1
|
Kondo Y, Ogawa T, Kanno E, Hirono M, Kato-Minoura T, Kamiya R, Yagi T. IC2 participates in the cooperative activation of outer arm dynein densely attached to microtubules. Cell Struct Funct 2023; 48:175-185. [PMID: 37518064 PMCID: PMC11496786 DOI: 10.1247/csf.23044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023] Open
Abstract
Ciliary outer-arm dynein (OAD) consists of heavy chains (HCs), intermediate chains (ICs), and light chains (LCs), of which HCs are the motor proteins that produce force. Studies using the green alga Chlamydomonas have revealed that ICs and LCs form a complex (IC/LC tower) at the base of the OAD tail and play a crucial role in anchoring OAD to specific sites on the microtubule. In this study, we isolated a novel slow-swimming Chlamydomonas mutant deficient in the IC2 protein. This mutation, E279K, is in the third of the seven WD repeat domains. No apparent abnormality was observed in electron microscope observations of axonemes or in SDS-PAGE analyses of dynein subunits. To explore the reason for the lowered motility in this mutant, in vitro microtubule sliding experiments were performed, which revealed that the motor activity of the mutant OAD was lowered. In particular, a large difference was observed between wild type (WT) and the mutant in the microtubule sliding velocity in microtubule bundles formed with the addition of OAD: ~35.3 μm/sec (WT) and ~4.3 μm/sec (mutant). From this and other results, we propose that IC2 in an OAD interacts with the β HC of the adjacent OAD, and that an OAD-OAD interaction is important for efficient beating of cilia and flagella.Key words: cilia, axoneme, dynein heavy chain, cooperativity.
Collapse
Affiliation(s)
- Yusuke Kondo
- Department of Life and Environmental Sciences, Faculty of Bioresource Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | - Tomoka Ogawa
- Department of Life and Environmental Sciences, Faculty of Bioresource Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | - Emiri Kanno
- Department of Biological Sciences, Chuo University, Kasuga, Tokyo 112-8551, Japan
| | - Masafumi Hirono
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Takako Kato-Minoura
- Department of Biological Sciences, Chuo University, Kasuga, Tokyo 112-8551, Japan
| | - Ritsu Kamiya
- Department of Biological Sciences, Chuo University, Kasuga, Tokyo 112-8551, Japan
| | - Toshiki Yagi
- Department of Life and Environmental Sciences, Faculty of Bioresource Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| |
Collapse
|
2
|
Zimmermann N, Noga A, Obbineni JM, Ishikawa T. ATP-induced conformational change of axonemal outer dynein arms revealed by cryo-electron tomography. EMBO J 2023:e112466. [PMID: 37051721 DOI: 10.15252/embj.2022112466] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Axonemal outer dynein arm (ODA) motors generate force for ciliary beating. We analyzed three states of the ODA during the power stroke cycle using in situ cryo-electron tomography, subtomogram averaging, and classification. These states of force generation depict the prepower stroke, postpower stroke, and intermediate state conformations. Comparison of these conformations to published in vitro atomic structures of cytoplasmic dynein, ODA, and the Shulin-ODA complex revealed differences in the orientation and position of the dynein head. Our analysis shows that in the absence of ATP, all dynein linkers interact with the AAA3/AAA4 domains, indicating that interactions with the adjacent microtubule doublet B-tubule direct dynein orientation. For the prepower stroke conformation, there were changes in the tail that is anchored on the A-tubule. We built models starting with available high-resolution structures to generate a best-fitting model structure for the in situ pre- and postpower stroke ODA conformations, thereby showing that ODA in a complex with Shulin adopts a similar conformation as the active prepower stroke ODA in the axoneme.
Collapse
Affiliation(s)
- Noemi Zimmermann
- Paul Scherrer Institut (PSI), Laboratory of Nanoscale Biology, Villigen PSI, Switzerland
| | - Akira Noga
- Paul Scherrer Institut (PSI), Laboratory of Nanoscale Biology, Villigen PSI, Switzerland
| | - Jagan Mohan Obbineni
- Paul Scherrer Institut (PSI), Laboratory of Nanoscale Biology, Villigen PSI, Switzerland
- VIT School for Agricultural Innovations and Advanced, Learning (VAIAL), VIT, Vellore, India
| | - Takashi Ishikawa
- Paul Scherrer Institut (PSI), Laboratory of Nanoscale Biology, Villigen PSI, Switzerland
| |
Collapse
|
3
|
Guido I, Vilfan A, Ishibashi K, Sakakibara H, Shiraga M, Bodenschatz E, Golestanian R, Oiwa K. A Synthetic Minimal Beating Axoneme. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107854. [PMID: 35815940 DOI: 10.1002/smll.202107854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Cilia and flagella are beating rod-like organelles that enable the directional movement of microorganisms in fluids and fluid transport along the surface of biological organisms or inside organs. The molecular motor axonemal dynein drives their beating by interacting with microtubules. Constructing synthetic beating systems with axonemal dynein capable of mimicking ciliary beating still represents a major challenge. Here, the bottom-up engineering of a sustained beating synthoneme consisting of a pair of microtubules connected by a series of periodic arrays of approximately eight axonemal dyneins is reported. A model leads to the understanding of the motion through the cooperative, cyclic association-dissociation of the molecular motor from the microtubules. The synthoneme represents a bottom-up self-organized bio-molecular machine at the nanoscale with cilia-like properties.
Collapse
Affiliation(s)
- Isabella Guido
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077, Göttingen, Germany
| | - Andrej Vilfan
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077, Göttingen, Germany
- Jožef Stefan Institute, Ljubljana, 1000, Slovenia
| | - Kenta Ishibashi
- Graduate School of Frontier Biosciences, Osaka University, Osaka, 5650871, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka, 565-0871, Japan
| | - Hitoshi Sakakibara
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan
| | - Misaki Shiraga
- Graduate School of Life Science, University of Hyogo, Hyogo, 678-1297, Japan
| | - Eberhard Bodenschatz
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077, Göttingen, Germany
- Institute for Dynamics of Complex Systems, Georg-August-University Göttingen, 37073, Göttingen, Germany
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077, Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3PU, UK
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan
- Graduate School of Life Science, University of Hyogo, Hyogo, 678-1297, Japan
| |
Collapse
|
4
|
Guido I. Spontaneously Beating Biomimetic Structures. Methods Mol Biol 2022; 2430:205-218. [PMID: 35476334 DOI: 10.1007/978-1-0716-1983-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The propulsion of motile cells such as sperms and the transport of fluids on cell surfaces rely on oscillatory bending of cellular appendages that can perform periodic oscillations. These structures are flagella and cilia. Their beating is driven by the interaction between microtubules and motor proteins and the mechanism regulating this is still a puzzle. One approach to address this issue is the assembling of synthetic minimal systems by using natural building blocks, e.g., microtubules and kinesin motors, which undergo persistent oscillation in the presence of ATP. An example of an autonomous molecular system is reported in this chapter. It dynamically self-organizes through its elasticity and the interaction with the environment represented by the active forces exerted by motor proteins. The resulting motion resembles the beating of sperm flagella. Assembling such minimal systems able to mimic the behavior of complex biological structures might help to unveil basic mechanisms underlying the beating of natural cilia and flagella.
Collapse
Affiliation(s)
- Isabella Guido
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.
| |
Collapse
|
5
|
Goli Pozveh S, Bae AJ, Gholami A. Resistive force theory and wave dynamics in swimming flagellar apparatus isolated from C. reinhardtii. SOFT MATTER 2021; 17:1601-1613. [PMID: 33355581 PMCID: PMC8323821 DOI: 10.1039/d0sm01969k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Cilia-driven motility and fluid transport are ubiquitous in nature and essential for many biological processes, including swimming of eukaryotic unicellular organisms, mucus transport in airway apparatus or fluid flow in the brain. The-biflagellated micro-swimmer Chlamydomonas reinhardtii is a model organism to study the dynamics of flagellar synchronization. Hydrodynamic interactions, intracellular mechanical coupling or cell body rocking is believed to play a crucial role in the synchronization of flagellar beating in green algae. Here, we use freely swimming intact flagellar apparatus isolated from a wall-less strain of Chlamydomonas to investigate wave dynamics. Our analysis on phase coordinates shows that when the frequency difference between the flagella is high (10-41% of the mean), neither mechanical coupling via basal body nor hydrodynamics interactions are strong enough to synchronize two flagella, indicating that the beating frequency is perhaps controlled internally by the cell. We also examined the validity of resistive force theory for a flagellar apparatus swimming freely in the vicinity of a substrate and found quantitative agreement between the experimental data and simulations with a drag anisotropy of ratio 2. Finally, using a simplified wave form, we investigated the influence of phase and frequency differences, intrinsic curvature and wave amplitude on the swimming trajectory of flagellar apparatus. Our analysis shows that by controlling the phase or frequency differences between two flagella, steering can occur.
