1
|
Mori Y, Mizukami T, Segawa S, Roder H, Maki K. Folding of Staphylococcal Nuclease Induced by Binding of Chemically Modified Substrate Analogues Sheds Light on Mechanisms of Coupled Folding/Binding Reactions. Biochemistry 2023; 62:1670-1678. [PMID: 37227385 PMCID: PMC10583223 DOI: 10.1021/acs.biochem.3c00094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Several proteins have been shown to undergo a shift in the mechanism of ligand binding-induced folding from conformational selection (CS; folding precedes binding) to induced fit (IF; binding precedes folding) with increasing ligand concentration. In previous studies of the coupled folding/binding reaction of staphylococcal nuclease (SNase) in the presence of a substrate analogue, adenosine-3',5'-diphosphate (prAp), we found that the two phosphate groups make important energetic contributions toward stabilizing its complex with the native protein as well as transient conformational states encountered at high ligand concentrations favoring IF. However, the structural contributions of each phosphate group during the reaction remain unclear. To address this question, we relied on fluorescence, nuclear magnetic resonance (NMR), absorption, and isothermal titration calorimetry to study the effects of deletion of the phosphate groups of prAp on the kinetics of ligand-induced folding, using a strategy analogous to mutational ϕ-value analysis to interpret the results. Kinetic measurements over a wide range of ligand concentrations, together with structural characterization of a transient protein-ligand encounter complex using 2D NMR, indicated that, at high ligand concentrations favoring IF, (i) the 5'-phosphate group interacts weakly with denatured SNase during early stages of the reaction, resulting in loose docking of the two domains of SNase, and (ii) the 3'-phosphate group engages in some specific contacts with the polypeptide in the transition state prior to formation of the native SNase-prAp complex.
Collapse
Affiliation(s)
- Yujiro Mori
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Takuya Mizukami
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Saho Segawa
- School of Science, Nagoya University, Nagoya, Aichi, 464-8602 Japan
| | - Heinrich Roder
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Kosuke Maki
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
2
|
Highly Sensitive Tryptophan Fluorescence Probe for detecting Rhythmic Conformational changes of KaiC in the Cyanobacterial Circadian Clock System. Biochem J 2022; 479:1505-1515. [PMID: 35771042 PMCID: PMC9342895 DOI: 10.1042/bcj20210544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022]
Abstract
KaiC, a core protein of the cyanobacterial circadian clock, consists of an N-terminal CI domain and a C-terminal CII domain, and assembles into a double-ring hexamer upon binding with ATP. KaiC rhythmically phosphorylates and dephosphorylates its own two adjacent residues Ser431 and Thr432 at the CII domain with a period of approximately 24h through assembly and disassembly with the other clock proteins, KaiA and/or KaiB. In this study, to understand how KaiC alters its conformation as the source of circadian rhythm, we investigated structural changes of an inner-radius side of the CII ring using time-resolved Trp fluorescence spectroscopy. A KaiC mutant harboring a Trp fluorescence probe at a position of 419 exhibited a robust circadian rhythm with little temperature sensitivity in the presence of KaiA and KaiB. Our fluorescence observations show a remarkable environmental change at the inner-radius side of the CII ring during circadian oscillation. Crystallographic analysis revealed that a side chain of Trp at the position of 419 was oriented toward a region undergoing a helix-coil transition, which is considered to be a key event to allosterically regulate the CI ring that plays a crucial role in determining the cycle period. The present study provides a dynamical insight into how KaiC generates circadian oscillation.
Collapse
|
3
|
Mizukami T, Roder H. Advances in Mixer Design and Detection Methods for Kinetics Studies of Macromolecular Folding and Binding on the Microsecond Time Scale. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113392. [PMID: 35684328 PMCID: PMC9182321 DOI: 10.3390/molecules27113392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022]
Abstract
Many important biological processes such as protein folding and ligand binding are too fast to be fully resolved using conventional stopped-flow techniques. Although advances in mixer design and detection methods have provided access to the microsecond time regime, there is room for improvement in terms of temporal resolution and sensitivity. To address this need, we developed a continuous-flow mixing instrument with a dead time of 12 to 27 µs (depending on solution viscosity) and enhanced sensitivity, sufficient for monitoring tryptophan or tyrosine fluorescence changes at fluorophore concentrations as low as 1 µM. Relying on commercially available laser microfabrication services, we obtained an integrated mixer/flow-cell assembly on a quartz chip, based on a cross-channel configuration with channel dimensions and geometry designed to minimize backpressure. By gradually increasing the width of the observation channel downstream from the mixing region, we are able to monitor a reaction progress time window ranging from ~10 µs out to ~3 ms. By combining a solid-state UV laser with a Galvano-mirror scanning strategy, we achieved highly efficient and uniform fluorescence excitation along the flow channel. Examples of applications, including refolding of acid-denatured cytochrome c triggered by a pH jump and binding of a peptide ligand to a PDZ domain, demonstrate the capability of the technique to resolve fluorescence changes down to the 10 µs time regime on modest amounts of reagents.
