1
|
Kutuzov MM, Belousova EA, Kurgina TA, Ukraintsev AA, Vasil’eva IA, Khodyreva SN, Lavrik OI. The contribution of PARP1, PARP2 and poly(ADP-ribosyl)ation to base excision repair in the nucleosomal context. Sci Rep 2021; 11:4849. [PMID: 33649352 PMCID: PMC7921663 DOI: 10.1038/s41598-021-84351-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/11/2021] [Indexed: 01/31/2023] Open
Abstract
The regulation of repair processes including base excision repair (BER) in the presence of DNA damage is implemented by a cellular signal: poly(ADP-ribosyl)ation (PARylation), which is catalysed by PARP1 and PARP2. Despite ample studies, it is far from clear how BER is regulated by PARPs and how the roles are distributed between the PARPs. Here, we investigated the effects of PARP1, PARP2 and PARylation on activities of the main BER enzymes (APE1, DNA polymerase β [Polβ] and DNA ligase IIIα [LigIIIα]) in combination with BER scaffold protein XRCC1 in the nucleosomal context. We constructed nucleosome core particles with midward- or outward-oriented damage. It was concluded that in most cases, the presence of PARP1 leads to the suppression of the activities of APE1, Polβ and to a lesser extent LigIIIα. PARylation by PARP1 attenuated this effect to various degrees depending on the enzyme. PARP2 had an influence predominantly on the last stage of BER: DNA sealing. Nonetheless, PARylation by PARP2 led to Polβ inhibition and to significant stimulation of LigIIIα activities in a NAD+-dependent manner. On the basis of the obtained and literature data, we suggest a hypothetical model of the contribution of PARP1 and PARP2 to BER.
Collapse
Affiliation(s)
- M. M. Kutuzov
- grid.415877.80000 0001 2254 1834Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - E. A. Belousova
- grid.415877.80000 0001 2254 1834Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - T. A. Kurgina
- grid.415877.80000 0001 2254 1834Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia ,grid.4605.70000000121896553Novosibirsk State University, Novosibirsk, Russia
| | - A. A. Ukraintsev
- grid.415877.80000 0001 2254 1834Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - I. A. Vasil’eva
- grid.415877.80000 0001 2254 1834Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - S. N. Khodyreva
- grid.415877.80000 0001 2254 1834Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - O. I. Lavrik
- grid.415877.80000 0001 2254 1834Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia ,grid.4605.70000000121896553Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
2
|
Collings CK, Little DW, Schafer SJ, Anderson JN. HIV chromatin is a preferred target for drugs that bind in the DNA minor groove. PLoS One 2019; 14:e0216515. [PMID: 31887110 PMCID: PMC6936835 DOI: 10.1371/journal.pone.0216515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2022] Open
Abstract
The HIV genome is rich in A but not G or U and deficient in C. This nucleotide bias controls HIV phenotype by determining the highly unusual composition of all major HIV proteins. The bias is also responsible for the high frequency of narrow DNA minor groove sites in the double-stranded HIV genome as compared to cellular protein coding sequences and the bulk of the human genome. Since drugs that bind in the DNA minor groove disrupt nucleosomes on sequences that contain closely spaced oligo-A tracts which are prevalent in HIV DNA because of its bias, it was of interest to determine if these drugs exert this selective inhibitory effect on HIV chromatin. To test this possibility, nucleosomes were reconstituted onto five double-stranded DNA fragments from the HIV-1 pol gene in the presence and in the absence of several minor groove binding drugs (MGBDs). The results demonstrated that the MGBDs inhibited the assembly of nucleosomes onto all of the HIV-1 segments in a manner that was proportional to the A-bias, but had no detectable effect on the formation of nucleosomes on control cloned fragments or genomic DNA from chicken and human. Nucleosomes preassembled onto HIV DNA were also preferentially destabilized by the drugs as evidenced by enhanced nuclease accessibility in physiological ionic strength and by the preferential loss of the histone octamer in hyper-physiological salt solutions. The drugs also selectively disrupted HIV-containing nucleosomes in yeast as revealed by enhanced nuclease accessibility of the in vivo assembled HIV chromatin and reductions in superhelical densities of plasmid chromatin containing HIV sequences. A comparison of these results to the density of A-tracts in the HIV genome indicates that a large fraction of the nucleosomes that make up HIV chromatin should be preferred in vitro targets for the MGBDs. These results show that the MGBDs preferentially disrupt HIV-1 chromatin in vitro and in vivo and raise the possibility that non-toxic derivatives of certain MGBDs might serve as a novel class of anti-HIV agents.
Collapse
Affiliation(s)
- Clayton K Collings
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America.,Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - Donald W Little
- University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Samuel J Schafer
- Department of Reproductive and Developmental Sciences, University of British Columbia, Vancouver, BC, Canada
| | - John N Anderson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
3
|
Rodriguez Y, Horton JK, Wilson SH. Histone H3 Lysine 56 Acetylation Enhances AP Endonuclease 1-Mediated Repair of AP Sites in Nucleosome Core Particles. Biochemistry 2019; 58:3646-3655. [PMID: 31407575 DOI: 10.1021/acs.biochem.9b00433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Deciphering factors modulating DNA repair in chromatin is of great interest because nucleosomal positioning influences mutation rates. H3K56 acetylation (Ac) is implicated in chromatin landscape regulation, impacting genomic stability, yet the effect of H3K56Ac on DNA base excision repair (BER) remains unclear. We determined whether H3K56Ac plays a role in regulating AP site incision by AP endonuclease 1 (APE1), an early step in BER. Our in vitro studies of acetylated, well-positioned nucleosome core particles (H3K56Ac-601-NCPs) demonstrate APE1 strand incision is enhanced compared with that of unacetylated WT-601-NCPs. The high-mobility group box 1 protein enhances APE1 activity in WT-601-NCPs, but this effect is not observed in H3K56Ac-601-NCPs. Therefore, our results suggest APE1 activity on NCPs can be modulated by H3K56Ac.
