1
|
Abstract
Recent advances in the study of virus-cell interactions have improved our understanding of how viruses that replicate their genomes in the nucleus (e.g., retroviruses, hepadnaviruses, herpesviruses, and a subset of RNA viruses) hijack cellular pathways to export these genomes to the cytoplasm where they access virion egress pathways. These findings shed light on novel aspects of viral life cycles relevant to the development of new antiviral strategies and can yield new tractable, virus-based tools for exposing additional secrets of the cell. The goal of this review is to summarize defined and emerging modes of virus-host interactions that drive the transit of viral genomes out of the nucleus across the nuclear envelope barrier, with an emphasis on retroviruses that are most extensively studied. In this context, we prioritize discussion of recent progress in understanding the trafficking and function of the human immunodeficiency virus type 1 Rev protein, exemplifying a relatively refined example of stepwise, cooperativity-driven viral subversion of multi-subunit host transport receptor complexes.
Collapse
Affiliation(s)
- Ryan T. Behrens
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Nathan M. Sherer
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Mghezzi-Habellah M, Prochasson L, Jalinot P, Mocquet V. Viral Subversion of the Chromosome Region Maintenance 1 Export Pathway and Its Consequences for the Cell Host. Viruses 2023; 15:2218. [PMID: 38005895 PMCID: PMC10674744 DOI: 10.3390/v15112218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
In eukaryotic cells, the spatial distribution between cytoplasm and nucleus is essential for cell homeostasis. This dynamic distribution is selectively regulated by the nuclear pore complex (NPC), which allows the passive or energy-dependent transport of proteins between these two compartments. Viruses possess many strategies to hijack nucleocytoplasmic shuttling for the benefit of their viral replication. Here, we review how viruses interfere with the karyopherin CRM1 that controls the nuclear export of protein cargoes. We analyze the fact that the viral hijacking of CRM1 provokes are-localization of numerous cellular factors in a suitable place for specific steps of viral replication. While CRM1 emerges as a critical partner for viruses, it also takes part in antiviral and inflammatory response regulation. This review also addresses how CRM1 hijacking affects it and the benefits of CRM1 inhibitors as antiviral treatments.
Collapse
Affiliation(s)
| | | | | | - Vincent Mocquet
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure-Lyon, Université Claude Bernard Lyon, U1293, UMR5239, 69364 Lyon, France; (M.M.-H.); (L.P.); (P.J.)
| |
Collapse
|
3
|
Kaur S, Saldana AC, Elkahloun AG, Petersen JD, Arakelyan A, Singh SP, Jenkins LM, Kuo B, Reginauld B, Jordan DG, Tran AD, Wu W, Zimmerberg J, Margolis L, Roberts DD. CD47 interactions with exportin-1 limit the targeting of m 7G-modified RNAs to extracellular vesicles. J Cell Commun Signal 2022; 16:397-419. [PMID: 34841476 PMCID: PMC9411329 DOI: 10.1007/s12079-021-00646-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
CD47 is a marker of self and a signaling receptor for thrombospondin-1 that is also a component of extracellular vesicles (EVs) released by various cell types. Previous studies identified CD47-dependent functional effects of T cell EVs on target cells, mediated by delivery of their RNA contents, and enrichment of specific subsets of coding and noncoding RNAs in CD47+ EVs. Mass spectrometry was employed here to identify potential mechanisms by which CD47 regulates the trafficking of specific RNAs to EVs. Specific interactions of CD47 and its cytoplasmic adapter ubiquilin-1 with components of the exportin-1/Ran nuclear export complex were identified and confirmed by coimmunoprecipitation. Exportin-1 is known to regulate nuclear to cytoplasmic trafficking of 5'-7-methylguanosine (m7G)-modified microRNAs and mRNAs that interact with its cargo protein EIF4E. Interaction with CD47 was inhibited following alkylation of exportin-1 at Cys528 by its covalent inhibitor leptomycin B. Leptomycin B increased levels of m7G-modified RNAs, and their association with exportin-1 in EVs released from wild type but not CD47-deficient cells. In addition to perturbing nuclear to cytoplasmic transport, transcriptomic analyses of EVs released by wild type and CD47-deficient Jurkat T cells revealed a global CD47-dependent enrichment of m7G-modified microRNAs and mRNAs in EVs released by CD47-deficient cells. Correspondingly, decreasing CD47 expression in wild type cells or treatment with thrombospondin-1 enhanced levels of specific m7G-modified RNAs released in EVs, and re-expressing CD47 in CD47-deficient T cells decreased their levels. Therefore, CD47 signaling limits the trafficking of m7G-modified RNAs to EVs through physical interactions with the exportin-1/Ran transport complex.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2S235, 10 Center Dr, Bethesda, MD, 20892-1500, USA
| | - Alejandra Cavazos Saldana
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2S235, 10 Center Dr, Bethesda, MD, 20892-1500, USA
| | - Abdel G Elkahloun
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - Jennifer D Petersen
- Section On Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | - Anush Arakelyan
- Section On Intercellular Interactions, Division of Basic and Translational Biophysics, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | - Satya P Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Bethany Kuo
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2S235, 10 Center Dr, Bethesda, MD, 20892-1500, USA
| | - Bianca Reginauld
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2S235, 10 Center Dr, Bethesda, MD, 20892-1500, USA
| | - David G Jordan
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2S235, 10 Center Dr, Bethesda, MD, 20892-1500, USA
| | - Andy D Tran
- Confocal Microscopy Core Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Weiwei Wu
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - Joshua Zimmerberg
- Section On Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | - Leonid Margolis
- Section On Intercellular Interactions, Division of Basic and Translational Biophysics, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2S235, 10 Center Dr, Bethesda, MD, 20892-1500, USA.
