1
|
Brodrick AJ, Broadbent AJ. The Formation and Function of Birnaviridae Virus Factories. Int J Mol Sci 2023; 24:ijms24108471. [PMID: 37239817 DOI: 10.3390/ijms24108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
The use of infectious bursal disease virus (IBDV) reverse genetics to engineer tagged reporter viruses has revealed that the virus factories (VFs) of the Birnaviridae family are biomolecular condensates that show properties consistent with liquid-liquid phase separation (LLPS). Although the VFs are not bound by membranes, it is currently thought that viral protein 3 (VP3) initially nucleates the formation of the VF on the cytoplasmic leaflet of early endosomal membranes, and likely drives LLPS. In addition to VP3, IBDV VFs contain VP1 (the viral polymerase) and the dsRNA genome, and they are the sites of de novo viral RNA synthesis. Cellular proteins are also recruited to the VFs, which are likely to provide an optimal environment for viral replication; the VFs grow due to the synthesis of the viral components, the recruitment of other proteins, and the coalescence of multiple VFs in the cytoplasm. Here, we review what is currently known about the formation, properties, composition, and processes of these structures. Many open questions remain regarding the biophysical nature of the VFs, as well as the roles they play in replication, translation, virion assembly, viral genome partitioning, and in modulating cellular processes.
Collapse
Affiliation(s)
- Andrew J Brodrick
- Department of Animal and Avian Sciences, University of Maryland, 8127 Regents Drive, College Park, MD 20742, USA
| | - Andrew J Broadbent
- Department of Animal and Avian Sciences, University of Maryland, 8127 Regents Drive, College Park, MD 20742, USA
| |
Collapse
|
2
|
Diaz-Beneitez E, Cubas-Gaona LL, Candelas-Rivera O, Benito-Zafra A, Sánchez-Aparicio MT, Miorin L, Rodríguez JF, García-Sastre A, Rodríguez D. Interaction between chicken TRIM25 and MDA5 and their role in mediated antiviral activity against IBDV infection. Front Microbiol 2022; 13:1068328. [PMID: 36519174 PMCID: PMC9742432 DOI: 10.3389/fmicb.2022.1068328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2023] Open
Abstract
Infectious Bursal Disease Virus (IBDV) is the causative agent of an immunosuppressive disease that affects domestic chickens (Gallus gallus) severely affecting poultry industry worldwide. IBDV infection is characterized by a rapid depletion of the bursal B cell population by apoptosis and the atrophy of this chief lymphoid organ. Previous results from our laboratory have shown that exposure of infected cells to type I IFN leads to an exacerbated apoptosis, indicating an important role of IFN in IBDV pathogenesis. It has been described that recognition of the dsRNA IBDV genome by MDA5, the only known cytoplasmic pattern recognition receptor for viral RNA in chickens, leads to type I IFN production. Here, we confirm that TRIM25, an E3 ubiquitin ligase that leads to RIG-I activation in mammalian cells, significantly contributes to positively regulate MDA5-mediated activation of the IFN-inducing pathway in chicken DF-1 cells. Ectopic expression of chTRIM25 together with chMDA5 or a deletion mutant version exclusively harboring the CARD domains (chMDA5 2CARD) enhances IFN-β and NF-ĸB promoter activation. Using co-immunoprecipitation assays, we show that chMDA5 interacts with chTRIM25 through the CARD domains. Moreover, chTRIM25 co-localizes with both chMDA5 and chMDA5 2CARD, but not with chMDA5 mutant proteins partially or totally lacking these domains. On the other hand, ablation of endogenous chTRIM25 expression reduces chMDA5-induced IFN-β and NF-ĸB promoter activation. Interestingly, ectopic expression of either wild-type chTRIM25, or a mutant version (chTRIM25 C59S/C62S) lacking the E3 ubiquitin ligase activity, restores the co-stimulatory effect of chMDA5 in chTRIM25 knockout cells, suggesting that the E3-ubiquitin ligase activity of chTRIM25 is not required for its downstream IFN-β and NF-ĸB activating function. Also, IBDV-induced expression of IFN-β, Mx and OAS genes was reduced in chTRIM25 knockout as compared to wild-type cells, hence contributing to the enhancement of IBDV replication. Enhanced permissiveness to replication of other viruses, such as avian reovirus, Newcastle disease virus and vesicular stomatitis virus was also observed in chTRIM25 knockout cells. Additionally, chTRIM25 knockout also results in reduced MAVS-induced IFN-β promoter stimulation. Nonetheless, similarly to its mammalian counterpart, chTRIM25 overexpression in wild-type DF-1 cells causes the degradation of ectopically expressed chMAVS.
Collapse
Affiliation(s)
- Elisabet Diaz-Beneitez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | - Oscar Candelas-Rivera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Ana Benito-Zafra
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Maria Teresa Sánchez-Aparicio
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - José F. Rodríguez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine, New York, NY, United States
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell-Based MedicineI at Mount Sinai, Icahn School of Medicine, New York, NY, United States
| | - Dolores Rodríguez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| |
Collapse
|
3
|
The Tail-Specific Protease Is Important for Legionella pneumophila To Survive Thermal Stress in Water and inside Amoebae. Appl Environ Microbiol 2021; 87:AEM.02975-20. [PMID: 33608288 DOI: 10.1128/aem.02975-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/09/2021] [Indexed: 12/26/2022] Open
Abstract
Legionella pneumophila (Lp) is an inhabitant of natural and human-made water systems, where it replicates within amoebae and ciliates and survives within biofilms. When Lp-contaminated aerosols are breathed in, Lp can enter the lungs and may infect human alveolar macrophages, causing severe pneumonia known as Legionnaires' disease. Lp is often found in hot water distribution systems (HWDS), which are linked to nosocomial outbreaks. Heat treatment is used to disinfect HWDS and reduce the concentration of Lp However, Lp is often able to recolonize these water systems, indicating an efficient heat shock response. Tail-specific proteases (Tsp) are typically periplasmic proteases implicated in degrading aberrant proteins in the periplasm and important for surviving thermal stress. In Lp Philadelphia-1, Tsp is encoded by the lpg0499 gene. In this paper, we show that Tsp is important for surviving thermal stress in water and for optimal infection of amoeba when a shift in temperature occurs during intracellular growth. We also demonstrate that Tsp is expressed in the postexponential phase but repressed in the exponential phase and that the cis-encoded small regulatory RNA Lpr17 shows the opposite expression, suggesting that it represses translation of tsp In addition, our results show that tsp is regulated by CpxR, a major regulator in Lp, in an Lpr17-independent manner. Deletion of CpxR also reduced the ability of Lp to survive heat shock. In conclusion, our study shows that Tsp is likely an important factor for the survival and growth of Lp in water systems.IMPORTANCE Lp is a major cause of nosocomial and community-acquired pneumonia. Lp is found in water systems, including hot water distribution systems. Heat treatment is a method of disinfection often used to limit the presence of Lp in such systems; however, the benefit is usually short term, as Lp is able to quickly recolonize these systems. Presumably, Lp responds efficiently to thermal stress, but so far, not much is known about the genes involved. In this paper, we show that the Tsp and the two-component system CpxRA are required for resistance to thermal stress when Lp is free in water and when it is inside host cells. Our study identifies critical systems for the survival of Lp in its natural environment under thermal stress.
Collapse
|
4
|
Orakpoghenor O, Oladele SB, Abdu PA. Infectious Bursal Disease: Transmission, Pathogenesis, Pathology and Control - An Overview. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1716652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | - Sunday B. Oladele
- Department of Veterinary Pathology, Ahmadu Bello University, Zaria, Nigeria
| | - Paul A. Abdu
- Department of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
5
|
Mertens J, Bondia P, Allende-Ballestero C, Carrascosa JL, Flors C, Castón JR. Mechanics of Virus-like Particles Labeled with Green Fluorescent Protein. Biophys J 2018; 115:1561-1568. [PMID: 30249401 DOI: 10.1016/j.bpj.2018.08.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/01/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
Nanoindentation with an atomic force microscope was used to investigate the mechanical properties of virus-like particles (VLPs) derived from the avian pathogen infectious bursal disease virus, in which the major capsid protein was modified by fusion with enhanced green fluorescent protein (EGFP). These VLPs assemble as ∼70-nm-diameter T = 13 icosahedral capsids with large cargo space. The effect of the insertion of heterologous proteins in the capsid was characterized in the elastic regime, revealing that EGFP-labeled chimeric VLPs are more rigid than unmodified VLPs. In addition, nanoindentation measurements beyond the elastic regime allowed the determination of brittleness and rupture force limit. EGFP incorporation results in a complex shape of the indentation curve and lower critical indentation depth of the capsid, rendering more brittle particles as compared to unlabeled VLPs. These observations suggest the presence of a complex and more constrained network of interactions between EGFP and the capsid inner shell. These results highlight the effect of fluorescent protein insertion on the mechanical properties of these capsids. Because the physical properties of the viral capsid are connected to viral infectivity and VLP transport and disassembly, our results are relevant to design improved labeling strategies for fluorescence tracking in living cells.
Collapse
Affiliation(s)
- Johann Mertens
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanoscience), Madrid, Spain
| | - Patricia Bondia
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanoscience), Madrid, Spain; Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Campus de Cantoblanco, Madrid, Spain
| | | | - José L Carrascosa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain; Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Campus de Cantoblanco, Madrid, Spain
| | - Cristina Flors
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanoscience), Madrid, Spain; Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Campus de Cantoblanco, Madrid, Spain.