Collapse
Affiliation(s)
- Samira Goli Pozveh
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.
| | - Albert J Bae
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.
| | - Azam Gholami
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.
| |
Collapse
|
6
|
Amargant F, Barragan M, Vassena R, Vernos I. Insights of the tubulin code in gametes and embryos: from basic research to potential clinical applications in humans†. Biol Reprod 2020; 100:575-589. [PMID: 30247519 DOI: 10.1093/biolre/ioy203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/05/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022] Open
Abstract
Microtubules are intracellular filaments that define in space and in time a large number of essential cellular functions such as cell division, morphology and motility, intracellular transport and flagella and cilia assembly. They are therefore essential for spermatozoon and oocyte maturation and function, and for embryo development. The dynamic and functional properties of the microtubules are in large part defined by various classes of interacting proteins including MAPs (microtubule associated proteins), microtubule-dependent motors, and severing and modifying enzymes. Multiple mechanisms regulate these interactions. One of them is defined by the high diversity of the microtubules themselves generated by the combination of different tubulin isotypes and by several tubulin post-translational modifications (PTMs). This generates a so-called tubulin code that finely regulates the specific set of proteins that associates with a given microtubule thereby defining the properties and functions of the network. Here we provide an in depth review of the current knowledge on the tubulin isotypes and PTMs in spermatozoa, oocytes, and preimplantation embryos in various model systems and in the human species. We focus on functional implications of the tubulin code for cytoskeletal function, particularly in the field of human reproduction and development, with special emphasis on gamete quality and infertility. Finally, we discuss some of the knowledge gaps and propose future research directions.
Collapse
Affiliation(s)
- Farners Amargant
- Clínica EUGIN, Barcelona, Spain.,Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | | | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
7
|
Force-Generating Mechanism of Axonemal Dynein in Solo and Ensemble. Int J Mol Sci 2020; 21:ijms21082843. [PMID: 32325779 PMCID: PMC7215579 DOI: 10.3390/ijms21082843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 11/17/2022] Open
Abstract
In eukaryotic cilia and flagella, various types of axonemal dyneins orchestrate their distinct functions to generate oscillatory bending of axonemes. The force-generating mechanism of dyneins has recently been well elucidated, mainly in cytoplasmic dyneins, thanks to progress in single-molecule measurements, X-ray crystallography, and advanced electron microscopy. These techniques have shed light on several important questions concerning what conformational changes accompany ATP hydrolysis and whether multiple motor domains are coordinated in the movements of dynein. However, due to the lack of a proper expression system for axonemal dyneins, no atomic coordinates of the entire motor domain of axonemal dynein have been reported. Therefore, a substantial amount of knowledge on the molecular architecture of axonemal dynein has been derived from electron microscopic observations on dynein arms in axonemes or on isolated axonemal dynein molecules. This review describes our current knowledge and perspectives of the force-generating mechanism of axonemal dyneins in solo and in ensemble.
Collapse
|
8
|
Cilia and centrosomes: Ultrastructural and mechanical perspectives. Semin Cell Dev Biol 2020; 110:61-69. [PMID: 32307225 DOI: 10.1016/j.semcdb.2020.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/12/2020] [Accepted: 03/21/2020] [Indexed: 11/20/2022]
Abstract
Cilia and centrosomes of eukaryotic cells play important roles in cell movement, fluid transport, extracellular sensing, and chromosome division. The physiological functions of cilia and centrosomes are generated by their dynamics, motions, and forces controlled by the physical, chemical, and biological environments. How an individual cilium achieves its beat pattern and induces fluid flow is governed by its ultrastructure as well as the coordination of associated molecular motors. Thus, a bottom-up understanding of the physiological functions of cilia and centrosomes from the molecular to tissue levels is required. Correlations between the structure and motion can be understood in terms of mechanics. This review first focuses on cilia and centrosomes at the molecular level, introducing their ultrastructure. We then shift to the organelle level and introduce the kinematics and mechanics of cilia and centrosomes. Next, at the tissue level, we introduce nodal ciliary dynamics and nodal flow, which play crucial roles in the organogenetic process of left-right asymmetry. We also introduce respiratory ciliary dynamics and mucous flow, which are critical for protecting the epithelium from drying and exposure to harmful particles and viruses, i.e., respiratory clearance function. Finally, we discuss the future research directions in this field.
Collapse
|
9
|
Leigh MW, Horani A, Kinghorn B, O'Connor MG, Zariwala MA, Knowles MR. Primary Ciliary Dyskinesia (PCD): A genetic disorder of motile cilia. ACTA ACUST UNITED AC 2019; 4:51-75. [PMID: 31572664 DOI: 10.3233/trd-190036] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Margaret W Leigh
- Department of Pediatrics and Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - BreAnna Kinghorn
- Seattle Children's Hospital, Department of Pediatrics, University of Washington School of Medicine; Seattle, Washington
| | - Michael G O'Connor
- Department of Pediatrics, Vanderbilt University Medical Center and Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, Tennessee
| | - Maimoona A Zariwala
- Department of Pathology/Lab Medicine and Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Michael R Knowles
- Department of Medicine and Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
10
|
Inner lumen proteins stabilize doublet microtubules in cilia and flagella. Nat Commun 2019; 10:1143. [PMID: 30850601 PMCID: PMC6408466 DOI: 10.1038/s41467-019-09051-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/10/2019] [Indexed: 12/25/2022] Open
Abstract
Motile cilia are microtubule-based organelles that play important roles in most eukaryotes. Although axonemal microtubules are sufficiently stable to withstand their beating motion, it remains unknown how they are stabilized while serving as tracks for axonemal dyneins. To address this question, we have identified two uncharacterized proteins, FAP45 and FAP52, as microtubule inner proteins (MIPs) in Chlamydomonas. These proteins are conserved among eukaryotes with motile cilia. Using cryo-electron tomography (cryo-ET) and high-speed atomic force microscopy (HS-AFM), we show that lack of these proteins leads to a loss of inner protrusions in B-tubules and less stable microtubules. These protrusions are located near the inner junctions of doublet microtubules and lack of both FAP52 and a known inner junction protein FAP20 results in detachment of the B-tubule from the A-tubule, as well as flagellar shortening. These results demonstrate that FAP45 and FAP52 bind to the inside of microtubules and stabilize ciliary axonemes.
Collapse
|
11
|
Sugiura K, Nishimaki Y, Owa M, Hisabori T, Wakabayashi KI. Assessment of the flagellar redox potential in Chlamydomonas reinhardtii using a redox-sensitive fluorescent protein, Oba-Qc. Biochem Biophys Res Commun 2018; 503:2083-2088. [DOI: 10.1016/j.bbrc.2018.07.163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022]
|
12
|
Neuhaus F, Mueller D, Tanasescu R, Balog S, Ishikawa T, Brezesinski G, Zumbuehl A. Synthesis and Biophysical Characterization of an Odd-Numbered 1,3-Diamidophospholipid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3215-3220. [PMID: 29455537 DOI: 10.1021/acs.langmuir.7b04227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanomedicine suffers from low drug delivery efficiencies. Mechanoresponsive vesicles could provide an alternative way to release active compounds triggered by the basic physics of the human body. 1,3-Diamidophospholipids with C16 tails proved to be an effective building block for mechanoresponsive vesicles, but their low main phase transition temperature prevents an effective application in humans. As the main phase transition temperature of a membrane depends on the fatty acyl chain length, we synthesized a C17 homologue of a 1,3-diamidophospholipid: Rad-PC-Rad. The elevated main phase transition temperature of Rad-PC-Rad allows mechanoresponsive drug delivery at body temperature. Herein, we report the biophysical properties of Rad-PC-Rad monolayer and bilayer membranes. Rad-PC-Rad is an ideal candidate for advancing the concept of physically triggered drug release.
Collapse
Affiliation(s)
- Frederik Neuhaus
- Department of Chemistry , University of Fribourg , Chemin du Musée 9 , 1700 Fribourg , Switzerland
- National Centre of Competence in Research in Chemical Biology , Quai Ernest Ansermet 30 , 1211 Geneva , Switzerland
| | - Dennis Mueller
- Department of Chemistry , University of Fribourg , Chemin du Musée 9 , 1700 Fribourg , Switzerland
| | - Radu Tanasescu
- Department of Chemistry , University of Fribourg , Chemin du Musée 9 , 1700 Fribourg , Switzerland
| | - Sandor Balog
- Adolphe Merkle Institute , University of Fribourg , Chemin du Verdiers 4 , 1700 Fribourg , Switzerland
| | - Takashi Ishikawa
- Paul Scherrer Institute (PSI) , OFLB/010 , 5232 Villigen PSI , Switzerland
| | - Gerald Brezesinski
- Max Planck Institute of Colloids and Interfaces , Research Campus Potsdam-Golm , 14476 Potsdam , Germany
| | - Andreas Zumbuehl
- Department of Chemistry , University of Fribourg , Chemin du Musée 9 , 1700 Fribourg , Switzerland
- National Centre of Competence in Research in Chemical Biology , Quai Ernest Ansermet 30 , 1211 Geneva , Switzerland
| |
Collapse
|
13
|
Isabettini S, Massabni S, Hodzic A, Durovic D, Kohlbrecher J, Ishikawa T, Fischer P, Windhab EJ, Walde P, Kuster S. Molecular engineering of lanthanide ion chelating phospholipids generating assemblies with a switched magnetic susceptibility. Phys Chem Chem Phys 2018; 19:20991-21002. [PMID: 28745755 DOI: 10.1039/c7cp03994h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lanthanide ion (Ln3+) chelating amphiphiles are powerful molecules for tailoring the magnetic response of polymolecular assemblies. Mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylene triaminepentaacetate (DMPE-DTPA) complexed to Ln3+ deliver highly magnetically responsive bicelles. Their magnetic properties are readily tuned by changing the bicellar size or the magnetic susceptibility Δχ of the bilayer lipids. The former technique is intrinsically bound to the region of the phase diagram guarantying the formation of bicelles. Methods aiming towards manipulating the Δχ of the bilayer are comparatively more robust, flexible and lacking. Herein, we synthesized a new Ln3+ chelating phospholipid using glutamic acid as a backbone: DMPE-Glu-DTPA. The chelate polyhedron was specifically engineered to alter the Δχ, whilst remaining geometrically similar to DMPE-DTPA. Planar asymmetric assemblies hundreds of nanometers in size were achieved presenting unprecedented magnetic alignments. The DMPE-Glu-DTPA/Ln3+ complex switched the Δχ, achieving perpendicular alignment of assemblies containing Dy3+ and parallel alignment of those containing Tm3+. Moreover, samples with chelated Yb3+ were more alignable than the Tm3+ chelating counterparts. Such a possibility has never been demonstrated for planar Ln3+ chelating polymolecular assemblies. The physico-chemical properties of these novel assemblies were further studied by monitoring the alignment behavior at different temperatures and by including 16 mol% of cholesterol (Chol-OH) in the phospholipid bilayer. The DMPE-Glu-DTPA/Ln3+ complex and the resulting assemblies are promising candidates for applications in numerous fields including pharmaceutical technologies, structural characterization of membrane biomolecules by NMR spectroscopy, as contrasting agents for magnetic resonance imaging, and for the development of smart optical gels.