| |
Collapse
|
4
|
Sukhan ZP, Hossen S, Cho Y, Lee WK, Kho KH. Hdh-Tektin-4 Regulates Motility of Fresh and Cryopreserved Sperm in Pacific Abalone, Haliotis discus hannai. Front Cell Dev Biol 2022; 10:870743. [PMID: 35547812 PMCID: PMC9081794 DOI: 10.3389/fcell.2022.870743] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
As structural components of sperm, tektins are thought to play a fundamental role in sperm flagellar motility. In this study, Tektin-4 (Hdh-TEKT4) gene was successfully cloned and characterized from the testis tissue in Pacific abalone, Haliotis discus hannai. The full-length cDNA of Hdh-TEKT4 was 1,983 bp, with a coding region of 1,350 bp encoding 51.83 kDa putative protein of 449 deduced amino acids. Hdh-TEKT4 contains a tektin domain including a nonapeptide signature motif (RPGVDLCRD). Fluorescence in situ hybridization revealed that Hdh-TEKT4 localized in the spermatids of Pacific abalone testis. qRT-PCR analysis showed that Hdh-TEKT4 was predominantly expressed in testis tissues. Hdh-TEKT4 mRNA expression was upregulated during the fully mature testicular developmental stage in both seasonal development and EAT exposed abalone. Furthermore, mRNA expression of Hdh-TEKT4 was significantly higher in sperm with higher motility than in sperm with lower motility during peak breeding season, induced spawning activity stages, and after cryopreservation in different cryoprotectants. Taken together, these results indicate that the expression of Hdh-TEKT4 in Pacific abalone sperm might have a positive correlation with sperm motility.
Collapse
Affiliation(s)
- Zahid Parvez Sukhan
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Shaharior Hossen
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Yusin Cho
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Won Kyo Lee
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| |
Collapse
|
5
|
Jackson PEH, Dzhivhuho G, Rekosh D, Hammarskjold ML. Sequence and Functional Variation in the HIV-1 Rev Regulatory Axis. Curr HIV Res 2021; 18:85-98. [PMID: 31906839 DOI: 10.2174/1570162x18666200106112842] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND To complete its replication cycle, HIV-1 requires the nucleocytoplasmic export of intron-containing viral mRNAs. This process is ordinarily restricted by the cell, but HIV overcomes the block by means of a viral protein, Rev, and an RNA secondary structure found in all unspliced and incompletely spliced viral mRNAs called the Rev Response Element (RRE). In vivo activity of the Rev-RRE axis requires Rev binding to the RRE, oligomerization of Rev to form a competent ribonucleoprotein complex, and recruitment of cellular factors including Crm1 and RanGTP in order to export the targeted transcript. Sequence variability is observed among primary isolates in both Rev and the RRE, and the activity of both can be modulated through relatively small sequence changes. Primary isolates show differences in Rev-RRE activity and a few studies have found a correlation between lower Rev-RRE activity and slower progression of clinical disease. Lower Rev-RRE activity has also been associated with the evasion of cytotoxic T lymphocyte mediated killing. CONCLUSION The HIV-1 Rev-RRE regulatory axis is an understudied mechanism by which viral adaptation to diverse immune milieus may take place. There is evidence that this adaptation plays a role in HIV pathogenesis, particularly in immune evasion and latency, but further studies with larger sample sizes are warranted.
Collapse
Affiliation(s)
- Patrick E H Jackson
- Division of Infectious Diseases and International Health, School of Medicine, University of Virginia, Charlottesville, Virginia United States.,Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States
| | - Godfrey Dzhivhuho
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States.,Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - David Rekosh
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States.,Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Marie-Louise Hammarskjold
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States.,Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
6
|
Huo S, Zhang J, Liang S, Wu F, Zuo Y, Cui D, Zhang Y, Zhong Z, Zhong F. Membrane-bound and soluble porcine CD83 functions antithetically in T cell activation and dendritic cell differentiation in vitro. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103398. [PMID: 31121186 DOI: 10.1016/j.dci.2019.103398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Emerging evidence suggests that CD83, a dendritic cells (DCs) maturation marker in humans and mice, may prossess immunomodulatory capacities. Although porcine CD83 shares ∼75% sequence homology with its human counterpart, whether it functions as an immunoregulatory molecule remains unknown. To investigate porcine CD83 function, we deleted it in porcine DCs by RNA intereference. Results show that membrane-bound CD83 (mCD83) promotes DC-mediated T cell proliferation and cytokine production, thus confirming its immunoregulatory capacity. Intriguingly, porcine soluble CD83 (sCD83) treatment instead led to inhibition of DC-mediated T cell activation. Moreover, porcine sCD83 also inhibited differentiation of prepheral blood mononuclear cells (PBMCs) into DCs. These results collectively indicate that in addition to being a DC maturation maker, both membrane bound and souble porcine CD83 serve as immunoregulatory molecules with opposite effects on DC-mediated T cell activation and DC differentiation.
Collapse
Affiliation(s)
- Shanshan Huo
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Jianlou Zhang
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Shuang Liang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Fengyang Wu
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Yuzhu Zuo
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Dan Cui
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Yonghong Zhang
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Zhenyu Zhong
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Fei Zhong
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China.