Collapse
|
4
|
Energetics and kinetics of substrate analog-coupled staphylococcal nuclease folding revealed by a statistical mechanical approach. Proc Natl Acad Sci U S A 2020; 117:19953-19962. [PMID: 32737158 DOI: 10.1073/pnas.1914349117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein conformational changes associated with ligand binding, especially those involving intrinsically disordered proteins, are mediated by tightly coupled intra- and intermolecular events. Such reactions are often discussed in terms of two limiting kinetic mechanisms, conformational selection (CS), where folding precedes binding, and induced fit (IF), where binding precedes folding. It has been shown that coupled folding/binding reactions can proceed along both CS and IF pathways with the flux ratio depending on conditions such as ligand concentration. However, the structural and energetic basis of such complex reactions remains poorly understood. Therefore, we used experimental, theoretical, and computational approaches to explore structural and energetic aspects of the coupled-folding/binding reaction of staphylococcal nuclease in the presence of the substrate analog adenosine-3',5'-diphosphate. Optically monitored equilibrium and kinetic data, combined with a statistical mechanical model, gave deeper insight into the relative importance of specific and Coulombic protein-ligand interactions in governing the reaction mechanism. We also investigated structural aspects of the reaction at the residue level using NMR and all-atom replica-permutation molecular dynamics simulations. Both approaches yielded clear evidence for accumulation of a transient protein-ligand encounter complex early in the reaction under IF-dominant conditions. Quantitative analysis of the equilibrium/kinetic folding revealed that the ligand-dependent CS-to-IF shift resulted from stabilization of the compact transition state primarily by weakly ligand-dependent Coulombic interactions with smaller contributions from specific binding energies. At a more macroscopic level, the CS-to-IF shift was represented as a displacement of the reaction "route" on the free energy surface, which was consistent with a flux analysis.
Collapse
|
5
|
Roche J, Royer CA. Lessons from pressure denaturation of proteins. J R Soc Interface 2018; 15:rsif.2018.0244. [PMID: 30282759 DOI: 10.1098/rsif.2018.0244] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/13/2018] [Indexed: 12/26/2022] Open
Abstract
Although it is now relatively well understood how sequence defines and impacts global protein stability in specific structural contexts, the question of how sequence modulates the configurational landscape of proteins remains to be defined. Protein configurational equilibria are generally characterized by using various chemical denaturants or by changing temperature or pH. Another thermodynamic parameter which is less often used in such studies is high hydrostatic pressure. This review discusses the basis for pressure effects on protein structure and stability, and describes how the unique mechanisms of pressure-induced unfolding can provide unique insights into protein conformational landscapes.
Collapse
Affiliation(s)
- Julien Roche
- Department of Biochemistry, Biophysics and Molecular Biology Iowa State University, Ames, IA 50011, USA
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
6
|
Dellarole M, Caro JA, Roche J, Fossat M, Barthe P, García-Moreno E B, Royer CA, Roumestand C. Evolutionarily Conserved Pattern of Interactions in a Protein Revealed by Local Thermal Expansion Properties. J Am Chem Soc 2015; 137:9354-62. [PMID: 26135981 DOI: 10.1021/jacs.5b04320] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The way in which the network of intramolecular interactions determines the cooperative folding and conformational dynamics of a protein remains poorly understood. High-pressure NMR spectroscopy is uniquely suited to examine this problem because it combines the site-specific resolution of the NMR experiments with the local character of pressure perturbations. Here we report on the temperature dependence of the site-specific volumetric properties of various forms of staphylococcal nuclease (SNase), including three variants with engineered internal cavities, as measured with high-pressure NMR spectroscopy. The strong temperature dependence of pressure-induced unfolding arises from poorly understood differences in thermal expansion between the folded and unfolded states. A significant inverse correlation was observed between the global thermal expansion of the folded proteins and the number of strong intramolecular hydrogen bonds, as determined by the temperature coefficient of the backbone amide chemical shifts. Comparison of the identity of these strong H-bonds with the co-evolution of pairs of residues in the SNase protein family suggests that the architecture of the interactions detected in the NMR experiments could be linked to a functional aspect of the protein. Moreover, the temperature dependence of the residue-specific volume changes of unfolding yielded residue-specific differences in expansivity and revealed how mutations impact intramolecular interaction patterns. These results show that intramolecular interactions in the folded states of proteins impose constraints against thermal expansion and that, hence, knowledge of site-specific thermal expansivity offers insight into the patterns of strong intramolecular interactions and other local determinants of protein stability, cooperativity, and potentially also of function.
