1
|
Global Increases in Human Immunodeficiency Virus Neutralization Sensitivity Due to Alterations in the Membrane-Proximal External Region of the Envelope Glycoprotein Can Be Minimized by Distant State 1-Stabilizing Changes. J Virol 2022; 96:e0187821. [PMID: 35289647 DOI: 10.1128/jvi.01878-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Binding to the receptor, CD4, drives the pretriggered, "closed" (State-1) conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer ([gp120/gp41]3) into more "open" conformations. HIV-1 Env on the viral membrane is maintained in a State-1 conformation that resists binding and neutralization by commonly elicited antibodies. Premature triggering of Env before the virus engages a target cell typically leads to increased susceptibility to spontaneous inactivation or ligand-induced neutralization. Here, we showed that single amino acid substitutions in the gp41 membrane-proximal external region (MPER) of a primary HIV-1 strain resulted in viral phenotypes indicative of premature triggering of Env to downstream conformations. Specifically, the MPER changes reduced viral infectivity and globally increased virus sensitivity to poorly neutralizing antibodies, soluble CD4, a CD4-mimetic compound, and exposure to cold. In contrast, the MPER mutants exhibited decreased sensitivity to the State 1-preferring inhibitor, BMS-806, and to the PGT151 broadly neutralizing antibody. Depletion of cholesterol from virus particles did not produce the same State 1-destabilizing phenotypes as MPER alterations. Notably, State 1-stabilizing changes in Env distant from the MPER could minimize the phenotypic effects of MPER alteration but did not affect virus sensitivity to cholesterol depletion. Thus, membrane-proximal gp41 elements contribute to the maintenance of the pretriggered Env conformation. The conformationally disruptive effects of MPER changes can be minimized by distant State 1-stabilizing Env modifications, a strategy that may be useful in preserving the native pretriggered state of Env. IMPORTANCE The pretriggered shape of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) is a major target for antibodies that can neutralize many strains of the virus. An effective HIV-1 vaccine may need to raise these types of antibodies, but this goal has proven difficult. One reason is that the pretriggered shape of Env is unstable and dependent on interactions near the viral membrane. Here, we showed that the membrane-proximal external region (MPER) of Env plays an important role in maintaining Env in a pretriggered shape. Alterations in the MPER resulted in global changes in Env conformation that disrupted its pretriggered shape. We also found that these disruptive effects of MPER changes could be minimized by distant Env modifications that stabilized the pretriggered shape. These modifications may be useful for preserving the native shape of Env for structural and vaccine studies.
Collapse
|
2
|
Zha J, Liu Z, Sun R, Gong G, Dordick JS, Wu X. Endolysin-Based Autolytic E. coli System for Facile Recovery of Recombinant Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3134-3143. [PMID: 33656890 DOI: 10.1021/acs.jafc.1c00059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recovery of recombinant proteins from the Escherichia coli cytoplasm depends on cell disruption by mechanical, chemical, and/or enzymatic methods, which usually cause incomplete cell breakage or protein denaturation. Controllable autolytic E. coli strains have been designed to facilitate the purification of recombinant proteins; however, these strains suffer from low recovery yield, slow cell lysis, or extensive strain engineering. Herein, we report an improved, highly efficient programmable autolytic E. coli platform, in which cell lysis is initiated upon the induced expression of T4 lysozyme with N-terminal fusion of a cell-penetrating peptide. Through the engineering of the peptide sequence and copy number, and by incorporating the fusion lytic gene into the E. coli genome, more than 99.97% of cells could be lysed within 30 min of induction regardless of cell age. We further tested the expression and release of a recombinant enzyme lysostaphin (Lst) and demonstrated that 4 h induction of the lytic gene after 3 h of Lst expression resulted in 98.97% cell lysis. Lst obtained from this system had the same yield, yet 1.63-fold higher activity, compared with that obtained from cells lysed by freeze-thawing and sonication. This autolytic platform shows potential for use in large-scale microbial production of proteins and other biopolymers.
Collapse
Affiliation(s)
- Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Zhiqiang Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Runcong Sun
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guoli Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
3
|
Proteoliposomal formulations of an HIV-1 gp41-based miniprotein elicit a lipid-dependent immunodominant response overlapping the 2F5 binding motif. Sci Rep 2017; 7:40800. [PMID: 28084464 PMCID: PMC5234007 DOI: 10.1038/srep40800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 gp41 Membrane Proximal External Region (MPER) is recognized by broadly neutralizing antibodies and represents a promising vaccine target. However, MPER immunogenicity and antibody activity are influenced by membrane lipids. To evaluate lipid modulation of MPER immunogenicity, we generated a 1-Palmitoyl-2-oleoylphosphatidylcholine (POPC)-based proteoliposome collection containing combinations of phosphatidylserine (PS), GM3 ganglioside, cholesterol (CHOL), sphingomyelin (SM) and the TLR4 agonist monophosphoryl lipid A (MPLA). A recombinant gp41-derived miniprotein (gp41-MinTT) exposing the MPER and a tetanus toxoid (TT) peptide that favors MHC-II presentation, was successfully incorporated into lipid mixtures (>85%). Immunization of mice with soluble gp41-MinTT exclusively induced responses against the TT peptide, while POPC proteoliposomes generated potent anti-gp41 IgG responses using lower protein doses. The combined addition of PS and GM3 or CHOL/SM to POPC liposomes greatly increased gp41 immunogenicity, which was further enhanced by the addition of MPLA. Responses generated by all proteoliposomes targeted the N-terminal moiety of MPER overlapping the 2F5 neutralizing epitope. Our data show that lipids impact both, the epitope targeted and the magnitude of the response to membrane-dependent antigens, helping to improve MPER-based lipid carriers. Moreover, the identification of immunodominant epitopes allows for the redesign of immunogens targeting MPER neutralizing determinants.
Collapse
|
4
|
Apellániz B, Nieva JL. The Use of Liposomes to Shape Epitope Structure and Modulate Immunogenic Responses of Peptide Vaccines Against HIV MPER. PEPTIDE AND PROTEIN VACCINES 2015; 99:15-54. [DOI: 10.1016/bs.apcsb.2015.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Novel neutralising antibodies targeting the N-terminal helical region of the transmembrane envelope protein p15E of the porcine endogenous retrovirus (PERV). Immunol Res 2014; 58:9-19. [PMID: 23729215 DOI: 10.1007/s12026-013-8430-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Previously, immunising different species with the transmembrane envelope protein p15E of the porcine endogenous retrovirus (PERV), neutralising antibodies were induced which recognised epitopes in the fusion peptide proximal region (FPPR) and in the membrane-proximal external region (MPER). Only the MPER-specific antibodies were shown to neutralise and these antibodies targeted epitopes in the MPER similarly localised as the epitopes recognised by antibodies broadly neutralising HIV-1 such as 2F5 and 4E10. To study whether neutralising antibodies could be induced immunising with subunits of p15E, recombinant proteins corresponding to the N-terminal, the C-terminal helical region (NHR, CHR) and a p15E with a mutation in the Cys-Cys loop were produced. Whereas none of these antigens induced MPER-specific neutralising antibodies, the animals immunised with the FPPR/NHR subunit and the mutated p15E produced neutralising antibodies binding to the NHR. Therefore, for the first time, antibodies specific for the NHR and neutralising PERV were described.