| |
Collapse
|
7
|
Rekosh D, Hammarskjold ML. Intron retention in viruses and cellular genes: Detention, border controls and passports. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1470. [PMID: 29508942 DOI: 10.1002/wrna.1470] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/04/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
Intron retention (IR), where one or more introns remain in the RNA after splicing, was long thought to be rare in mammalian cells, albeit common in plants and some viruses. Largely due to the development of better methods for RNA analysis, it has now been recognized that IR is much more common than previously thought and that this mechanism is likely to play an important role in mammalian gene regulation. To date, most publications and reviews about IR have described the resulting mRNAs as "dead end" products, with no direct consequence for the proteome. However, there are also many reports of mRNAs with retained introns giving rise to alternative protein isoforms. Although this was originally revealed in viral systems, there are now numerous examples of bona fide cellular proteins that are translated from mRNAs with retained introns. These new isoforms have sometimes been shown to have important regulatory functions. In this review, we highlight recent developments in this area and the research on viruses that led the way to the realization of the many ways in which mRNAs with retained introns can be regulated. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing RNA Export and Localization > Nuclear Export/Import RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- David Rekosh
- The Myles H. Thaler Center for AIDS and Human Retrovirus Research and the Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia.,Department of Microbiology, University of Venda, Thohoyandou, South Africa
| | - Marie-Louise Hammarskjold
- The Myles H. Thaler Center for AIDS and Human Retrovirus Research and the Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia.,Department of Microbiology, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
8
|
HIV-1 and M-PMV RNA Nuclear Export Elements Program Viral Genomes for Distinct Cytoplasmic Trafficking Behaviors. PLoS Pathog 2016; 12:e1005565. [PMID: 27070420 PMCID: PMC4829213 DOI: 10.1371/journal.ppat.1005565] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/21/2016] [Indexed: 12/15/2022] Open
Abstract
Retroviruses encode cis-acting RNA nuclear export elements that override nuclear retention of intron-containing viral mRNAs including the full-length, unspliced genomic RNAs (gRNAs) packaged into assembling virions. The HIV-1 Rev-response element (RRE) recruits the cellular nuclear export receptor CRM1 (also known as exportin-1/XPO1) using the viral protein Rev, while simple retroviruses encode constitutive transport elements (CTEs) that directly recruit components of the NXF1(Tap)/NXT1(p15) mRNA nuclear export machinery. How gRNA nuclear export is linked to trafficking machineries in the cytoplasm upstream of virus particle assembly is unknown. Here we used long-term (>24 h), multicolor live cell imaging to directly visualize HIV-1 gRNA nuclear export, translation, cytoplasmic trafficking, and virus particle production in single cells. We show that the HIV-1 RRE regulates unique, en masse, Rev- and CRM1-dependent "burst-like" transitions of mRNAs from the nucleus to flood the cytoplasm in a non-localized fashion. By contrast, the CTE derived from Mason-Pfizer monkey virus (M-PMV) links gRNAs to microtubules in the cytoplasm, driving them to cluster markedly to the centrosome that forms the pericentriolar core of the microtubule-organizing center (MTOC). Adding each export element to selected heterologous mRNAs was sufficient to confer each distinct export behavior, as was directing Rev/CRM1 or NXF1/NXT1 transport modules to mRNAs using a site-specific RNA tethering strategy. Moreover, multiple CTEs per transcript enhanced MTOC targeting, suggesting that a cooperative mechanism links NXF1/NXT1 to microtubules. Combined, these results reveal striking, unexpected features of retroviral gRNA nucleocytoplasmic transport and demonstrate roles for mRNA export elements that extend beyond nuclear pores to impact gRNA distribution in the cytoplasm.
Collapse
|
9
|
Fung HYJ, Chook YM. Atomic basis of CRM1-cargo recognition, release and inhibition. Semin Cancer Biol 2014; 27:52-61. [PMID: 24631835 PMCID: PMC4108548 DOI: 10.1016/j.semcancer.2014.03.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/01/2014] [Indexed: 11/19/2022]
Abstract
CRM1 or XPO1 is the major nuclear export receptor in the cell, which controls the nuclear-cytoplasmic localization of many proteins and RNAs. CRM1 is also a promising cancer drug target as the transport receptor is overexpressed in many cancers where some of its cargos are misregulated and mislocalized to the cytoplasm. Atomic level understanding of CRM1 function has greatly facilitated recent drug discovery and development of CRM1 inhibitors to target a variety of malignancies. Numerous atomic resolution CRM1 structures are now available, explaining how the exporter recognizes nuclear export signals in its cargos, how RanGTP and cargo bind with positive cooperativity, how RanBP1 causes release of export cargos in the cytoplasm and how diverse inhibitors such as Leptomycin B and the new KPT-SINE compounds block nuclear export. This review summarizes structure-function studies that explain CRM1-cargo recognition, release and inhibition.
Collapse
Affiliation(s)
- Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park, Dallas, TX 75390-9041, USA.
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park, Dallas, TX 75390-9041, USA.
| |
Collapse
|
10
|
Abstract
Membrane envelopment and budding of negative strand RNA viruses (NSVs) is mainly driven by viral matrix proteins (M). In addition, several M proteins are also known to be involved in host cell manipulation. Knowledge about the cellular targets and detailed molecular mechanisms, however, is poor for many M proteins. For instance, Nipah Virus (NiV) M protein trafficking through the nucleus is essential for virus release, but nuclear targets of NiV M remain unknown. To identify cellular interactors of henipavirus M proteins, tagged Hendra Virus (HeV) M proteins were expressed and M-containing protein complexes were isolated and analysed. Presence of acidic leucine-rich nuclear phosphoprotein 32 family member B (ANP32B) in the complex suggested that this protein represents a direct or indirect interactor of the viral matrix protein. Over-expression of ANP32B led to specific nuclear accumulation of HeV M, providing a functional link between ANP32B and M protein. ANP32B-dependent nuclear accumulation was observed after plasmid-driven expression of HeV and NiV matrix proteins and also in NiV infected cells. The latter indicated that an interaction of henipavirus M protein with ANP32B also occurs in the context of virus replication. From these data we conclude that ANP32B is a nuclear target of henipavirus M that may contribute to virus replication. Potential effects of ANP32B on HeV nuclear shuttling and host cell manipulation by HeV M affecting ANP32B functions in host cell survival and gene expression regulation are discussed.
Collapse
|
11
|
Characterization of export receptor exportins (XPOs) in the parasite Schistosoma mansoni. Parasitol Res 2013; 112:4151-9. [PMID: 24013345 DOI: 10.1007/s00436-013-3606-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
Abstract
Several proteins and different species of RNA that are produced in the nucleus are exported through the nuclear pore complexes, which require a family of conserved nuclear export receptors called exportins (XPOs). It has been reported that the XPOs (XPO1, XPO5, and XPOT) are directly involved in the transport processes of noncoding RNAs from the nucleus to the cytoplasm and/or from cytoplasm to the nucleus. All three genes are present in fungi, plants, and deuterostome metazoans. However, protostome metazoan species lack one of the three genes across evolution. In this report, we have demonstrated that all three XPO proteins are present in the parasite protostome Schistosoma mansoni. As this parasite has a complex life cycle presenting several stages in different hosts and environments, implying a differential gene regulation, we proposed a genomic analysis of XPOs to validate their annotation. The results showed the conservation of exportin family members and gene duplication events in S. mansoni. We performed quantitative RT-PCR, which revealed an upregulation of SmXPO1 in 24 h schistosomula (sixfold when compared with cercariae), and similar transcription levels were observed for SmXPO5 and SmXPOT in all the analyzed stages. These three XPO proteins have been identified for the first time in the protostome clade, which suggests a higher complexity in RNA transport in the parasite S. mansoni. Taken together, these results suggest that RNA transport by exportins might control cellular processes during cercariae, schistosomula, and adult worm development.