Collapse
Affiliation(s)
- Yesenia Rodriguez
- Genome Integrity and Structural Biology Laboratory , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| | - Julie K Horton
- Genome Integrity and Structural Biology Laboratory , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| |
Collapse
|
4
|
Rodriguez Y, Duan M, Wyrick JJ, Smerdon MJ. A cassette of basic amino acids in histone H2B regulates nucleosome dynamics and access to DNA damage. J Biol Chem 2018; 293:7376-7386. [PMID: 29588367 PMCID: PMC5949990 DOI: 10.1074/jbc.ra117.000358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/12/2018] [Indexed: 12/25/2022] Open
Abstract
Nucleosome dynamics, such as spontaneous DNA unwrapping, are postulated to have a critical role in regulating the access of DNA repair machinery to DNA lesions within nucleosomes. However, the specific histone domains that regulate nucleosome dynamics and the impact of such changes in intrinsic nucleosome dynamics on DNA repair are not well understood. Previous studies identified a highly conserved region in the N-terminal tail of histone H2B known as the histone H2Brepression (or HBR) domain, which has a significant influence on gene expression, chromatin assembly, and DNA damage formation and repair. However, the molecular mechanism(s) that may account for these observations are limited. In this study, we characterized the stability and dynamics of ΔHBR mutant nucleosome core particles (NCPs) in vitro by restriction enzyme accessibility (REA), FRET, and temperature-induced sliding of histone octamers. Our results indicate that ΔHBR-NCPs are more dynamic, with a larger steady-state fraction of the NCP population occupying the unwrapped state than for WT-NCPs. Additionally, ΔHBR-histone octamers are more susceptible to temperature-induced sliding on DNA than WT histone octamers. Furthermore, we show that the activity of base excision repair enzymes at uracil lesions and single nucleotide gaps is enhanced in a site-specific manner in ΔHBR-NCPs. This enhanced activity correlates well with regions exhibiting increased DNA unwrapping. Finally, removal of the HBR domain is not sufficient to completely alleviate the structural constraints imposed by histone octamers on the activity of base excision repair enzymes.
Collapse
Affiliation(s)
- Yesenia Rodriguez
- From Biochemistry and Biophysics, School of Molecular Biosciences, Pullman, Washington 99164-7520
| | - Mingrui Duan
- From Biochemistry and Biophysics, School of Molecular Biosciences, Pullman, Washington 99164-7520
| | - John J Wyrick
- From Biochemistry and Biophysics, School of Molecular Biosciences, Pullman, Washington 99164-7520; Center for Reproductive Biology, Washington State University, Pullman, Washington 99164-7520
| | - Michael J Smerdon
- From Biochemistry and Biophysics, School of Molecular Biosciences, Pullman, Washington 99164-7520.
| |
Collapse
|
5
|
Elbahnsi A, Retureau R, Baaden M, Hartmann B, Oguey C. Holding the Nucleosome Together: A Quantitative Description of the DNA–Histone Interface in Solution. J Chem Theory Comput 2018; 14:1045-1058. [DOI: 10.1021/acs.jctc.7b00936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ahmad Elbahnsi
- LBPA,
UMR 8113, ENS Paris-Saclay - CNRS, 61 avenue du Président Wilson, 94235 cedex Cachan, France
- LPTM,
UMR 8089, CNRS, Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise, France
| | - Romain Retureau
- LBPA,
UMR 8113, ENS Paris-Saclay - CNRS, 61 avenue du Président Wilson, 94235 cedex Cachan, France
| | - Marc Baaden
- Laboratoire
de Biochimie Théorique, CNRS, UPR9080, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Brigitte Hartmann
- LBPA,
UMR 8113, ENS Paris-Saclay - CNRS, 61 avenue du Président Wilson, 94235 cedex Cachan, France
| | - Christophe Oguey
- LPTM,
UMR 8089, CNRS, Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise, France
| |
Collapse
|
6
|
Hinz JM, Laughery MF, Wyrick JJ. Nucleosomes Selectively Inhibit Cas9 Off-target Activity at a Site Located at the Nucleosome Edge. J Biol Chem 2016; 291:24851-24856. [PMID: 27756838 PMCID: PMC5122757 DOI: 10.1074/jbc.c116.758706] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/14/2016] [Indexed: 12/26/2022] Open
Abstract
Nucleosomes affect Cas9 binding and activity at on-target sites, but their impact at off-target sites is unknown. To investigate how nucleosomes affect Cas9 cleavage at off-target sites in vitro, we used a single guide RNA (sgRNA) that has been previously shown to efficiently direct Cas9 cleavage at the edge of the strongly positioned 601 nucleosome. Our data indicate that single mismatches between the sgRNA and DNA target have relatively little effect on Cas9 cleavage of naked DNA substrates, but strongly inhibit cleavage of nucleosome substrates, particularly when the mismatch is in the sgRNA "seed" region. These findings indicate that nucleosomes may enhance Cas9 specificity by inhibiting cleavage of off-target sites at the nucleosome edge.
Collapse
Affiliation(s)
- John M Hinz
- From the School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164
| | - Marian F Laughery
- From the School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164
| | - John J Wyrick
- From the School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164
| |
Collapse
|
7
|
High-resolution biophysical analysis of the dynamics of nucleosome formation. Sci Rep 2016; 6:27337. [PMID: 27263658 PMCID: PMC4897087 DOI: 10.1038/srep27337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 12/14/2022] Open
Abstract
We describe a biophysical approach that enables changes in the structure of DNA to be followed during nucleosome formation in in vitro reconstitution with either the canonical "Widom" sequence or a judiciously mutated sequence. The rapid non-perturbing photochemical analysis presented here provides 'snapshots' of the DNA configuration at any given moment in time during nucleosome formation under a very broad range of reaction conditions. Changes in DNA photochemical reactivity upon protein binding are interpreted as being mainly induced by alterations in individual base pair roll angles. The results strengthen the importance of the role of an initial (H3/H4)2 histone tetramer-DNA interaction and highlight the modulation of this early event by the DNA sequence. (H3/H4)2 binding precedes and dictates subsequent H2A/H2B-DNA interactions, which are less affected by the DNA sequence, leading to the final octameric nucleosome. Overall, our results provide a novel, exciting way to investigate those biophysical properties of DNA that constitute a crucial component in nucleosome formation and stabilization.
Collapse
|
8
|
Rodriguez Y, Hinz JM, Laughery MF, Wyrick JJ, Smerdon MJ. Site-specific Acetylation of Histone H3 Decreases Polymerase β Activity on Nucleosome Core Particles in Vitro. J Biol Chem 2016; 291:11434-45. [PMID: 27033702 PMCID: PMC4900286 DOI: 10.1074/jbc.m116.725788] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/28/2016] [Indexed: 11/06/2022] Open
Abstract
Histone posttranslational modifications have been associated with changes in chromatin structure necessary for transcription, replication, and DNA repair. Acetylation is one of the most studied and best characterized histone posttranslational modifications, but it is not known if histone acetylation modulates base excision repair of DNA lesions in chromatin. To address this question, we generated nucleosome core particles (NCPs) containing site-specifically acetylated H3K14 or H3K56 and measured repair of uracil and single-nucleotide gaps. We find that H3K56Ac and H3K14Ac do not significantly contribute to removal of uracils by uracil DNA glycosylase regardless of the translational or rotational position of the lesions within NCPs. In repair of single-nucleotide gaps, however, the presence of H3K56Ac or H3K14Ac in NCPs decreases the gap-filling activity of DNA polymerase β near the dyad center, with H3K14Ac exhibiting stronger inhibition. To a lesser extent, H3K56Ac induces a similar effect near the DNA ends. Moreover, using restriction enzyme accessibility, we detect no changes in NCP structure or dynamics between H3K14Ac-NCPs and WT-NCPs containing single-nucleotide gaps. Thus, acetylation at H3K56 and H3K14 in nucleosomes may promote alternative gap-filling pathways by inhibiting DNA polymerase β activity.