Collapse
Affiliation(s)
- Mariano Dellarole
- †Centre de Biochimie Structurale, CNRS UMR5048, INSERM U554, Université Montpellier 1, 29 rue de Navacelles, Montpellier, France 34090
| | - Jose A Caro
- ‡T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St.. Baltimore, Maryland 21218, United States
| | - Julien Roche
- †Centre de Biochimie Structurale, CNRS UMR5048, INSERM U554, Université Montpellier 1, 29 rue de Navacelles, Montpellier, France 34090
| | - Martin Fossat
- †Centre de Biochimie Structurale, CNRS UMR5048, INSERM U554, Université Montpellier 1, 29 rue de Navacelles, Montpellier, France 34090
| | - Philippe Barthe
- †Centre de Biochimie Structurale, CNRS UMR5048, INSERM U554, Université Montpellier 1, 29 rue de Navacelles, Montpellier, France 34090
| | - Bertrand García-Moreno E
- ‡T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St.. Baltimore, Maryland 21218, United States
| | - Catherine A Royer
- †Centre de Biochimie Structurale, CNRS UMR5048, INSERM U554, Université Montpellier 1, 29 rue de Navacelles, Montpellier, France 34090
| | - Christian Roumestand
- †Centre de Biochimie Structurale, CNRS UMR5048, INSERM U554, Université Montpellier 1, 29 rue de Navacelles, Montpellier, France 34090
| |
Collapse
|
7
|
Kawahara-Kobayashi A, Hitotsuyanagi M, Amikura K, Kiga D. Experimental evolution of a green fluorescent protein composed of 19 unique amino acids without tryptophan. ORIGINS LIFE EVOL B 2014; 44:75-86. [PMID: 25399308 DOI: 10.1007/s11084-014-9371-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 09/25/2014] [Indexed: 10/24/2022]
Abstract
At some stage of evolution, genes of organisms may have encoded proteins that were synthesized using fewer than 20 unique amino acids. Similar to evolution of the natural 19-amino-acid proteins GroEL/ES, proteins composed of 19 unique amino acids would have been able to evolve by accumulating beneficial mutations within the 19-amino-acid repertoire encoded in an ancestral genetic code. Because Trp is thought to be the last amino acid included in the canonical 20-amino-acid repertoire, this late stage of protein evolution could be mimicked by experimental evolution of 19-amino-acid proteins without tryptophan (Trp). To further understand the evolution of proteins, we tried to mimic the evolution of a 19-amino-acid protein involving the accumulation of beneficial mutations using directed evolution by random mutagenesis on the whole targeted gene sequence. We created active 19-amino-acid green fluorescent proteins (GFPs) without Trp from a poorly fluorescent 19-amino-acid mutant, S1-W57F, by using directed evolution with two rounds of mutagenesis and selection. The N105I and S205T mutations showed beneficial effects on the S1-W57F mutant. When these two mutations were combined on S1-W57F, we observed an additive effect on the fluorescence intensity. In contrast, these mutations showed no clear improvement individually or in combination on GFPS1, which is the parental GFP mutant composed of 20 amino acids. Our results provide an additional example for the experimental evolution of 19-amino-acid proteins without Trp, and would help understand the mechanisms underlying the evolution of 19-amino-acid proteins. (236 words).