Collapse
|
6
|
Apellániz B, Huarte N, Largo E, Nieva JL. The three lives of viral fusion peptides. Chem Phys Lipids 2014; 181:40-55. [PMID: 24704587 PMCID: PMC4061400 DOI: 10.1016/j.chemphyslip.2014.03.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 02/07/2023]
Abstract
The presence of a fusion peptide (FP) is a hallmark of viral fusion glycoproteins. Structure–function relationships underlying FP conservation remain greatly unknown. FPs establish interactions satisfying their folding within pre-fusion glycoproteins. Upon fusion activation FPs insert into and restructure target membranes. FPs can finally combine with transmembrane domains to form integral membrane bundles.
Fusion peptides comprise conserved hydrophobic domains absolutely required for the fusogenic activity of glycoproteins from divergent virus families. After 30 years of intensive research efforts, the structures and functions underlying their high degree of sequence conservation are not fully elucidated. The long-hydrophobic viral fusion peptide (VFP) sequences are structurally constrained to access three successive states after biogenesis. Firstly, the VFP sequence must fulfill the set of native interactions required for (meta) stable folding within the globular ectodomains of glycoprotein complexes. Secondly, at the onset of the fusion process, they get transferred into the target cell membrane and adopt specific conformations therein. According to commonly accepted mechanistic models, membrane-bound states of the VFP might promote the lipid bilayer remodeling required for virus-cell membrane merger. Finally, at least in some instances, several VFPs co-assemble with transmembrane anchors into membrane integral helical bundles, following a locking movement hypothetically coupled to fusion-pore expansion. Here we review different aspects of the three major states of the VFPs, including the functional assistance by other membrane-transferring glycoprotein regions, and discuss briefly their potential as targets for clinical intervention.
Collapse
Affiliation(s)
- Beatriz Apellániz
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Nerea Huarte
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Eneko Largo
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - José L Nieva
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
7
|
Mühle M, Hoffmann K, Löchelt M, Denner J. Immunisation with foamy virus Bet fusion proteins as novel strategy for HIV-1 epitope delivery. Immunol Res 2013; 56:61-72. [PMID: 23440699 DOI: 10.1007/s12026-013-8387-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The induction of 2F5- and 4E10-like antibodies broadly neutralising HIV-1 and targeting the membrane external proximal region (MPER) of the transmembrane envelope protein gp41 would be a major advancement for the development of a preventive HIV-1 vaccine, but successful attempts remain rare. Recent studies demonstrated that broadly reactive antibodies develop relatively late during infection and after intensive affinity maturation. Therefore, a prolonged antigen delivery might be beneficial to induce them. Replicating foamy viruses which are characterised by apathogenic but persistent infection could represent suitable carrier viruses for this purpose. In order to develop such a system, we modified the accessory foamy virus Bet protein to contain the MPER of gp41, or the MPER linked to the stabilising fusion peptide proximal region of gp41 and analysed here the antigenic and immunogenic properties of such hybrid proteins. The antigens, expressed and purified to homogeneity, were recognised by the monoclonal antibodies 2F5 and 4E10 with nanomolar affinities and induced high levels of antibodies specific to gp41 after immunisation of rats. The antisera also bound to virus particles attached to infected cells, and peptide-based epitope mapping showed that they recognised the 2F5 epitope. Although no HIV-1 neutralising activity was observed, the presented data demonstrate that using the foamy virus Bet for HIV-1 epitope delivery is successfully applicable. Together with the attractive potential for sustained antigen expression after transfer to replicating virus, these results should therefore provide a first basis for the development of chimeric foamy viruses as novel HIV-1 vaccine vectors.
Collapse
Affiliation(s)
- Michael Mühle
- Center for HIV and Retrovirology, Robert Koch Institute, Berlin, Germany
| | | | | | | |
Collapse
|
8
|
Huarte N, Araujo A, Arranz R, Lorizate M, Quendler H, Kunert R, Valpuesta JM, Nieva JL. Recognition of membrane-bound fusion-peptide/MPER complexes by the HIV-1 neutralizing 2F5 antibody: implications for anti-2F5 immunogenicity. PLoS One 2012; 7:e52740. [PMID: 23285173 PMCID: PMC3528738 DOI: 10.1371/journal.pone.0052740] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 11/21/2012] [Indexed: 11/19/2022] Open
Abstract
The membrane proximal external region (MPER) of the fusogenic HIV-1 glycoprotein-41 harbors the epitope sequence recognized by 2F5, a broadly neutralizing antibody isolated from an infected individual. Structural mimicry of the conserved MPER 2F5 epitope constitutes a pursued goal in the field of anti-HIV vaccine development. It has been proposed that 2F5 epitope folding into its native state is attained in the vicinity of the membrane interface and might involve interactions with other viral structures. Here we present results indicating that oligomeric complexes established between MPER and the conserved amino-terminal fusion peptide (FP) can partition into lipid vesicles and be specifically bound by the 2F5 antibody at their surfaces. Cryo-transmission electron microscopy of liposomes doped with MPER:FP peptide mixtures provided the structural grounds for complex recognition by antibody at lipid bilayer surfaces. Supporting the immunogenicity of the membrane-bound complex, these MPER:FP peptide-vesicle formulations could trigger cross-reactive anti-MPER antibodies in rabbits. Thus, our observations suggest that contacts with N-terminal regions of gp41 may stabilize the 2F5 epitope as a membrane-surface antigen.
Collapse
Affiliation(s)
- Nerea Huarte
- Biophysics Unit (CSIC-UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Aitziber Araujo
- Biophysics Unit (CSIC-UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Rocio Arranz
- Department of Macromolecular Structures, National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Maier Lorizate
- Biophysics Unit (CSIC-UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Heribert Quendler
- Institute of Applied Microbiology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Renate Kunert
- Institute of Applied Microbiology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - José M. Valpuesta
- Department of Macromolecular Structures, National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - José L. Nieva
- Biophysics Unit (CSIC-UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
- * E-mail:
| |
Collapse
|
9
|
Denner J. Immunising with the transmembrane envelope proteins of different retroviruses including HIV-1: a comparative study. Hum Vaccin Immunother 2012; 9:462-70. [PMID: 23249763 DOI: 10.4161/hv.23221] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The induction of neutralizing antibodies is a promising way to prevent retrovirus infections. Neutralizing antibodies are mainly directed against the envelope proteins, which consist of two molecules, the surface envelope (SU) protein and the transmembrane envelope (TM) protein. Antibodies broadly neutralizing the human immunodeficiencvy virus-1 (HIV-1) and binding to the TM protein gp41 of the virus have been isolated from infected individuals. Their epitopes are located in the membrane proximal external region (MPER). Since there are difficulties to induce such neutralizing antibodies as basis for an effective AIDS vaccine, we performed a comparative analysis immunising with the TM proteins of different viruses from the family Retroviridae. Both subfamilies, the Orthoretrovirinae and the Spumaretrovirinae were included. In this study, the TM proteins of three gammaretroviruses including (1) the porcine endogenous retrovirus (PERV), (2) the Koala retrovirus (KoRV), (3) the feline leukemia virus (FeLV), of two lentiviruses, HIV-1, HIV-2, and of two spumaviruses, the feline foamy virus (FFV) and the primate foamy virus (PFV) were used for immunisation. Whereas in all immunisation studies binding antibodies were induced, neutralizing antibodies were only found in the case of the gammaretroviruses. The induced antibodies were directed against the MPER and the fusion peptide proximal region (FPPR) of their TM proteins; however only the antibodies against the MPER were neutralizing. Most importantly, the epitopes in the MPER were localized in the same position as the epitopes of the antibodies broadly neutralizing HIV-1 in the TM protein gp41 of HIV-1, indicating that the MPER is an effective target for the neutralization of retroviruses.