Collapse
Affiliation(s)
- Yesenia Rodriguez
- From Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520
| | - John M Hinz
- From Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520
| | - Marian F Laughery
- From Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520
| | - John J Wyrick
- From Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520
| | - Michael J Smerdon
- From Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520
| |
Collapse
|
9
|
Abstract
During Cas9 genome editing in eukaryotic cells, the bacterial Cas9 enzyme cleaves DNA targets within chromatin. To understand how chromatin affects Cas9 targeting, we characterized Cas9 activity on nucleosome substrates in vitro. We find that Cas9 endonuclease activity is strongly inhibited when its target site is located within the nucleosome core. In contrast, the nucleosome structure does not affect Cas9 activity at a target site within the adjacent linker DNA. Analysis of target sites that partially overlap with the nucleosome edge indicates that the accessibility of the protospacer-adjacent motif (PAM) is the critical determinant of Cas9 activity on a nucleosome.
Collapse
Affiliation(s)
- John M Hinz
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University , Pullman, Washington 99164-7520, United States
| | - Marian F Laughery
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University , Pullman, Washington 99164-7520, United States
| | - John J Wyrick
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University , Pullman, Washington 99164-7520, United States
| |
Collapse
|
10
|
Hinz JM, Mao P, McNeill DR, Wilson DM. Reduced Nuclease Activity of Apurinic/Apyrimidinic Endonuclease (APE1) Variants on Nucleosomes: IDENTIFICATION OF ACCESS RESIDUES. J Biol Chem 2015; 290:21067-21075. [PMID: 26134573 PMCID: PMC4543664 DOI: 10.1074/jbc.m115.665547] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/30/2015] [Indexed: 11/06/2022] Open
Abstract
Non-coding apurinic/apyrimidinic (AP) sites are generated at high frequency in genomic DNA via spontaneous hydrolytic, damage-induced or enzyme-mediated base release. AP endonuclease 1 (APE1) is the predominant mammalian enzyme responsible for initiating removal of mutagenic and cytotoxic abasic lesions as part of the base excision repair (BER) pathway. We have examined here the ability of wild-type (WT) and a collection of variant/mutant APE1 proteins to cleave at an AP site within a nucleosome core particle. Our studies indicate that, in comparison to the WT protein and other variant/mutant enzymes, the incision activity of the tumor-associated variant R237C and the rare population variant G241R are uniquely hypersensitive to nucleosome complexes in the vicinity of the AP site. This defect appears to stem from an abnormal interaction of R237C and G241R with abasic DNA substrates, but is not simply due to a DNA binding defect, as the site-specific APE1 mutant Y128A, which displays markedly reduced AP-DNA complex stability, did not exhibit a similar hypersensitivity to nucleosome structures. Notably, this incision defect of R237C and G241R was observed on a pre-assembled DNA glycosylase·AP-DNA complex as well. Our results suggest that the BER enzyme, APE1, has acquired distinct surface residues that permit efficient processing of AP sites within the context of protein-DNA complexes independent of classic chromatin remodeling mechanisms.
Collapse
Affiliation(s)
- John M Hinz
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520 and.
| | - Peng Mao
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520 and
| | - Daniel R McNeill
- Laboratory of Molecular Gerontology, National Institute on Aging, IRP, National Institutes of Health, Baltimore, Maryland 21224
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, IRP, National Institutes of Health, Baltimore, Maryland 21224
| |
Collapse
|
11
|
Nüsgen N, Goering W, Dauksa A, Biswas A, Jamil MA, Dimitriou I, Sharma A, Singer H, Fimmers R, Fröhlich H, Oldenburg J, Gulbinas A, Schulz WA, El-Maarri O. Inter-locus as well as intra-locus heterogeneity in LINE-1 promoter methylation in common human cancers suggests selective demethylation pressure at specific CpGs. Clin Epigenetics 2015; 7:17. [PMID: 25798207 PMCID: PMC4367886 DOI: 10.1186/s13148-015-0051-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/02/2015] [Indexed: 11/10/2022] Open
Abstract
Background Hypomethylation of long interspersed element (LINE)-1 has been observed in tumorigenesis when using degenerate assays, which provide an average across all repeats. However, it is unknown whether individual LINE-1 loci or different CpGs within one specific LINE-1 promoter are equally affected by methylation changes. Conceivably, studying methylation changes at specific LINE-1 may be more informative than global assays for cancer diagnostics. Therefore, with the aim of mapping methylation at individual LINE-1 loci at single-CpG resolution and exploring the diagnostic potential of individual LINE-1 locus methylation, we analyzed methylation at 11 loci by pyrosequencing, next-generation bisulfite sequencing as well as global LINE-1 methylation in bladder, colon, pancreas, prostate, and stomach cancers compared to paired normal tissues and in blood samples from some of the patients compared to healthy donors. Results Most (72/80) tumor samples harbored significant methylation changes at at least one locus. Notably, our data revealed not only the expected hypomethylation but also hypermethylation at some loci. Specific CpGs within the LINE-1 consensus sequence appeared preferentially hypomethylated suggesting that these could act as seeds for hypomethylation. In silico analysis revealed that these CpG sites more likely faced the histones in the nucleosome. Multivariate logistic regression analysis did not reveal a significant clinical advantage of locus-specific methylation markers over global methylation markers in distinguishing tumors from normal tissues. Conclusions Methylation changes at individual LINE-1 loci are heterogeneous, whereas specific CpGs within the consensus sequence appear to be more prone to hypomethylation. With a broader selection of loci, locus-specific LINE-1 methylation could become a tool for tumor detection. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0051-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole Nüsgen
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - Wolfgang Goering
- Department of Urology, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Albertas Dauksa
- Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu g. 2, Kaunas, 50009 Lithuania
| | - Arijit Biswas
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - Muhammad Ahmer Jamil
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany ; Bonn-Aachen International Center for IT (B-IT) Algorithmic Bioinformatics, University of Bonn, Dahlmannstr. 2, 53113 Bonn, Germany
| | - Ioanna Dimitriou
- Institute of Medical Biometry, Informatics and Epidemiology (IMBIE), University of Bonn, Sigmund-Freud-Straße 25, D-53127 Bonn, Germany
| | - Amit Sharma
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - Heike Singer
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - Rolf Fimmers
- Institute of Medical Biometry, Informatics and Epidemiology (IMBIE), University of Bonn, Sigmund-Freud-Straße 25, D-53127 Bonn, Germany
| | - Holger Fröhlich
- Bonn-Aachen International Center for IT (B-IT) Algorithmic Bioinformatics, University of Bonn, Dahlmannstr. 2, 53113 Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - Antanas Gulbinas
- Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu g. 2, Kaunas, 50009 Lithuania
| | - Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Osman El-Maarri
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| |