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain; Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Campus de Cantoblanco, Madrid, Spain.
| |
Collapse
|
6
|
The RNA-Binding Protein of a Double-Stranded RNA Virus Acts like a Scaffold Protein. J Virol 2018; 92:JVI.00968-18. [PMID: 30021893 DOI: 10.1128/jvi.00968-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022] Open
Abstract
Infectious bursal disease virus (IBDV), a nonenveloped, double-stranded RNA (dsRNA) virus with a T=13 icosahedral capsid, has a virion assembly strategy that initiates with a precursor particle based on an internal scaffold shell similar to that of tailed double-stranded DNA (dsDNA) viruses. In IBDV-infected cells, the assembly pathway results mainly in mature virions that package four dsRNA segments, although minor viral populations ranging from zero to three dsRNA segments also form. We used cryo-electron microscopy (cryo-EM), cryo-electron tomography, and atomic force microscopy to characterize these IBDV populations. The VP3 protein was found to act as a scaffold protein by building an irregular, ∼40-Å-thick internal shell without icosahedral symmetry, which facilitates formation of a precursor particle, the procapsid. Analysis of IBDV procapsid mechanical properties indicated a VP3 layer beneath the icosahedral shell, which increased the effective capsid thickness. Whereas scaffolding proteins are discharged in tailed dsDNA viruses, VP3 is a multifunctional protein. In mature virions, VP3 is bound to the dsRNA genome, which is organized as ribonucleoprotein complexes. IBDV is an amalgam of dsRNA viral ancestors and traits from dsDNA and single-stranded RNA (ssRNA) viruses.IMPORTANCE Structural analyses highlight the constraint of virus evolution to a limited number of capsid protein folds and assembly strategies that result in a functional virion. We report the cryo-EM and cryo-electron tomography structures and the results of atomic force microscopy studies of the infectious bursal disease virus (IBDV), a double-stranded RNA virus with an icosahedral capsid. We found evidence of a new inner shell that might act as an internal scaffold during IBDV assembly. The use of an internal scaffold is reminiscent of tailed dsDNA viruses, which constitute the most successful self-replicating system on Earth. The IBDV scaffold protein is multifunctional and, after capsid maturation, is genome bound to form ribonucleoprotein complexes. IBDV encompasses numerous functional and structural characteristics of RNA and DNA viruses; we suggest that IBDV is a modern descendant of ancestral viruses and comprises different features of current viral lineages.
Collapse
|
7
|
Exacerbated Apoptosis of Cells Infected with Infectious Bursal Disease Virus upon Exposure to Interferon Alpha. J Virol 2018. [PMID: 29540594 DOI: 10.1128/jvi.00364-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Infectious bursal disease virus (IBDV) belongs to the Birnaviridae family and is the etiological agent of a highly contagious and immunosuppressive disease (IBD) that affects domestic chickens (Gallus gallus). IBD or Gumboro disease leads to high rates of morbidity and mortality of infected animals and is responsible for major economic losses to the poultry industry worldwide. IBD is characterized by a massive loss of IgM-bearing B lymphocytes and the destruction of the bursa of Fabricius. The molecular bases of IBDV pathogenicity are still poorly understood; nonetheless, an exacerbated cytokine immune response and B cell depletion due to apoptosis are considered main factors that contribute to the severity of the disease. Here we have studied the role of type I interferon (IFN) in IBDV infection. While IFN pretreatment confers protection against subsequent IBDV infection, the addition of IFN to infected cell cultures early after infection drives massive apoptotic cell death. Downregulation of double-stranded RNA (dsRNA)-dependent protein kinase (PKR), tumor necrosis factor alpha (TNF-α), or nuclear factor κB (NF-κB) expression drastically reduces the extent of apoptosis, indicating that they are critical proteins in the apoptotic response induced by IBDV upon treatment with IFN-α. Our results indicate that IBDV genomic dsRNA is a major viral factor that contributes to the triggering of apoptosis. These findings provide novel insights into the potential mechanisms of IBDV-induced immunosuppression and pathogenesis in chickens.IMPORTANCE IBDV infection represents an important threat to the poultry industry worldwide. IBDV-infected chickens develop severe immunosuppression, which renders them highly susceptible to secondary infections and unresponsive to vaccination against other pathogens. The early dysregulation of the innate immune response led by IBDV infection and the exacerbated apoptosis of B cells have been proposed as the main factors that contribute to virus-induced immunopathogenesis. Our work contributes for the first time to elucidating a potential mechanism driving the apoptotic death of IBDV-infected cells upon exposure to type I IFN. We provide solid evidence about the critical importance of PKR, TNF-α, and NF-κB in this phenomenon. The described mechanism could facilitate the early clearance of infected cells, thereby aiding in the amelioration of IBDV-induced pathogenesis, but it could also contribute to B cell depletion and immunosuppression. The balance between these two opposing effects might be dramatically affected by the genetic backgrounds of both the host and the infecting virus strain.
Collapse
|
8
|
Pascual E, Mata CP, Carrascosa JL, Castón JR. Assembly/disassembly of a complex icosahedral virus to incorporate heterologous nucleic acids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:494001. [PMID: 29083994 PMCID: PMC7103166 DOI: 10.1088/1361-648x/aa96ec] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Hollow protein containers are widespread in nature, and include virus capsids as well as eukaryotic and bacterial complexes. Protein cages are studied extensively for applications in nanotechnology, nanomedicine and materials science. Their inner and outer surfaces can be modified chemically or genetically, and the internal cavity can be used to template, store and/or arrange molecular cargos. Virus capsids and virus-like particles (VLP, noninfectious particles) provide versatile platforms for nanoscale bioengineering. Study of capsid protein self-assembly into monodispersed particles, and of VLP structure and biophysics is necessary not only to understand natural processes, but also to infer how these platforms can be redesigned to furnish novel functional VLP. Here we address the assembly dynamics of infectious bursal disease virus (IBDV), a complex icosahedral virus. IBDV has a ~70 nm-diameter T = 13 capsid with VP2 trimers as the only structural subunits. During capsid assembly, VP2 is synthesized as a precursor (pVP2) whose C terminus is cleaved. The pVP2 C terminus has an amphipathic helix that controls VP2 polymorphism. In the absence of the VP3 scaffolding protein, necessary for control of assembly, 466/456-residue pVP2 intermediates bearing this helix assemble into VLP only when expressed with an N-terminal His6 tag (the HT-VP2-466 protein). HT-VP2-466 capsids are optimal for genetic insertion of proteins (cargo space ~78 000 nm3). We established an in vitro assembly/disassembly system of HT-VP2-466-based VLP for heterologous nucleic acid packaging and/or encapsulation of drugs and other molecules. HT-VP2-466 (empty) capsids were disassembled and reassembled by dialysis against low-salt/basic pH and high-salt/acid pH buffers, respectively, thus illustrating the reversibility in vitro of IBDV capsid assembly. HT-VP2-466 VLP also packed heterologous DNA by non-specific confinement during assembly. These and previous results establish the bases for biotechnological applications based on the IBDV capsid and its ability to incorporate exogenous proteins and nucleic acids.
Collapse
Affiliation(s)
- Elena Pascual
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, Madrid, Spain
| | - Carlos P Mata
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, Madrid, Spain
| | - José L Carrascosa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, Madrid, Spain
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, Madrid, Spain
| |
Collapse
|
9
|
Nothling MD, Ganesan A, Condic-Jurkic K, Pressly E, Davalos A, Gotrik MR, Xiao Z, Khoshdel E, Hawker CJ, O'Mara ML, Coote ML, Connal LA. Simple Design of an Enzyme-Inspired Supported Catalyst Based on a Catalytic Triad. Chem 2017. [DOI: 10.1016/j.chempr.2017.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
A protein with simultaneous capsid scaffolding and dsRNA-binding activities enhances the birnavirus capsid mechanical stability. Sci Rep 2015; 5:13486. [PMID: 26336920 PMCID: PMC4559658 DOI: 10.1038/srep13486] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/24/2015] [Indexed: 12/20/2022] Open
Abstract
Viral capsids are metastable structures that perform many essential processes; they also act as robust cages during the extracellular phase. Viruses can use multifunctional proteins to optimize resources (e.g., VP3 in avian infectious bursal disease virus, IBDV). The IBDV genome is organized as ribonucleoproteins (RNP) of dsRNA with VP3, which also acts as a scaffold during capsid assembly. We characterized mechanical properties of IBDV populations with different RNP content (ranging from none to four RNP). The IBDV population with the greatest RNP number (and best fitness) showed greatest capsid rigidity. When bound to dsRNA, VP3 reinforces virus stiffness. These contacts involve interactions with capsid structural subunits that differ from the initial interactions during capsid assembly. Our results suggest that RNP dimers are the basic stabilization units of the virion, provide better understanding of multifunctional proteins, and highlight the duality of RNP as capsid-stabilizing and genetic information platforms.