Collapse
|
12
|
Bollmann F, Fechir K, Nowag S, Koch K, Art J, Kleinert H, Pautz A. Human inducible nitric oxide synthase (iNOS) expression depends on chromosome region maintenance 1 (CRM1)- and eukaryotic translation initiation factor 4E (elF4E)-mediated nucleocytoplasmic mRNA transport. Nitric Oxide 2013; 30:49-59. [PMID: 23471078 DOI: 10.1016/j.niox.2013.02.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/15/2013] [Accepted: 02/25/2013] [Indexed: 12/31/2022]
Abstract
Human inducible nitric oxide synthase (iNOS) is regulated on the expressional level mostly by post-transcriptional mechanisms modulating the mRNA stability. Another important step in the control of eukaryotic gene expression is the nucleocytoplasmic mRNA transport. Most cellular mRNAs are exported via the TAP/Nxt complex of proteins. However, some mRNAs are transported by a different mechanism involving the nuclear export receptor CRM1. Treatment of DLD-1 cells with the CRM1 inhibitor leptomycin B (LMB) or anti-CRM1 siRNAs reduced cytokine-induced iNOS expression. We could demonstrate that the iNOS mRNA is exported from the nucleus in a CRM1-dependent manner. Since CRM1 itself does not possess any RNA binding affinity, an adapter protein is needed to mediate CRM1-dependent mRNA export. Western blot experiments showed that the eukaryotic translation initiation factor eIF4E is retained in the nucleus after LMB treatment. Blockade of eIF4E by ribavirin or overexpression of the promyelocytic leukemia protein (PML) decreased iNOS expression due to reduced iNOS mRNA export from the nucleus. Transfection experiments provide evidence that the 3'-untranslated region of the iNOS mRNA is involved in eIF4E-mediated iNOS mRNA transport. In summary, CRM1 and eIF4E seem to play an important role in the nucleocytoplasmic export of human iNOS mRNA.
Collapse
Affiliation(s)
- Franziska Bollmann
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, D 55101 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Ehlers C, Schirmer S, Kehlenbach RH, Hauber J, Chemnitz J. Post-transcriptional regulation of CD83 expression by AUF1 proteins. Nucleic Acids Res 2013; 41:206-19. [PMID: 23161671 PMCID: PMC3592417 DOI: 10.1093/nar/gks1069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/27/2012] [Accepted: 10/11/2012] [Indexed: 12/31/2022] Open
Abstract
Mature dendritic cells (DC), activated lymphocytes, mononuclear cells and neutrophils express CD83, a surface protein apparently necessary for effective DC-mediated activation of naïve T-cells and T-helper cells, thymic T-cell maturation and the regulation of B-cell activation and homeostasis. Although a defined ligand of CD83 remains elusive, the multiple cellular subsets expressing CD83, as well as its numerous potential implications in immunological processes suggest that CD83 plays an important regulatory role in the mammalian immune system. Lately, nucleocytoplasmic translocation of CD83 mRNA was shown to be mediated by direct interaction between the shuttle protein HuR and a novel post-transcriptional regulatory element (PRE) located in the CD83 transcript's coding region. Interestingly, this interaction commits the CD83 mRNA to efficient nuclear export through the CRM1 protein translocation pathway. More recently, the cellular phosphoprotein and HuR ligand ANP32B (APRIL) was demonstrated to be directly involved in this intracellular transport process by linking the CD83 mRNA:HuR ribonucleoprotein (RNP) complex with the CRM1 export receptor. Casein kinase II regulates this process by phosphorylating ANP32B. Here, we identify another RNA binding protein, AUF1 (hnRNP D) that directly interacts with CD83 PRE. Unlike HuR:PRE binding, this interaction has no impact on intracellular trafficking of CD83 mRNA-containing complexes; but it does regulate translation of CD83 mRNA. Thus, our data shed more light on the complex process of post-transcriptional regulation of CD83 expression. Interfering with this process may provide a novel strategy for inhibiting CD83, and thereby cellular immune activation.
Collapse
Affiliation(s)
- Christina Ehlers
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, D-20251 Hamburg and Zentrum für Biochemie und Molekulare Zellbiologie, Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Susann Schirmer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, D-20251 Hamburg and Zentrum für Biochemie und Molekulare Zellbiologie, Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Ralph H. Kehlenbach
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, D-20251 Hamburg and Zentrum für Biochemie und Molekulare Zellbiologie, Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, D-20251 Hamburg and Zentrum für Biochemie und Molekulare Zellbiologie, Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Jan Chemnitz
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, D-20251 Hamburg and Zentrum für Biochemie und Molekulare Zellbiologie, Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| |
Collapse
|
14
|
Human intronless genes: Functional groups, associated diseases, evolution, and mRNA processing in absence of splicing. Biochem Biophys Res Commun 2012; 424:1-6. [DOI: 10.1016/j.bbrc.2012.06.092] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/18/2012] [Indexed: 11/18/2022]
|
15
|
Schmid M, Gonzalez RA, Dobner T. CRM1-dependent transport supports cytoplasmic accumulation of adenoviral early transcripts. J Virol 2012; 86:2282-92. [PMID: 22171254 PMCID: PMC3302419 DOI: 10.1128/jvi.06275-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/30/2011] [Indexed: 02/08/2023] Open
Abstract
The life cycle of adenoviruses is divided by convention into early and late phases, separated by the onset of viral genome replication. Early events include virus adsorption, transport of the genome into the nucleus, and the expression of early genes. After the onset of viral DNA replication, transcription of the major late transcription unit (MLTU) and thereby synthesis of late proteins is induced. These steps are controlled by an orchestra of regulatory processes and require import of the genome and numerous viral proteins into the nucleus, as well as active transport of viral transcripts and proteins from the nucleus to the cytoplasm. The latter is achieved by exploiting the shuttling functions of cellular transport receptors, which normally stimulate the nuclear export of cellular mRNA and protein cargos. A set of adenoviral early and late proteins contains a leucine-rich nuclear export signal of the HIV-1 Rev type, known to be recognized by the cellular export receptor CRM1. However, a role for CRM1-dependent export in supporting adenoviral replication has not been established. To address this issue in detail, we investigated the impact of two different CRM1 inhibitors on several steps of the adenoviral life cycle. Inhibition of CRM1 led to a reduction in viral early and late gene expression, viral genome replication, and progeny virus production. For the first time, our findings indicate that CRM1-dependent shuttling is required for the efficient export of adenoviral early mRNA.