Collapse
Affiliation(s)
- Stéphane Isabettini
- Laboratory of Food Process Engineering, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Isabettini S, Baumgartner ME, Reckey PQ, Kohlbrecher J, Ishikawa T, Fischer P, Windhab EJ, Kuster S. Methods for Generating Highly Magnetically Responsive Lanthanide-Chelating Phospholipid Polymolecular Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6363-6371. [PMID: 28594186 DOI: 10.1021/acs.langmuir.7b00725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and its lanthanide ion (Ln3+) chelating phospholipid conjugate, 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylene triaminepentaacetate (DMPE-DTPA), assemble into highly magnetically responsive polymolecular assemblies such as DMPC/DMPE-DTPA/Ln3+ (molar ratio 4:1:1) bicelles. Their geometry and magnetic alignability is enhanced by introducing cholesterol into the bilayer in DMPC/Cholesterol/DMPE-DTPA/Ln3+ (molar ratio 16:4:5:5). However, the reported fabrication procedures remain tedious and limit the generation of highly magnetically alignable species. Herein, a simplified procedure where freeze thawing cycles and extrusion are replaced by gentle heating and cooling cycles for the hydration of the dry lipid film was developed. Heating above the phase transition temperature Tm of the lipids composing the bilayer before cooling back below the Tm was essential to guarantee successful formation of the polymolecular assemblies composed of DMPC/DMPE-DTPA/Ln3+ (molar ratio 4:1:1). Planar polymolecular assemblies in the size range of hundreds of nanometers are achieved and deliver unprecedented gains in magnetic response. The proposed heating and cooling procedure further allowed to regenerate the highly magnetically alignable DMPC/Cholesterol/DMPE-DTPA/Ln3+ (molar ratio 16:4:5:5) species after storage for one month frozen at -18 °C. The simplicity and viability of the proposed fabrication procedure offers a new set of highly magnetically responsive lanthanide ion chelating phospholipid polymolecular assemblies as building blocks for the smart soft materials of tomorrow.
Collapse
Affiliation(s)
- Stéphane Isabettini
- Laboratory of Food Process Engineering, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Mirjam E Baumgartner
- Laboratory of Food Process Engineering, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Pernille Q Reckey
- Laboratory of Food Process Engineering, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | | | | | - Peter Fischer
- Laboratory of Food Process Engineering, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Erich J Windhab
- Laboratory of Food Process Engineering, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Simon Kuster
- Laboratory of Food Process Engineering, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| |
Collapse
|
15
|
Abstract
Electron cryotomography (ECT) provides three-dimensional views of macromolecular complexes inside cells in a native frozen-hydrated state. Over the last two decades, ECT has revealed the ultrastructure of cells in unprecedented detail. It has also allowed us to visualize the structures of macromolecular machines in their native context inside intact cells. In many cases, such machines cannot be purified intact for in vitro study. In other cases, the function of a structure is lost outside the cell, so that the mechanism can be understood only by observation in situ. In this review, we describe the technique and its history and provide examples of its power when applied to cell biology. We also discuss the integration of ECT with other techniques, including lower-resolution fluorescence imaging and higher-resolution atomic structure determination, to cover the full scale of cellular processes.
Collapse
Affiliation(s)
- Catherine M Oikonomou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125; ,
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125; , .,Howard Hughes Medical Institute, Pasadena, California 91125
| |
Collapse
|
16
|
Taschner M, Mourão A, Awasthi M, Basquin J, Lorentzen E. Structural basis of outer dynein arm intraflagellar transport by the transport adaptor protein ODA16 and the intraflagellar transport protein IFT46. J Biol Chem 2017; 292:7462-7473. [PMID: 28298440 DOI: 10.1074/jbc.m117.780155] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/03/2017] [Indexed: 11/06/2022] Open
Abstract
Motile cilia are found on unicellular organisms such as the green alga Chlamydomonas reinhardtii, on sperm cells, and on cells that line the trachea and fallopian tubes in mammals. The motility of cilia relies on a number of large protein complexes including the force-generating outer dynein arms (ODAs). The transport of ODAs into cilia has been previously shown to require the transport adaptor ODA16, as well as the intraflagellar transport (IFT) protein IFT46, but the molecular mechanism by which ODAs are recognized and transported into motile cilia is still unclear. Here, we determined the high-resolution crystal structure of C. reinhardtii ODA16 (CrODA16) and mapped the binding to IFT46 and ODAs. The CrODA16 structure revealed a small 80-residue N-terminal domain and a C-terminal 8-bladed β-propeller domain that are both required for the association with the N-terminal 147 residues of IFT46. The dissociation constant of the IFT46-ODA16 complex was 200 nm, demonstrating that CrODA16 associates with the IFT complex with an affinity comparable with that of the individual IFT subunits. Furthermore, we show, using ODAs extracted from the axonemes of C. reinhardtii, that the C-terminal β-propeller but not the N-terminal domain of CrODA16 is required for the interaction with ODAs. These data allowed us to present an architectural model for ODA16-mediated IFT of ODAs.
Collapse
Affiliation(s)
- Michael Taschner
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - André Mourão
- the Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Mayanka Awasthi
- the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| | - Jerome Basquin
- the Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Esben Lorentzen
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark,
| |
Collapse
|
17
|
Kollmar M. Fine-Tuning Motile Cilia and Flagella: Evolution of the Dynein Motor Proteins from Plants to Humans at High Resolution. Mol Biol Evol 2016; 33:3249-3267. [PMID: 27880711 PMCID: PMC5100056 DOI: 10.1093/molbev/msw213] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The flagellum is a key innovation linked to eukaryogenesis. It provides motility by regulated cycles of bending and bend propagation, which are thought to be controlled by a complex arrangement of seven distinct dyneins in repeated patterns of outer- (OAD) and inner-arm dynein (IAD) complexes. Electron tomography showed high similarity of this axonemal repeat pattern across ciliates, algae, and animals, but the diversity of dynein sequences across the eukaryotes has not yet comprehensively been resolved and correlated with structural data. To shed light on the evolution of the axoneme I performed an exhaustive analysis of dyneins using the available sequenced genome data. Evidence from motor domain phylogeny allowed expanding the current set of nine dynein subtypes by eight additional isoforms with, however, restricted taxonomic distributions. I confirmed the presence of the nine dyneins in all eukaryotic super-groups indicating their origin predating the last eukaryotic common ancestor. The comparison of the N-terminal tail domains revealed a most likely axonemal dynein origin of the new classes, a group of chimeric dyneins in plants/algae and Stramenopiles, and the unique domain architecture and origin of the outermost OADs present in green algae and ciliates but not animals. The correlation of sequence and structural data suggests the single-headed class-8 and class-9 dyneins to localize to the distal end of the axonemal repeat and the class-7 dyneins filling the region up to the proximal heterodimeric IAD. Tracing dynein gene duplications across the eukaryotes indicated ongoing diversification and fine-tuning of flagellar functions in extant taxa and species.