Collapse
|
11
|
Wang S, Hu B, Si W, Jia L, Zheng X, Zhou J. Avibirnavirus VP4 Protein Is a Phosphoprotein and Partially Contributes to the Cleavage of Intermediate Precursor VP4-VP3 Polyprotein. PLoS One 2015; 10:e0128828. [PMID: 26046798 PMCID: PMC4457844 DOI: 10.1371/journal.pone.0128828] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/30/2015] [Indexed: 11/19/2022] Open
Abstract
Birnavirus-encoded viral protein 4 (VP4) utilizes a Ser/Lys catalytic dyad mechanism to process polyprotein. Here three phosphorylated amino acid residues Ser538, Tyr611 and Thr674 within the VP4 protein of the infectious bursal disease virus (IBDV), a member of the genus Avibirnavirus of the family Birnaviridae, were identified by mass spectrometry. Anti-VP4 monoclonal antibodies finely mapping to phosphorylated (p)Ser538 and the epitope motif 530PVVDGIL536 were generated and verified. Proteomic analysis showed that in IBDV-infected cells the VP4 was distributed mainly in the cytoskeletal fraction and existed with different isoelectric points and several phosphorylation modifications. Phosphorylation of VP4 did not influence the aggregation of VP4 molecules. The proteolytic activity analysis verified that the pTyr611 and pThr674 sites within VP4 are involved in the cleavage of viral intermediate precursor VP4-VP3. This study demonstrates that IBDV-encoded VP4 protein is a unique phosphoprotein and that phosphorylation of Tyr611 and Thr674 of VP4 affects its serine-protease activity.
Collapse
Affiliation(s)
- Sanying Wang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
- Shaoxing Center for Disease Control and Prevention, Shaoxing, PR China
| | - Boli Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Weiying Si
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
| | - Lu Jia
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
| | - Xiaojuan Zheng
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
- State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, PR China
- * E-mail: (JYZ); (XJZ)
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, PR China
- * E-mail: (JYZ); (XJZ)
| |
Collapse
|
12
|
Verdaguer N, Ferrero D, Murthy MRN. Viruses and viral proteins. IUCRJ 2014; 1:492-504. [PMID: 25485129 PMCID: PMC4224467 DOI: 10.1107/s205225251402003x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/04/2014] [Indexed: 05/30/2023]
Abstract
For more than 30 years X-ray crystallography has been by far the most powerful approach for determining the structures of viruses and viral proteins at atomic resolution. The information provided by these structures, which covers many important aspects of the viral life cycle such as cell-receptor recognition, viral entry, nucleic acid transfer and genome replication, has extensively enriched our vision of the virus world. Many of the structures available correspond to potential targets for antiviral drugs against important human pathogens. This article provides an overview of the current knowledge of different structural aspects of the above-mentioned processes.
Collapse
Affiliation(s)
- Nuria Verdaguer
- Institut de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Baldiri i Reixac 15, 08028-Barcelona, Spain
| | - Diego Ferrero
- Institut de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Baldiri i Reixac 15, 08028-Barcelona, Spain
| | - Mathur R. N. Murthy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
13
|
Chang GRL, Chian WH, Liao JH, Lin HM, Lai SY, Wang MY. Characterization of tubule and monomer derived from VP4 protein of infectious bursal disease virus. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
A reassortment vaccine candidate as the improved formulation to induce protection against very virulent infectious bursal disease virus. Vaccine 2014; 32:1436-43. [DOI: 10.1016/j.vaccine.2014.01.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/08/2014] [Accepted: 01/15/2014] [Indexed: 11/22/2022]
|
15
|
Sorci L, Brunetti L, Cialabrini L, Mazzola F, Kazanov MD, D'Auria S, Ruggieri S, Raffaelli N. Characterization of bacterial NMN deamidase as a Ser/Lys hydrolase expands diversity of serine amidohydrolases. FEBS Lett 2014; 588:1016-23. [PMID: 24530526 DOI: 10.1016/j.febslet.2014.01.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/23/2014] [Accepted: 01/26/2014] [Indexed: 10/25/2022]
Abstract
NMN deamidase (PncC) is a bacterial enzyme involved in NAD biosynthesis. We have previously demonstrated that PncC is structurally distinct from other known amidohydrolases. Here, we extended PncC characterization by mutating all potential catalytic residues and assessing their individual roles in catalysis through kinetic analyses. Inspection of these residues' spatial arrangement in the active site, allowed us to conclude that PncC is a serine-amidohydrolase, employing a Ser/Lys dyad for catalysis. Analysis of the PncC structure in complex with a modeled NMN substrate supported our conclusion, and enabled us to propose the catalytic mechanism.
Collapse
Affiliation(s)
- Leonardo Sorci
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Lucia Brunetti
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Lucia Cialabrini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesca Mazzola
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Marat D Kazanov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Sabato D'Auria
- Laboratory for Molecular Sensing, IBP-CNR, Napoli, Italy
| | - Silverio Ruggieri
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
| |
Collapse
|
16
|
Qi X, Zhang L, Chen Y, Gao L, Wu G, Qin L, Wang Y, Ren X, Gao Y, Gao H, Wang X. Mutations of residues 249 and 256 in VP2 are involved in the replication and virulence of infectious Bursal disease virus. PLoS One 2013; 8:e70982. [PMID: 23923037 PMCID: PMC3724781 DOI: 10.1371/journal.pone.0070982] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/26/2013] [Indexed: 11/18/2022] Open
Abstract
Infectious bursal disease virus (IBDV) is a pathogen of worldwide significance to the poultry industry. Although the PDE and PFG domains of the capsid protein VP2 contribute significantly to virulence and fitness, the detailed molecular basis for the pathogenicity of IBDV is still not fully understood. Because residues 253 and 284 of VP2 are not the sole determinants of virulence, we hypothesized that other residues involved in virulence and fitness might exist in the PDE and PFG domains of VP2. To test this, five amino acid changes selected by sequence comparison of the PDE and PFG domains of VP2 were introduced individually using a reverse genetics system into the virulent strain (rGx-F9VP2). Then reverse mutations of the selected residues 249 and 256 were introduced individually into the attenuated strain (rGt). Seven modified viruses were generated and evaluated in vitro (CEF cells) and in vivo (SPF chicken). For residue 249, Q249R could elevate in vitro and reduce in vivo the replication of rGx-F9VP2 while R249Q could reduce in vitro and elevate in vivo the replication of rGt; meanwhile Q249R reduced the virulence of rGx-F9VP2 while R249Q increased the virulence of rGt, which indicated that residue 249 significantly contributed to the replication and virulence of IBDV. For residue 256, I256V could elevate in vitro and reduce in vivo the replication of rGx-F9VP2 while V256I could reduce in vitro but didn't change in vivo the replication of rGt; although V256I didn't increase the virulence of rGt, I256V obviously reduced the virulence of virulent IBDV. The present results demonstrate for the first time, to different extent, residues 249 and 256 of VP2 are involved in the replication efficiency and virulence of IBDV; this is not only beneficial to further understanding of pathogenic mechanism but also to the design of newly tailored vaccines against IBDV.
Collapse
Affiliation(s)
- Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Lizhou Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yuming Chen
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Li Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Guan Wu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Liting Qin
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Xiangang Ren
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Honglei Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, P. R. China
- * E-mail:
| |
Collapse
|
17
|
Wang Y, Kim SG, Wu J, Huh HH, Lee SJ, Rakwal R, Agrawal GK, Park ZY, Young Kang K, Kim ST. Secretome analysis of the rice bacterium Xanthomonas oryzae (Xoo) using in vitro and in planta systems. Proteomics 2013; 13:1901-12. [PMID: 23512849 DOI: 10.1002/pmic.201200454] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/29/2012] [Accepted: 12/04/2012] [Indexed: 12/22/2022]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight disease in rice, and that severely affects yield loss (upto 50%) of total rice production. Here, we report a proteomics investigation of Xoo (compatible race K3)-secreted proteins, isolated from its in vitro culture and in planta infected rice leaves. 2DE coupled with MALDI-TOF-MS and/or nLC-ESI-MS/MS approaches identified 139 protein spots (out of 153 differential spots), encoding 109 unique proteins. Identified proteins belonged to multiple biological and molecular functions. Metabolic and nutrient uptake proteins were common up to both in vitro and in planta secretomes. However, pathogenicity, protease/peptidase, and host defense-related proteins were highly or specifically expressed during in planta infection. A good correlation was observed between protein and transcript abundances for nine proteins secreted in planta as per semiquantitative RT-PCR analysis. Transgenic rice leaf sheath (carrying PBZ1 promoter::GFP cell death reporter), when used to express a few of the identified secretory proteins, showed a direct activation of cell death signaling, suggesting their involvement in pathogenicity related with secretion effectors. This work furthers our understanding of rice bacterial blight disease, and serves as a resource for possible translation in generating disease resistant rice plants for improved seed yield.
Collapse
Affiliation(s)
- Yiming Wang
- Plant Molecular Biology & Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chung IYW, Paetzel M. Crystal structures of yellowtail ascites virus VP4 protease: trapping an internal cleavage site trans acyl-enzyme complex in a native Ser/Lys dyad active site. J Biol Chem 2013; 288:13068-81. [PMID: 23511637 DOI: 10.1074/jbc.m112.386953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Yellowtail ascites virus (YAV) is an aquabirnavirus that causes ascites in yellowtail, a fish often used in sushi. Segment A of the YAV genome codes for a polyprotein (pVP2-VP4-VP3), where processing by its own VP4 protease yields the capsid protein precursor pVP2, the ribonucleoprotein-forming VP3, and free VP4. VP4 protease utilizes the rarely observed serine-lysine catalytic dyad mechanism. Here we have confirmed the existence of an internal cleavage site, preceding the VP4/VP3 cleavage site. The resulting C-terminally truncated enzyme (ending at Ala(716)) is active, as shown by a trans full-length VP4 cleavage assay and a fluorometric peptide cleavage assay. We present a crystal structure of a native active site YAV VP4 with the internal cleavage site trapped as trans product complexes and trans acyl-enzyme complexes. The acyl-enzyme complexes confirm directly the role of Ser(633) as the nucleophile. A crystal structure of the lysine general base mutant (K674A) reveals the acyl-enzyme and empty binding site states of VP4, which allows for the observation of structural changes upon substrate or product binding. These snapshots of three different stages in the VP4 protease reaction mechanism will aid in the design of anti-birnavirus compounds, provide insight into previous site-directed mutagenesis results, and contribute to understanding of the serine-lysine dyad protease mechanism. In addition, we have discovered that this protease contains a channel that leads from the enzyme surface (adjacent to the substrate binding groove) to the active site and the deacylating water.