Collapse
|
12
|
Cui F, Chen L, LoVerso PR, Zhurkin VB. Prediction of nucleosome rotational positioning in yeast and human genomes based on sequence-dependent DNA anisotropy. BMC Bioinformatics 2014; 15:313. [PMID: 25244936 PMCID: PMC4261538 DOI: 10.1186/1471-2105-15-313] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/29/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND An organism's DNA sequence is one of the key factors guiding the positioning of nucleosomes within a cell's nucleus. Sequence-dependent bending anisotropy dictates how DNA is wrapped around a histone octamer. One of the best established sequence patterns consistent with this anisotropy is the periodic occurrence of AT-containing dinucleotides (WW) and GC-containing dinucleotides (SS) in the nucleosomal locations where DNA is bent in the minor and major grooves, respectively. Although this simple pattern has been observed in nucleosomes across eukaryotic genomes, its use for prediction of nucleosome positioning was not systematically tested. RESULTS We present a simple computational model, termed the W/S scheme, implementing this pattern, without using any training data. This model accurately predicts the rotational positioning of nucleosomes both in vitro and in vivo, in yeast and human genomes. About 65 - 75% of the experimentally observed nucleosome positions are predicted with the precision of one to two base pairs. The program is freely available at http://people.rit.edu/fxcsbi/WS_scheme/. We also introduce a simple and efficient way to compare the performance of different models predicting the rotational positioning of nucleosomes. CONCLUSIONS This paper presents the W/S scheme to achieve accurate prediction of rotational positioning of nucleosomes, solely based on the sequence-dependent anisotropic bending of nucleosomal DNA. This method successfully captures DNA features critical for the rotational positioning of nucleosomes, and can be further improved by incorporating additional terms related to the translational positioning of nucleosomes in a species-specific manner.
Collapse
Affiliation(s)
- Feng Cui
- Thomas H, Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | | | | | | |
Collapse
|
13
|
Xu X, Ben Imeddourene A, Zargarian L, Foloppe N, Mauffret O, Hartmann B. NMR studies of DNA support the role of pre-existing minor groove variations in nucleosome indirect readout. Biochemistry 2014; 53:5601-12. [PMID: 25102280 DOI: 10.1021/bi500504y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We investigated how the intrinsic sequence-dependent properties probed via the phosphate linkages (BI ↔ BII equilibrium) influence the preferred shape of free DNA, and how this affects the nucleosome formation. First, this exploits NMR solution studies of four B-DNA dodecamers that together cover 39 base pairs of the 5' half of the sequence 601, of special interest for nucleosome formation. The results validate our previous prediction of a systematic, general sequence effect on the intrinsic backbone BII propensities. NMR provides new evidence that the backbone behavior is intimately coupled to the minor groove width. Second, application of the backbone behavior predictions to the full sequence 601 and other relevant sequences demonstrates that alternation of intrinsic low and high BII propensities, coupled to intrinsic narrow and wide minor grooves, largely coincides with the sinusoidal variations of the DNA minor groove width observed in crystallographic structures of the nucleosome. This correspondence is much poorer with low affinity sequences. Overall, the results indicate that nucleosome formation involves an indirect readout process implicating pre-existing DNA minor groove conformations. It also illustrates how the prediction of the intrinsic structural DNA behavior offers a powerful framework to gain explanatory insight on how proteins read DNA.
Collapse
Affiliation(s)
- Xiaoqian Xu
- LBPA, UMR 8113, ENS de Cachan CNRS , 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | | | | | | | | | | |
Collapse
|
14
|
Hinz JM. Impact of abasic site orientation within nucleosomes on human APE1 endonuclease activity. Mutat Res 2014; 766-767:19-24. [PMID: 25083139 DOI: 10.1016/j.mrfmmm.2014.05.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 05/20/2014] [Accepted: 05/30/2014] [Indexed: 01/10/2023]
Abstract
Glycosylases responsible for recognizing DNA lesions and initiating Base Excision Repair (BER) are impeded by the presence of histones, which are essential for compaction of the genetic material in the nucleus. Abasic sites are an abundant mutagenic lesion in the DNA, arising spontaneously and as the product of glycosylase activity, making it a common intermediate in BER. The apurinic/apyrimidinic endonuclease 1 (APE1) recognizes abasic sites and cleaves the DNA backbone adjacent to the lesion, creating the single-strand break essential for the subsequent steps of BER. In this study the endonuclease activity of human APE1 was measured on reconstituted nucleosome core particles (NCPs) with DNA containing enzymatically-created abasic sites (AP) or the abasic site analog tetrahydrofuran (TF) at different rotational positions relative to the histone core surface. The presence of histones on the DNA reduced APE1 activity overall, and the magnitude was greatly influenced by differences in orientation of the lesions along the DNA gyre relative to the histone core. Abasic moieties oriented with their phosphate backbones adjacent to the underlying histones (In) were cleaved less efficiently than those oriented away from the histone core (Out) or between the In and Out orientations (Mid). The impact on APE1 at each orientation was very similar between the AP and TF lesions, highlighting the dependability of the TF abasic analog in APE1 activity measurements in nucleosomes. Measurement of APE1 binding to the NCP substrates reveals a substantial reduction in its interaction with nucleosomes compared to naked DNA, also in a lesion orientation-dependent manner, reinforcing the concept that reduction in APE1 activity on nucleosomes is due to occlusion from its abasic DNA substrate by the histones. These results suggest that APE1 activity in nucleosomes, like BER glycosylases, is primarily regulated by its chance interactions with transiently exposed lesions.
Collapse
Affiliation(s)
- John M Hinz
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520
| |
Collapse
|
15
|
Duan MR, Smerdon MJ. Histone H3 lysine 14 (H3K14) acetylation facilitates DNA repair in a positioned nucleosome by stabilizing the binding of the chromatin Remodeler RSC (Remodels Structure of Chromatin). J Biol Chem 2014; 289:8353-63. [PMID: 24515106 DOI: 10.1074/jbc.m113.540732] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone H3 acetylation is induced by UV damage in yeast and may play an important role in regulating the repair of UV photolesions in nucleosome-loaded genomic loci. However, it remains elusive how H3 acetylation facilitates repair. We generated a strongly positioned nucleosome containing homogeneously acetylated H3 at Lys-14 (H3K14ac) and investigated possible mechanisms by which H3K14 acetylation modulates repair. We show that H3K14ac does not alter nucleosome unfolding dynamics or enhance the repair of UV-induced cyclobutane pyrimidine dimers by UV photolyase. Importantly, however, nucleosomes with H3K14ac have a higher affinity for purified chromatin remodeling complex RSC (Remodels the Structure of Chromatin) and show greater cyclobutane pyrimidine dimer repair compared with unacetylated nucleosomes. Our study indicates that, by anchoring RSC, H3K14 acetylation plays an important role in the unfolding of strongly positioned nucleosomes during repair of UV damage.