Collapse
Affiliation(s)
- Akio Kawahara-Kobayashi
- Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan
| | | | | | | |
Collapse
|
8
|
Roche J, Dellarole M, Caro JA, Norberto DR, Garcia AE, Garcia-Moreno B, Roumestand C, Royer CA. Effect of Internal Cavities on Folding Rates and Routes Revealed by Real-Time Pressure-Jump NMR Spectroscopy. J Am Chem Soc 2013; 135:14610-8. [DOI: 10.1021/ja406682e] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Julien Roche
- Centre de Biochimie
Structurale, INSERM U554, CNRS UMR 5048, Universités de Montpellier, France
| | - Mariano Dellarole
- Centre de Biochimie
Structurale, INSERM U554, CNRS UMR 5048, Universités de Montpellier, France
| | - José A. Caro
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Douglas R. Norberto
- Department
of Biochemistry, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Angel E. Garcia
- Department
of Physics and Applied Physics and Center for Biotechnology and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Bertrand Garcia-Moreno
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Christian Roumestand
- Centre de Biochimie
Structurale, INSERM U554, CNRS UMR 5048, Universités de Montpellier, France
| | - Catherine A. Royer
- Centre de Biochimie
Structurale, INSERM U554, CNRS UMR 5048, Universités de Montpellier, France
| |
Collapse
|
9
|
Mizukami T, Xu M, Cheng H, Roder H, Maki K. Nonuniform chain collapse during early stages of staphylococcal nuclease folding detected by fluorescence resonance energy transfer and ultrarapid mixing methods. Protein Sci 2013; 22:1336-48. [PMID: 23904284 DOI: 10.1002/pro.2320] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 07/10/2013] [Accepted: 07/10/2013] [Indexed: 11/07/2022]
Abstract
The development of tertiary structure during folding of staphylococcal nuclease (SNase) was studied by time-resolved fluorescence resonance energy transfer measured using continuous- and stopped-flow techniques. Variants of this two-domain protein containing intradomain and interdomain fluorescence donor/acceptor pairs (Trp and Cys-linked fluorophore or quencher) were prepared to probe the intradomain and interdomain structural evolution accompanying SNase folding. The intra-domain donor/acceptor pairs are within the β-barrel domain (Trp27/Cys64 and Trp27/Cys97) and the interdomain pair is between the α-helical domain and the β-barrel domain (Trp140/Cys64). Time-resolved energy transfer efficiency accompanying folding and unfolding at different urea concentrations was measured over a time range from 30 μs to ≈ 10 s. Information on average donor/acceptor distances at different stages of the folding process was obtained by using a quantitative kinetic modeling approach. The average distance for the donor/acceptor pairs in the β-barrel domain decreases to nearly native values whereas that of the interdomain donor/acceptor pairs remains unchanged in the earliest intermediate (<500 μs of refolding). This indicates a rapid nonuniform collapse resulting in an ensemble of heterogeneous conformations in which the central region of the β-barrel domain is well developed while the C-terminal α-helical domain remains disordered. The distance between Trp140 and Cys64 decreases to native values on the 100-ms time scale, indicating that the α-helical domain docks onto the preformed β-barrel at a late stage of the folding. In addition, the unfolded state is found to be more compact under native conditions, suggesting that changes in solvent conditions may induce a nonspecific hydrophobic collapse.
Collapse
Affiliation(s)
- Takuya Mizukami
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | | | | | | | | |
Collapse
|
10
|
Roche J, Dellarole M, Caro JA, Guca E, Norberto DR, Yang Y, Garcia AE, Roumestand C, García-Moreno B, Royer CA. Remodeling of the folding free energy landscape of staphylococcal nuclease by cavity-creating mutations. Biochemistry 2012; 51:9535-46. [PMID: 23116341 DOI: 10.1021/bi301071z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The folding of staphylococcal nuclease (SNase) is known to proceed via a major intermediate in which the central OB subdomain is folded and the C-terminal helical subdomain is disordered. To identify the structural and energetic determinants of this folding free energy landscape, we have examined in detail, using high-pressure NMR, the consequences of cavity creating mutations in each of the two subdomains of an ultrastable SNase, Δ+PHS. The stabilizing mutations of Δ+PHS enhanced the population of the major folding intermediate. Cavity creation in two different regions of the Δ+PHS reference protein, despite equivalent effects on global stability, had very distinct consequences on the complexity of the folding free energy landscape. The L125A substitution in the C-terminal helix of Δ+PHS slightly suppressed the major intermediate and promoted an additional excited state involving disorder in the N-terminus, but otherwise decreased landscape heterogeneity with respect to the Δ+PHS background protein. The I92A substitution, located in the hydrophobic OB-fold core, had a much more profound effect, resulting in a significant increase in the number of intermediate states and implicating the entire protein structure. Denaturant (GuHCl) had very subtle and specific effects on the landscape, suppressing some states and favoring others, depending upon the mutational context. These results demonstrate that disrupting interactions in a region of the protein with highly cooperative, unfrustrated folding has very profound effects on the roughness of the folding landscape, whereas the effects are less pronounced for an energetically equivalent substitution in an already frustrated region.