Collapse
Affiliation(s)
- Martin Kollmar
- Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
| |
Collapse
|
18
|
Bragina EE, Arifulin EA, Senchenkov EP. Genetically determined and functional human sperm motility decrease. Russ J Dev Biol 2016. [DOI: 10.1134/s1062360416050027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Isabettini S, Liebi M, Kohlbrecher J, Ishikawa T, Windhab EJ, Fischer P, Walde P, Kuster S. Tailoring Bicelle Morphology and Thermal Stability with Lanthanide-Chelating Cholesterol Conjugates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9005-9014. [PMID: 27529644 DOI: 10.1021/acs.langmuir.6b01968] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bicelles composed of DMPC and phospholipids capable of chelating lanthanide ions, such as 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylene triaminepentaacetate (DMPE-DTPA), are highly tunable magnetically responsive soft materials. Further doping of these systems with cholesterol-DTPA conjugates complexed to a lanthanide ion considerably enhances the bicelle's size and magnetic alignability. The high value of these cholesterol conjugates for bicelle design remains largely unexplored. Herein, we examine how molecular structural alterations within the cholesterol-DTPA conjugates lead to contrasting self-assembled polymolecular aggregate structures when incorporated into DMPC/DMPE-DTPA/Tm(3+) bilayers. The nature of the linker connecting the DTPA-chelating moiety to the sterol backbone is examined by synthesizing conjugates of various linker lengths and polarities. The incorporation of these compounds within the bilayer results in polymolecular aggregate geometries of higher curvature. The increasing degrees of freedom for conformational changes conveyed to the chelator headgroup with increasing linker atomic length reduce the cholesterol-DTPA conjugate's critical packing parameter. Consequently, an inverse correlation between the number of carbon atoms in the linker and the bicelle radius is established. The introduction of polarity into the carbon chain of the linker did not cause major changes in the polymolecular aggregate architecture. Under specific conditions, the additives permit the formation of remarkably temperature-resistant bicelles. The versatility of design offered by these amphiphiles gives rise to new and viable tools for the growing field of magnetically responsive soft materials.
Collapse
Affiliation(s)
- Stéphane Isabettini
- Laboratory of Food Process Engineering, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | | | | | | | - Erich J Windhab
- Laboratory of Food Process Engineering, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Peter Fischer
- Laboratory of Food Process Engineering, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Peter Walde
- Department of Materials, ETH Zurich , Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Simon Kuster
- Laboratory of Food Process Engineering, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| |
Collapse
|
20
|
Toba S, Iwamoto H, Kamimura S, Oiwa K. X-Ray Fiber Diffraction Recordings from Oriented Demembranated Chlamydomonas Flagellar Axonemes. Biophys J 2016; 108:2843-53. [PMID: 26083924 DOI: 10.1016/j.bpj.2015.04.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/05/2015] [Accepted: 04/30/2015] [Indexed: 10/23/2022] Open
Abstract
The high homology of its axonemal components with humans and a large repertoire of axonemal mutants make Chlamydomonas a useful model system for experiments on the structure and function of eukaryotic cilia and flagella. Using this organism, we explored the spatial arrangement of axonemal components under physiological conditions by small-angle x-ray fiber diffraction. Axonemes were oriented in physiological solution by continuous shear flow and exposed to intense and stable x rays generated in the synchrotron radiation facility SPring-8, BL45XU. We compared diffraction patterns from axonemes isolated from wild-type and mutant strains lacking the whole outer arm (oda1), radial spoke (pf14), central apparatus (pf18), or the α-chain of the outer arm dynein (oda11). Diffraction of the axonemes showed a series of well-defined meridional/layer-line and equatorial reflections. Diffraction patterns from mutant axonemes exhibited a systematic loss/attenuation of meridional/layer-line reflections, making it possible to determine the origin of various reflections. The 1/24 and 1/12 nm(-1) meridional reflections of oda1 and oda11 were much weaker than those of the wild-type, suggesting that the outer dynein arms are the main contributor to these reflections. The weaker 1/32 and 1/13.7 nm(-1) meridional reflections from pf14 compared with the wild-type suggest that these reflections come mainly from the radial spokes. The limited contribution of the central pair apparatus to the diffraction patterns was confirmed by the similarity between the patterns of the wild-type and pf18. The equatorial reflections were complex, but a comparison with electron micrograph-based models allowed the density of each axonemal component to be estimated. Addition of ATP to rigor-state axonemes also resulted in subtle changes in equatorial intensity profiles, which could report nucleotide-dependent structural changes of the dynein arms. The first detailed description of axonemal reflections presented here serves as a landmark for further x-ray diffraction studies to monitor the action of constituent proteins in functional axonemes.
Collapse
Affiliation(s)
- Shiori Toba
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| | - Hiroyuki Iwamoto
- SPring-8, Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Shinji Kamimura
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan; Graduate School of Life Science, University of Hyogo, Hyogo, Japan; CREST, Japan Science and Technology Agency, Tokyo, Japan.
| |
Collapse
|
21
|
Oda T, Abe T, Yanagisawa H, Kikkawa M. Structure and function of outer dynein arm intermediate and light chain complex. Mol Biol Cell 2016; 27:1051-9. [PMID: 26864626 PMCID: PMC4814214 DOI: 10.1091/mbc.e15-10-0723] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/03/2016] [Indexed: 11/11/2022] Open
Abstract
Cryo–electron tomography and structural labeling show that the intermediate and light chains of the outer dynein arm (ODA) form a distinct complex, designated ODA-Beak, which can transmit mechanosignals from the nexin–dynein regulatory complex to the heavy chains of ODA. The outer dynein arm (ODA) is a molecular complex that drives the beating motion of cilia/flagella. Chlamydomonas ODA is composed of three heavy chains (HCs), two ICs, and 11 light chains (LCs). Although the three-dimensional (3D) structure of the whole ODA complex has been investigated, the 3D configurations of the ICs and LCs are largely unknown. Here we identified the 3D positions of the two ICs and three LCs using cryo–electron tomography and structural labeling. We found that these ICs and LCs were all localized at the root of the outer-inner dynein (OID) linker, designated the ODA-Beak complex. Of interest, the coiled-coil domain of IC2 extended from the ODA-Beak to the outer surface of ODA. Furthermore, we investigated the molecular mechanisms of how the OID linker transmits signals to the ODA-Beak, by manipulating the interaction within the OID linker using a chemically induced dimerization system. We showed that the cross-linking of the OID linker strongly suppresses flagellar motility in vivo. These results suggest that the ICs and LCs of the ODA form the ODA-Beak, which may be involved in mechanosignaling from the OID linker to the HCs.
Collapse
Affiliation(s)
- Toshiyuki Oda
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan Department of Anatomy and Structural Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Tatsuki Abe
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Haruaki Yanagisawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Basal body multipotency and axonemal remodelling are two pathways to a 9+0 flagellum. Nat Commun 2015; 6:8964. [PMID: 26667778 PMCID: PMC4682162 DOI: 10.1038/ncomms9964] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/21/2015] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic cilia/flagella exhibit two characteristic ultrastructures reflecting two main functions; a 9+2 axoneme for motility and a 9+0 axoneme for sensation and signalling. Whether, and if so how, they interconvert is unclear. Here we analyse flagellum length, structure and molecular composition changes in the unicellular eukaryotic parasite Leishmania during the transformation of a life cycle stage with a 9+2 axoneme (the promastigote) to one with a 9+0 axoneme (the amastigote). We show 9+0 axonemes can be generated by two pathways: by de novo formation and by restructuring of existing 9+2 axonemes associated with decreased intraflagellar transport. Furthermore, pro-basal bodies formed under conditions conducive for 9+2 axoneme formation can form a 9+0 axoneme de novo. We conclude that pro-centrioles/pro-basal bodies are multipotent and not committed to form either a 9+2 or 9+0 axoneme. In an alternative pathway structures can also be removed from existing 9+2 axonemes to convert them to 9+0. Whether basal bodies are pre-committed to form 9+2 motile or 9+0 sensory axonemes and whether interconversion occurs between the two types of axonemes is not clear. Here, the authors used the unicellular eukaryote Leishmania as a model system to demonstrate that 9+0 axonemes can be formed de novo or by restructuring of 9+2 axonemes.
Collapse
|
23
|
Demurtas D, Guichard P, Martiel I, Mezzenga R, Hébert C, Sagalowicz L. Direct visualization of dispersed lipid bicontinuous cubic phases by cryo-electron tomography. Nat Commun 2015; 6:8915. [PMID: 26573367 DOI: 10.1038/ncomms9915] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/16/2015] [Indexed: 02/08/2023] Open
Abstract
Bulk and dispersed cubic liquid crystalline phases (cubosomes), present in the body and in living cell membranes, are believed to play an essential role in biological phenomena. Moreover, their biocompatibility is attractive for nutrient or drug delivery system applications. Here the three-dimensional organization of dispersed cubic lipid self-assembled phases is fully revealed by cryo-electron tomography and compared with simulated structures. It is demonstrated that the interior is constituted of a perfect bicontinuous cubic phase, while the outside shows interlamellar attachments, which represent a transition state between the liquid crystalline interior phase and the outside vesicular structure. Therefore, compositional gradients within cubosomes are inferred, with a lipid bilayer separating at least one water channel set from the external aqueous phase. This is crucial to understand and enhance controlled release of target molecules and calls for a revision of postulated transport mechanisms from cubosomes to the aqueous phase.