Collapse
Affiliation(s)
- Ming-Rui Duan
- From Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520
| | | |
Collapse
|
16
|
Jimenez-Useche I, Ke J, Tian Y, Shim D, Howell SC, Qiu X, Yuan C. DNA methylation regulated nucleosome dynamics. Sci Rep 2013; 3:2121. [PMID: 23817195 PMCID: PMC3698496 DOI: 10.1038/srep02121] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/17/2013] [Indexed: 01/05/2023] Open
Abstract
A strong correlation between nucleosome positioning and DNA methylation patterns has been reported in literature. However, the mechanistic model accounting for the correlation remains elusive. In this study, we evaluated the effects of specific DNA methylation patterns on modulating nucleosome conformation and stability using FRET and SAXS. CpG dinucleotide repeats at 10 bp intervals were found to play different roles in nucleosome stability dependent on their methylation states and their relative nucleosomal locations. An additional (CpG)5 stretch located in the nucleosomal central dyad does not alter the nucleosome conformation, but significant conformational differences were observed between the unmethylated and methylated nucleosomes. These findings suggest that the correlation between nucleosome positioning and DNA methylation patterns can arise from the variations in nucleosome stability dependent on their sequence and epigenetic content. This knowledge will help to reveal the detailed role of DNA methylation in regulating chromatin packaging and gene transcription.
Collapse
|
17
|
Rodriguez Y, Smerdon MJ. The structural location of DNA lesions in nucleosome core particles determines accessibility by base excision repair enzymes. J Biol Chem 2013; 288:13863-75. [PMID: 23543741 DOI: 10.1074/jbc.m112.441444] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Base excision repair is hindered by nucleosomes. RESULTS Outwardly oriented uracils near the nucleosome center are efficiently cleaved; however, polymerase β is strongly inhibited at these sites. CONCLUSION The histone octamer presents different levels of constraints on BER, dependent on the structural requirements for enzyme activity. SIGNIFICANCE Chromatin remodeling is necessary to prevent accumulation of aborted intermediates in nucleosomes. Packaging of DNA into chromatin affects accessibility of DNA regulatory factors involved in transcription, replication, and repair. Evidence suggests that even in the nucleosome core particle (NCP), accessibility to damaged DNA is hindered by the presence of the histone octamer. Base excision repair is the major pathway in mammalian cells responsible for correcting a large number of chemically modified bases. We have measured the repair of site-specific uracil and single nucleotide gaps along the surface of the NCP. Our results indicate that removal of DNA lesions is greatly dependent on their rotational and translational positioning in NCPs. Significantly, the rate of uracil removal with outwardly oriented DNA backbones is 2-10-fold higher than those with inwardly oriented backbones. In general, uracils with inwardly oriented backbones farther away from the dyad center of the NCP are more accessible than those near the dyad. The translational positioning of outwardly oriented gaps is the key factor driving gap filling activity. An outwardly oriented gap near the DNA ends exhibits a 3-fold increase in gap filling activity as compared with one near the dyad with the same rotational orientation. Near the dyad, uracil DNA glycosylase/APE1 removes an outwardly oriented uracil efficiently; however, polymerase β activity is significantly inhibited at this site. These data suggest that the hindrance presented by the location of a DNA lesion is dependent on the structural requirements for enzyme catalysis. Therefore, remodeling at DNA damage sites in NCPs is critical for preventing accumulation of aborted intermediates and ensuring completion of base excision repair.
Collapse
Affiliation(s)
- Yesenia Rodriguez
- Department of Pharmaceutical Sciences, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | | |
Collapse
|
18
|
Collings CK, Waddell PJ, Anderson JN. Effects of DNA methylation on nucleosome stability. Nucleic Acids Res 2013; 41:2918-31. [PMID: 23355616 PMCID: PMC3597673 DOI: 10.1093/nar/gks893] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Methylation of DNA at CpG dinucleotides represents one of the most important epigenetic mechanisms involved in the control of gene expression in vertebrate cells. In this report, we conducted nucleosome reconstitution experiments in conjunction with high-throughput sequencing on 572 KB of human DNA and 668 KB of mouse DNA that was unmethylated or methylated in order to investigate the effects of this epigenetic modification on the positioning and stability of nucleosomes. The results demonstrated that a subset of nucleosomes positioned by nucleotide sequence was sensitive to methylation where the modification increased the affinity of these sequences for the histone octamer. The features that distinguished these nucleosomes from the bulk of the methylation-insensitive nucleosomes were an increase in the frequency of CpG dinucleotides and a unique rotational orientation of CpGs such that their minor grooves tended to face toward the histones in the nucleosome rather than away. These methylation-sensitive nucleosomes were preferentially associated with exons as compared to introns while unmethylated CpG islands near transcription start sites became enriched in nucleosomes upon methylation. The results of this study suggest that the effects of DNA methylation on nucleosome stability in vitro can recapitulate what has been observed in the cell and provide a direct link between DNA methylation and the structure and function of chromatin.
Collapse
Affiliation(s)
- Clayton K Collings
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
19
|
Predicting nucleosome binding motif set and analyzing their distributions around functional sites of human genes. Chromosome Res 2012; 20:685-98. [DOI: 10.1007/s10577-012-9305-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/13/2012] [Accepted: 07/17/2012] [Indexed: 01/30/2023]
|
20
|
Ye Y, Stahley MR, Xu J, Friedman JI, Sun Y, McKnight JN, Gray JJ, Bowman GD, Stivers JT. Enzymatic excision of uracil residues in nucleosomes depends on the local DNA structure and dynamics. Biochemistry 2012; 51:6028-38. [PMID: 22784353 DOI: 10.1021/bi3006412] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The excision of uracil bases from DNA is accomplished by the enzyme uracil DNA glycosylase (UNG). Recognition of uracil bases in free DNA is facilitated by uracil base pair dynamics, but it is not known whether this same mechanistic feature is relevant for detection and excision of uracil residues embedded in nucleosomes. Here we investigate this question using nucleosome core particles (NCPs) generated from Xenopus laevis histones and the high-affinity "Widom 601" positioning sequence. The reactivity of uracil residues in NCPs under steady-state multiple-turnover conditions was generally decreased compared to that of free 601 DNA, mostly because of anticipated steric effects of histones. However, some sites in NCPs had equal or even greater reactivity than free DNA, and the observed reactivities were not readily explained by simple steric considerations or by global DNA unwrapping models for nucleosome invasion. In particular, some reactive uracils were found in occluded positions, while some unreactive uracils were found in exposed positions. One feature of many exposed reactive sites is a wide DNA minor groove, which allows penetration of a key active site loop of the enzyme. In single-turnover kinetic measurements, multiphasic reaction kinetics were observed for several uracil sites, where each kinetic transient was independent of the UNG concentration. These kinetic measurements, and supporting structural analyses, support a mechanism in which some uracils are transiently exposed to UNG by local, rate-limiting nucleosome conformational dynamics, followed by rapid trapping of the exposed state by the enzyme. We present structural models and plausible reaction mechanisms for the reaction of UNG at three distinct uracil sites in the NCP.