Collapse
Affiliation(s)
- Julien Roche
- Centre de Biochimie Structurale, INSERM U554, CNRS UMR 5048, Universités de Montpellier, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
It has been known for nearly 100 years that pressure unfolds proteins, yet the physical basis of this effect is not understood. Unfolding by pressure implies that the molar volume of the unfolded state of a protein is smaller than that of the folded state. This decrease in volume has been proposed to arise from differences between the density of bulk water and water associated with the protein, from pressure-dependent changes in the structure of bulk water, from the loss of internal cavities in the folded states of proteins, or from some combination of these three factors. Here, using 10 cavity-containing variants of staphylococcal nuclease, we demonstrate that pressure unfolds proteins primarily as a result of cavities that are present in the folded state and absent in the unfolded one. High-pressure NMR spectroscopy and simulations constrained by the NMR data were used to describe structural and energetic details of the folding landscape of staphylococcal nuclease that are usually inaccessible with existing experimental approaches using harsher denaturants. Besides solving a 100-year-old conundrum concerning the detailed structural origins of pressure unfolding of proteins, these studies illustrate the promise of pressure perturbation as a unique tool for examining the roles of packing, conformational fluctuations, and water penetration as determinants of solution properties of proteins, and for detecting folding intermediates and other structural details of protein-folding landscapes that are invisible to standard experimental approaches.
Collapse
|
12
|
Zhi Z, Liu P, Wang P, Huang Y, Zhao XS. Domain-Specific Folding Kinetics of Staphylococcal Nuclease Observed through Single-Molecule FRET in a Microfluidic Mixer. Chemphyschem 2011; 12:3515-8. [DOI: 10.1002/cphc.201100652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/17/2011] [Indexed: 11/07/2022]
|
13
|
Muñiz VA, Srinivasan S, Boswell SA, Meinhold DW, Childs T, Osuna R, Colón W. The role of the local environment of engineered Tyr to Trp substitutions for probing the denaturation mechanism of FIS. Protein Sci 2011; 20:302-12. [PMID: 21280122 DOI: 10.1002/pro.561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Factor for inversion stimulation (FIS), a 98-residue homodimeric protein, does not contain tryptophan (Trp) residues but has four tyrosine (Tyr) residues located at positions 38, 51, 69, and 95. The equilibrium denaturation of a P61A mutant of FIS appears to occur via a three-state (N(2) ⇆ I(2) ⇆ 2U) process involving a dimeric intermediate (I(2)). Although it was suggested that this intermediate had a denatured C-terminus, direct evidence was lacking. Therefore, three FIS double mutants, P61A/Y38W, P61A/Y69W, and P61A/Y95W were made, and their denaturation was monitored by circular dichroism and Trp fluorescence. Surprisingly, the P61A/Y38W mutant best monitored the N(2) ⇆ I(2) transition, even though Trp38 is buried within the dimer removed from the C-terminus. In addition, although Trp69 is located on the protein surface, the P61A/Y69W FIS mutant exhibited clearly biphasic denaturation curves. In contrast, P61A/Y95W FIS was the least effective in decoupling the two transitions, exhibiting a monophasic fluorescence transition with modest concentration-dependence. When considering the local environment of the Trp residues and the effect of each mutation on protein stability, these results not only confirm that P61A FIS denatures via a dimeric intermediate involving a disrupted C-terminus but also suggest the occurrence of conformational changes near Tyr38. Thus, the P61A mutation appears to compromise the denaturation cooperativity of FIS by failing to propagate stability to those regions involved mostly in intramolecular interactions. Furthermore, our results highlight the challenge of anticipating the optimal location to engineer a Trp residue for investigating the denaturation mechanism of even small proteins.
Collapse
Affiliation(s)
- Virginia A Muñiz
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Chang YC, Franch WR, Oas TG. Probing the folding intermediate of Bacillus subtilis RNase P protein by nuclear magnetic resonance. Biochemistry 2011; 49:9428-37. [PMID: 20843005 DOI: 10.1021/bi100287y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein folding intermediates are often imperative for overall folding processes and consequent biological functions. However, the low population and transient nature of the intermediate states often hinder their biochemical and biophysical characterization. Previous studies have demonstrated that Bacillus subtilis ribonuclease P protein (P protein) is conformationally heterogeneous and folds with multiphasic kinetics, indicating the presence of an equilibrium and kinetic intermediate in its folding mechanism. In this study, nuclear magnetic resonance (NMR) spectroscopy was used to study the ensemble corresponding to this intermediate (I). The results indicate that the N-terminal and C-terminal helical regions are mostly unfolded in I. 1H−15N heteronuclear single-quantum coherence NMR spectra collected as a function of pH suggest that the protonation of His 22 may play a major role in the energetics of the equilibria among the unfolded, intermediate, and folded state ensembles of P protein. NMR paramagnetic relaxation enhancement experiments were also used to locate the small anion binding sites in both the intermediate and folded ensembles. The results for the folded protein are consistent with the previously modeled binding regions. These structural insights suggest a possible role for I in the RNase P holoenzyme assembly process.
