interaction between AIF and CHCHD4 Regulates Respiratory Chain Biogenesis. Mol Cell 2015; 58:1001-14. [PMID: 26004228 DOI: 10.1016/j.molcel.2015.04.020] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/27/2015] [Accepted: 04/14/2015] [Indexed: 12/19/2022]
Abstract
Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein that, beyond its apoptotic function, is required for the normal expression of major respiratory chain complexes. Here we identified an AIF-interacting protein, CHCHD4, which is the central component of a redox-sensitive mitochondrial intermembrane space import machinery. Depletion or hypomorphic mutation of AIF caused a downregulation of CHCHD4 protein by diminishing its mitochondrial import. CHCHD4 depletion sufficed to induce a respiratory defect that mimicked that observed in AIF-deficient cells. CHCHD4 levels could be restored in AIF-deficient cells by enforcing its AIF-independent mitochondrial localization. This modified CHCHD4 protein reestablished respiratory function in AIF-deficient cells and enabled AIF-deficient embryoid bodies to undergo cavitation, a process of programmed cell death required for embryonic morphogenesis. These findings explain how AIF contributes to the biogenesis of respiratory chain complexes, and they establish an unexpected link between the vital function of AIF and the propensity of cells to undergo apoptosis.
Collapse
Affiliation(s)
- Emilie Hangen
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, UMRS 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie, 75006 Paris, France
| | - Olivier Féraud
- Université Paris Sud/Paris XI, 94270 Kremlin Bicêtre, France; INSERM U935, 94805 Villejuif, France; ESTeam Paris Sud, Stem Cell Core Facility, Institut André Lwoff, 94800 Villejuif, France
| | - Sylvie Lachkar
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, UMRS 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie, 75006 Paris, France
| | - Haiwei Mou
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, UMRS 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie, 75006 Paris, France
| | - Nunzianna Doti
- Istituto di Biostrutture e Bioimmagini, CNR, 80134 Napoli, Italy
| | - Gian Maria Fimia
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases IRCCS "L. Spallanzani," 00149 Rome, Italy; Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce 73100, Italy
| | - Ngoc-Vy Lam
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, UMRS 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie, 75006 Paris, France
| | - Changlian Zhu
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Isabelle Godin
- Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France; Université Paris Sud/Paris XI, 94270 Kremlin Bicêtre, France; INSERM U1009, 94805 Villejuif, France
| | - Kevin Muller
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, UMRS 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie, 75006 Paris, France
| | - Afroditi Chatzi
- Institute of Molecular Cell and Systems Biology, University of Glasgow, G12 8QQ Glasgow, UK; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion Crete 70013, Greece
| | - Esther Nuebel
- Institute of Molecular Cell and Systems Biology, University of Glasgow, G12 8QQ Glasgow, UK; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion Crete 70013, Greece
| | - Fabiola Ciccosanti
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases IRCCS "L. Spallanzani," 00149 Rome, Italy
| | - Stéphane Flamant
- Université Paris Sud/Paris XI, 94270 Kremlin Bicêtre, France; INSERM U935, 94805 Villejuif, France
| | - Paule Bénit
- INSERM UMR1141, Hôpital Robert Debré, 75019 Paris, France; Faculté de Médecine Denis Diderot, Université Paris 7, 75013 Paris, France
| | - Jean-Luc Perfettini
- Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France; Université Paris Sud/Paris XI, 94270 Kremlin Bicêtre, France; Cell Death and Aging Team, Gustave Roussy, 94805 Villejuif, France; INSERM U1030, Gustave Roussy, 94805 Villejuif, France
| | - Allan Sauvat
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, UMRS 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France; Cell Biology and Metabolomics Platforms, Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France
| | - Annelise Bennaceur-Griscelli
- Université Paris Sud/Paris XI, 94270 Kremlin Bicêtre, France; INSERM U935, 94805 Villejuif, France; ESTeam Paris Sud, Stem Cell Core Facility, Institut André Lwoff, 94800 Villejuif, France; Laboratoire d'Hématologie, Hôpital Paul Brousse AP-HP, 94800 Villejuif, France
| | - Karine Ser-Le Roux
- Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France; Université Paris Sud/Paris XI, 94270 Kremlin Bicêtre, France; Animal and Veterinary Resources, 94805 Villejuif, France
| | - Patrick Gonin
- Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France; Université Paris Sud/Paris XI, 94270 Kremlin Bicêtre, France; Animal and Veterinary Resources, 94805 Villejuif, France
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, University of Glasgow, G12 8QQ Glasgow, UK; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion Crete 70013, Greece
| | - Pierre Rustin
- INSERM UMR1141, Hôpital Robert Debré, 75019 Paris, France; Faculté de Médecine Denis Diderot, Université Paris 7, 75013 Paris, France
| | - Mauro Piacentini
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases IRCCS "L. Spallanzani," 00149 Rome, Italy; Department of Biology, University of Rome "Tor Vergata," 00133 Rome, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, CNR, 80134 Napoli, Italy
| | - Klas Blomgren
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, 40530 Gothenburg, Sweden; Department of Pediatrics, University of Gothenburg, The Queen Silvia Children's Hospital, 40530 Gothenburg, Sweden; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, UMRS 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie, 75006 Paris, France; Cell Biology and Metabolomics Platforms, Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France.