Collapse
Affiliation(s)
- Yu Ye
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, WBSB 314, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chua EYD, Vasudevan D, Davey GE, Wu B, Davey CA. The mechanics behind DNA sequence-dependent properties of the nucleosome. Nucleic Acids Res 2012; 40:6338-52. [PMID: 22453276 PMCID: PMC3401446 DOI: 10.1093/nar/gks261] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromatin organization and composition impart sophisticated regulatory features critical to eukaryotic genomic function. Although DNA sequence-dependent histone octamer binding is important for nucleosome activity, many aspects of this phenomenon have remained elusive. We studied nucleosome structure and stability with diverse DNA sequences, including Widom 601 derivatives with the highest known octamer affinities, to establish a simple model behind the mechanics of sequence dependency. This uncovers the unique but unexpected role of TA dinucleotides and a propensity for G|C-rich sequence elements to conform energetically favourably at most locations around the histone octamer, which rationalizes G|C% as the most predictive factor for nucleosome occupancy in vivo. In addition, our findings reveal dominant constraints on double helix conformation by H3–H4 relative to H2A–H2B binding and DNA sequence context-dependency underlying nucleosome structure, positioning and stability. This provides a basis for improved prediction of nucleosomal properties and the design of tailored DNA constructs for chromatin investigations.
Collapse
Affiliation(s)
- Eugene Y D Chua
- Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
22
|
Frenkel ZM, Trifonov EN, Volkovich Z, Bettecken T. Nucleosome Positioning Patterns Derived from Human Apoptotic Nucleosomes. J Biomol Struct Dyn 2011; 29:577-83. [DOI: 10.1080/073911011010524995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Flaus A. Principles and practice of nucleosome positioningin vitro. FRONTIERS IN LIFE SCIENCE 2011. [DOI: 10.1080/21553769.2012.702667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Epps J, Ying H, Huttley GA. Statistical methods for detecting periodic fragments in DNA sequence data. Biol Direct 2011; 6:21. [PMID: 21527008 PMCID: PMC3111405 DOI: 10.1186/1745-6150-6-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 04/28/2011] [Indexed: 11/10/2022] Open
Abstract
Background Period 10 dinucleotides are structurally and functionally validated factors that influence the ability of DNA to form nucleosomes, histone core octamers. Robust identification of periodic signals in DNA sequences is therefore required to understand nucleosome organisation in genomes. While various techniques for identifying periodic components in genomic sequences have been proposed or adopted, the requirements for such techniques have not been considered in detail and confirmatory testing for a priori specified periods has not been developed. Results We compared the estimation accuracy and suitability for confirmatory testing of autocorrelation, discrete Fourier transform (DFT), integer period discrete Fourier transform (IPDFT) and a previously proposed Hybrid measure. A number of different statistical significance procedures were evaluated but a blockwise bootstrap proved superior. When applied to synthetic data whose period-10 signal had been eroded, or for which the signal was approximately period-10, the Hybrid technique exhibited superior properties during exploratory period estimation. In contrast, confirmatory testing using the blockwise bootstrap procedure identified IPDFT as having the greatest statistical power. These properties were validated on yeast sequences defined from a ChIP-chip study where the Hybrid metric confirmed the expected dominance of period-10 in nucleosome associated DNA but IPDFT identified more significant occurrences of period-10. Application to the whole genomes of yeast and mouse identified ~ 21% and ~ 19% respectively of these genomes as spanned by period-10 nucleosome positioning sequences (NPS). Conclusions For estimating the dominant period, we find the Hybrid period estimation method empirically to be the most effective for both eroded and approximate periodicity. The blockwise bootstrap was found to be effective as a significance measure, performing particularly well in the problem of period detection in the presence of eroded periodicity. The autocorrelation method was identified as poorly suited for use with the blockwise bootstrap. Application of our methods to the genomes of two model organisms revealed a striking proportion of the yeast and mouse genomes are spanned by NPS. Despite their markedly different sizes, roughly equivalent proportions (19-21%) of the genomes lie within period-10 spans of the NPS dinucleotides {AA, TT, TA}. The biological significance of these regions remains to be demonstrated. To facilitate this, the genomic coordinates are available as Additional files 1, 2, and 3 in a format suitable for visualisation as tracks on popular genome browsers. Reviewers This article was reviewed by Prof Tomas Radivoyevitch, Dr Vsevolod Makeev (nominated by Dr Mikhail Gelfand), and Dr Rob D Knight.
Collapse
Affiliation(s)
- Julien Epps
- School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | |
Collapse
|
25
|
Nucleosome structural studies. Curr Opin Struct Biol 2010; 21:128-36. [PMID: 21176878 DOI: 10.1016/j.sbi.2010.11.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 11/17/2010] [Accepted: 11/25/2010] [Indexed: 11/22/2022]
Abstract
Chromatin plays a fundamental role in eukaryotic genomic regulation, and the increasing awareness of the importance of epigenetic processes in human health and disease emphasizes the need for understanding the structure and function of the nucleosome. Recent advances in chromatin structural studies, including the first structures of nucleosomes containing the Widom 601 sequence and the structure of a chromatin protein-nucleosome assembly, have provided new insight into stretching of nucleosomal DNA, nucleosome positioning, binding of metal ions, drugs and therapeutic candidates to nucleosomes, and nucleosome recognition by nuclear proteins. These discoveries ensure promising future prospects for unravelling structural attributes of chromatin.