Collapse
Affiliation(s)
- Yu-Chu Chang
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
15
|
Kato S, Kamikubo H, Hirano S, Yamazaki Y, Kataoka M. Nonlocal interactions are responsible for tertiary structure formation in staphylococcal nuclease. Biophys J 2010; 98:678-86. [PMID: 20159164 DOI: 10.1016/j.bpj.2009.10.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 10/26/2009] [Accepted: 10/28/2009] [Indexed: 11/18/2022] Open
Abstract
Rapid molecular collapse mediated by nonlocal interactions is believed to be a crucial event for protein folding. To investigate the role of nonlocal interactions in tertiary structure formation, we performed a nonlocal interaction substitution mutation analysis on staphylococcal nuclease (SNase). Y54 and I139 of wild-type (WT) SNase and Delta140-149 were substituted by cysteine to form intramolecular disulfide bonds, respectively called WT-SS and Delta140-149-SS. Under physiological conditions, the reduced form of Delta140-149-SS appears to assume a denatured structure; in contrast, the oxidized form of Delta140-149-SS forms a native-like structure. From this result, we conclude that the C-terminal region participates in a nonlocal interaction that is indispensable for the native structure. Although the oxidized form of WT-SS assumes a more compact denatured structure under acidic conditions than the WT, the kinetic measurements reveal that the refolding reactions of both the reduced and oxidized forms of WT-SS are similar to those of the WT, suggesting that an intact nonlocal interaction is established within the dead time (22 ms). On the basis of these results, we propose that the native nonlocal contact established at the early stage of the folding process facilitates further secondary structure formation.
Collapse
Affiliation(s)
- Shingo Kato
- Graduate School of Materials Science, Nara Institute of Science and Technology, Nara, Japan
| | | | | | | | | |
Collapse
|
16
|
Liu F, Maynard C, Scott G, Melnykov A, Hall KB, Gruebele M. A natural missing link between activated and downhill protein folding scenarios. Phys Chem Chem Phys 2010; 12:3542-9. [PMID: 20336253 PMCID: PMC7382783 DOI: 10.1039/b925033f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We propose protein PTB1 : 4W as a good candidate for engineering into a downhill folder. PTB1 : 4W has a probe-dependent thermal unfolding curve and sub-millisecond T-jump relaxation kinetics on more than one time scale. Its refolding rate in denaturant is a non-linear function of denaturant concentration (curved chevron plot). Yet at high denaturant concentration its unfolding is probe-independent, and the folding kinetics can be fitted to a single exponential decay. The domain appears to fold via a mechanism between downhill folding and activated folding over several small barriers, and when denaturant is added, one of these barriers greatly increases and simplifies the observed folding to apparent two-state kinetics. We predict the simplest free energy function consistent with the thermal denaturation and kinetics experiments by using the singular value Smoluchowski dynamics (SVSD) model. PTB1 : 4W is a natural 'missing link' between downhill and activated folding. We suggest mutations that could move the protein into the downhill folding limit.
Collapse
Affiliation(s)
- Feng Liu
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Caroline Maynard
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gregory Scott
- Department of Chemistry, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Artem Melnykov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kathleen B. Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Martin Gruebele
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, IL 61801, USA
- Department of Physics, University of Illinois at Urbana-Champaign, IL 61801, USA
| |
Collapse
|
17
|
Junker M, Clark PL. Slow formation of aggregation-resistant beta-sheet folding intermediates. Proteins 2010; 78:812-24. [PMID: 19847915 DOI: 10.1002/prot.22609] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein folding has been studied extensively for decades, yet our ability to predict how proteins reach their native state from a mechanistic perspective is still rudimentary at best, limiting our understanding of folding-related processes in vivo and our ability to manipulate proteins in vitro. Here, we investigate the in vitro refolding mechanism of a large beta-helix protein, pertactin, which has an extended, elongated shape. At 55 kDa, this single domain, all-beta-sheet protein allows detailed analysis of the formation of beta-sheet structure in larger proteins. Using a combination of fluorescence and far-UV circular dichroism spectroscopy, we show that the pertactin beta-helix refolds remarkably slowly, with multiexponential kinetics. Surprisingly, despite the slow refolding rates, large size, and beta-sheet-rich topology, pertactin refolding is reversible and not complicated by off-pathway aggregation. The slow pertactin refolding rate is not limited by proline isomerization, and 30% of secondary structure formation occurs within the rate-limiting step. Furthermore, site-specific labeling experiments indicate that the beta-helix refolds in a multistep but concerted process involving the entire protein, rather than via initial formation of the stable core substructure observed in equilibrium titrations. Hence pertactin provides a valuable system for studying the refolding properties of larger, beta-sheet-rich proteins, and raises intriguing questions regarding the prevention of aggregation during the prolonged population of partially folded, beta-sheet-rich refolding intermediates. Proteins 2010. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Mirco Junker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA
| | | |
Collapse
|
18
|
Abstract
This chapter describes the approaches and considerations necessary for extension of current protein folding methods to the equilibrium and kinetic reactions of oligomeric proteins, using dimers as the primary example. Spectroscopic and transport methods to monitor folding and unfolding transitions are summarized. The data collection and analyses to determine protein stability and kinetic folding mechanisms are discussed in the context of the additional dimension of complexity that arises in higher order folding processes, compared to first order monomeric proteins. As a case study to illustrate the data analysis process, equilibrium, and kinetic data are presented for SmtB, a homodimeric DNA-binding protein from Synechococcus PCC7942.