Collapse
|
10
|
Gao G, Wieczorek L, Peachman KK, Polonis VR, Alving CR, Rao M, Rao VB. Designing a soluble near full-length HIV-1 gp41 trimer. J Biol Chem 2012. [PMID: 23184960 DOI: 10.1074/jbc.m112.424432] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HIV-1 envelope spike is a trimer of heterodimers composed of an external glycoprotein gp120 and a transmembrane glycoprotein gp41. gp120 initiates virus entry by binding to host receptors, whereas gp41 mediates fusion between viral and host membranes. Although the basic pathway of HIV-1 entry has been extensively studied, the detailed mechanism is still poorly understood. Design of gp41 recombinants that mimic key intermediates is essential to elucidate the mechanism as well as to develop potent therapeutics and vaccines. Here, using molecular genetics and biochemical approaches, a series of hypotheses was tested to overcome the extreme hydrophobicity of HIV-1 gp41 and design a soluble near full-length gp41 trimer. The two long heptad repeat helices HR1 and HR2 of gp41 ectodomain were mutated to disrupt intramolecular HR1-HR2 interactions but not intermolecular HR1-HR1 interactions. This resulted in reduced aggregation and improved solubility. Attachment of a 27-amino acid foldon at the C terminus and slow refolding channeled gp41 into trimers. The trimers appear to be stabilized in a prehairpin-like structure, as evident from binding of a HR2 peptide to exposed HR1 grooves, lack of binding to hexa-helical bundle-specific NC-1 mAb, and inhibition of virus neutralization by broadly neutralizing antibodies 2F5 and 4E10. Fusion to T4 small outer capsid protein, Soc, allowed display of gp41 trimers on the phage nanoparticle. These approaches for the first time led to the design of a soluble gp41 trimer containing both the fusion peptide and the cytoplasmic domain, providing insights into the mechanism of entry and development of gp41-based HIV-1 vaccines.
Collapse
Affiliation(s)
- Guofen Gao
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Gochin M, Zhou G. Amphipathic properties of HIV-1 gp41 fusion inhibitors. Curr Top Med Chem 2011; 11:3022-32. [PMID: 22044226 PMCID: PMC3219813 DOI: 10.2174/156802611798808488] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/26/2011] [Accepted: 12/01/2011] [Indexed: 12/11/2022]
Abstract
Small molecule inhibition of HIV fusion has been an elusive goal, despite years of effort by both pharmaceutical and academic laboratories. In this review, we will discuss the amphipathic properties of both peptide and small molecule inhibitors of gp41-mediated fusion. Many of the peptides and small molecules that have been developed target a large hydrophobic pocket situated within the grooves of the coiled coil, a potential hotspot for inhibiting the trimer of hairpin formation that accompanies fusion. Peptide studies reveal molecular properties required for effective inhibition, including elongated structure and lipophilic or amphiphilic nature. The characteristics of peptides that bind in this pocket provide features that should be considered in small molecule development. Additionally, a novel site for small molecule inhibition of fusion has recently been suggested, involving residues of the loop and fusion peptide. We will review the small molecule structures that have been developed, evidence pointing to their mechanism of action and strategies towards improving their affinity. The data points to the need for a strongly amphiphilic character of the inhibitors, possibly as a means to mediate the membrane - protein interaction that occurs in gp41 in addition to the protein - protein interaction that accompanies the fusion-activating conformational transition.
Collapse
Affiliation(s)
- Miriam Gochin
- Department of Basic Sciences, Touro University – California, Vallejo, CA 94592, USA.
| | | |
Collapse
|
12
|
Palacios-Rodríguez Y, Gazarian T, Huerta L, Gazarian K. Constrained peptide models from phage display libraries highlighting the cognate epitope-specific potential of the anti-HIV-1 mAb 2F5. Immunol Lett 2011; 136:80-9. [PMID: 21237206 DOI: 10.1016/j.imlet.2010.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 12/02/2010] [Accepted: 12/26/2010] [Indexed: 10/18/2022]
Abstract
The monoclonal antibody 2F5 (mAb 2F5), one of the most potent broadly neutralizing mAbs targeted to the HIV-1 gp41 membrane proximal exterior region (MPER), displays an unusually wide antigenic specificity, tolerating amino acid substitutions at virtually all positions of the 662-ELDKWAS-668 epitope sequence when presented by peptides. Investigating this phenomenon, Menendez et al. [22] concluded that the paratope of 2F5 contains two distinct binding compartments. One is specific and binds the DKW epitope core; the other is multi-specific and binds to the flanking DKW regions that can be distinct from the epitope sequence. Because the DKW-flanking amino acids are strongly conserved in viruses, it is not clear whether the DKW only satisfies the 2F5 epitope recognition demand. In this study, we demonstrate that the specificity of recognition of the epitope depends on the structural context in which the cognate epitope sequence is presented. The antibody does not tolerate any replacements of the DKW-flanking epitope amino acids and binds exclusively to the (L)DKWA sequence provided that it is presented by a 7-mer constrained peptide exposed by the M13 phage pIII protein. Our data propose a novel epitope recognition model in which the 2F5 mAb requires a sequence longer than DKW and no substitution of flanking amino acids for specific recognition of the peptide. Additionally, immunization data supports the notion that the binding and neutralizing immunogenic structural features of the described epitope model do not coincide.