Collapse
Affiliation(s)
- Davide Demurtas
- Interdisciplinary Centre for Electron Microscopy, Swiss Federal Institute of Technology (EPFL), Lausanne 1015, Switzerland
| | - Paul Guichard
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne 1015, Switzerland
| | - Isabelle Martiel
- Department of Health Science and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Raffaele Mezzenga
- Department of Health Science and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Cécile Hébert
- Interdisciplinary Centre for Electron Microscopy, Swiss Federal Institute of Technology (EPFL), Lausanne 1015, Switzerland
| | | |
Collapse
|
24
|
Wilson CS, Chang AJ, Greene R, Machado S, Parsons MW, Takats TA, Zambetti LJ, Springer AL. Knockdown of Inner Arm Protein IC138 in Trypanosoma brucei Causes Defective Motility and Flagellar Detachment. PLoS One 2015; 10:e0139579. [PMID: 26555902 PMCID: PMC4640498 DOI: 10.1371/journal.pone.0139579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 09/15/2015] [Indexed: 12/23/2022] Open
Abstract
Motility in the protozoan parasite Trypanosoma brucei is conferred by a single flagellum, attached alongside the cell, which moves the cell forward using a beat that is generated from tip-to-base. We are interested in characterizing components that regulate flagellar beating, in this study we extend the characterization of TbIC138, the ortholog of a dynein intermediate chain that regulates axonemal inner arm dynein f/I1. TbIC138 was tagged In situ-and shown to fractionate with the inner arm components of the flagellum. RNAi knockdown of TbIC138 resulted in significantly reduced protein levels, mild growth defect and significant motility defects. These cells tended to cluster, exhibited slow and abnormal motility and some cells had partially or fully detached flagella. Slight but significant increases were observed in the incidence of mis-localized or missing kinetoplasts. To document development of the TbIC138 knockdown phenotype over time, we performed a detailed analysis of flagellar detachment and motility changes over 108 hours following induction of RNAi. Abnormal motility, such as slow twitching or irregular beating, was observed early, and became progressively more severe such that by 72 hours-post-induction, approximately 80% of the cells were immotile. Progressively more cells exhibited flagellar detachment over time, but this phenotype was not as prevalent as immotility, affecting less than 60% of the population. Detached flagella had abnormal beating, but abnormal beating was also observed in cells with no flagellar detachment, suggesting that TbIC138 has a direct, or primary, effect on the flagellar beat, whereas detachment is a secondary phenotype of TbIC138 knockdown. Our results are consistent with the role of TbIC138 as a regulator of motility, and has a phenotype amenable to more extensive structure-function analyses to further elucidate its role in the control of flagellar beat in T. brucei.
Collapse
Affiliation(s)
- Corinne S. Wilson
- Department of Biology, Siena College, Loudonville, New York, United States of America
| | - Alex J. Chang
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Rebecca Greene
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Sulynn Machado
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Matthew W. Parsons
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Taylor A. Takats
- Department of Biology, Siena College, Loudonville, New York, United States of America
| | - Luke J. Zambetti
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
| | - Amy L. Springer
- Department of Biology, Siena College, Loudonville, New York, United States of America
- * E-mail:
| |
Collapse
|
25
|
Mukhopadhyay AG, Dey CS. Two-headed outer- and inner-arm dyneins of Leishmania sp bear conserved IQ-like motifs. Biochem Biophys Rep 2015; 4:283-290. [PMID: 29124215 PMCID: PMC5669419 DOI: 10.1016/j.bbrep.2015.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/01/2015] [Accepted: 10/06/2015] [Indexed: 11/25/2022] Open
Abstract
Dyneins are high molecular weight microtubule based motor proteins responsible for beating of the flagellum. The flagellum is important for the viability of trypanosomes like Leishmania. However, very little is known about dynein and its role in flagellar motility in such trypanosomatid species. Here, we have identified genes in five species of Leishmania that code for outer-arm dynein (OAD) heavy chains α and β, and inner-arm dynein (IAD) heavy chains 1α and 1β using BLAST and MSA. Our sequence analysis indicates that unlike the three-headed outer-arm dyneins of Chlamydomonas and Tetrahymena, the outer-arm dyneins of the genus Leishmania are two-headed, lacking the γ chain like that of metazoans. N-terminal sequence analysis revealed a conserved IQ-like calmodulin binding motif in the outer-arm α and inner-arm 1α dynein heavy chain in the five species of Leishmania similar to Chlamydomonas reinhardtii outer-arm γ. It was predicted that both motifs were incapable of binding calmodulin. Phosphorylation site prediction revealed conserved serine and threonine residues in outer-arm dynein α and inner-arm 1α as putative phosphorylation sites exclusive to Leishmania but not in Trypanosoma brucei suggesting that regulation of dynein activity might be via phosphorylation of these IQ-like motifs in Leishmania sp. Identified outer and inner-arm dynein heavy chain genes in five Leishmania species. Outer-arm dyneins of the genus Leishmania are two-headed like metazoans. Conserved IQ-like motif present in outer-arm α and inner-arm 1α in Leishmania sp. Conserved serine and threonine residues in dynein arms exclusive to Leishmania sp. Possible regulation of dynein activity via phosphorylation of these IQ-like motifs.
Collapse
|
26
|
Inaba K. Calcium sensors of ciliary outer arm dynein: functions and phylogenetic considerations for eukaryotic evolution. Cilia 2015; 4:6. [PMID: 25932323 PMCID: PMC4415241 DOI: 10.1186/s13630-015-0015-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 03/23/2015] [Indexed: 12/31/2022] Open
Abstract
The motility of eukaryotic cilia and flagella is modulated in response to several extracellular stimuli. Ca(2+) is the most critical intracellular factor for these changes in motility, directly acting on the axonemes and altering flagellar asymmetry. Calaxin is an opisthokont-specific neuronal calcium sensor protein first described in the sperm of the ascidian Ciona intestinalis. It binds to a heavy chain of two-headed outer arm dynein in a Ca(2+)-dependent manner and regulates 'asymmetric' wave propagation at high concentrations of Ca(2+). A Ca(2+)-binding subunit of outer arm dynein in Chlamydomonas reinhardtii, the light chain 4 (LC4), which is a Ca(2+)-sensor phylogenetically different from calaxin, shows Ca(2+)-dependent binding to a heavy chain of three-headed outer arm dynein. However, LC4 appears to participate in 'symmetric' wave propagation at high concentrations of Ca(2+). LC4-type dynein light chain is present in bikonts, except for some subclasses of the Excavata. Thus, flagellar asymmetry-symmetry conversion in response to Ca(2+) concentration represents a 'mirror image' relationship between Ciona and Chlamydomonas. Phylogenetic analyses indicate the duplication, divergence, and loss of heavy chain and Ca(2+)-sensors of outer arm dynein among excavate species. These features imply a divergence point with respect to Ca(2+)-dependent regulation of outer arm dynein in cilia and flagella during the evolution of eukaryotic supergroups.
Collapse
Affiliation(s)
- Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025 Japan
| |
Collapse
|
27
|
Weinberger A, Tanasescu R, Stefaniu C, Fedotenko LA, Favarger F, Ishikawa T, Brezesinski G, Marques CM, Zumbuehl A. Bilayer properties of 1,3-diamidophospholipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1879-1884. [PMID: 25642598 DOI: 10.1021/la5041745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A series of 1,3-diamido phosphocholines was synthesized, and their potential to form stable bilayers was investigated. Large and giant unilamellar vesicles produced from these new lipids form a wide variety of faceted liposomes. Factors such as cooling rates and the careful choice of the liposome preparation method influence the formation of facets. Interdigitation was hypothesized as a main factor for the stabilization of facets and effectively monitored by small-angle X-ray scattering measurements.
Collapse
Affiliation(s)
- Andreas Weinberger
- Department of Chemistry, University of Fribourg , Chemin du Musée 9, 1700 Fribourg, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ishikawa T. Cryo-electron tomography of motile cilia and flagella. Cilia 2015; 4:3. [PMID: 25646146 PMCID: PMC4313461 DOI: 10.1186/s13630-014-0012-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/23/2014] [Indexed: 11/13/2022] Open
Abstract
Cryo-electron tomography has been a valuable tool in the analysis of 3D structures of cilia at molecular and cellular levels. It opened a way to reconstruct 3D conformations of proteins in cilia at 3-nm resolution, revealed networks of a number of component proteins in cilia, and has even allowed the study of component dynamics. In particular, we have identified the locations and conformations of all the regular inner and outer dyneins, as well as various regulators such as radial spokes. Since the mid 2000s, cryo-electron tomography has provided us with new knowledge, concepts, and questions in the area of cilia research. Now, after nearly 10 years of application of this technique, we are turning a corner and are at the stage to discuss the next steps. We expect further development of this technique for specimen preparation, data acquisition, and analysis. While combining this tool with other methodologies has already made cryo-electron tomography more biologically significant, we need to continue this cooperation using recently developed biotechnology and cell biology approaches. In this review, we will provide an up-to-date overview of the biological insights obtained by cryo-electron tomography and will discuss future possibilities of this technique in the context of cilia research.
Collapse
Affiliation(s)
- Takashi Ishikawa
- Group of Electron Microscopy of Complex Cellular System, Laboratory of Biomolecular Research, Paul Scherrer Institute, OFLG/010, 5232 Villigen PSI, Switzerland
| |
Collapse
|
29
|
Cooperative binding of the outer arm-docking complex underlies the regular arrangement of outer arm dynein in the axoneme. Proc Natl Acad Sci U S A 2014; 111:9461-6. [PMID: 24979786 DOI: 10.1073/pnas.1403101111] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Outer arm dynein (OAD) in cilia and flagella is bound to the outer doublet microtubules every 24 nm. Periodic binding of OADs at specific sites is important for efficient cilia/flagella beating; however, the molecular mechanism that specifies OAD arrangement remains elusive. Studies using the green alga Chlamydomonas reinhardtii have shown that the OAD-docking complex (ODA-DC), a heterotrimeric complex present at the OAD base, functions as the OAD docking site on the doublet. We find that the ODA-DC has an ellipsoidal shape ∼24 nm in length. In mutant axonemes that lack OAD but retain the ODA-DC, ODA-DC molecules are aligned in an end-to-end manner along the outer doublets. When flagella of a mutant lacking ODA-DCs are supplied with ODA-DCs upon gamete fusion, ODA-DC molecules first bind to the mutant axonemes in the proximal region, and the occupied region gradually extends toward the tip, followed by binding of OADs. This and other results indicate that a cooperative association of the ODA-DC underlies its function as the OAD-docking site and is the determinant of the 24-nm periodicity.