Collapse
|
26
|
Yi X, Cai YD, He Z, Cui W, Kong X. Prediction of nucleosome positioning based on transcription factor binding sites. PLoS One 2010; 5:e12495. [PMID: 20824131 PMCID: PMC2931695 DOI: 10.1371/journal.pone.0012495] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 07/31/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The DNA of all eukaryotic organisms is packaged into nucleosomes, the basic repeating units of chromatin. The nucleosome consists of a histone octamer around which a DNA core is wrapped and the linker histone H1, which is associated with linker DNA. By altering the accessibility of DNA sequences, the nucleosome has profound effects on all DNA-dependent processes. Understanding the factors that influence nucleosome positioning is of great importance for the study of genomic control mechanisms. Transcription factors (TFs) have been suggested to play a role in nucleosome positioning in vivo. PRINCIPAL FINDINGS Here, the minimum redundancy maximum relevance (mRMR) feature selection algorithm, the nearest neighbor algorithm (NNA), and the incremental feature selection (IFS) method were used to identify the most important TFs that either favor or inhibit nucleosome positioning by analyzing the numbers of transcription factor binding sites (TFBSs) in 53,021 nucleosomal DNA sequences and 50,299 linker DNA sequences. A total of nine important families of TFs were extracted from 35 families, and the overall prediction accuracy was 87.4% as evaluated by the jackknife cross-validation test. CONCLUSIONS Our results are consistent with the notion that TFs are more likely to bind linker DNA sequences than the sequences in the nucleosomes. In addition, our results imply that there may be some TFs that are important for nucleosome positioning but that play an insignificant role in discriminating nucleosome-forming DNA sequences from nucleosome-inhibiting DNA sequences. The hypothesis that TFs play a role in nucleosome positioning is, thus, confirmed by the results of this study.
Collapse
Affiliation(s)
- Xianfu Yi
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yu-Dong Cai
- Institute of System Biology, Shanghai University, Shanghai, China
- Centre for Computational Systems Biology, Fudan University, Shanghai, China
| | - Zhisong He
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - WeiRen Cui
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiangyin Kong
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
27
|
Sereda YV, Bishop TC. Evaluation of elastic rod models with long range interactions for predicting nucleosome stability. J Biomol Struct Dyn 2010; 27:867-87. [PMID: 20232939 DOI: 10.1080/073911010010524948] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The ability of a dinucleotide-step based elastic-rod model of DNA to predict nucleosome binding free energies is investigated using four available sets of elastic parameters. We compare the predicted free energies to experimental values derived from nucleosome reconstitution experiments for 84 DNA sequences. Elastic parameters (conformation and stiffnessess) obtained from MD simulations are shown to be the most reliable predictors, as compared to those obtained from analysis of base-pair step melting temperatures, or from analysis of x-ray structures. We have also studied the effect of varying the folded conformation of nucleosomal DNA by means of our Fourier - filtering knock-out and knock-in procedure. This study confirmed the above ranking of elastic parameters, and helped to reveal problems inherent in models using only a local elastic energy function. Long-range interactions were added to the elastic-rod model in an effort to improve its predictive ability. For this purpose a Debye-Huckel energy term with a single, homogenous point charge per base-pair was introduced. This term contains only three parameters, - its weight relative to the elastic energy, the Debye screening length, and a minimum sequence distance for including pairwise interactions between charges. After optimization of these parameters, our Debye-Huckel term is attractive, and yields the same level of correlation with experiment (R=0.75) as was achieved merely by varying the nucleosomal shape in the elastic-rod model. We suggest this result indicates a linker DNA - histone attraction or, possibly, entropic effects, that lead to a stabilization of a nucleosome away from the ends of DNA segments longer than 147 bp. Such effects are not accounted for by a localized elastic energy model.
Collapse
Affiliation(s)
- Yuriy V Sereda
- Center for Computational Science, Tulane University, New Orleans, LA 70118, USA
| | | |
Collapse
|
28
|
Vasudevan D, Chua EYD, Davey CA. Crystal structures of nucleosome core particles containing the '601' strong positioning sequence. J Mol Biol 2010; 403:1-10. [PMID: 20800598 DOI: 10.1016/j.jmb.2010.08.039] [Citation(s) in RCA: 297] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 08/18/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
Abstract
Nucleosome positioning plays a key role in genomic regulation by defining histone-DNA context and by modulating access to specific sites. Moreover, the histone-DNA register influences the double-helix structure, which in turn can affect the association of small molecules and protein factors. Analysis of genomic and synthetic DNA has revealed sequence motifs that direct nucleosome positioning in vitro; thus, establishing the basis for the DNA sequence dependence of positioning would shed light on the mechanics of the double helix and its contribution to chromatin structure in vivo. However, acquisition of well-diffracting nucleosome core particle (NCP) crystals is extremely dependent on the DNA fragment used for assembly, and all previous NCP crystal structures have been based on human α-satellite sequences. Here, we describe the crystal structures of Xenopus NCPs containing one of the strongest known histone octamer binding and positioning sequences, the so-called '601' DNA. Two distinct 145-bp 601 crystal forms display the same histone-DNA register, which coincides with the occurrence of DNA stretching-overtwisting in both halves of the particle around five double-helical turns from the nucleosome center, giving the DNA an 'effective length' of 147 bp. As we have found previously with stretching around two turns from the nucleosome center for a centromere-based sequence, the terminal stretching observed in the 601 constructs is associated with extreme kinking into the minor groove at purine-purine (pyrimidine-pyrimidine) dinucleotide steps. In other contexts, these step types display an overall nonflexible behavior, which raises the possibility that DNA stretching in the nucleosome or extreme distortions in general have unique sequence dependency characteristics. Our findings indicate that DNA stretching is an intrinsically predisposed site-specific property of the nucleosome and suggest how NCP crystal structures with diverse DNA sequences can be obtained.
Collapse
Affiliation(s)
- Dileep Vasudevan
- Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Eugene Y D Chua
- Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Curt A Davey
- Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
29
|
Wu B, Mohideen K, Vasudevan D, Davey CA. Structural insight into the sequence dependence of nucleosome positioning. Structure 2010; 18:528-36. [PMID: 20399189 DOI: 10.1016/j.str.2010.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/19/2010] [Accepted: 01/28/2010] [Indexed: 11/16/2022]
Abstract
Nucleosome positioning displays sequence dependency and contributes to genomic regulation in a site-specific manner. We solved the structures of nucleosome core particle composed of strong positioning TTTAA elements flanking the nucleosome center. The positioning strength of the super flexible TA dinucleotide is consistent with its observed central location within minor groove inward regions, where it can contribute maximally to energetically challenging minor groove bending, kinking and compression. The marked preference for TTTAA and positioning power of the site 1.5 double helix turns from the nucleosome center relates to a unique histone protein motif at this location, which enforces a sustained, extremely narrow minor groove via a hydrophobic "sugar clamp." Our analysis sheds light on the basis of nucleosome positioning and indicates that the histone octamer has evolved not to fully minimize sequence discrimination in DNA binding.