Collapse
Affiliation(s)
- Yadira Palacios-Rodríguez
- Department of Molecular Biology and Biotechnology, Institute of Biomedical Research, Mexican National Autonomous University, Circuito Exterior, Mexico City 04510, Mexico
| | | | | | | |
Collapse
|
13
|
Nie J, Zhang C, Liu W, Wu X, Li F, Wang S, Liang F, Song A, Wang Y. Genotypic and phenotypic characterization of HIV-1 CRF01_AE env molecular clones from infections in China. J Acquir Immune Defic Syndr 2010; 53:440-50. [PMID: 20090544 DOI: 10.1097/qai.0b013e3181cb8300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Although a great number of HIV-1 pseudoviruses have been generated for neutralization assays, circulating recombinant forms, such as CRF01_AE, are not included. Given the increasing prevalence of CRF01_AE, the establishment of a pool of CRF01_AE env isolates for the evaluation of potential HIV vaccines is needed. MATERIALS AND METHODS Full-length env genes were cloned from HIV-1 CRF01_AE-infected plasma samples collected in China and used to establish Env-pseudotyped viruses. The neutralization phenotypes of the pseudoviruses were characterized by testing against broadly neutralizing monoclonal antibodies, coreceptor antagonists, and 42 plasma samples that include 3 main prevalent HIV-1 subtypes in China. RESULTS Thirty-four genetically distinct CRF01_AE env genes were cloned and used to generate pseudotyped viruses. Of the 34 pseudoviruses, 32 used CCR5 as a coreceptor and 2 used CXCR4. The majority of pseudoviruses were resistant to the neutralizing antibodies IgG1b12 and 2G12 and susceptible to 2F5 and 4E10. There was significant variation of the neutralization susceptibility of pseudoviruses against 42 HIV-1-positive plasma samples. Based on their overall neutralization susceptibilities, the 34 CRF01_AE pseudoviruses were classified into 3 tiers: high, medium, and low. CONCLUSION The CRF01_AE pseudovirus isolates should be included in the panel of pseudoviruses used to assess vaccine-elicited neutralizing antibodies.
Collapse
Affiliation(s)
- Jianhui Nie
- Department of Cell Biology, National Institute for the Control of Pharmaceutical and Biological Products, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ablation of the complementarity-determining region H3 apex of the anti-HIV-1 broadly neutralizing antibody 2F5 abrogates neutralizing capacity without affecting core epitope binding. J Virol 2010; 84:4136-47. [PMID: 20147404 DOI: 10.1128/jvi.02357-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The identification and characterization of broadly neutralizing antibodies (bnAbs) against HIV-1 has formed a major research focus, with the ultimate goal to help in the design of an effective AIDS vaccine. One of these bnAbs, 2F5, has been extensively characterized, and residues at the apex of its unusually long complementarity-determining region (CDR) H3 loop have been shown to be crucial for neutralization. Structural studies, however, have revealed that the (100)TLFGVPI(100F) apex residues of the CDR H3 loop do not interact directly with residues of its core gp41 epitope. In an attempt to gain better insight into the functional role of this element, we have recombinantly expressed native 2F5 Fab and two mutants in which either the apical Phe100B(H) residue was changed to an alanine or the CDR H3 residues (100)TLFGVPI(100F) were replaced by a Ser-Gly dipeptide linker. Isothermal titration calorimetry (ITC) and competitive-binding enzyme-linked immunosorbent assays (ELISAs) rendered strikingly similar affinity constants (K(d) [dissociation constant] of approximately 20 nM) for linear peptide epitope binding by 2F5 Fabs, independent of the presence or absence of the apex residues. Ablation of the CDR H3 apex residues, however, abolished the cell-cell fusion inhibition and pseudovirus neutralization capacities of 2F5 Fab. We report competitive ELISA data that suggest a role of 2F5 CDR H3 apex residues in mediating weak hydrophobic interactions with residues located at the C terminus of the gp41 membrane proximal external region and/or membrane components in the context of core epitope binding. The present data therefore imply an extended 2F5 paratope that includes weak secondary interactions that are crucial for neutralization of Env-mediated fusion.
Collapse
|
15
|
Aromatic residues at the edge of the antibody combining site facilitate viral glycoprotein recognition through membrane interactions. Proc Natl Acad Sci U S A 2010; 107:1529-34. [PMID: 20080706 DOI: 10.1073/pnas.0909680107] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The broadly neutralizing anti-HIV antibody 4E10 recognizes an epitope very close to the virus membrane on the glycoprotein gp41. It was previously shown that epitope recognition improves in a membrane context and that 4E10 binds directly, albeit weakly, to lipids. Furthermore, a crystal structure of Fab 4E10 complexed to an epitope peptide revealed that the centrally placed, protruding H3 loop of the antibody heavy chain does not form peptide contacts. To investigate the hypothesis that the H3 loop apex might interact with the viral membrane, two Trp residues in this region were substituted separately or in combination with either Ala or Asp by site-directed mutagenesis. The resultant IgG variants exhibited similar affinities for an epitope peptide as WT 4E10 but lower apparent affinities for both viral membrane mimetic liposomes and Env(-) virus. Variants also exhibited lower apparent affinities for Env(+) virions and failed to significantly neutralize a number of 4E10-sensitive viruses. For the extremely sensitive HXB2 virus, variants did neutralize, but at 37- to >250-fold lower titers than WT 4E10, with Asp substitutions exerting a greater effect on neutralization potency than Ala substitutions. Because reductions in lipid binding reflect trends in neutralization potency, we conclude that Trp residues in the antibody H3 loop enable membrane proximal epitope recognition through favorable lipid interactions. The requirement for lipophilic residues such as Trp adjacent to the antigen binding site may explain difficulties in eliciting 4E10-like neutralizing antibody responses by immunization and helps define a unique motif for antibody recognition of membrane proximal antigens.
Collapse
|
16
|
Abstract
Up to now less than a handful of viral cholesterol-binding proteins have been characterized, in HIV, influenza virus and Semliki Forest virus. These are proteins with roles in virus entry or morphogenesis. In the case of the HIV fusion protein gp41 cholesterol binding is attributed to a cholesterol recognition consensus (CRAC) motif in a flexible domain of the ectodomain preceding the trans-membrane segment. This specific CRAC sequence mediates gp41 binding to a cholesterol affinity column. Mutations in this motif arrest virus fusion at the hemifusion stage and modify the ability of the isolated CRAC peptide to induce segregation of cholesterol in artificial membranes.Influenza A virus M2 protein co-purifies with cholesterol. Its proton translocation activity, responsible for virus uncoating, is not cholesterol-dependent, and the transmembrane channel appears too short for integral raft insertion. Cholesterol binding may be mediated by CRAC motifs in the flexible post-TM domain, which harbours three determinants of binding to membrane rafts. Mutation of the CRAC motif of the WSN strain attenuates virulence for mice. Its affinity to the raft-non-raft interface is predicted to target M2 protein to the periphery of lipid raft microdomains, the sites of virus assembly. Its influence on the morphology of budding virus implicates M2 as factor in virus fission at the raft boundary. Moreover, M2 is an essential factor in sorting the segmented genome into virus particles, indicating that M2 also has a role in priming the outgrowth of virus buds.SFV E1 protein is the first viral type-II fusion protein demonstrated to directly bind cholesterol when the fusion peptide loop locks into the target membrane. Cholesterol binding is modulated by another, proximal loop, which is also important during virus budding and as a host range determinant, as shown by mutational studies.