| | - Nazanine Modjtahedi
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, UMRS 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie, 75006 Paris, France.
| |
Collapse
|
47
|
Szarka A, Bánhegyi G. Oxidative folding: recent developments. Biomol Concepts 2015; 2:379-90. [PMID: 25962043 DOI: 10.1515/bmc.2011.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/21/2011] [Indexed: 01/29/2023] Open
Abstract
Disulfide bond formation in proteins is an effective tool of both structure stabilization and redox regulation. The prokaryotic periplasm and the endoplasmic reticulum of eukaryotes were long considered as the only compartments for enzyme mediated formation of stable disulfide bonds. Recently, the mitochondrial intermembrane space has emerged as the third protein-oxidizing compartment. The classic view on the mechanism of oxidative folding in the endoplasmic reticulum has also been reshaped by new observations. Moreover, besides the structure stabilizing function, reversible disulfide bridge formation in some proteins of the endoplasmic reticulum, seems to play a regulatory role. This review briefly summarizes the present knowledge of the redox systems supporting oxidative folding, emphasizing recent developments.
Collapse
|
48
|
Barchiesi A, Wasilewski M, Chacinska A, Tell G, Vascotto C. Mitochondrial translocation of APE1 relies on the MIA pathway. Nucleic Acids Res 2015; 43:5451-64. [PMID: 25956655 PMCID: PMC4477663 DOI: 10.1093/nar/gkv433] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/23/2015] [Indexed: 01/08/2023] Open
Abstract
APE1 is a multifunctional protein with a fundamental role in repairing nuclear and mitochondrial DNA lesions caused by oxidative and alkylating agents. Unfortunately, comprehensions of the mechanisms regulating APE1 intracellular trafficking are still fragmentary and contrasting. Recent data demonstrate that APE1 interacts with the mitochondrial import and assembly protein Mia40 suggesting the involvement of a redox-assisted mechanism, dependent on the disulfide transfer system, to be responsible of APE1 trafficking into the mitochondria. The MIA pathway is an import machinery that uses a redox system for cysteine enriched proteins to drive them in this compartment. It is composed by two main proteins: Mia40 is the oxidoreductase that catalyzes the formation of the disulfide bonds in the substrate, while ALR reoxidizes Mia40 after the import. In this study, we demonstrated that: (i) APE1 and Mia40 interact through disulfide bond formation; and (ii) Mia40 expression levels directly affect APE1's mitochondrial translocation and, consequently, play a role in the maintenance of mitochondrial DNA integrity. In summary, our data strongly support the hypothesis of a redox-assisted mechanism, dependent on Mia40, in controlling APE1 translocation into the mitochondrial inner membrane space and thus highlight the role of this protein transport pathway in the maintenance of mitochondrial DNA stability and cell survival.
Collapse
Affiliation(s)
- Arianna Barchiesi
- Department of Medical and Biological Sciences, University of Udine, Udine 33100, Italy
| | - Michal Wasilewski
- International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
| | - Agnieszka Chacinska
- International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
| | - Gianluca Tell
- Department of Medical and Biological Sciences, University of Udine, Udine 33100, Italy
| | - Carlo Vascotto
- Department of Medical and Biological Sciences, University of Udine, Udine 33100, Italy
| |
Collapse
|
49
|
Herrmann JM, Riemer J. Three approaches to one problem: protein folding in the periplasm, the endoplasmic reticulum, and the intermembrane space. Antioxid Redox Signal 2014; 21:438-56. [PMID: 24483706 DOI: 10.1089/ars.2014.5841] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE The bacterial periplasm, the endoplasmic reticulum (ER), and the intermembrane space (IMS) of mitochondria contain dedicated machineries for the incorporation of disulfide bonds into polypeptides, which cooperate with chaperones, proteases, and assembly factors during protein biogenesis. RECENT ADVANCES The mitochondrial disulfide relay was identified only very recently. The current knowledge of the protein folding machinery of the IMS will be described in detail in this review and compared with the "more established" systems of the periplasm and the ER. CRITICAL ISSUES While the disulfide relays of all three compartments adhere to the same principle, the specific designs and functions of these systems differ considerably. In particular, the cooperation with other folding systems makes the situation in each compartment unique. FUTURE DIRECTIONS The biochemical properties of the oxidation machineries are relatively well understood. However, it still remains largely unclear as to how the quality control systems of "oxidizing" compartments orchestrate the activities of oxidoreductases, chaperones, proteases, and signaling molecules to ensure protein homeostasis.
Collapse
Affiliation(s)
- Johannes M Herrmann
- 1 Department of Cell Biology, University of Kaiserslautern , Kaiserslautern, Germany
| | | |
Collapse
|
50
|
Mitochondrial protein translocases for survival and wellbeing. FEBS Lett 2014; 588:2484-95. [DOI: 10.1016/j.febslet.2014.05.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/15/2014] [Accepted: 05/15/2014] [Indexed: 11/20/2022]
|