Collapse
Affiliation(s)
- Ivy Yeuk Wah Chung
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | |
Collapse
|
19
|
Birnavirus VP4 Processing Endopeptidase. HANDBOOK OF PROTEOLYTIC ENZYMES 2013. [PMCID: PMC7150322 DOI: 10.1016/b978-0-12-382219-2.00779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Chang GRL, Wang MY, Liao JH, Hsiao YP, Lai SY. Endopeptidase activity characterization of E. coli-derived infectious bursal disease virus protein 4 tubules. Protein Eng Des Sel 2012; 25:789-95. [PMID: 23081839 DOI: 10.1093/protein/gzs087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Viral protein 4 (VP4) is a serine protease that catalyzes the hydrolysis of polyprotein pVP2-VP4-VP3 of infectious bursal disease virus. In this report, the recombinant VP4 with a His-tag and three mutants (VP4-S652A, VP4-K692A and VP4-S652A.K692A) were expressed in Escherichia coli. Soluble VP4 was purified using immobilized metal-ion affinity chromatography or sucrose density gradient following with gel-filtration chromatography. The purified VP4 has a tubular structure with 25-30 nm in width and ∼300 nm in length, as observed by transmission electron microscope. A similar tubular structure was also found for these three mutants. The endopeptidase activity of these VP4 tubules was characterized by fluorescence resonance energy transfer using a synthetic fluorogenic oligopeptide as a substrate. The results show that the tubule-like VP4 is a functional enzyme with K(m) of 43 ± 2 μM and k(cat) of 0.04 ± 0.01 min⁻¹; however, k(cat) of three mutants were significantly reduced. This is the first report to demonstrate that VP4 protein expressed in E. coli can self-assemble into functional tubule-like particles and its activity can be completely inhibited by 1 mM of Ni⁺² ions.
Collapse
Affiliation(s)
- Gary Ro-Lin Chang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
21
|
Irigoyen N, Castón JR, Rodríguez JF. Host proteolytic activity is necessary for infectious bursal disease virus capsid protein assembly. J Biol Chem 2012; 287:24473-82. [PMID: 22619177 DOI: 10.1074/jbc.m112.356113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In many viruses, a precursor particle, or procapsid, is assembled and undergoes massive chemical and physical modification to produce the infectious capsid. Capsid assembly and maturation are finely tuned processes in which viral and host factors participate. We show that the precursor of the VP2 capsid protein (pVP2) of the infectious bursal disease virus (IBDV), a double-stranded RNA virus, is processed at the C-terminal domain (CTD) by a host protease, the puromycin-sensitive aminopeptidase (PurSA). The pVP2 CTD (71 residues) has an important role in determining the various conformations of VP2 (441 residues) that build the T = 13 complex capsid. pVP2 CTD activity is controlled by co- and posttranslational proteolytic modifications of different targets by the VP4 viral protease and by VP2 itself to yield the mature VP2-441 species. Puromycin-sensitive aminopeptidase is responsible for the peptidase activity that cleaves the Arg-452-Arg-453 bond to generate the intermediate pVP2-452 polypeptide. A pVP2 R453A substitution abrogates PurSA activity. We used a baculovirus-based system to express the IBDV polyprotein in insect cells and found inefficient formation of virus-like particles similar to IBDV virions, which correlates with the absence of puromycin-sensitive aminopeptidase in these cells. Virus-like particle assembly was nonetheless rescued efficiently by coexpression of chicken PurSA or pVP2-452 protein. Silencing or pharmacological inhibition of puromycin-sensitive aminopeptidase activity in cell lines permissive for IBDV replication caused a major blockade in assembly and/or maturation of infectious IBDV particles, as virus yields were reduced markedly. PurSA activity is thus essential for IBDV replication.
Collapse
Affiliation(s)
- Nerea Irigoyen
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología/CSIC, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
22
|
Nam SE, Kim AC, Paetzel M. Crystal structure of Bacillus subtilis signal peptide peptidase A. J Mol Biol 2012; 419:347-58. [PMID: 22472423 DOI: 10.1016/j.jmb.2012.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/16/2012] [Accepted: 03/26/2012] [Indexed: 11/28/2022]
Abstract
Signal peptide peptidase A (SppA) is a membrane-bound self-compartmentalized serine protease that functions to cleave the remnant signal peptides left behind after protein secretion and cleavage by signal peptidases. SppA is found in plants, archaea and bacteria. Here, we report the first crystal structure of a Gram-positive bacterial SppA. The 2.4-Å-resolution structure of Bacillus subtilis SppA (SppA(BS)) catalytic domain reveals eight SppA(BS) molecules in the asymmetric unit, forming a dome-shaped octameric complex. The octameric state of SppA(BS) is supported by analytical size-exclusion chromatography and multi-angle light scattering analysis. Our sequence analysis, mutagenesis and activity assays are consistent with Ser147 serving as the nucleophile and Lys199 serving as the general base; however, they are located in different region of the protein, more than 29 Å apart. Only upon assembling the octamer do the serine and lysine come within close proximity, with neighboring protomers each providing one-half of the catalytic dyad, thus producing eight separate active sites within the complex, twice the number seen within Escherichia coli SppA (SppA(EC)). The SppA(BS) S1 substrate specificity pocket is deep, narrow and hydrophobic, but with a polar bottom. The S3 pocket, which is constructed from two neighboring proteins, is shallower, wider and more polar than the S1 pocket. A comparison of these pockets to those seen in SppA(EC) reveals a significant difference in the size and shape of the S1 pocket, which we show is reflected in the repertoire of peptides the enzymes are capable of cleaving.
Collapse
Affiliation(s)
- Sung-Eun Nam
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | | | | |
Collapse
|
23
|
Chung IYW, Paetzel M. Crystal structure of a viral protease intramolecular acyl-enzyme complex: insights into cis-cleavage at the VP4/VP3 junction of Tellina birnavirus. J Biol Chem 2011; 286:12475-82. [PMID: 21288899 PMCID: PMC3069450 DOI: 10.1074/jbc.m110.198812] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/10/2011] [Indexed: 11/06/2022] Open
Abstract
Viruses of the Birnaviridae family are characterized by their bisegmented double-stranded RNA genome that resides within a single-shelled non-enveloped icosahedral particle. They infect birds, aquatic organisms, and insects. Tellina virus 1 (TV-1) is an Aquabirnavirus isolated from the mollusk Tellina tenuis. It encodes a polyprotein (NH2-pVP2-X-VP4-VP3-COOH) that is cleaved by the self-encoded protease VP4 to yield capsid precursor protein pVP2, peptide X, and ribonucleoprotein VP3. Here we report the crystal structure of an intramolecular (cis) acyl-enzyme complex of TV-1 VP4 at 2.1-Å resolution. The structure reveals how the enzyme can recognize its own carboxyl terminus during the VP4/VP3 cleavage event. The methyl side chains of Ala830(P1) and Ala828(P3) at the VP4/VP3 junction point into complementary shallow and hydrophobic S1 and S3 binding pockets adjacent to the VP4 catalytic residues: nucleophile Ser738 and general base Lys777. The electron density clearly shows that the carbonyl carbon of Ala830 is covalently attached via an ester bond to the Oγ of Ser738. A highly ordered water molecule in the active site is coordinated in the proper position to act as the deacylating water. A comparative analysis of this intramolecular (cis) acyl-enzyme structure with the previously solved intermolecular (trans) acyl-enzyme structure of infectious pancreatic necrosis virus VP4 explains the narrower specificity observed in the cleavage sites of TV-1 VP4.
Collapse
Affiliation(s)
- Ivy Yeuk Wah Chung
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Mark Paetzel
- From the Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
24
|
Brooks CL, Lazareno-Saez C, Lamoureux JS, Mak MW, Lemieux MJ. Insights into substrate gating in H. influenzae rhomboid. J Mol Biol 2011; 407:687-97. [PMID: 21295583 DOI: 10.1016/j.jmb.2011.01.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 01/16/2023]
Abstract
Rhomboids are a remarkable class of serine proteases that are embedded in lipid membranes. These membrane-bound enzymes play key roles in cellular signaling events, and disruptions in these events can result in numerous disease pathologies, including hereditary blindness, type 2 diabetes, Parkinson's disease, and epithelial cancers. Recent crystal structures of rhomboids from Escherichia coli have focused on how membrane-bound substrates gain access to a buried active site. In E. coli, it has been shown that movements of loop 5, with smaller movements in helix 5 and loop 4, act as substrate gate, facilitating inhibitor access to rhomboid catalytic residues. Herein we present a new structure of the Haemophilus influenzae rhomboid hiGlpG, which reveals disorder in loop 5, helix 5, and loop 4, indicating that, together, they represent mobile elements of the substrate gate. Substrate cleavage assays by hiGlpG with amino acid substitutions in these mobile regions demonstrate that the flexibilities of both loop 5 and helix 5 are important for access of the substrates to the catalytic residues. Mutagenesis indicates that less mobility by loop 4 is required for substrate cleavage. A reexamination of the reaction mechanism of rhomboid substrates, whereby cleavage of the scissile bond occurs on the si-face of the peptide bond, is discussed.