Collapse
Affiliation(s)
- Cornelia Schroeder
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307, Dresden, Germany.
| |
Collapse
|
17
|
de la Arada I, Julien JP, de la Torre BG, Huarte N, Andreu D, Pai EF, Arrondo JLR, Nieva JL. Structural constraints imposed by the conserved fusion peptide on the HIV-1 gp41 epitope recognized by the broadly neutralizing antibody 2F5. J Phys Chem B 2009; 113:13626-37. [PMID: 19754136 DOI: 10.1021/jp905965h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The HIV-1 gp41 epitope recognized by the broadly neutralizing 2F5 antibody has focused much attention as a suitable target in the design of peptide immunogens. Peptides mimicking the linear 2F5 epitope (2F5ep) are however intrinsically disordered, while the structural constraints existing in the cognate gp41 native structure recognized by the antibody are presently unknown. In recent reports, we have shown that core residues of the amino-terminal fusion peptide (FP) increase MAb2F5 affinity. Here, we have inferred the sequence-specific structural constraints imposed by the FP residues on the 2F5 epitope from the comparison of two hybrid peptides: HybK3, which connects through a flexible tether residues derived from 2F5ep and FP sequences, and scrHybK3, combining 2F5ep and an FP sequence with the conserved core scrambled. Circular dichroism, conventional and two-dimensional correlation infrared spectroscopy, and X-ray diffraction studies revealed specific structural features that were dependent on the exact FP sequence, namely, (i) the production with moderate low polarity of an intermediate folded structure enriched in beta-turns and alpha-helix; (ii) the existence in this intermediate of a thermotropic conformational transition taking place at ca. 18-20 degrees C, consistent with the conversion of 3(10)-helices into beta-turn conformers; and (iii) the presence of a C-terminal alpha-helix in crystals of Fab'-peptide complexes. Those features support the existence of native-like tertiary interactions between FP and 2F5 epitope residues, which might be important to recreate when developing an effective AIDS peptide vaccine.
Collapse
Affiliation(s)
- Igor de la Arada
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Crystallographic definition of the epitope promiscuity of the broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2F5: vaccine design implications. J Virol 2009; 83:11862-75. [PMID: 19740978 DOI: 10.1128/jvi.01604-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The quest to create a human immunodeficiency virus type 1 (HIV-1) vaccine capable of eliciting broadly neutralizing antibodies against Env has been challenging. Among other problems, one difficulty in creating a potent immunogen resides in the substantial overall sequence variability of the HIV envelope protein. The membrane-proximal region (MPER) of gp41 is a particularly conserved tryptophan-rich region spanning residues 659 to 683, which is recognized by three broadly neutralizing monoclonal antibodies (bnMAbs), 2F5, Z13, and 4E10. In this study, we first describe the variability of residues in the gp41 MPER and report on the invariant nature of 15 out of 25 amino acids comprising this region. Subsequently, we evaluate the ability of the bnMAb 2F5 to recognize 31 varying sequences of the gp41 MPER at a molecular level. In 19 cases, resulting crystal structures show the various MPER peptides bound to the 2F5 Fab'. A variety of amino acid substitutions outside the 664DKW666 core epitope are tolerated. However, changes at the 664DKW666 motif itself are restricted to those residues that preserve the aspartate's negative charge, the hydrophobic alkyl-pi stacking arrangement between the beta-turn lysine and tryptophan, and the positive charge of the former. We also characterize a possible molecular mechanism of 2F5 escape by sequence variability at position 667, which is often observed in HIV-1 clade C isolates. Based on our results, we propose a somewhat more flexible molecular model of epitope recognition by bnMAb 2F5, which could guide future attempts at designing small-molecule MPER-like vaccines capable of eliciting 2F5-like antibodies.
Collapse
|
19
|
Abad C, Martínez-Gil L, Tamborero S, Mingarro I. Membrane topology of gp41 and amyloid precursor protein: interfering transmembrane interactions as potential targets for HIV and Alzheimer treatment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2132-41. [PMID: 19619504 PMCID: PMC7094694 DOI: 10.1016/j.bbamem.2009.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/29/2009] [Accepted: 07/13/2009] [Indexed: 01/08/2023]
Abstract
The amyloid precursor protein (APP), that plays a critical role in the development of senile plaques in Alzheimer disease (AD), and the gp41 envelope protein of the human immunodeficiency virus (HIV), the causative agent of the acquired immunodeficiency syndrome (AIDS), are single-spanning type-1 transmembrane (TM) glycoproteins with the ability to form homo-oligomers. In this review we describe similarities, both in structural terms and sequence determinants of their TM and juxtamembrane regions. The TM domains are essential not only for anchoring the proteins in membranes but also have functional roles. Both TM segments contain GxxxG motifs that drive TM associations within the lipid bilayer. They also each possess similar sequence motifs, positioned at the membrane interface preceding their TM domains. These domains are known as cholesterol recognition/interaction amino acid consensus (CRAC) motif in gp41 and CRAC-like motif in APP. Moreover, in the cytoplasmic domain of both proteins other α-helical membranotropic regions with functional implications have been identified. Recent drug developments targeting both diseases are reviewed and the potential use of TM interaction modulators as therapeutic targets is discussed.
Collapse
Affiliation(s)
- Concepción Abad
- Departament de Bioquímica i Biologia Molecular, Universitat de València. Dr. Moliner, 50, E-46100 Burjassot, Spain
| | | | | | | |
Collapse
|
20
|
Molecular dynamics studies of the transmembrane domain of gp41 from HIV-1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1804-12. [PMID: 19540828 DOI: 10.1016/j.bbamem.2009.06.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 06/12/2009] [Accepted: 06/15/2009] [Indexed: 02/03/2023]
Abstract
Helix-helix interactions in the putative three-helix bundle formation of the gp41 transmembrane (TM) domain may contribute to the process of virus-cell membrane fusion in HIV-1 infection. In this study, molecular dynamics is used to analyze and compare the conformations of monomeric and trimeric forms of the TM domain in various solvent systems over the course of 4 to 23-ns simulations. The trimeric bundles of the TM domain were stable as helices and remained associated in a hydrated POPE lipid bilayer for the duration of the 23-ns simulation. Several stable inter-chain hydrogen bonds, mostly among the three deprotonated arginine residues located at the center of each of the three TM domains, formed in a right-handed bundle embedded in the lipid bilayer. No such bonds were observed when the bundle was left-handed or when the central arginine residue in each of the three TM helices was replaced with isoleucine (R_I mutant), suggesting that the central arginine residues may play an essential role in maintaining the integrity of the three-helix bundle. These observations suggest that formation of the three-helix bundle of the TM domain may play a role in the trimerization of gp41, thought to occur during the virus-cell membrane fusion process.