Collapse
|
30
|
Liebi M, Kuster S, Kohlbrecher J, Ishikawa T, Fischer P, Walde P, Windhab EJ. Magnetically enhanced bicelles delivering switchable anisotropy in optical gels. ACS APPLIED MATERIALS & INTERFACES 2014; 6:1100-1105. [PMID: 24369041 DOI: 10.1021/am4046469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mesostructures responding to external triggers such as temperature, pH, or magnetic field have the potential to be used as self-acting sensors, detectors, or switches. Key features are a strong and well-defined response to the external trigger. Here, we present magnetic alignable bicelles embedded into a gelatin matrix generating magnetically switchable structures, which can reversibly be locked and unlocked by adjusting the temperature. We show that the disk-like aggregates can be orientated in magnetic fields, and such orientation can be preserved after embedding into gelatin. The resulting gel cubes show an anisotropic transfer for electromagnetic waves, i.e., a different spatial birefringence. Cycling through the melting point of gelatin sets the structure back to its isotropic state providing a read-out of the thermal history. Stacking of the bicelles induced by the gelatin promotes magnetic aligning, as an increased aggregation number in the stacks increases the magnetic orientation energy.
Collapse
Affiliation(s)
- Marianne Liebi
- Laboratory of Food Process Engineering, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
31
|
Liebi M, Kuster S, Kohlbrecher J, Ishikawa T, Fischer P, Walde P, Windhab EJ. Cholesterol-diethylenetriaminepentaacetate complexed with thulium ions integrated into bicelles to increase their magnetic alignability. J Phys Chem B 2013; 117:14743-8. [PMID: 24205912 DOI: 10.1021/jp406599c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lanthanides have been used for several decades to increase the magnetic alignability of bicelles. DMPE-DTPA (1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylenetriaminepentaacetate) is commonly applied to anchor the lanthanides into the bicelles. However, because DMPE-DTPA has the tendency to accumulate at the highly curved edge region of the bicelles and if located there does not contribute to the magnetic orientation energy, we have tested cholesterol-DTPA complexed with thulium ions (Tm(3+)) as an alternative chelator to increase the magnetic alignability. Differential scanning calorimetric (DSC) measurements indicate the successful integration of cholesterol-DTPA into a DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayer. Cryo transmission electron microscopy and small-angle neutron scattering (SANS) measurements show that the disklike structure, that is, bicelles, is maintained if cholesterol-DTPA·Tm(3+) is integrated into a mixture of DMPC, cholesterol, and DMPE-DTPA·Tm(3+). The size of the bicelles is increased compared to the size of the bicelles obtained from mixtures without cholesterol-DTPA·Tm(3+). Magnetic-field-induced birefringence and SANS measurements in a magnetic field show that with addition of cholesterol-DTPA·Tm(3+) the magnetic alignability of these bicelles is significantly increased compared to bicelles composed of DMPC, cholesterol, and DMPE-DTPA·Tm(3+) only.
Collapse
Affiliation(s)
- Marianne Liebi
- Laboratory of Food Process Engineering, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
32
|
Bui KH, Yagi T, Yamamoto R, Kamiya R, Ishikawa T. Polarity and asymmetry in the arrangement of dynein and related structures in the Chlamydomonas axoneme. ACTA ACUST UNITED AC 2013; 198:913-25. [PMID: 22945936 PMCID: PMC3432765 DOI: 10.1083/jcb.201201120] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cryoelectron tomography and subtomogram averaging reveal a high degree of structural asymmetry and polarization in dynein localization in the Chlamydomonas flagella. Understanding the molecular architecture of the flagellum is crucial to elucidate the bending mechanism produced by this complex organelle. The current known structure of the flagellum has not yet been fully correlated with the complex composition and localization of flagellar components. Using cryoelectron tomography and subtomogram averaging while distinguishing each one of the nine outer doublet microtubules, we systematically collected and reconstructed the three-dimensional structures in different regions of the Chlamydomonas flagellum. We visualized the radial and longitudinal differences in the flagellum. One doublet showed a distinct structure, whereas the other eight were similar but not identical to each other. In the proximal region, some dyneins were missing or replaced by minor dyneins, and outer–inner arm dynein links were variable among different microtubule doublets. These findings shed light on the intricate organization of Chlamydomonas flagella, provide clues to the mechanism that produces asymmetric flagellar beating, and pose a new challenge for the functional study of the flagella.
Collapse
Affiliation(s)
- Khanh Huy Bui
- Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | | | | | | | | |
Collapse
|
33
|
Lowell AN, Qiao H, Liu T, Ishikawa T, Zhang H, Oriana S, Wang M, Ricciotti E, FitzGerald GA, Zhou R, Yamakoshi Y. Functionalized low-density lipoprotein nanoparticles for in vivo enhancement of atherosclerosis on magnetic resonance images. Bioconjug Chem 2012; 23:2313-9. [PMID: 23075169 DOI: 10.1021/bc300561e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To allow visualization of macrophage-rich and miniature-sized atheromas by magnetic resonance (MR) imaging, we have converted low-density lipoprotein (LDL) into MR-active nanoparticles via the intercalation of a 1,4,7,10-tetraazacyclodecane-1,4,7-triacetic acid (DO3A) derivative and the subsequent coordination reaction with Gd(3+). After careful removal of nonchelated Gd(3+), an MR-active LDL (Gd(3+)-LDL) with a remarkably high payload of Gd(3+) (in excess of 200 Gd(3+) atoms per particle) and a high relaxivity (r(1) = 20.1 s(-1) mM(-1) per Gd(3+) or 4040 s(-1) mM(-1) per LDL) was obtained. Dynamic light-scattering photon correlation spectroscopy (DLS) and cryo transmission electron microscope (cryoTEM) images showed that Gd(3+)-LDL particles did not aggregate and remained of a similar size (25-30 nm) to native LDL. Intravenous injection of Gd(3+)-LDL into an atherosclerotic mouse model (ApoE(-/-)) resulted in an extremely high enhancement of the atheroma-bearing aortic walls at 48 h after injection. Free Gd(3+) dissociation from Gd(3+)-LDL was not detected over the imaging time window (96 h). Because autologous LDL can be isolated, modified, and returned to the same patient, our results suggest that MR-active LDL can potentially be used as a noninfectious and nonimmunogenic imaging probe for the enhancement of atheroplaques presumably via the uptake into macrophages inside the plaque.
Collapse
Affiliation(s)
- Andrew N Lowell
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mizuno N, Taschner M, Engel BD, Lorentzen E. Structural studies of ciliary components. J Mol Biol 2012; 422:163-80. [PMID: 22683354 PMCID: PMC3426769 DOI: 10.1016/j.jmb.2012.05.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/23/2012] [Accepted: 05/24/2012] [Indexed: 11/24/2022]
Abstract
Cilia are organelles found on most eukaryotic cells, where they serve important functions in motility, sensory reception, and signaling. Recent advances in electron tomography have facilitated a number of ultrastructural studies of ciliary components that have significantly improved our knowledge of cilium architecture. These studies have produced nanometer-resolution structures of axonemal dynein complexes, microtubule doublets and triplets, basal bodies, radial spokes, and nexin complexes. In addition to these electron tomography studies, several recently published crystal structures provide insights into the architecture and mechanism of dynein as well as the centriolar protein SAS-6, important for establishing the 9-fold symmetry of centrioles. Ciliary assembly requires intraflagellar transport (IFT), a process that moves macromolecules between the tip of the cilium and the cell body. IFT relies on a large 20-subunit protein complex that is thought to mediate the contacts between ciliary motor and cargo proteins. Structural investigations of IFT complexes are starting to emerge, including the first three-dimensional models of IFT material in situ, revealing how IFT particles organize into larger train-like arrays, and the high-resolution structure of the IFT25/27 subcomplex. In this review, we cover recent advances in the structural and mechanistic understanding of ciliary components and IFT complexes.