Collapse
Affiliation(s)
- Melanie Schmid
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | | |
Collapse
|
16
|
Pieper D, Schirmer S, Prechtel AT, Kehlenbach RH, Hauber J, Chemnitz J. Functional characterization of the HuR:CD83 mRNA interaction. PLoS One 2011; 6:e23290. [PMID: 21829725 PMCID: PMC3150423 DOI: 10.1371/journal.pone.0023290] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 07/12/2011] [Indexed: 01/15/2023] Open
Abstract
Maturation of dendritic cells (DC) is characterized by expression of CD83, a surface protein that appears to be necessary for the effective activation of naïve T-cells and T-helper cells by DC. Lately it was shown that CD83 expression is regulated on the posttranscriptional level by interaction of the shuttle protein HuR with a novel posttranscriptional regulatory RNA element (PRE), which is located in the coding region of the CD83 transcript. Interestingly, this interaction commits the CD83 mRNA to efficient nuclear export via the CRM1 pathway. To date, however, the structural basis of this interaction, which potentially involves three distinct RNA recognition motifs (RRM1–3) in HuR and a complex three-pronged RNA stem-loop element in CD83 mRNA, has not been investigated in detail. In the present work we analyzed this interaction in vitro and in vivo using various HuR- and CD83 mRNA mutants. We are able to demonstrate that both, RRM1 and RRM2 are crucial for binding, whereas RRM3 as well as the HuR hinge region contributed only marginally to this protein∶RNA interaction. Furthermore, mutation of uridine rich patches within the PRE did not disturb HuR:CD83 mRNA complex formation while, in contrast, the deletion of specific PRE subfragments from the CD83 mRNA prevented HuR binding in vitro and in vivo. Interestingly, the observed inhibition of HuR binding to CD83 mRNA does not lead to a nuclear trapping of the transcript but rather redirected this transcript from the CRM1- towards the NXF1/TAP-specific nuclear export pathway. Thus, the presence of a functional PRE permits nucleocytoplasmic trafficking of the CD83 transcript via the CRM1 pathway.
Collapse
Affiliation(s)
- Dorothea Pieper
- Department of Cell Biology and Virology, Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Susann Schirmer
- Department of Cell Biology and Virology, Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Alexander T. Prechtel
- Department of Cell Biology and Virology, Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ralph H. Kehlenbach
- Zentrum für Biochemie und Molekulare Zellbiologie, Universität Göttingen, Göttingen, Germany
| | - Joachim Hauber
- Department of Cell Biology and Virology, Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Jan Chemnitz
- Department of Cell Biology and Virology, Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
- * E-mail:
| |
Collapse
|
17
|
Coyle JH, Bor YC, Rekosh D, Hammarskjold ML. The Tpr protein regulates export of mRNAs with retained introns that traffic through the Nxf1 pathway. RNA (NEW YORK, N.Y.) 2011; 17:1344-56. [PMID: 21613532 PMCID: PMC3138570 DOI: 10.1261/rna.2616111] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 04/18/2011] [Indexed: 05/22/2023]
Abstract
Post-transcriptional regulation of mRNA includes restriction mechanisms to prevent export and expression of mRNAs that are incompletely spliced. Here we present evidence that the mammalian protein Tpr is involved in this restriction. To study the role of Tpr in export of mRNA with retained introns, we used reporters in which the mRNA was exported either via the Nxf1/Nxt1 pathway using a CTE or via the Crm1 pathway using Rev/RRE. Our data show that even modest knockdown of Tpr using RNAi leads to a significant increase in export and translation from the mRNA containing the CTE. In contrast, Tpr perturbation has no effect on export of mRNA containing the RRE, either in the absence or presence of Rev. Also, no effects were observed on export of a completely spliced mRNA. Taken together, our results indicate that Tpr plays an important role in quality control of mRNA trafficked on the Nxf1 pathway.
Collapse
Affiliation(s)
- John H. Coyle
- Myles H. Thaler Center for AIDS and Human Retrovirus Research and Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Yeou-Cherng Bor
- Myles H. Thaler Center for AIDS and Human Retrovirus Research and Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - David Rekosh
- Myles H. Thaler Center for AIDS and Human Retrovirus Research and Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Marie-Louise Hammarskjold
- Myles H. Thaler Center for AIDS and Human Retrovirus Research and Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
- Corresponding author.E-mail .
| |
Collapse
|
18
|
Abstract
The post-transcriptional export of spliced and unspliced HIV-1 (human immunodeficiency virus type 1) RNAs from the nucleus to the cytoplasm is a complex process. Part of the complexity arises from the fact that eukaryotic cells normally retain unspliced RNAs in the nucleus preventing their exit into the cytoplasm. HIV-1 has evolved a protein, Rev, that participates in the export of unspliced / partially spliced viral RNAs from the nucleus. It has been documented that several cellular factors cooperate in trans with Rev, and certain cis-RNA motifs / features are important for transcripts to be recognized by Rev and its co-factors. Here, the post-transcriptional activities of Rev are discussed in the context of a recent finding that an RNA cap methyltransferase contributes to the expression of unspliced / partially spliced HIV-1 transcripts.