Collapse
Affiliation(s)
- Lisa M Gloss
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
19
|
Liyanage R, Devarapalli N, Puckett LM, Phan NH, Gidden J, Stites WE, Lay JO. Comparison of Two ESI MS Based H/D Exchange Methods for Extracting Protein Folding Energies. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2009; 287:96-104. [PMID: 22427739 PMCID: PMC3306186 DOI: 10.1016/j.ijms.2008.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this report, the model proteins staphylococcal nuclease and ubiquitin were used to test the applicability of two new hydrogen/deuterium exchange (HX) electrospray ionization mass spectrometry (ESI-MS) methods for estimating protein folding energies. Both methods use the H/D exchange of globally protected amide protons (amide protons which are buried in the hydrophobic core) to elucidate protein folding energies. One method is a kinetic-based method and the other is equilibrium-based. The first method, the HX ESI-MS kinetic-based approach is conceptually identical to SUPREX (stability of unpurified proteins from rates of H/D exchange) method but is based on ESI-MS rather than MALDI-MS (matrix assisted laser desorption mass spectrometry). This method employs the time-dependence of H/D exchange using various denaturant concentrations to extract folding energies. Like SUPREX, this approach requires the assumption of EX2 exchange kinetics. The second method, which we call a protein equilibrium population snapshot (PEPS) by HX ESI-MS uses data collected only for a single time point (usually the shortest possible) to obtain a snapshot of the open and closed populations of the protein. The PEPS approach requires few assumptions in the derivation of the equations used for calculation of the folding energies. The extraction of folding energies from mass spectral data is simple and straightforward. The PEPS method is applicable for proteins that follow either EX1 or EX2 HX mechanisms. In our experiments the kinetic-based method produced less accurate ΔG(H(2)O) and m(GdHCl) values for wild-type staphylococcal nuclease and mutants undergoing H/D exchange by EX1, as would be expected. Better results were obtained for ubiquitin which undergoes HX by an EX2 mechanism. Using the PEPS method we obtained ΔG(H(2)O) and m(GdHCl) values that were in good agreement with literature values for both staphylococcal nuclease (EX1) and ubiquitin (EX2). We also show that the observation of straight lines in linear extrapolation method (LEM) plots is not a reliable indicator of the validity of the data obtained using the LEM approach.
Collapse
Affiliation(s)
- Rohana Liyanage
- Department of Chemistry and Biochemistry University of Arkansas, Fayetteville, AR 72701
| | | | | | | | | | | | | |
Collapse
|
20
|
Liu P, Meng X, Qu P, Zhao XS, Wang CC. Subdomain-Specific Collapse of Denatured Staphylococcal Nuclease Revealed by Single Molecule Fluorescence Resonance Energy Transfer Measurements. J Phys Chem B 2009; 113:12030-6. [PMID: 19678648 DOI: 10.1021/jp809825x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pengcheng Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China, Graduate School of the Chinese Academy of Sciences, Beijing 100049, China, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xianglan Meng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China, Graduate School of the Chinese Academy of Sciences, Beijing 100049, China, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peng Qu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China, Graduate School of the Chinese Academy of Sciences, Beijing 100049, China, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xin Sheng Zhao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China, Graduate School of the Chinese Academy of Sciences, Beijing 100049, China, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chih-chen Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China, Graduate School of the Chinese Academy of Sciences, Beijing 100049, China, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Candel AM, Cobos ES, Conejero-Lara F, Martinez JC. Evaluation of folding co-operativity of a chimeric protein based on the molecular recognition between polyproline ligands and SH3 domains. Protein Eng Des Sel 2009; 22:597-606. [PMID: 19617233 DOI: 10.1093/protein/gzp041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In previous work, we designed a chimeric protein, named SPCp41, to evaluate the thermodynamics of the interaction between SH3 domains and proline-rich ligands by combining thermal unfolding measurements and mutagenesis. Here, we have investigated the energetic integrity of the chain extension corresponding to the ligand sequence into the native structure, since the opposite will produce changes in the folding mechanism of the SH3 domain that may give rise to undesirable contributions to the thermodynamic parameters. We have analysed the folding-unfolding kinetics under standard conditions (50 mM phosphate pH 7). Kinetic evolutions are well described by a bi-exponential where, on top of the main kinetic phase, a low-populated slower phase appears as a consequence of cis-trans isomerisation of Pro39, as demonstrated by the influence of prolyl isomerases and by mutational analysis. There is also a burst phase possibly due to a productive formation of some helical ensembles. The main evolution, accounting for the true folding kinetics of SPCp41, can be considered as a two-state process, where the folding transition state produces essentially the same picture shown by the circular permutant S19-P20s (the 'nucleus' of the design) and the ligand will dock at the latter stages of the two-state process. Thus, all conclusions argue in favour of the effectiveness of SPCp41 to study energetic, dynamic and structural aspects of SH3-ligand interactions.