Collapse
|
21
|
Abstract
OBJECTIVE To determine the mechanism of interaction between the HIV-1 gp41-specific broadly neutralizing monoclonal antibody (mAb) 2F5, its epitope in the membrane proximal external region and a domain located in the fusion peptide proximal region in the N-terminal region of gp41. Knowledge of these interactions would be useful for the design of antigens used to induce 2F5-like antibodies. METHODS The binding and avidity of the mAb 2F5 were analyzed using enzyme-linked immunosorbent assays, epitope mapping and surface plasmon resonance analysis. Inhibition of virus neutralization by 2F5 was analyzed using peptides corresponding to the gp41 sequence. RESULTS Using transmembrane envelope proteins of gammaretroviruses, we had previously induced neutralizing antibodies that recognize two epitopes, one located in the N-terminal part of the transmembrane protein (designated E1) and the other in the C-terminal membrane proximal external region (E2). The E2 epitope corresponds to the mAb 2F5/4E10 epitope in the gp41 of HIV and we have now identified a corresponding E1 domain in gp41. Although 2F5 did not bind directly to E1, the presence of E1 peptides increased the binding of 2F5 to peptides carrying its epitope. Neutralization of HIV-1 by 2F5 was inhibited more effectively by both gp41-derived peptides E1 and E2 together than with the peptide E2 alone. CONCLUSION The interaction between the E1 and E2 domains of gp41 increased the efficacy of mAb 2F5 binding to its E2 epitope. Such an interaction may occur after gp41 folding into a six-helix bundle. Antigens containing both domains might be used to induce broadly neutralizing 2F5-like antibodies.
Collapse
|
22
|
Champagne K, Shishido A, Root MJ. Interactions of HIV-1 inhibitory peptide T20 with the gp41 N-HR coiled coil. J Biol Chem 2008; 284:3619-27. [PMID: 19073602 DOI: 10.1074/jbc.m809269200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular entry of human immunodeficiency virus type 1 (HIV-1) involves fusion of viral and cellular membranes and is mediated by structural transitions in viral glycoprotein gp41. The antiviral C-peptide T20 targets the gp41 N-terminal heptad repeat region (N-HR), blocking gp41 conformational changes essential for the entry process. To probe the T20 structure-activity relationship, we engineered a molecular mimic of the entire gp41 N-HR coiled coil using the 5-Helix design strategy. T20 bound this artificial protein (denoted 5H-ex) with nanomolar affinity (K(D) = 30 nm), close to its IC50 concentration (approximately 3 nm) but much weaker than the affinity of a related inhibitory C-peptide C37 (K(D) = 0.0007 nm). T20/C37 competitive binding assays confirmed that T20 interacts with the hydrophobic groove on the surface of the N-HR coiled coil outside of a deep pocket region crucial for C37 binding. We used 5H-ex to investigate how the T20 N and C termini contributed to the inhibitor binding activity. Mutating three aromatic residues at the T20 C terminus (WNWF --> ANAA) had no effect on affinity, suggesting that these amino acids do not participate in T20 binding to the gp41 N-HR. The results support recent evidence pointing to a different role for these residues in T20 inhibition (Peisajovich, S. G., Gallo, S. A., Blumenthal, R., and Shai, Y. (2003) J. Biol. Chem. 278, 21012-21017; Liu, S., Jing, W., Cheung, B., Lu, H., Sun, J., Yan, X., Niu, J., Farmar, J., Wu, S., and Jiang, S. (2007) J. Biol. Chem. 282, 9612-9620). By contrast, mutations near the T20 N terminus substantially influenced inhibitor binding strength. When Ile was substituted for Thr in the second T20 position, a 40-fold increase in binding affinity was measured (K(D) = 0.75 nm). The effect of this affinity enhancement on T20 inhibitory potency varied among different viral strains. The original T20 and the higher affinity T20 variant had similar potency against wild type HIV-1. However, the higher affinity T20 variant was significantly more potent against T20-resistant virus. The findings suggest that other factors in addition to binding affinity play a role in limiting T20 potency. As a mimetic of the complete gp41 N-HR coiled coil region, 5H-ex will be a useful tool to further elucidate mechanistic profiles of C-peptide inhibitors.
Collapse
Affiliation(s)
- Kelly Champagne
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
23
|
Identification of the LWYIK motif located in the human immunodeficiency virus type 1 transmembrane gp41 protein as a distinct determinant for viral infection. J Virol 2008; 83:870-83. [PMID: 18987155 DOI: 10.1128/jvi.01088-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The highly conserved LWYIK motif located immediately proximal to the membrane-spanning domain of the gp41 transmembrane protein of human immunodeficiency virus type 1 has been proposed as being important for the surface envelope (Env) glycoprotein's association with lipid rafts and gp41-mediated membrane fusion. Here we employed substitution and deletion mutagenesis to understand the role of this motif in the virus life cycle. None of the mutants examined affected the synthesis, precursor processing, CD4 binding, oligomerization, or cell surface expression of the Env, nor did they alter Env incorporation into the virus. All of the mutants, particularly the DeltaYI, DeltaIK, and DeltaLWYIK mutants, in which the indicated residues were deleted, exhibited greatly reduced one-cycle viral replication and the Env trans-complementation ability. All of these deletion mutant proteins were still localized in the lipid rafts. With the exception of the Trp-to-Ala (WA) mutant, which exhibited reduced viral infectivity albeit with normal membrane fusion, all mutants displayed loss of some or almost all of the membrane fusion ability. Although these deletion mutants partially inhibited in trans wild-type (WT) Env-mediated fusion, they were more effective in dominantly interfering with WT Env-mediated viral entry when coexpressed with the WT Env, implying a role of this motif in postfusion events as well. Both T20 and L43L peptides derived from the two gp41 extracellular C- and N-terminal alpha-helical heptad repeats, respectively, inhibited WT and DeltaLWYIK Env-mediated viral entry with comparable efficacies. Biotin-tagged T20 effectively captured both the fusion-active, prehairpin intermediates of WT and mutant gp41 upon CD4 activation. Env without the deletion of the LWYIK motif still effectively mediated lipid mixing but inhibited content mixing. Our study demonstrates that the immediate membrane-proximal LWYIK motif acts as a unique and distinct determinant located in the gp41 C-terminal ectodomain by promoting enlargement of fusion pores and postfusion activities.
Collapse
|
24
|
Julien JP, Bryson S, Nieva JL, Pai EF. Structural details of HIV-1 recognition by the broadly neutralizing monoclonal antibody 2F5: epitope conformation, antigen-recognition loop mobility, and anion-binding site. J Mol Biol 2008; 384:377-92. [PMID: 18824005 DOI: 10.1016/j.jmb.2008.09.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 09/05/2008] [Accepted: 09/08/2008] [Indexed: 11/25/2022]
Abstract
2F5 is a monoclonal antibody with potent and broadly neutralizing activity against HIV-1. It targets the membrane-proximal external region (MPER) of the gp41 subunit of the envelope glycoprotein and interferes with the process of fusion between viral and host cell membranes. This study presents eight 2F5 F(ab)' crystal structures in complex with various gp41 peptide epitopes. These structures reveal several key features of this antibody-antigen interaction. (1) Whenever free of contacts caused by crystal artifacts, the extended complementarity-determining region H3 loop is mobile; this is true for ligand-free and epitope-bound forms. (2) The interaction between the antibody and the gp41 ELDKWA epitope core is absolutely critical, and there are also close and specific contacts with residues located N-terminal to the epitope core. (3) Residues located at the C-terminus of the gp41 ELDKWA core do not interact as tightly with the antibody. However, in the presence of a larger peptide containing the gp41 fusion peptide segment, these residues adopt a conformation consistent with the start of an alpha-helix. (4) At high sulfate concentrations, the electron density maps of 2F5 F(ab)'-peptide complexes contain a peak that may mark a binding site for phosphate groups of negatively charged lipid headgroups. The refined atomic-level details of 2F5 paratope-epitope interactions revealed here should contribute to a better understanding of the mechanism of 2F5-based virus neutralization, in general, and prove important for the design of potential vaccine candidates intended to elicit 2F5-like antibody production.