Collapse
Affiliation(s)
- Cory L Brooks
- Membrane Protein Disease Research Group, Department of Biochemistry, Faculty of Medicine and Dentistry,University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | |
Collapse
|
25
|
Chung IYW, Paetzel M. Expression, purification and crystallization of VP4 protease from Tellina virus 1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:157-60. [PMID: 21206051 PMCID: PMC3079999 DOI: 10.1107/s1744309110048803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 11/22/2010] [Indexed: 11/11/2022]
Abstract
Tellina virus 1 is an aquabirnavirus that was isolated from the sand-dwelling marine bivalve mollusc Tellina tenuis. The self-encoded protease viral protein 4 (VP4) processes its own polyprotein to yield the individual proteins VP2 and VP3 that are required for viral assembly. VP4 protease utilizes a serine-lysine catalytic dyad in its mechanism. A full-length VP4 construct was overexpressed in Escherichia coli and purified to homogeneity using nickel-affinity chromatography. Ion-exchange and size-exclusion chromatographic steps were utilized to isolate a monomeric fraction of the protein. The purified monomeric VP4 was subjected to limited proteolysis to yield crystallizable protein. Crystal growth was performed using the hanging-drop vapour-diffusion method and was carried out at room temperature (∼296 K). Hexagonal crystals grew in the presence of PEG 8000, ammonium sulfate and urea. These crystals diffracted to beyond 2.1 Å resolution and belonged to space group P6(4)22, with unit-cell parameters a=59.1, b=59.1, c=208.1 Å, one molecule in the asymmetric unit and a solvent content of 42%.
Collapse
Affiliation(s)
- Ivy Yeuk Wah Chung
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Mark Paetzel
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
26
|
García-Nafría J, Ondrovicová G, Blagova E, Levdikov VM, Bauer JA, Suzuki CK, Kutejová E, Wilkinson AJ, Wilson KS. Structure of the catalytic domain of the human mitochondrial Lon protease: proposed relation of oligomer formation and activity. Protein Sci 2010; 19:987-99. [PMID: 20222013 DOI: 10.1002/pro.376] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ATP-dependent proteases are crucial for cellular homeostasis. By degrading short-lived regulatory proteins, they play an important role in the control of many cellular pathways and, through the degradation of abnormally misfolded proteins, protect the cell from a buildup of aggregates. Disruption or disregulation of mammalian mitochondrial Lon protease leads to severe changes in the cell, linked with carcinogenesis, apoptosis, and necrosis. Here we present the structure of the proteolytic domain of human mitochondrial Lon at 2 A resolution. The fold resembles those of the three previously determined Lon proteolytic domains from Escherichia coli, Methanococcus jannaschii, and Archaeoglobus fulgidus. There are six protomers in the asymmetric unit, four arranged as two dimers. The intersubunit interactions within the two dimers are similar to those between adjacent subunits of the hexameric ring of E. coli Lon, suggesting that the human Lon proteolytic domain also forms hexamers. The active site contains a 3(10) helix attached to the N-terminal end of alpha-helix 2, which leads to the insertion of Asp852 into the active site, as seen in M. jannaschii. Structural considerations make it likely that this conformation is proteolytically inactive. When comparing the intersubunit interactions of human with those of E. coli Lon taken with biochemical data leads us to propose a mechanism relating the formation of Lon oligomers with a conformational shift in the active site region coupled to a movement of a loop in the oligomer interface, converting the proteolytically inactive form seen here to the active one in the E. coli hexamer.
Collapse
Affiliation(s)
- Javier García-Nafría
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Saugar I, Irigoyen N, Luque D, Carrascosa JL, Rodríguez JF, Castón JR. Electrostatic interactions between capsid and scaffolding proteins mediate the structural polymorphism of a double-stranded RNA virus. J Biol Chem 2009; 285:3643-3650. [PMID: 19933276 DOI: 10.1074/jbc.m109.075994] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Capsid proteins that adopt distinct conformations constitute a paradigm of the structural polymorphism of macromolecular assemblies. We show the molecular basis of the flexibility mechanism of VP2, the capsid protein of the double-stranded RNA virus infectious bursal disease virus. The initial assembly, a procapsid-like structure, is built by the protein precursor pVP2 and requires VP3, the other infectious bursal disease virus major structural protein, which acts as a scaffold. The pVP2 C-terminal region, which is proteolyzed during virus maturation, contains an amphipathic alpha-helix that acts as a molecular switch. In the absence of VP3, efficient virus-like particle assembly occurs when the structural unit is a VP2-based chimeric protein with an N-terminal-fused His(6) tag. The His tag has a positively charged N terminus and a negatively charged C terminus, both important for virion-like structure assembly. The charge distributions of the VP3 C terminus and His tag are similar. We tested whether the His tag emulates the role of VP3 and found that the presence of a VP3 C-terminal peptide in VP2-based chimeric proteins resulted in the assembly of virus-like particles. We analyzed the electrostatic interactions between these two charged morphogenetic peptides, in which a single residue was mutated to impede the predicted interaction, followed by a compensatory double mutation to rescue electrostatic interactions. The effects of these mutations were monitored by following the virus-like and/or virus-related assemblies. Our results suggest that the basic face of the pVP2 amphipathic alpha-helix interacts with the acidic region of the VP3 C terminus and that this interaction is essential for VP2 acquisition of competent conformations for capsid assembly.
Collapse
Affiliation(s)
- Irene Saugar
- From the Departments of Structure of Macromolecules, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
| | - Nerea Irigoyen
- Molecular and Cellular Biology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
| | - Daniel Luque
- From the Departments of Structure of Macromolecules, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
| | - José L Carrascosa
- From the Departments of Structure of Macromolecules, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
| | - José F Rodríguez
- Molecular and Cellular Biology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
| | - José R Castón
- From the Departments of Structure of Macromolecules, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
28
|
Ekici OD, Zhu J, Wah Chung IY, Paetzel M, Dalbey RE, Pei D. Profiling the substrate specificity of viral protease VP4 by a FRET-based peptide library approach. Biochemistry 2009; 48:5753-9. [PMID: 19435306 DOI: 10.1021/bi900461e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Knowing the substrate specificity of a protease is useful in determining its physiological substrates, developing robust assays, and designing specific inhibitors against the enzyme. In this work, we report the development of a combinatorial peptide library method for systematically profiling the substrate specificity of endopeptidases. A fluorescent donor (Edans) and quencher (Dabcyl) pair was added to the C- and N-termini of a support-bound peptide. Protease cleavage of the peptide removed the N-terminal quencher, resulting in fluorescent beads, which were isolated and individually sequenced by partial Edman degradation and mass spectrometry (PED-MS) to reveal the peptide sequence, as well as the site of proteolytic cleavage. The method was validated with bovine trypsin and Escherichia coli leader peptidase and subsequently applied to determine the substrate specificity of a viral protease, VP4, derived from the blotched snakehead virus (BSNV). The results show that VP4 cleaves peptides with a consensus sequence of (Abu/Ala/Pro)-X-Ala downward arrowX, in agreement with the previously observed cleavage sites in its protein substrates. Resynthesis and a solution-phase assay of several representative sequences against VP4 confirmed the library screening results.
Collapse
Affiliation(s)
- Ozlem Dogan Ekici
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
29
|
Antibody to VP4 protein is an indicator discriminating pathogenic and nonpathogenic IBDV infection. Mol Immunol 2009; 46:1964-9. [DOI: 10.1016/j.molimm.2009.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Revised: 03/12/2009] [Accepted: 03/14/2009] [Indexed: 11/23/2022]
|
30
|
Delgui L, Oña A, Gutiérrez S, Luque D, Navarro A, Castón JR, Rodríguez JF. The capsid protein of infectious bursal disease virus contains a functional alpha 4 beta 1 integrin ligand motif. Virology 2009; 386:360-72. [PMID: 19243806 DOI: 10.1016/j.virol.2008.12.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/17/2008] [Accepted: 12/22/2008] [Indexed: 01/31/2023]
Abstract
Infectious bursal disease virus (IBDV), a member of the dsRNA Birnaviridae family, is an important immunosuppressive avian pathogen. We have identified a strictly conserved amino acid triplet matching the consensus sequence used by fibronectin to bind the alpha 4 beta 1 integrin within the protruding domain of the IBDV capsid polypeptide. We show that a single point mutation on this triplet abolishes the cell-binding activity of IBDV-derived subviral particles (SVP), and abrogates the recovering of infectious IBDV by reverse genetics without affecting the overall SVP architecture. Additionally, we demonstrate that the presence of the alpha 4 beta 1 heterodimer is a critical determinant for the susceptibility of murine BALB/c 3T3 cells to IBDV binding and infectivity. Our data suggests that the IBDV might also use the alpha 4 beta 1 integrin as a specific binding receptor in avian cells.