Collapse
Affiliation(s)
- Adela M Candel
- Departamento de Quimica Fisica e Instituto de Biotecnologia, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | | | | |
Collapse
|
22
|
Rea AM, Simpson ER, Meldrum JK, Williams HEL, Searle MS. Aromatic residues engineered into the beta-turn nucleation site of ubiquitin lead to a complex folding landscape, non-native side-chain interactions, and kinetic traps. Biochemistry 2009; 47:12910-22. [PMID: 18991391 DOI: 10.1021/bi801330r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fast folding of small proteins is likely to be the product of evolutionary pressures that balance the search for native-like contacts in the transition state with the minimum number of stable non-native interactions that could lead to partially folded states prone to aggregation and amyloid formation. We have investigated the effects of non-native interactions on the folding landscape of yeast ubiquitin by introducing aromatic substitutions into the beta-turn region of the N-terminal beta-hairpin, using both the native G-bulged type I turn sequence (TXTGK) as well as an engineered 2:2 XNGK type I' turn sequence. The N-terminal beta-hairpin is a recognized folding nucleation site in ubiquitin. The folding kinetics for wt-Ub (TLTGK) and the type I' turn mutant (TNGK) reveal only a weakly populated intermediate, however, substitution with X = Phe or Trp in either context results in a high propensity to form a stable compact intermediate where the initial U-->I collapse is visible as a distinct kinetic phase. The introduction of Trp into either of the two host turn sequences results in either complex multiphase kinetics with the possibility of parallel folding pathways, or formation of a highly compact I-state stabilized by non-native interactions that must unfold before refolding. Sequence substitutions with aromatic residues within a localized beta-turn capable of forming non-native hydrophobic contacts in both the native state and partially folded states has the undesirable consequence that folding is frustrated by the formation of stable compact intermediates that evolutionary pressures at the sequence level may have largely eliminated.
Collapse
Affiliation(s)
- Anita M Rea
- Centre for Biomolecular Sciences,School of Chemistry, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | |
Collapse
|
23
|
Rea AM, Simpson ER, Crespo MD, Searle MS. Helix mutations stabilize a late productive intermediate on the folding pathway of ubiquitin. Biochemistry 2008; 47:8225-36. [PMID: 18616284 DOI: 10.1021/bi800722d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have investigated the relative placement of rate-limiting energy barriers and the role of productive or obstructive intermediates on the folding pathway of yeast wild-type ubiquitin ( wt-Ub) containing the F45W mutation. To manipulate the folding barriers, we have designed a family of mutants in which stabilizing substitutions have been introduced incrementally on the solvent-exposed surface of the main alpha-helix (residues 23-34), which has a low intrinsic helical propensity in the native sequence. Although the U --> I and I --> N transitions are not clearly delineated in the kinetics of wt-Ub, we show that an intermediate becomes highly populated and more clearly resolved as the predicted stability of the helix increases. The observed acceleration in the rate of folding correlates with helix stability and is consistent with the I-state representing a productive rather than misfolded state. A Leffler analysis of the effects on kinetics of changes in stability within the family of helix mutants results in a biphasic correlation in both the refolding and unfolding rates that suggest a shift from a nucleation-condensation mechanism (weakly stabilized helix) toward a diffusion-collision model (highly stabilized helix). Through the introduction of helix-stabilizing mutations, we are able to engineer a well-resolved I-state on the folding pathway of ubiquitin which is likely to be structurally distinct from that which is only weakly populated on the folding pathway of wild-type ubiquitin.
Collapse
Affiliation(s)
- Anita M Rea
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | |
Collapse
|