Collapse
Affiliation(s)
- Venkat S R K Yedavalli
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institutes of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
19
|
Hilliard M, Frohnert C, Spillner C, Marcone S, Nath A, Lampe T, Fitzgerald DJ, Kehlenbach RH. The anti-inflammatory prostaglandin 15-deoxy-delta(12,14)-PGJ2 inhibits CRM1-dependent nuclear protein export. J Biol Chem 2010; 285:22202-10. [PMID: 20457605 PMCID: PMC2903415 DOI: 10.1074/jbc.m110.131821] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/06/2010] [Indexed: 12/30/2022] Open
Abstract
The signaling molecule 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) has been described as the "anti-inflammatory prostaglandin." Here we show that substrates of the nuclear export receptor CRM1 accumulate in the nucleus in the presence of 15d-PGJ(2), identifying this prostaglandin as a regulator of CRM1-dependent nuclear protein export that can be produced endogenously. Like leptomycin B (LMB), an established fungal CRM1-inhibitor, 15d-PGJ(2) reacts with a conserved cysteine residue in the CRM1 sequence. This covalent modification prevents the formation of nuclear export complexes. Cells that are transfected with mutant CRM1 (C528S) are resistant to the inhibitory effects of LMB and 15d-PGJ(2), demonstrating that the same single amino acid is targeted by the two compounds. Inhibition of the CRM1 pathway by endogenously produced prostaglandin and/or exogenously applied 15d-PGJ(2) may contribute to its anti-inflammatory, anti-proliferative, and anti-viral effects.
Collapse
Affiliation(s)
- Mark Hilliard
- From the UCD Conway Institute, Belfield, Dublin 4, Ireland and
| | - Cornelia Frohnert
- the Department of Biochemistry I, Faculty of Medicine, Georg-August-University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Christiane Spillner
- the Department of Biochemistry I, Faculty of Medicine, Georg-August-University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Simone Marcone
- From the UCD Conway Institute, Belfield, Dublin 4, Ireland and
| | - Annegret Nath
- the Department of Biochemistry I, Faculty of Medicine, Georg-August-University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Tina Lampe
- the Department of Biochemistry I, Faculty of Medicine, Georg-August-University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | | | - Ralph H. Kehlenbach
- the Department of Biochemistry I, Faculty of Medicine, Georg-August-University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| |
Collapse
|
20
|
Abstract
Dysfunction of pancreatic islet beta cells underlies both type 1 and type 2 diabetes and appears to result in part from the local release of proinflammatory cytokines. An improved understanding of the mechanisms that mediate islet responsiveness to proinflammatory cytokines may therefore expand our knowledge of the role of cytokine signaling in the development of diabetes, providing potential new targets for the development of therapeutics to protect pancreatic islets from inflammation. In this issue of the JCI, Maier and colleagues identify eukaryotic translation initiation factor 5A (eIF5A) as a critical regulator of the inflammatory response in mouse pancreatic islets. I believe these data provide new and important insights into the regulatory pathways that contribute to the development of diabetes and deepen our understanding of the function of the, so far, rather enigmatic cellular protein eIF5A.
Collapse
Affiliation(s)
- Joachim Hauber
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany.
| |
Collapse
|
21
|
Maier B, Ogihara T, Trace AP, Tersey SA, Robbins RD, Chakrabarti SK, Nunemaker CS, Stull ND, Taylor CA, Thompson JE, Dondero RS, Lewis EC, Dinarello CA, Nadler JL, Mirmira RG. The unique hypusine modification of eIF5A promotes islet beta cell inflammation and dysfunction in mice. J Clin Invest 2010; 120:2156-70. [PMID: 20501948 PMCID: PMC2877928 DOI: 10.1172/jci38924] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/10/2010] [Indexed: 12/15/2022] Open
Abstract
In both type 1 and type 2 diabetes, pancreatic islet dysfunction results in part from cytokine-mediated inflammation. The ubiquitous eukaryotic translation initiation factor 5A (eIF5A), which is the only protein to contain the amino acid hypusine, contributes to the production of proinflammatory cytokines. We therefore investigated whether eIF5A participates in the inflammatory cascade leading to islet dysfunction during the development of diabetes. As described herein, we found that eIF5A regulates iNOS levels and that eIF5A depletion as well as the inhibition of hypusination protects against glucose intolerance in inflammatory mouse models of diabetes. We observed that following knockdown of eIF5A expression, mice were resistant to beta cell loss and the development of hyperglycemia in the low-dose streptozotocin model of diabetes. The depletion of eIF5A led to impaired translation of iNOS-encoding mRNA within the islet. A role for the hypusine residue of eIF5A in islet inflammatory responses was suggested by the observation that inhibition of hypusine synthesis reduced translation of iNOS-encoding mRNA in rodent beta cells and human islets and protected mice against the development of glucose intolerance the low-dose streptozotocin model of diabetes. Further analysis revealed that hypusine is required in part for nuclear export of iNOS-encoding mRNA, a process that involved the export protein exportin1. These observations identify the hypusine modification of eIF5A as a potential therapeutic target for preserving islet function under inflammatory conditions.
Collapse
Affiliation(s)
- Bernhard Maier
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Takeshi Ogihara
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Anthony P. Trace
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sarah A. Tersey
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Reiesha D. Robbins
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Swarup K. Chakrabarti
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Craig S. Nunemaker
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Natalie D. Stull
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Catherine A. Taylor
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - John E. Thompson
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Richard S. Dondero
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Eli C. Lewis
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Charles A. Dinarello
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jerry L. Nadler
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Raghavendra G. Mirmira
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
22
|
Chemnitz J, Turza N, Hauber I, Steinkasserer A, Hauber J. The karyopherin CRM1 is required for dendritic cell maturation. Immunobiology 2010; 215:370-9. [PMID: 19545931 DOI: 10.1016/j.imbio.2009.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 05/20/2009] [Accepted: 05/21/2009] [Indexed: 01/24/2023]
Abstract
Dendritic cells (DC) are the most potent antigen-presenting cells (APC) of the immune system and are specialized to activate T as well as B cell-dependent immune responses. Mature DC are characterized by expression of CD83, a surface molecule that has been postulated to be required for efficient DC activity. Here we show that Leptomycin B (LMB), a highly specific inhibitor of the nuclear export receptor CRM1, abrogates the ability of DC to stimulate T cells in an allogeneic mixed lymphocyte reaction. Interestingly, this effect correlates with down-regulation of CD83, CD80 and CD86 surface expression during DC maturation, whereas other investigated DC surface molecules, such as MHC class I and II molecules are not significantly affected. Analysis of RNA distribution reveals that particularly the stimulated expression of CD83 depended on a functional CRM1 export receptor. Taken together, the presented data show a critical involvement of the CRM1 transport receptor in DC maturation, most likely by enabling efficient nucleo-cytoplasmic translocation of specific mRNAs. Thus, interference with this pathway may provide new strategies to modulate DC function and, subsequently, DC-mediated immune responses.