Collapse
Affiliation(s)
- Laura Delgui
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Cantoblanco, Calle Darwin no. 3,28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
31
|
Infectious bursal disease virus is an icosahedral polyploid dsRNA virus. Proc Natl Acad Sci U S A 2009; 106:2148-52. [PMID: 19164552 DOI: 10.1073/pnas.0808498106] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viruses are a paradigm of the economy of genome resources, reflected in their multiplication strategy and for their own structure. Although there is enormous structural diversity, the viral genome is always enclosed within a proteinaceous coat, and most virus species are haploid; the only exception to this rule are the highly pleomorphic enveloped viruses. We performed an in-depth characterization of infectious bursal disease virus (IBDV), a non-enveloped icosahedral dsRNA virus with a bisegmented genome. Up to 6 natural populations can be purified, which share a similar protein composition but show higher sedimentation coefficients as particle density increases. Stoichiometry analysis of their genome indicated that these biophysical differences correlate with the copy number of dsRNA segments inside the viral capsid. This is a demonstration of a functional polyploid icosahedral dsRNA virus. We show that IBDV particles with greater genome copy number have higher infectivity rates. Our results show an unprecedented replicative strategy for dsRNA viruses and suggest that birnaviruses are living viral entities encompassing numerous functional and structural characteristics of positive and negative ssRNA viruses.
Collapse
|
32
|
Abstract
The fruit fly Drosophila melanogaster is a powerful model to study host-pathogen interactions. Most studies so far have focused on extracellular pathogens such as bacteria and fungi. More recently, viruses have come to the front, and RNA interference was shown to play a critical role in the control of viral infections in drosophila. We review here our current knowledge on drosophila viruses. A diverse set of RNA viruses belonging to several families (Rhabdoviridae, Dicistroviridae, Birnaviridae, Reoviridae, Errantiviridae) has been reported in D. melanogaster. By contrast, no DNA virus has been recovered up to now. The drosophila viruses represent powerful tools to study virus-cell interactions in vivo. Analysis of the literature however reveals that for many of them, important gaps exist in our understanding of their replication cycle, genome organization, morphology or pathogenesis. The data obtained in the past few years on antiviral defense mechanisms in drosophila, which point to evolutionary conserved pathways, highlight the potential of the D. melanogaster model to study antiviral innate immunity and to better understand the complex interaction between arthropod-borne viruses and their insect vectors.
Collapse
|
33
|
Infectious Bursal disease virus: ribonucleoprotein complexes of a double-stranded RNA virus. J Mol Biol 2008; 386:891-901. [PMID: 19063900 PMCID: PMC7173181 DOI: 10.1016/j.jmb.2008.11.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 11/22/2022]
Abstract
Genome-binding proteins with scaffolding and/or regulatory functions are common in living organisms and include histones in eukaryotic cells, histone-like proteins in some double-stranded DNA (dsDNA) viruses, and the nucleocapsid proteins of single-stranded RNA viruses. dsRNA viruses nevertheless lack these ribonucleoprotein (RNP) complexes and are characterized by sharing an icosahedral T=2 core involved in the metabolism and insulation of the dsRNA genome. The birnaviruses, with a bipartite dsRNA genome, constitute a well-established exception and have a single-shelled T=13 capsid only. Moreover, as in many negative single-stranded RNA viruses, the genomic dsRNA is bound to a nucleocapsid protein (VP3) and the RNA-dependent RNA polymerase (VPg). We used electron microscopy and functional analysis to characterize these RNP complexes of infectious bursal disease virus, the best characterized member of the Birnaviridae family. Mild disruption of viral particles revealed that VP3, the most abundant core protein, present at approximately 450 copies per virion, is found in filamentous material tightly associated with the dsRNA. We developed a method to purify RNP and VPg-dsRNA complexes. Analysis of these complexes showed that they are linear molecules containing a constant amount of protein. Sensitivity assays to nucleases indicated that VP3 renders the genomic dsRNA less accessible for RNase III without introducing genome compaction. Additionally, we found that these RNP complexes are functionally competent for RNA synthesis in a capsid-independent manner, in contrast to most dsRNA viruses.
Collapse
|
34
|
Kurosu M. Multiple-delayed release formulation approach for the treatment of methicillin-resistantStaphylococcus aureus. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.11.1313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Ekici OD, Paetzel M, Dalbey RE. Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration. Protein Sci 2008; 17:2023-37. [PMID: 18824507 DOI: 10.1110/ps.035436.108] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Serine proteases comprise nearly one-third of all known proteases identified to date and play crucial roles in a wide variety of cellular as well as extracellular functions, including the process of blood clotting, protein digestion, cell signaling, inflammation, and protein processing. Their hallmark is that they contain the so-called "classical" catalytic Ser/His/Asp triad. Although the classical serine proteases are the most widespread in nature, there exist a variety of "nonclassical" serine proteases where variations to the catalytic triad are observed. Such variations include the triads Ser/His/Glu, Ser/His/His, and Ser/Glu/Asp, and include the dyads Ser/Lys and Ser/His. Other variations are seen with certain serine and threonine peptidases of the Ntn hydrolase superfamily that carry out catalysis with a single active site residue. This work discusses the structure and function of these novel serine proteases and threonine proteases and how their catalytic machinery differs from the prototypic serine protease class.
Collapse
Affiliation(s)
- Ozlem Doğan Ekici
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
36
|
Wang P, Shim E, Cravatt B, Jacobsen R, Schoeniger J, Kim AC, Paetzel M, Dalbey RE. Escherichia coli signal peptide peptidase A is a serine-lysine protease with a lysine recruited to the nonconserved amino-terminal domain in the S49 protease family. Biochemistry 2008; 47:6361-9. [PMID: 18476724 DOI: 10.1021/bi800657p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli signal peptide peptidase A (SppA) is a serine protease which cleaves signal peptides after they have been proteolytically removed from exported proteins by signal peptidase processing. We present here results of site-directed mutagenesis studies of all the conserved serines of SppA in the carboxyl-terminal domain showing that only Ser 409 is essential for enzymatic activity. Also, we show that the serine hydrolase inhibitor FP-biotin inhibits SppA and modifies the protein but does not label the S409A mutant with an alanine substituted for the essential serine. These results are consistent with Ser 409 being directly involved in the proteolytic mechanism. Remarkably, additional site-directed mutagenesis studies showed that none of the lysines or histidine residues in the carboxyl-terminal protease domain (residues 326-549) is critical for activity, suggesting this domain lacks the general base residue required for proteolysis. In contrast, we found that E. coli SppA has a conserved lysine (K209) in the N-terminal domain (residues 56-316) that is essential for activity and important for activation of S409 for reactivity toward the FP-biotin inhibitor and is conserved in those other bacterial SppA proteins that have an N-terminal domain. We also performed alkaline phosphatase fusion experiments that establish that SppA has only one transmembrane segment (residues 29-45) with the C-terminal domain (residues 46-618) protruding into the periplasmic space. These results support the idea that E. coli SppA is a Ser-Lys dyad protease, with the Lys recruited to the amino-terminal domain that is itself not present in most known SppA sequences.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Casañas A, Navarro A, Ferrer-Orta C, González D, Rodríguez JF, Verdaguer N. Structural insights into the multifunctional protein VP3 of birnaviruses. Structure 2008; 16:29-37. [PMID: 18184581 DOI: 10.1016/j.str.2007.10.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/30/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
Abstract
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is the causative agent of one of the most harmful poultry diseases. The IBDV genome encodes five mature proteins; of these, the multifunctional protein VP3 plays an essential role in virus morphogenesis. This protein, which interacts with the structural protein VP2, with the double-stranded RNA genome, and with the virus-encoded, RNA-dependent RNA polymerase, VP1, is involved not only in the formation of the viral capsid, but also in the recruitment of VP1 into the capsid and in the encapsidation of the viral genome. Here, we report the X-ray structure of the central region of VP3, residues 92-220, consisting of two alpha-helical domains connected by a long and flexible hinge that are organized as a dimer. Unexpectedly, the overall fold of the second VP3 domain shows significant structural similarities with different transcription regulation factors.
Collapse
Affiliation(s)
- Arnau Casañas
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Cientificas, Parc Científic de Barcelona, Josep Samitier 1-5, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Kim AC, Oliver DC, Paetzel M. Crystal structure of a bacterial signal Peptide peptidase. J Mol Biol 2007; 376:352-66. [PMID: 18164727 DOI: 10.1016/j.jmb.2007.11.080] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 11/20/2007] [Accepted: 11/22/2007] [Indexed: 11/16/2022]
Abstract
Signal peptide peptidase (Spp) is the enzyme responsible for cleaving the remnant signal peptides left behind in the membrane following Sec-dependent protein secretion. Spp activity appears to be present in all cell types, eukaryotic, prokaryotic and archaeal. Here we report the first structure of a signal peptide peptidase, that of the Escherichia coli SppA (SppA(EC)). SppA(EC) forms a tetrameric assembly with a novel bowl-shaped architecture. The bowl has a dramatically hydrophobic interior and contains four separate active sites that utilize a Ser/Lys catalytic dyad mechanism. Our structural analysis of SppA reveals that while in many Gram-negative bacteria as well as characterized plant variants, a tandem duplication in the protein fold creates an intact active site at the interface between the repeated domains, other species, particularly Gram-positive and archaeal organisms, encode half-size, unduplicated SppA variants that could form similar oligomers to their duplicated counterparts, but using an octamer arrangement and with the catalytic residues provided by neighboring monomers. The structure reveals a similarity in the protein fold between the domains in the periplasmic Ser/Lys protease SppA and the monomers seen in the cytoplasmic Ser/His/Asp protease ClpP. We propose that SppA may, in addition to its role in signal peptide hydrolysis, have a role in the quality assurance of periplasmic and membrane-bound proteins, similar to the role that ClpP plays for cytoplasmic proteins.