Collapse
Key Words
- 2d, two‐dimensional
- 3d, three‐dimensional
- dic, differential interference contrast
- drc, dynein regulatory complex
- em, electron microscopy
- et, electron tomography
- ida, inner dynein arm
- ift, intraflagellar transport
- mt, microtubule
- mtbd, microtubule binding domain
- oda, outer dynein arm
- rs, radial spoke
- rsp, radial spoke protein
- cilium
- intraflagellar transport
- electron tomography
- ift complex
- flagellum
Collapse
Affiliation(s)
- Naoko Mizuno
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Michael Taschner
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Benjamin D. Engel
- Department of Molecular Structural Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| |
Collapse
|
35
|
Ishikawa T. Structural biology of cytoplasmic and axonemal dyneins. J Struct Biol 2012; 179:229-34. [DOI: 10.1016/j.jsb.2012.05.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/21/2012] [Accepted: 05/24/2012] [Indexed: 12/31/2022]
|
36
|
Holme MN, Fedotenko IA, Abegg D, Althaus J, Babel L, Favarger F, Reiter R, Tanasescu R, Zaffalon PL, Ziegler A, Müller B, Saxer T, Zumbuehl A. Shear-stress sensitive lenticular vesicles for targeted drug delivery. NATURE NANOTECHNOLOGY 2012; 7:536-43. [PMID: 22683843 DOI: 10.1038/nnano.2012.84] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/30/2012] [Indexed: 05/20/2023]
Abstract
Atherosclerosis results in the narrowing of arterial blood vessels and this causes significant changes in the endogenous shear stress between healthy and constricted arteries. Nanocontainers that can release drugs locally with such rheological changes can be very useful. Here, we show that vesicles made from an artificial 1,3-diaminophospholipid are stable under static conditions but release their contents at elevated shear stress. These vesicles have a lenticular morphology, which potentially leads to instabilities along their equator. Using a model cardiovascular system based on polymer tubes and an external pump to represent shear stress in healthy and constricted vessels of the heart, we show that drugs preferentially release from the vesicles in constricted vessels that have high shear stress.
Collapse
Affiliation(s)
- Margaret N Holme
- University of Geneva, Department of Organic Chemistry, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Liebi M, Kohlbrecher J, Ishikawa T, Fischer P, Walde P, Windhab EJ. Cholesterol increases the magnetic aligning of bicellar disks from an aqueous mixture of DMPC and DMPE-DTPA with complexed thulium ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:10905-10915. [PMID: 22724540 DOI: 10.1021/la3019327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Aqueous mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-diethylenetriamine pentaacetate (DMPE-DTPA) with complexed thulium ions (Tm(3+)), and cholesterol with varying molar ratio were studied at different temperatures in the presence and absence of a magnetic field. For mixtures without cholesterol weakly magnetically alignable small disks, so-called bicelles, are formed at temperatures below the phase transition temperature (5-22 °C), as shown by cryo-transmission electron microscopy (cryo-TEM) and small-angle neutron scattering (SANS). In presence of 16 mol % cholesterol the disk size and the magnetic alignability were larger within the entire temperature range studied (5-40 °C). Cholesterol acts as a spacer between DMPE-DTPA with complexed Tm(3+), allowing these molecules to integrate more frequently into the planar part of the bicelles. Replacing DMPC partially by cholesterol thus lead to an increase in magnetic aligning by a higher amount of the magnetic handles (Tm(3+) complexed to DMPE-DTPA) in the plane and by an increased number of phospholipids in the enlarged bicelles. The magnetic aligning was most pronounced at 5 °C. The temperature-dependent structural changes of the DMPC/cholesterol/DMPE-DTPA/Tm(3+) aqueous mixtures are complex, including the transient appearance of holes in the disks at intermediate temperatures.
Collapse
Affiliation(s)
- Marianne Liebi
- Laboratory of Food Process Engineering, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
38
|
Guichard P, Desfosses A, Maheshwari A, Hachet V, Dietrich C, Brune A, Ishikawa T, Sachse C, Gonczy P. Cartwheel Architecture of Trichonympha Basal Body. Science 2012; 337:553. [DOI: 10.1126/science.1222789] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
39
|
Maheshwari A, Ishikawa T. Heterogeneity of dynein structure implies coordinated suppression of dynein motor activity in the axoneme. J Struct Biol 2012; 179:235-41. [PMID: 22569523 DOI: 10.1016/j.jsb.2012.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/15/2012] [Accepted: 04/17/2012] [Indexed: 01/06/2023]
Abstract
Axonemal dyneins provide the driving force for flagellar/ciliary bending. Nucleotide-induced conformational changes of flagellar dynein have been found both in vitro and in situ by electron microscopy, and in situ studies demonstrated the coexistence of at least two conformations in axonemes in the presence of nucleotides (the apo and the nucleotide-bound forms). The distribution of the two forms suggested cooperativity between adjacent dyneins on axonemal microtubule doublets. Although the mechanism of such cooperativity is unknown it might be related to the mechanism of bending. To explore the mechanism by which structural heterogeneity of axonemal dyneins is induced by nucleotides, we used cilia from Tetrahymena thermophila to examine the structure of dyneins in a) the intact axoneme and b) microtubule doublets separated from the axoneme, both with and without additional pure microtubules. We also employed an ATPase assay on these specimens to investigate dynein activity functionally. Dyneins on separated doublets show more activation by nucleotides than those in the intact axoneme, both structurally and in the ATPase assay, and this is especially pronounced when the doublets are coupled with added microtubules, as expected. Paralleling the reduced ATPase activity in the intact axonemes, a lower proportion of these dyneins are in the nucleotide-bound form. This indicates a coordinated suppression of dynein activity in the axoneme, which could be the key for understanding the bending mechanism.
Collapse
Affiliation(s)
- Aditi Maheshwari
- Biomolecular Research Laboratory, Paul Scherrer Institute, Switzerland
| | | |
Collapse
|
40
|
Pigino G, Maheshwari A, Bui KH, Shingyoji C, Kamimura S, Ishikawa T. Comparative structural analysis of eukaryotic flagella and cilia from Chlamydomonas, Tetrahymena, and sea urchins. J Struct Biol 2012; 178:199-206. [PMID: 22406282 DOI: 10.1016/j.jsb.2012.02.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/22/2011] [Accepted: 02/17/2012] [Indexed: 10/28/2022]
Abstract
Although eukaryotic flagella and cilia all share the basic 9+2 microtubule-organization of their internal axonemes, and are capable of generating bending-motion, the waveforms, amplitudes, and velocities of the bending-motions are quite diverse. To explore the structural basis of this functional diversity of flagella and cilia, we here compare the axonemal structure of three different organisms with widely divergent bending-motions by electron cryo-tomography. We reconstruct the 3D structure of the axoneme of Tetrahymena cilia, and compare it with the axoneme of the flagellum of sea urchin sperm, as well as with the axoneme of Chlamydomonas flagella, which we analyzed previously. This comparative structural analysis defines the diversity of molecular architectures in these organisms, and forms the basis for future correlation with their different bending-motions.
Collapse
Affiliation(s)
- Gaia Pigino
- Biomolecular Research Laboratory, Paul Scherrer Institute, Switzerland
| | | | | | | | | | | |
Collapse
|
41
|
King SM. Integrated control of axonemal dynein AAA(+) motors. J Struct Biol 2012; 179:222-8. [PMID: 22406539 DOI: 10.1016/j.jsb.2012.02.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/13/2012] [Accepted: 02/16/2012] [Indexed: 11/17/2022]
Abstract
Axonemal dyneins are AAA(+) enzymes that convert ATP hydrolysis to mechanical work. This leads to the sliding of doublet microtubules with respect to each other and ultimately the generation of ciliary/flagellar beating. However, in order for useful work to be generated, the action of individual dynein motors must be precisely controlled. In addition, cells modulate the motility of these organelles through a variety of second messenger systems and these signals too must be integrated by the dynein motors to yield an appropriate output. This review describes the current status of efforts to understand dynein control mechanisms and their connectivity focusing mainly on studies of the outer dynein arm from axonemes of the unicellular biflagellate green alga Chlamydomonas.
Collapse
Affiliation(s)
- Stephen M King
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA.
| |
Collapse
|
42
|
Ueno H, Ishikawa T, Bui KH, Gonda K, Ishikawa T, Yamaguchi T. Mouse respiratory cilia with the asymmetric axonemal structure on sparsely distributed ciliary cells can generate overall directional flow. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:1081-7. [PMID: 22306160 DOI: 10.1016/j.nano.2012.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 12/22/2011] [Accepted: 01/24/2012] [Indexed: 11/30/2022]
Abstract
UNLABELLED Mucociliary clearance on the surface of the tracheal lumen is an important component of lung defense against dust mites and viruses. However, the axonemal structure that achieves effective ciliary motion, and the mechanisms by which discretely distributed ciliary cells generate directional flow are unknown. In this study, we examined individual ciliary motion with 7- to 9-nm spatial precision by labeling the ciliary tip with quantum dots and detected an asymmetric beating pattern. Cryo-electron tomography revealed that the densities of two inner dynein arms were missing from at least 2 doublet microtubules in the axonemal structure. Although the flow directions generated by individual ciliated cells were unsteady and diverse, the time- and space-averaged velocity field was found to be directional. These results indicate that the asymmetric ciliary motion is driven by the asymmetric axonemal structure, and it generates overall directional flow from the lungs to the oropharynx on sparsely distributed ciliated cells. FROM THE CLINICAL EDITOR The authors of this study utilized quantum dots in determining the kinetics of ciliary motion in mouse respiratory cilia with 7- to 9-nm spatial precision.
Collapse
Affiliation(s)
- Hironori Ueno
- International Advanced Research and Education Organization, Tohoku University, Miyagi, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Fisch C, Dupuis-Williams P. [The rebirth of the ultrastructure of cilia and flagella]. Biol Aujourdhui 2012; 205:245-67. [PMID: 22251859 DOI: 10.1051/jbio/2011023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Indexed: 11/14/2022]
Abstract
The sensory and motility functions of eukaryotic cilia and flagella are essential for cell survival in protozoans and for cell differentiation and homoeostasis in metazoans. Ciliary biology has benefited early on from the input of electron microscopy. Over the last decade, the visualization of cellular structures has greatly progressed, thus it becomes timely to review the ultrastructure of cilia and flagella. Briefly touching upon the typical features of a 9+2 axoneme, we dwell extensively on the transition zone, the singlet zone, the ciliary necklace, cap and crown. The relation of the singlet zone to sensory and/or motile function, the link of the ciliary cap to microtubule dynamics and to ciliary beat, the involvement of the ciliary crown in ovocyte and mucosal propulsion, and the role of the transition zone/the ciliary necklace in axonemal stabilization, autotomy and as a diffusion barrier will all be discussed.