Collapse
Affiliation(s)
- Jan Chemnitz
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse 52, D-20251 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
23
|
RNA interference: a potent technology in studying and modulating of dendritic cells, and potential in clinical therapy. Mol Biol Rep 2009; 37:2635-44. [DOI: 10.1007/s11033-009-9789-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 08/31/2009] [Indexed: 10/20/2022]
|
24
|
Chemnitz J, Pieper D, Grüttner C, Hauber J. Phosphorylation of the HuR ligand APRIL by casein kinase 2 regulates CD83 expression. Eur J Immunol 2009; 39:267-79. [PMID: 19130553 DOI: 10.1002/eji.200838619] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Fully mature DC and, to a lesser extent, activated T and B cells express CD83, a surface molecule that appears to fulfil an important role in efficient T-cell activation. Recently, it has been shown that CD83 mRNA is transported from the nucleus to the cytoplasm by an uncommon route, involving the cellular RNA-binding protein HuR and the nuclear export receptor CRM1. Moreover, the shuttle phosphoprotein APRIL (ANP32B) has been shown to be required for HuR-mediated nucleocytoplasmic translocation of the CD83 mRNA by acting as an adaptor that links HuR and CRM1. Here, we are able to report that casein kinase 2 (CK2) phosphorylates APRIL on residue threonine244 (Thr(244)) and demonstrate that the CK2-specific inhibitor 4,5,6,7-tetrabromo-2-azabenzimidazole abolishes CD83 expression in activated Jurkat T cells by interfering with the nucleocytoplasmic translocation of CD83 mRNA. Depletion and knockdown studies demonstrate that the CK2 alpha' subunit is necessary for this regulation, whereas the CK2 alpha subunit seems to be dispensable. Taken together, the data presented significantly extend our knowledge of the complex regulation of CD83 mRNA processing and provides a novel strategy to interfere with CD83 expression.
Collapse
Affiliation(s)
- Jan Chemnitz
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse, Hamburg, Germany.
| | | | | | | |
Collapse
|
25
|
Trafficking through the Rev/RRE pathway is essential for efficient inhibition of human immunodeficiency virus type 1 by an antisense RNA derived from the envelope gene. J Virol 2008; 83:940-52. [PMID: 18971264 DOI: 10.1128/jvi.01520-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A human immunodeficiency virus type 1 (HIV-1)-based vector expressing an antisense RNA directed against HIV-1 is currently in clinical trials. This vector has shown a remarkable ability to inhibit HIV-1 replication, in spite of the fact that therapeutic use of unmodified antisense RNAs has generally been disappointing. To further analyze the basis for this, we examined the effects of different plasmid-based HIV-1 long-terminal-repeat-driven constructs expressing antisense RNA to the same target region in HIV-1 but containing different export elements. Two of these vectors were designed to express antisense RNA containing either a Rev response element (RRE) or a Mason-Pfizer monkey virus (MPMV) constitutive transport element (CTE). In the third vector, no specific transport element was provided. Efficient inhibition of HIV-1 virus production was obtained with the RRE-driven antisense RNA. This construct also efficiently inhibited p24 production from a pNL4-3 provirus that used the MPMV CTE for RNA export. In contrast, little inhibition was observed with the constructs lacking an RRE. Furthermore, when the RRE-driven antisense RNA was redirected to the Tap/Nxf1 pathway, utilized by the MPMV CTE, through the expression of a RevM10-Tap fusion protein, the efficiency of antisense inhibition was greatly reduced. These results indicate that efficient inhibition requires trafficking of the antisense RNA through the Rev/RRE pathway. Mechanistic studies indicated that the Rev/RRE-mediated inhibition did not involve either nuclear retention or degradation of target mRNA, since target RNA was found to export and associate normally with polyribosomes. However, protein levels were significantly reduced. Taken together, our results suggest a new mechanism for antisense inhibition of HIV mediated by Rev/RRE.
Collapse
|
26
|
Specht S, Sarite SR, Hauber I, Hauber J, Görbig UF, Meier C, Bevec D, Hoerauf A, Kaiser A. The guanylhydrazone CNI-1493: an inhibitor with dual activity against malaria-inhibition of host cell pro-inflammatory cytokine release and parasitic deoxyhypusine synthase. Parasitol Res 2008; 102:1177-84. [PMID: 18256853 DOI: 10.1007/s00436-008-0891-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
Abstract
Malaria is still a major cause of death in the tropics. There is an urgent need for new anti-malarial drugs because drug-resistant plasmodia frequently occur. Over recent years, we elucidated the biosynthesis of hypusine, a novel amino acid contained in eukaryotic initiation factor 5A (eIF-5A) in Plasmodium. Hypusine biosynthesis involves catalysis of deoxyhypusine synthase (DHS) in the first step of post-translational modification. In a screen for new inhibitors of purified plasmodium DHS, CNI-1493, a novel selective pro-inflammatory cytokine inhibitor used in clinical phase II for the treatment of Crohn's disease, inhibited the enzyme of the parasite 3-fold at a concentration of 2 microM. In vitro experiments with 200 microM CNI-1493 in Plasmodium-infected erythrocytes, which lack nuclei and DHS protein, showed a parasite clearance within 2 days. This can presumably be attributed to an anti-proliferating effect because of the inhibition of DHS by the parasite. The determined IC50 of CNI-1493 was 135.79 microM after 72 h. In vivo application of this substance in Plasmodium berghei ANKA-infected C57BL/6 mice significantly reduced parasitemia after dosage of 1 mg/kg or 4 mg/kg/body weight and prevented death of mice with cerebral malaria. This effect was paralleled by a decrease in serum TNF levels of the mice. We suggest that the new mechanism of CNI-1493 is caused by a decrease in modified eIF-5A biosynthesis with a downstream effect on the TNF synthesis of the host. From the current data, we consider CNI-1493 to be a promising drug for anti-malarial therapy because of its combined action, i.e., the decrease in eIF-5A biosynthesis of the parasite and host cell TNF biosynthesis.