Collapse
Affiliation(s)
- Apollos C Kim
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia, Canada
| | | | | |
Collapse
|
39
|
Nobiron I, Galloux M, Henry C, Torhy C, Boudinot P, Lejal N, Da Costa B, Delmas B. Genome and polypeptides characterization of Tellina virus 1 reveals a fifth genetic cluster in the Birnaviridae family. Virology 2007; 371:350-61. [PMID: 17976679 DOI: 10.1016/j.virol.2007.09.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 09/06/2007] [Accepted: 09/12/2007] [Indexed: 10/22/2022]
Abstract
We characterized tellina virus 1 (TV-1), a birnavirus isolated from the marine bivalve mollusk Tellina tenuis. Genome sequence analysis established that TV-1 is representative of a viral cluster distant from other birnaviruses. The maturation process of the polyprotein encoded by the genomic segment A was delineated with the identification of the N-termini of the viral protease VP4 and the ribonucleoprotein VP3, and the characterization of peptides deriving from the processing of pVP2, the VP2 capsid protein precursor. One of these peptides was shown to possess a membrane-disrupting domain. Like the blotched snakehead virus, the polyprotein exhibits a non-structural polypeptide (named [X]) located between pVP2 and VP4. Mutagenesis analysis allowed the identification in VP4 of a catalytic Ser-Lys dyad that does not possess the common Gly-X-Ser signature of the serine hydrolases. The genomic segment B encodes the viral RNA-dependent RNA-polymerase VP1 with the unique sequence motif arrangement identified in other birnavirus VP1s.
Collapse
Affiliation(s)
- Isabelle Nobiron
- INRA, Unité de Virologie et Immunologie moléculaires UR892, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Botos I, Wlodawer A. The expanding diversity of serine hydrolases. Curr Opin Struct Biol 2007; 17:683-90. [PMID: 17890078 PMCID: PMC2173878 DOI: 10.1016/j.sbi.2007.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 08/01/2007] [Accepted: 08/05/2007] [Indexed: 11/21/2022]
Abstract
Serine hydrolases use a hydroxyl of a serine, assisted by one or more other residues, to cleave peptide bonds. They belong to several different families whose general mechanism is well known. However, the subtle structural differences that have recently been observed across a variety of families shed light on their functional diversity, including variations in mechanism of action, differences in the modes of substrate binding, and substrate-assisted orientation of catalytic residues. Of particular interest are the Rhomboid family serine proteinases that are active within the plasma membrane, for which several new structures have been reported. Because these enzymes are involved in biological and pathological processes, many are becoming important targets of drug design.
Collapse
Affiliation(s)
- Istvan Botos
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
41
|
Lee J, Feldman AR, Delmas B, Paetzel M. Crystal Structure of the VP4 Protease from Infectious Pancreatic Necrosis Virus Reveals the Acyl-Enzyme Complex for an Intermolecular Self-cleavage Reaction. J Biol Chem 2007; 282:24928-37. [PMID: 17553791 DOI: 10.1074/jbc.m701551200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Infectious pancreatic necrosis virus (IPNV), an aquatic birnavirus that infects salmonid fish, encodes a large polyprotein (NH(2)-pVP2-VP4-VP3-COOH) that is processed through the proteolytic activity of its own protease, VP4, to release the proteins pVP2 and VP3. pVP2 is further processed to give rise to the capsid protein VP2 and three peptides that are incorporated into the virion. Reported here are two crystal structures of the IPNV VP4 protease solved from two different crystal symmetries. The electron density at the active site in the triclinic crystal form, refined to 2.2-A resolution, reveals the acyl-enzyme complex formed with an internal VP4 cleavage site. The complex was generated using a truncated enzyme in which the general base lysine was substituted. Inside the complex, the nucleophilic Ser(633)Ogamma forms an ester bond with the main-chain carbonyl of the C-terminal residue, Ala(716), of a neighboring VP4. The structure of this substrate-VP4 complex allows us to identify the S1, S3, S5, and S6 substrate binding pockets as well as other substrate-VP4 interactions and therefore provides structural insights into the substrate specificity of this enzyme. The structure from the hexagonal crystal form, refined to 2.3-A resolution, reveals the free-binding site of the protease. Three-dimensional alignment with the VP4 of blotched snakehead virus, another birnavirus, shows that the overall structure of VP4 is conserved despite a low level of sequence identity ( approximately 19%). The structure determinations of IPNV VP4, the first of an acyl-enzyme complex for a Ser/Lys dyad protease, provide insights into the catalytic mechanism and substrate recognition of this type of protease.
Collapse
Affiliation(s)
- Jaeyong Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | | | |
Collapse
|
42
|
Lad SP, Yang G, Scott DA, Wang G, Nair P, Mathison J, Reddy VS, Li E. Chlamydial CT441 is a PDZ domain-containing tail-specific protease that interferes with the NF-kappaB pathway of immune response. J Bacteriol 2007; 189:6619-25. [PMID: 17631635 PMCID: PMC2045167 DOI: 10.1128/jb.00429-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia species are bacterial pathogens that affect over 140 million individuals worldwide. Ocular infection by Chlamydia trachomatis is the leading cause of preventable blindness, and urogenital tract infection by Chlamydia causes sexually transmitted disease. As obligate intracellular organisms, Chlamydia species have evolved mechanisms to evade the host immune system, including the degradation of the transcription factors regulatory factor X5 and upstream stimulation factor 1, which are required for the expression of major histocompatibility complex molecules I and II by CPAF and cleavage of p65 of the NF-kappaB pathway by the encoded CT441 protein. Here, we report the characterization of CT441 as a tail-specific protease. CT441 contains a PDZ domain of protein-protein interactions and a Ser/Lys dyad catalytic unit. Mutation at either Ser455 or Lys481 in the active site ablated CT441 activity of p65 cleavage. In addition, we found that the production of CT441 Tsp, which was detected at the middle and late stages of an infection, correlated with p65 cleavage activity. In addition to high homology, human and mouse p65 proteins also contain an identical C-terminal tail of 22 amino acid (aa) residues. However, only human p65 was susceptible to cleavage. Using molecular biology approaches, we mapped the p65 cleavage site(s) to a region that differs from that of mouse p65 by 6 aa residues. Additionally, the substitution of T352 with a proline inhibited p65 cleavage. Together, the study demonstrates that CT441 is a tail-specific protease that is capable of interfering with the NF-kappaB pathway of host antimicrobial and inflammatory responses.
Collapse
Affiliation(s)
- Sonya P Lad
- Department of Immunology, The Scripps Research Institute, 10550 N. Torrey Pines Road, IMM-12, R207, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Luque D, Saugar I, Rodríguez JF, Verdaguer N, Garriga D, Martín CS, Velázquez-Muriel JA, Trus BL, Carrascosa JL, Castón JR. Infectious bursal disease virus capsid assembly and maturation by structural rearrangements of a transient molecular switch. J Virol 2007; 81:6869-78. [PMID: 17442720 PMCID: PMC1933288 DOI: 10.1128/jvi.00077-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 04/06/2007] [Indexed: 11/20/2022] Open
Abstract
Infectious bursal disease virus (IBDV), a double-stranded RNA (dsRNA) virus belonging to the Birnaviridae family, is an economically important avian pathogen. The IBDV capsid is based on a single-shelled T=13 lattice, and the only structural subunits are VP2 trimers. During capsid assembly, VP2 is synthesized as a protein precursor, called pVP2, whose 71-residue C-terminal end is proteolytically processed. The conformational flexibility of pVP2 is due to an amphipathic alpha-helix located at its C-terminal end. VP3, the other IBDV major structural protein that accomplishes numerous roles during the viral cycle, acts as a scaffolding protein required for assembly control. Here we address the molecular mechanism that defines the multimeric state of the capsid protein as hexamers or pentamers. We used a combination of three-dimensional cryo-electron microscopy maps at or close to subnanometer resolution with atomic models. Our studies suggest that the key polypeptide element, the C-terminal amphipathic alpha-helix, which acts as a transient conformational switch, is bound to the flexible VP2 C-terminal end. In addition, capsid protein oligomerization is also controlled by the progressive trimming of its C-terminal domain. The coordination of these molecular events correlates viral capsid assembly with different conformations of the amphipathic alpha-helix in the precursor capsid, as a five-alpha-helix bundle at the pentamers or an open star-like conformation at the hexamers. These results, reminiscent of the assembly pathway of positive single-stranded RNA viruses, such as nodavirus and tetravirus, add new insights into the evolutionary relationships of dsRNA viruses.
Collapse
Affiliation(s)
- Daniel Luque
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología/CSIC, C/ Darwin no. 3, Cantoblanco, E-28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Curry S, Roqué-Rosell N, Sweeney TR, Zunszain PA, Leatherbarrow RJ. Structural analysis of foot-and-mouth disease virus 3C protease: a viable target for antiviral drugs? Biochem Soc Trans 2007; 35:594-8. [PMID: 17511659 DOI: 10.1042/bst0350594] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Foot-and-mouth disease virus causes a major global agricultural problem that is difficult to control with existing vaccines. Structural analyses of the viral 3C protease not only have provided fresh insights into the catalytic mechanism of an unusual class of chymotrypsin-like cysteine proteases, but also are generating valuable information to drive the quest for effective antiviral therapies.