Collapse
Affiliation(s)
- Cathy Fisch
- ATIGE Centriole et Pathologies Associées, INSERM/UEVE U829, 91000 Évry, France.
| | | |
Collapse
|
44
|
Qiu W, Derr ND, Goodman BS, Villa E, Wu D, Shih W, Reck-Peterson SL. Dynein achieves processive motion using both stochastic and coordinated stepping. Nat Struct Mol Biol 2012; 19:193-200. [PMID: 22231401 PMCID: PMC3272163 DOI: 10.1038/nsmb.2205] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 11/18/2011] [Indexed: 12/18/2022]
Abstract
Processivity, the ability of single molecules to move continuously along a track, is a fundamental requirement of cargo-transporting molecular motors. Here, we investigate how cytoplasmic dynein, a homodimeric, microtubule-based motor, achieves processive motion. To do this, we developed a versatile method for assembling Saccharomyces cerevisiae dynein heterodimers, using complementary DNA oligonucleotides covalently linked to dynein monomers labeled with different organic fluorophores. Using two-color, single-molecule microscopy and high-precision, two-dimensional tracking, we find that dynein has a highly variable stepping pattern that is distinct from all other processive cytoskeletal motors, which use 'hand-over-hand' mechanisms. Uniquely, dynein stepping is stochastic when its two motor domains are close together. However, coordination emerges as the distance between motor domains increases, implying that a tension-based mechanism governs these steps. This plasticity may allow tuning of dynein for its diverse cellular functions.
Collapse
Affiliation(s)
- Weihong Qiu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Mohri H, Inaba K, Ishijima S, Baba SA. Tubulin-dynein system in flagellar and ciliary movement. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:397-415. [PMID: 23060230 PMCID: PMC3491082 DOI: 10.2183/pjab.88.397] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/22/2012] [Indexed: 06/01/2023]
Abstract
Eukaryotic flagella and cilia have attracted the attention of many researchers over the last century, since they are highly arranged organelles and show sophisticated bending movements. Two important cytoskeletal and motor proteins, tubulin and dynein, were first found and described in flagella and cilia. Half a century has passed since the discovery of these two proteins, and much information has been accumulated on their molecular structures and their roles in the mechanism of microtubule sliding, as well as on the architecture, the mechanism of bending movement and the regulation and signal transduction in flagella and cilia. Historical background and the recent advance in this field are described.
Collapse
|
46
|
King SM, Patel-King RS. Functional architecture of the outer arm dynein conformational switch. J Biol Chem 2011; 287:3108-22. [PMID: 22157010 DOI: 10.1074/jbc.m111.286211] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Dynein light chain 1 (LC1/DNAL1) is one of the most highly conserved components of ciliary axonemal outer arm dyneins, and it associates with both a heavy chain motor unit and tubulin located within the A-tubule of the axonemal outer doublet microtubules. In a variety of model systems, lack of LC1 or expression of mutant forms leads to profound defects in ciliary motility, including the failure of the hydrodynamic coupling needed for ciliary metachronal synchrony, random stalling during the power/recovery stroke transition, an aberrant response to imposed viscous load, and in some cases partial failure of motor assembly. These phenotypes have led to the proposal that LC1 acts as part of a mechanical switch to control motor function in response to alterations in axonemal curvature. Here we have used NMR chemical shift mapping to define the regions perturbed by a series of mutations in the C-terminal domain that yield a range of phenotypic effects on motility. In addition, we have identified the subdomain of LC1 involved in binding microtubules and characterized the consequences of an Asn → Ser alteration within the terminal leucine-rich repeat that in humans causes primary ciliary dyskinesia. Together, these data define a series of functional subdomains within LC1 and allow us to propose a structural model for the organization of the dynein heavy chain-LC1-microtubule ternary complex that is required for the coordinated activity of dynein motors in cilia.
Collapse
Affiliation(s)
- Stephen M King
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3305, USA.
| | | |
Collapse
|
47
|
Pigino G, Bui KH, Maheshwari A, Lupetti P, Diener D, Ishikawa T. Cryoelectron tomography of radial spokes in cilia and flagella. ACTA ACUST UNITED AC 2011; 195:673-87. [PMID: 22065640 PMCID: PMC3257535 DOI: 10.1083/jcb.201106125] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cryo-EM tomography of wild-type and mutant cilia and flagella from Tetrahymena and Chlamydomonas reveals new information on the substructure of radial spokes. Radial spokes (RSs) are ubiquitous components in the 9 + 2 axoneme thought to be mechanochemical transducers involved in local control of dynein-driven microtubule sliding. They are composed of >23 polypeptides, whose interactions and placement must be deciphered to understand RS function. In this paper, we show the detailed three-dimensional (3D) structure of RS in situ in Chlamydomonas reinhardtii flagella and Tetrahymena thermophila cilia that we obtained using cryoelectron tomography (cryo-ET). We clarify similarities and differences between the three spoke species, RS1, RS2, and RS3, in T. thermophila and in C. reinhardtii and show that part of RS3 is conserved in C. reinhardtii, which only has two species of complete RSs. By analyzing C. reinhardtii mutants, we identified the specific location of subsets of RS proteins (RSPs). Our 3D reconstructions show a twofold symmetry, suggesting that fully assembled RSs are produced by dimerization. Based on our cryo-ET data, we propose models of subdomain organization within the RS as well as interactions between RSPs and with other axonemal components.
Collapse
Affiliation(s)
- Gaia Pigino
- Biomolecular Research Laboratory, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Eukaryotic cilia and flagella perform motility and sensory functions which are essential for cell survival in protozoans, and to organism development and homoeostasis in metazoans. Their ultrastructure has been studied from the early beginnings of electron microscopy, and these studies continue to contribute to much of our understanding about ciliary biology. In the light of the progress made in the visualization of cellular structures over the last decade, we revisit the ultrastructure of cilia and flagella. We briefly describe the typical features of a 9+2 axoneme before focusing extensively on the transition zone, the ciliary necklace, the singlet zone, the ciliary cap and the ciliary crown. We discuss how the singlet zone is linked to sensory and/or motile function, the contribution of the ciliary crown to ovocyte and mucosal propulsion, and the relationship between the ciliary cap and microtubule growth and shortening, and its relation to ciliary beat. We further examine the involvement of the transition zone/the ciliary necklace in axonemal stabilization, autotomy and as a diffusion barrier.
Collapse
|
49
|
Cryo-electron tomography reveals conserved features of doublet microtubules in flagella. Proc Natl Acad Sci U S A 2011; 108:E845-53. [PMID: 21930914 DOI: 10.1073/pnas.1106178108] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The axoneme forms the essential and conserved core of cilia and flagella. We have used cryo-electron tomography of Chlamydomonas and sea urchin flagella to answer long-standing questions and to provide information about the structure of axonemal doublet microtubules (DMTs). Solving an ongoing controversy, we show that B-tubules of DMTs contain exactly 10 protofilaments (PFs) and that the inner junction (IJ) and outer junction between the A- and B-tubules are fundamentally different. The outer junction, crucial for the initiation of doublet formation, appears to be formed by close interactions between the tubulin subunits of three PFs with unusual tubulin interfaces; other investigators have reported that this junction is weakened by mutations affecting posttranslational modifications of tubulin. The IJ consists of an axially periodic ladder-like structure connecting tubulin PFs of the A- and B-tubules. The recently discovered microtubule inner proteins (MIPs) on the inside of the A- and B-tubules are more complex than previously thought. They are composed of alternating small and large subunits with periodicities of 16 and/or 48 nm. MIP3 forms arches connecting B-tubule PFs, contrary to an earlier report that MIP3 forms the IJ. Finally, the "beak" structures within the B-tubules of Chlamydomonas DMT1, DMT5, and DMT6 are clearly composed of a longitudinal band of proteins repeating with a periodicity of 16 nm. These findings, discussed in relation to genetic and biochemical data, provide a critical foundation for future work on the molecular assembly and stability of the axoneme, as well as its function in motility and sensory transduction.
Collapse
|
50
|
Abstract
Dynein, which is a minus-end-directed microtubule motor, is crucial to a range of cellular processes. The mass of its motor domain is about 10 times that of kinesin, the other microtubule motor. Its large size and the difficulty of expressing and purifying mutants have hampered progress in dynein research. Recently, however, electron microscopy, X-ray crystallography and single-molecule nanometry have shed light on several key unsolved questions concerning how the dynein molecule is organized, what conformational changes in the molecule accompany ATP hydrolysis, and whether two or three motor domains are coordinated in the movements of dynein. This minireview describes our current knowledge of the molecular organization and the force-generating mechanism of dynein, with emphasis on findings from electron microscopy and single-molecule nanometry.
Collapse
Affiliation(s)
- Hitoshi Sakakibara
- National Institute of Information and Communications Technology, Nishi-ku, Kobe, Japan
| | | |
Collapse
|