Collapse
Affiliation(s)
- Sabine Specht
- Institute for Medical Microbiolgy, Immunology and Parasitology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hutten S, Kehlenbach RH. CRM1-mediated nuclear export: to the pore and beyond. Trends Cell Biol 2007; 17:193-201. [PMID: 17317185 DOI: 10.1016/j.tcb.2007.02.003] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 01/11/2007] [Accepted: 02/09/2007] [Indexed: 02/07/2023]
Abstract
CRM1 (chromosome region maintenance 1; also referred to as exportin1 or Xpo1) is a member of the importin beta superfamily of nuclear transport receptors, recognizing proteins bearing a leucine-rich nuclear export sequence. CRM1 is the major receptor for the export of proteins out of the nucleus and is also required for transport of many RNAs. Besides its established role in nuclear export, CRM1 is also implicated in various steps during mitosis, widening its functional spectrum within the cell.
Collapse
Affiliation(s)
- Saskia Hutten
- Universität Göttingen; Zentrum für Biochemie und Molekulare Zellbiologie; Humboldtallee 23; 37073 Göttingen, Germany
| | | |
Collapse
|
28
|
Fries B, Heukeshoven J, Hauber I, Grüttner C, Stocking C, Kehlenbach RH, Hauber J, Chemnitz J. Analysis of nucleocytoplasmic trafficking of the HuR ligand APRIL and its influence on CD83 expression. J Biol Chem 2007; 282:4504-4515. [PMID: 17178712 DOI: 10.1074/jbc.m608849200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dendritic cells (DC) are the most potent antigen-presenting cells of the immune system and are able to sensitize even naïve T cells. Mature DC are characterized by expression of CD83, a surface molecule that is proposed to be involved in efficient T cell activation. It has been recently shown that CD83 mRNA is transported from the nucleus to the cytoplasm in a HuR- and CRM1-dependent manner. Therefore we here investigated the impact of two known protein ligands of HuR, pp32 and APRIL, on CD83 expression. Both pp32 (ANP32A) and APRIL (ANP32B) are shuttle proteins, and it has been reported earlier that these HuR ligands can act as adaptors that link HuR and the CRM1-specific nuclear export pathway. By employing RNA interference (RNAi) technology we demonstrate that pp32 is dispensable for CD83 expression, whereas APRIL contributes to the nuclear export and subsequent translation of CD83 mRNA. Furthermore, we have determined the nuclear import signal (NLS) as well as the nuclear export signal (NES) of human APRIL. Moreover, we analyzed the status of phosphorylation of endogenous APRIL and identified threonine 244 to be an as yet unrecognized phosphate acceptor. Finally, we were able to show that phosphorylation of this specific amino acid residue regulates the nuclear export of APRIL. In sum, we report here the signal sequences in APRIL that mediate its intracellular trafficking and provide evidence that this protein ligand of HuR is an important player in the post-transcriptional regulation of CD83 expression by affecting the nucleocytoplasmic translocation of CD83 mRNA.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/physiology
- Animals
- Antigen Presentation/immunology
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, Surface/genetics
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- COS Cells
- Cell Nucleus/genetics
- Cell Nucleus/immunology
- Cell Nucleus/metabolism
- Chlorocebus aethiops
- Cytoplasm/genetics
- Cytoplasm/immunology
- Cytoplasm/metabolism
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- ELAV Proteins
- ELAV-Like Protein 1
- Gene Expression Regulation/physiology
- HeLa Cells
- Humans
- Immunoglobulins/biosynthesis
- Immunoglobulins/genetics
- Immunoglobulins/immunology
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/immunology
- Intracellular Signaling Peptides and Proteins/metabolism
- Jurkat Cells
- Ligands
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- NIH 3T3 Cells
- Nuclear Proteins/genetics
- Nuclear Proteins/immunology
- Nuclear Proteins/metabolism
- Phosphorylation
- Protein Processing, Post-Translational/physiology
- Protein Sorting Signals/physiology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/immunology
- RNA-Binding Proteins/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Necrosis Factor Ligand Superfamily Member 13/genetics
- Tumor Necrosis Factor Ligand Superfamily Member 13/immunology
- Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism
- CD83 Antigen
Collapse
Affiliation(s)
- Barbara Fries
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany and the
| | - Jochen Heukeshoven
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany and the
| | - Ilona Hauber
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany and the
| | - Cordula Grüttner
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany and the
| | - Carol Stocking
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany and the
| | - Ralph H Kehlenbach
- Zentrum für Biochemie und Molekulare Zellbiologie, Universität Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Joachim Hauber
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany and the
| | - Jan Chemnitz
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany and the.
| |
Collapse
|
29
|
Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KLB. eIF4E is a central node of an RNA regulon that governs cellular proliferation. J Cell Biol 2006; 175:415-26. [PMID: 17074885 PMCID: PMC2064519 DOI: 10.1083/jcb.200607020] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 10/06/2006] [Indexed: 11/25/2022] Open
Abstract
This study demonstrates that the eukaryotic translation initiation factor eIF4E is a critical node in an RNA regulon that impacts nearly every stage of cell cycle progression. Specifically, eIF4E coordinately promotes the messenger RNA (mRNA) export of several genes involved in the cell cycle. A common feature of these mRNAs is a structurally conserved, approximately 50-nucleotide element in the 3' untranslated region denoted as an eIF4E sensitivity element. This element is sufficient for localization of capped mRNAs to eIF4E nuclear bodies, formation of eIF4E-specific ribonucleoproteins in the nucleus, and eIF4E-dependent mRNA export. The roles of eIF4E in translation and mRNA export are distinct, as they rely on different mRNA elements. Furthermore, eIF4E-dependent mRNA export is independent of ongoing RNA or protein synthesis. Unlike the NXF1-mediated export of bulk mRNAs, eIF4E-dependent mRNA export is CRM1 dependent. Finally, the growth-suppressive promyelocytic leukemia protein (PML) inhibits this RNA regulon. These data provide novel perspectives into the proliferative and oncogenic properties of eIF4E.
Collapse
Affiliation(s)
- Biljana Culjkovic
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H4M 1J6, Canada
| | | | | | | | | |
Collapse
|