Collapse
Affiliation(s)
- S Curry
- Biophysics Section, Division of Cell and Molecular Biology, Blackett Laboratory, Imperial College, Exhibition Road, London SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|
45
|
Imajoh M, Goto T, Oshima S. Characterization of cleavage sites and protease activity in the polyprotein precursor of Japanese marine aquabirnavirus and expression analysis of generated proteins by a VP4 protease activity in four distinct cell lines. Arch Virol 2007; 152:1103-14. [PMID: 17334948 DOI: 10.1007/s00705-007-0935-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 01/03/2007] [Indexed: 11/26/2022]
Abstract
A polyprotein precursor NH(2)-pVP2-VP4-VP3-COOH is encoded in genomic segment A of members of the family Birnaviridae. By N-terminal sequencing analysis, primary cleavage sites of a marine birnavirus (MABV) polyprotein were identified as Ala(508) downward arrow Ser(509) and Ala(734) downward arrow Ser(735), where the cleavage motif was the same as that of infectious pancreatic necrosis virus (IPNV). However, further VP4 and VP3 cleavages occurred at novel sites. Ser(633) and Lys(674) mutations affected the cleavage activity by site-directed mutagenesis. Additional catalytic residues including Ile(543) and Val(686) were MABV-specific. As shown by electron microscopy, pVP2 and further cleaved VP3s (fcVP3s) could not form virus-like particles (VLPs). This suggests that VP3 is necessary for VLP formation. By Western blot analysis of the VP3 expression, fcVP3s were found in RSBK-2 cells and FHM cells, while VP3 was cleaved less in EPC cells, suggesting that fcVP3s might merely be a degraded form. Alternatively, if fcVP3s play functional roles other than in viral assembly, the further VP3 cleavage is, at least, not restricted in FHM cells. Strangely, VP3 was not completely further cleaved in CHSE-214 cells despite the fact that this cell line has a potential proteolytic factor, implying that complicated factors are associated with the further VP3 cleavage.
Collapse
Affiliation(s)
- M Imajoh
- Laboratory of Cell Structure and Function, Division of Marine Bioresource Science, Graduate School of Kuroshio Science, Kochi University, Kochi, Japan
| | | | | |
Collapse
|
46
|
Ziegler K, Noble SM, Mutumanje E, Bishop B, Huddler DP, Born TL. Identification of Catalytic Cysteine, Histidine, and Lysine Residues in Escherichia coli Homoserine Transsuccinylase. Biochemistry 2007; 46:2674-83. [PMID: 17302437 DOI: 10.1021/bi0620252] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Homoserine transsuccinylase catalyzes the succinylation of homoserine in several bacterial species, the first unique step in methionine biosynthesis in these organisms. The enzyme from Escherichia coli is reported to be a dimer and uses a ping-pong catalytic mechanism involving transfer of succinate from succinyl-CoA to an enzyme nucleophile, followed by transfer to homoserine to form O-succinylhomoserine. Site-directed mutagenesis and steady-state kinetics were used to identify three amino acids that participate in catalysis. Mutation of cysteine-142 to serine or alanine eliminated all measurable activity, suggesting this amino acid acts as the catalytic nucleophile. Cysteine nucleophiles are often deprotonated by histidine residues, and histidine-235 was identified as the sole absolutely conserved histidine residue among family members. This residue was mutated to both alanine and asparagine, and no activity was observed with either mutant. Lysine-47 had been previously identified as an essential residue. Mutation of this amino acid to arginine reduced catalytic activity by greater than 90%, while mutation to alanine yielded an enzyme with <1% of wild-type activity. A pH-rate profile of the K47R mutant demonstrated that this amino acid participates in the first half reaction. The data presented here provide the first detailed description of the homoserine transsuccinylase active site and provide a framework for additional mechanistic characterization of this enzyme.
Collapse
Affiliation(s)
- Katharine Ziegler
- Department of Chemistry & Biochemistry, George Mason University, 10900 University Boulevard, Manassas, Virginia 20110, USA
| | | | | | | | | | | |
Collapse
|
47
|
Xiang H, Masuo S, Hoshino T, Takaya N. Novel family of cholesterol esterases produced by actinomycetes bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:112-20. [PMID: 17161031 DOI: 10.1016/j.bbapap.2006.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 11/06/2006] [Indexed: 10/23/2022]
Abstract
Although cholesterol esterase (CHE; EC 3.1.1.13) is widespread in nature, CHEs from Streptomyces lavendulae and Streptomyces sp. X9 are the only known CHEs produced by actinomycetes. We purified CHEs from S. avermitilis JCM5070, and S. griseus IFO13350 and identified four new CHEs from actinomycetes. The enzymic properties of the CHEs from Streptomyces sp. X9, S. avermitilis, and S. griseus including substrate specificity, sensitivity to inhibitors and optimal conditions for catalysis were similar. We identified genes for the CHEs from Streptomyces sp. X9 and S. avermitilis and the encoded predicted sequences comprised 217 and 214 amino acid residues, respectively, with 64% similarity. The CHEs from Streptomyces sp. X9 and S. avermitilis were also 54 and 57% similar, respectively, to S. lavendulae CHE, indicating that these CHEs are orthologs. Phylogenetic analysis showed that they are distantly related to the conventional lipase/esterase type CHEs from mammals, yeasts and other bacteria. The actinomycetes CHEs did not have the Gly-Xaa-Ser-Xaa-Gly sequence that is conserved in the lipase/esterase family. A database search showed that orthologs of this type of CHE were restricted to actinomycetes. These findings imply that the actinomycetes CHEs constitute a novel family of cholesterol esterases.
Collapse
Affiliation(s)
- Hongyu Xiang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | |
Collapse
|
48
|
Lee J, Feldman AR, Chiu E, Chan C, Kim YN, Delmas B, Paetzel M. Purification, crystallization and preliminary X-ray analysis of truncated and mutant forms of VP4 protease from infectious pancreatic necrosis virus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:1235-8. [PMID: 17142905 PMCID: PMC2225366 DOI: 10.1107/s1744309106046070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 11/01/2006] [Indexed: 11/10/2022]
Abstract
In viruses belonging to the Birnaviridae family, virus protein 4 (VP4) is the viral protease responsible for the proteolytic maturation of the polyprotein encoding the major capsid proteins (VP2 and VP3). Infectious pancreatic necrosis virus (IPNV), the prototype of the aquabirnavirus genus, is the causative agent of a contagious disease in fish which has a large economic impact on aquaculture. IPNV VP4 is a 226-residue (24.0 kDa) serine protease that utilizes a Ser/Lys catalytic dyad mechanism (Ser633 and Lys674). Several truncated and mutant forms of VP4 were expressed in a recombinant expression system, purified and screened for crystallization. Two different crystal forms diffract beyond 2.4 A resolution. A triclinic crystal derived from one mutant construct has unit-cell parameters a = 41.7, b = 69.6, c = 191.6 A, alpha = 93.0, beta = 95.1, gamma = 97.7 degrees. A hexagonal crystal with space group P6(1)22/P6(5)22 derived from another mutant construct has unit-cell parameters a = 77.4, b = 77.4, c = 136.9 A.
Collapse
Affiliation(s)
- Jaeyong Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Anat R. Feldman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Elaine Chiu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Charlena Chan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - You-Na Kim
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Bernard Delmas
- Unité de Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, F-78350 Jouy-en-Josas, France
| | - Mark Paetzel
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
49
|
Mesters JR, Tan J, Hilgenfeld R. Viral enzymes. Curr Opin Struct Biol 2006; 16:776-86. [PMID: 17085042 PMCID: PMC7127120 DOI: 10.1016/j.sbi.2006.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 10/16/2006] [Accepted: 10/24/2006] [Indexed: 01/09/2023]
Abstract
Viral genomes show unequalled diversity, ranging from single-stranded DNA to double-stranded RNA. Moreover, viruses can quickly adapt to the host's immune response and drug treatment. Although they tend to make optimal use of the host cell's reservoir of proteins, viruses need to carry some enzymatic functions with them, as they may not be available or accessible in the infected cell. Recently, progress has been made in our structural understanding of viral enzymes involved in all stages of the viral life cycle, which includes entry, hijack, replication and exit stages.
Collapse
Affiliation(s)
- Jeroen R Mesters
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | | | | |
Collapse
|
50
|
Rotanova TV, Botos I, Melnikov EE, Rasulova F, Gustchina A, Maurizi MR, Wlodawer A. Slicing a protease: structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains. Protein Sci 2006; 15:1815-28. [PMID: 16877706 PMCID: PMC2242575 DOI: 10.1110/ps.052069306] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
ATP-dependent Lon proteases are multi-domain enzymes found in all living organisms. All Lon proteases contain an ATPase domain belonging to the AAA(+) superfamily of molecular machines and a proteolytic domain with a serine-lysine catalytic dyad. Lon proteases can be divided into two subfamilies, LonA and LonB, exemplified by the Escherichia coli and Archaeoglobus fulgidus paralogs, respectively. The LonA subfamily is defined by the presence of a large N-terminal domain, whereas the LonB subfamily has no such domain, but has a membrane-spanning domain that anchors the protein to the cytoplasmic side of the membrane. The two subfamilies also differ in their consensus sequences. Recent crystal structures for several individual domains and sub-fragments of Lon proteases have begun to illuminate similarities and differences in structure-function relationships between the two subfamilies. Differences in orientation of the active site residues in several isolated Lon protease domains point to possible roles for the AAA(+) domains and/or substrates in positioning the catalytic residues within the active site. Structures of the proteolytic domains have also indicated a possible hexameric arrangement of subunits in the native state of bacterial Lon proteases. The structure of a large segment of the N-terminal domain has revealed a folding motif present in other protein families of unknown function and should lead to new insights regarding ways in which Lon interacts with substrates or other cellular factors. These first glimpses of the structure of Lon are heralding an exciting new era of research on this ancient family of proteases.
Collapse
Affiliation(s)
- Tatyana V Rotanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow
| | | | | | | | | | | | | |
Collapse
|