Collapse
Affiliation(s)
- Jean-Philippe Julien
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | | | | | | |
Collapse
|
25
|
Guillén J, Kinnunen PKJ, Villalaín J. Membrane insertion of the three main membranotropic sequences from SARS-CoV S2 glycoprotein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2765-74. [PMID: 18721794 PMCID: PMC7157930 DOI: 10.1016/j.bbamem.2008.07.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 07/09/2008] [Accepted: 07/23/2008] [Indexed: 12/02/2022]
Abstract
In order to complete the fusion process of SARS-CoV virus, several regions of the S2 virus envelope glycoprotein are necessary. Recent studies have identified three membrane-active regions in the S2 domain of SARS-CoV glycoprotein, one situated downstream of the minimum furin cleavage, which is considered the fusion peptide (SARSFP), an internal fusion peptide located immediately upstream of the HR1 region (SARSIFP) and the pre-transmembrane domain (SARSPTM). We have explored the capacity of these selected membrane-interacting regions of the S2 SARS-CoV fusion protein, alone or in equimolar mixtures, to insert into the membrane as well as to perturb the dipole potential of the bilayer. We show that the three peptides interact with lipid membranes depending on lipid composition and experiments using equimolar mixtures of these peptides show that different segments of the protein may act in a synergistic way suggesting that several membrane-active regions could participate in the fusion process of the SARS-CoV.
Collapse
Affiliation(s)
- Jaime Guillén
- Instituto de Biología Molecular y Celular, Campus de Elche, Universidad Miguel Hernández, E-03202 Elche-Alicante, Spain
| | | | | |
Collapse
|
26
|
White JM, Delos SE, Brecher M, Schornberg K. Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol 2008; 43:189-219. [PMID: 18568847 DOI: 10.1080/10409230802058320] [Citation(s) in RCA: 665] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent work has identified three distinct classes of viral membrane fusion proteins based on structural criteria. In addition, there are at least four distinct mechanisms by which viral fusion proteins can be triggered to undergo fusion-inducing conformational changes. Viral fusion proteins also contain different types of fusion peptides and vary in their reliance on accessory proteins. These differing features combine to yield a rich diversity of fusion proteins. Yet despite this staggering diversity, all characterized viral fusion proteins convert from a fusion-competent state (dimers or trimers, depending on the class) to a membrane-embedded homotrimeric prehairpin, and then to a trimer-of-hairpins that brings the fusion peptide, attached to the target membrane, and the transmembrane domain, attached to the viral membrane, into close proximity thereby facilitating the union of viral and target membranes. During these conformational conversions, the fusion proteins induce membranes to progress through stages of close apposition, hemifusion, and then the formation of small, and finally large, fusion pores. Clearly, highly divergent proteins have converged on the same overall strategy to mediate fusion, an essential step in the life cycle of every enveloped virus.
Collapse
Affiliation(s)
- Judith M White
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908-0732, USA.
| | | | | | | |
Collapse
|
27
|
Noah E, Biron Z, Naider F, Arshava B, Anglister J. The membrane proximal external region of the HIV-1 envelope glycoprotein gp41 contributes to the stabilization of the six-helix bundle formed with a matching N' peptide. Biochemistry 2008; 47:6782-92. [PMID: 18540633 DOI: 10.1021/bi7023139] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The HIV-1 envelope glycoprotein gp41 undergoes a sequence of extensive conformational changes while participating in the fusion of the virus with the host cell. Since the discovery of its postfusion conformation, the structure and function of the protease-resistant six-helix bundle (6-HB) have been the subject of extensive investigation. In this work, we describe additional determinants (S528-Q540 and W666-N677) in the fusion peptide proximal region (FP-PR) and the membrane proximal external region (MPER) that stabilize the six-helix bundle and are involved in the interaction of T-20 (FUZEON, an anti-HIV-1 fusion inhibitor drug) with the gp41 FP-PR. Circular dichroism and sedimentation equilibrium measurements indicate that the 1:1 mixture of N' and C' peptides comprising residues A541-T569 and I635-K665 from the gp41 first and second helical repeats, HR1 and HR2, respectively, fail to form a stable six-helix bundle. Triglutamic acid and triarginine tags were added to these N' and C' peptides, respectively, at the termini distant from the FP-PR and the MPER to alter their pI and increase their solubility at pH 3.5. The tagged HR1 and HR2 peptides were elongated by addition of residues S528-Q540 from the FP-PR and residues W666-N677 from the MPER, respectively. A 1:1 complex of the elongated peptides formed a stable six-helix bundle which melted at 60 degrees C. These results underscore the importance of a detailed high-resolution characterization of MPER interactions, the results of which may improve our understanding of the structure-function relationship of gp41 and its role in HIV-1 fusion.
Collapse
Affiliation(s)
- Eran Noah
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
28
|
The membrane-proximal external region of the human immunodeficiency virus type 1 envelope: dominant site of antibody neutralization and target for vaccine design. Microbiol Mol Biol Rev 2008; 72:54-84, table of contents. [PMID: 18322034 DOI: 10.1128/mmbr.00020-07] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Enormous efforts have been made to produce a protective vaccine against human immunodeficiency virus type 1; there has been little success. However, the identification of broadly neutralizing antibodies against epitopes on the highly conserved membrane-proximal external region (MPER) of the gp41 envelope protein has delineated this region as an attractive vaccine target. Furthermore, emerging structural information on the MPER has provided vaccine designers with new insights for building relevant immunogens. This review describes the current state of the field regarding (i) the structure and function of the gp41 MPER; (ii) the structure and binding mechanisms of the broadly neutralizing antibodies 2F5, 4E10, and Z13; and (iii) the development of an MPER-targeting vaccine. In addition, emerging approaches to vaccine design are presented.
Collapse
|
29
|
Lorizate M, Huarte N, Sáez-Cirión A, Nieva JL. Interfacial pre-transmembrane domains in viral proteins promoting membrane fusion and fission. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1624-39. [PMID: 18222166 PMCID: PMC7094410 DOI: 10.1016/j.bbamem.2007.12.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 12/17/2007] [Accepted: 12/20/2007] [Indexed: 12/02/2022]
Abstract
Membrane fusion and fission underlie two limiting steps of enveloped virus replication cycle: access to the interior of the host-cell (entry) and dissemination of viral progeny after replication (budding), respectively. These dynamic processes proceed mediated by specialized proteins that disrupt and bend the lipid bilayer organization transiently and locally. We introduced Wimley–White membrane-water partitioning free energies of the amino acids as an algorithm for predicting functional domains that may transmit protein conformational energy into membranes. It was found that many viral products possess unusually extended, aromatic-rich pre-transmembrane stretches predicted to stably reside at the membrane interface. Here, we review structure–function studies, as well as data reported on the interaction of representative peptides with model membranes, all of which sustain a functional role for these domains in viral fusion and fission. Since pre-transmembrane sequences also constitute antigenic determinants in a membrane-bound state, we also describe some recent results on their recognition and blocking at membrane interface by neutralizing antibodies.
Collapse
Affiliation(s)
| | | | | | - José L. Nieva
- Corresponding author. Unidad de Biofísica, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain. Tel.: +34 94 6013353; fax: +34 94 6013360.
| |
Collapse
|
30
|
Bellamy-McIntyre AK, Lay CS, Baär S, Maerz AL, Talbo GH, Drummer HE, Poumbourios P. Functional links between the fusion peptide-proximal polar segment and membrane-proximal region of human immunodeficiency virus gp41 in distinct phases of membrane fusion. J Biol Chem 2007; 282:23104-16. [PMID: 17526486 DOI: 10.1074/jbc.m703485200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding of CD4 and chemokine receptors to the gp120 attachment glycoprotein of human immunodeficiency virus triggers refolding of the associated gp41 fusion glycoprotein into a trimer of hairpins with a 6-helix bundle (6HB) core. These events lead to membrane fusion and viral entry. Here, we examined the functions of the fusion peptide-proximal polar segment and membrane-proximal Trp-rich region (MPR), which are exterior to the 6HB. Alanine substitution of Trp(666), Trp(672), Phe(673), and Ile(675) in the MPR reduced entry by up to 120-fold without affecting gp120-gp41 association or cell-cell fusion. The L537A polar segment mutation led to the loss of gp120 from the gp120-gp41 complex, reduced entry by approximately 10-fold, but did not affect cell-cell fusion. Simultaneous Ala substitution of Leu(537) with Trp(666), Trp(672), Phe(673), or Ile(675) abolished entry with 50-80% reductions in cell-cell fusion. gp120-gp41 complexes of fusion-defective double mutants were resistant to soluble CD4-induced shedding of gp120, suggesting that their ability to undergo receptor-induced conformational changes was compromised. Consistent with this idea, a representative mutation, L537A/W666A, led to an approximately 80% reduction in lipophilic fluorescent dye transfer between gp120-gp41-expressing cells and receptor-expressing targets, indicating a block prior to the lipid-mixing phase. The L537A/W666A double mutation increased the chymotrypsin sensitivity of the polar segment in a trimer of hairpins model, comprising the 6HB core, the polar segment, and MPR linked N-terminally to maltose-binding protein. The data indicate that the polar segment and MPR of gp41 act synergistically in forming a fusion-competent gp120-gp41 complex and in stabilizing the membrane-interactive end of the trimer of hairpins.
Collapse
Affiliation(s)
- Anna K Bellamy-McIntyre
- Macfarlane Burnet Institute for Medical Research and Public Health, Prahran, Victoria 3004, Australia
| | | | | | | | | | | | | |
Collapse
|
31
|
Roux KH, Taylor KA. AIDS virus envelope spike structure. Curr Opin Struct Biol 2007; 17:244-52. [PMID: 17395457 DOI: 10.1016/j.sbi.2007.03.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 02/26/2007] [Accepted: 03/16/2007] [Indexed: 11/30/2022]
Abstract
The envelope (Env) spikes on HIV-1 and closely related SIV define the viral tropism, mediate the fusion process and are the prime target of the humoral response. Despite intensive efforts, Env has been slow to reveal its structural and functional secrets. Three gp120 subunits comprise the 'head' of Env and three gp41 subunits comprise the 'stalk' and other membrane-associated elements. The recent description of the core structure of unliganded (untriggered) gp120, compared to earlier CD4-liganded atomic structures, reveals dramatic conformational reorganization of the components and suggests a mechanism for the initiation of fusion. The structure of the key V3 loop, both in isolation and in association with the liganded core, helps define its role in fusion and as a prime target of neutralizing antibodies. Additional details are emerging regarding the structure of gp41 as it transitions from the preliganded configuration to the fusion intermediate (fusion-active or prehairpin intermediate) configuration, although much remains speculative. Recent advances in cryoelectron tomography are giving us the first glimpses of the overall three-dimensional structure of Env, which, when fitted with the available component atomic structures, provides new insights into the organization of the structural elements within the trimeric spike.
Collapse
Affiliation(s)
- Kenneth H Roux
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4370, USA.
| | | |
Collapse
|
32
|
de la Torre BG, Jakab A, Andreu D. Polyethyleneglycol-Based Resins as Solid Supports for the Synthesis of Difficult or Long Peptides. Int J Pept Res Ther 2007. [DOI: 10.1007/s10989-006-9077-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Lorizate M, de la Arada I, Huarte N, Sánchez-Martínez S, de la Torre BG, Andreu D, Arrondo JLR, Nieva JL. Structural Analysis and Assembly of the HIV-1 Gp41 Amino-Terminal Fusion Peptide and the Pretransmembrane Amphipathic-At-Interface Sequence. Biochemistry 2006; 45:14337-46. [PMID: 17128972 DOI: 10.1021/bi0612521] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The amino-terminal region within the HIV-1 gp41 aromatic-rich pretransmembrane domain is an amphipathic-at-interface sequence (AIS). AIS is highly conserved between different viral strains and isolates and recognized by the broadly neutralizing 2F5 antibody. The atomic structure of the native Fab2F5-bound AIS appears to involve a nonhelical extended region and a beta-turn structure. We previously described how an immunogenic complex forms, based on the stereospecific interactions between AIS and the gp41 amino-terminal fusion peptide (FP). Here, we have analyzed the structure generated by these interactions using synthetic hybrids containing AIS and FP sequences connected through flexible tethers. The monoclonal 2F5 antibody recognized FP-AIS hybrid sequences with an apparently higher affinity than the linear AIS. Indeed, these hybrids exhibited a weaker capacity to destabilize membranes than FP alone. A combined structural analysis, including circular dichroism, infrared spectroscopy, and two-dimensional infrared correlation spectroscopy, revealed the existence of specific conformations in FP-AIS hybrids, predominantly involving beta-turns. Thermal denaturation studies indicated that FP stabilizes the nonhelical folded AIS structure. We propose that the assembly of the FP-AIS complex may act as a kinetic trap in halting the capacity of FP to promote fusion.
Collapse
Affiliation(s)
- Maier Lorizate
- Biophysics Unit (CSIC-UPV/EHU) and Biochemistry Department, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| | | | | | | | | | | | | | | |
Collapse
|