Collapse
Affiliation(s)
- Bin Wu
- Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | | | | | | |
Collapse
|
30
|
Abstract
The interactive chromatin modeling web server (ICM Web) is an interactive tool that allows users to rapidly assess nucleosome stability and fold sequences of DNA into putative chromatin templates. ICM Web takes a sequence composed of As, Cs, Gs, and Ts as input and generates (i) a nucleosome energy level diagram, (ii) coarse-grained representations of free DNA and chromatin and (iii) plots of the helical parameters (Tilt, Roll, Twist, Shift, Slide and Rise) as a function of position. The user can select from several different energy models, nucleosome structures and methods for placing nucleosomes in the energy landscape. Alternatively, if nucleosome footprints are known from experiment, ICM Web can use these positions to create a nucleosome array. The default energy model achieves a correlation coefficient of 0.7 with 100 experimentally determined values of stability and properly predicts the location of six positioned nucleosomes in the mouse mammary tumor virus (MMTV) promoter. ICM Web is suitable for interactively investigating nucleosome stability and chromatin folding for sequences up to tens of kilobases in length. No login is required to use ICM Web.
Collapse
Affiliation(s)
- Richard C Stolz
- Department of Biostatistics, Tulane University, 1440 Canal Street, Suite 2001, New Orleans, LA 70112, USA
| | | |
Collapse
|
31
|
Collings CK, Fernandez AG, Pitschka CG, Hawkins TB, Anderson JN. Oligonucleotide sequence motifs as nucleosome positioning signals. PLoS One 2010; 5:e10933. [PMID: 20532171 PMCID: PMC2880596 DOI: 10.1371/journal.pone.0010933] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 05/10/2010] [Indexed: 11/24/2022] Open
Abstract
To gain a better understanding of the sequence patterns that characterize positioned nucleosomes, we first performed an analysis of the periodicities of the 256 tetranucleotides in a yeast genome-wide library of nucleosomal DNA sequences that was prepared by in vitro reconstitution. The approach entailed the identification and analysis of 24 unique tetranucleotides that were defined by 8 consensus sequences. These consensus sequences were shown to be responsible for most if not all of the tetranucleotide and dinucleotide periodicities displayed by the entire library, demonstrating that the periodicities of dinucleotides that characterize the yeast genome are, in actuality, due primarily to the 8 consensus sequences. A novel combination of experimental and bioinformatic approaches was then used to show that these tetranucleotides are important for preferred formation of nucleosomes at specific sites along DNA in vitro. These results were then compared to tetranucleotide patterns in genome-wide in vivo libraries from yeast and C. elegans in order to assess the contributions of DNA sequence in the control of nucleosome residency in the cell. These comparisons revealed striking similarities in the tetranucleotide occurrence profiles that are likely to be involved in nucleosome positioning in both in vitro and in vivo libraries, suggesting that DNA sequence is an important factor in the control of nucleosome placement in vivo. However, the strengths of the tetranucleotide periodicities were 3-4 fold higher in the in vitro as compared to the in vivo libraries, which implies that DNA sequence plays less of a role in dictating nucleosome positions in vivo. The results of this study have important implications for models of sequence-dependent positioning since they suggest that a defined subset of tetranucleotides is involved in preferred nucleosome occupancy and that these tetranucleotides are the major source of the dinucleotide periodicities that are characteristic of positioned nucleosomes.
Collapse
Affiliation(s)
- Clayton K. Collings
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Alfonso G. Fernandez
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chad G. Pitschka
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Troy B. Hawkins
- Department of Medical and Molecular Genetics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - John N. Anderson
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
32
|
Cui F, Zhurkin VB. Structure-based analysis of DNA sequence patterns guiding nucleosome positioning in vitro. J Biomol Struct Dyn 2010; 27:821-41. [PMID: 20232936 PMCID: PMC2993692 DOI: 10.1080/073911010010524947] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Recent studies of genome-wide nucleosomal organization suggest that the DNA sequence is one of the major determinants of nucleosome positioning. Although the search for underlying patterns encoded in nucleosomal DNA has been going on for about 30 years, our knowledge of these patterns still remains limited. Based on our evaluations of DNA deformation energy, we developed new scoring functions to predict nucleosome positioning. There are three principal differences between our approach and earlier studies: (i) we assume that the length of nucleosomal DNA varies from 146 to 147 bp; (ii) we consider the anisotropic flexibility of pyrimidine-purine (YR) dimeric steps in the context of their neighbors (e.g., YYRR versus RYRY); (iii) we postulate that alternating AT-rich and GC-rich motifs reflect sequence-dependent interactions between histone arginines and DNA in the minor groove. Using these functions, we analyzed 20 nucleosome positions mapped in vitro at single nucleotide resolution (including clones 601, 603, 605, the pGUB plasmid, chicken beta-globin and three 5S rDNA genes). We predicted 15 of the 20 positions with 1-bp precision, and two positions with 2-bp precision. The predicted position of the '601' nucleosome (i.e., the optimum of the computed score) deviates from the experimentally determined unique position by no more than 1 bp - an accuracy exceeding that of earlier predictions. Our analysis reveals a clear heterogeneity of the nucleosomal sequences which can be divided into two groups based on the positioning 'rules' they follow. The sequences of one group are enriched by highly deformable YR/YYRR motifs at the minor-groove bending sites SHL+/- 3.5 and +/- 5.5, which is similar to the alpha-satellite sequence used in most crystallized nucleosomes. Apparently, the positioning of these nucleosomes is determined by the interactions between histones H2A/H2B and the terminal parts of nucleosomal DNA. In the other group (that includes the '601' clone) the same YR/YYRR motifs occur predominantly at the sites SHL +/- 1.5. The interaction between the H3/H4 tetramer and the central part of the nucleosomal DNA is likely to be responsible for the positioning of nucleosomes of this group, and the DNA trajectory in these nucleosomes may differ in detail from the published structures. Thus, from the stereochemical perspective, the in vitro nucleosomes studied here follow either an X-ray-like pattern (with strong deformations in the terminal parts of nucleosomal DNA), or an alternative pattern (with the deformations occurring predominantly in the central part of the nucleosomal DNA). The results presented here may be useful for genome-wide classification of nucleosomes, linking together structural and thermodynamic characteristics of nucleosomes with the underlying DNA sequence patterns guiding their positions.
Collapse
Affiliation(s)
- Feng Cui
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Victor B. Zhurkin
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
33
|
Mohideen K, Muhammad R, Davey CA. Perturbations in nucleosome structure from heavy metal association. Nucleic Acids Res 2010; 38:6301-11. [PMID: 20494975 PMCID: PMC2952864 DOI: 10.1093/nar/gkq420] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Heavy metals have the potential to engage in strong bonding interactions and can thus function in essential as well as toxic or therapeutic capacities. We conducted crystallographic analyses of heavy cation binding to the nucleosome core particle and found that Co2+ and Ni2+ preferentially associate with the DNA major groove, in a sequence- and conformation-dependent manner. Conversely, Rb+ and Cs+ are found to bind only opportunistically to minor groove elements of the DNA, in particular at narrow AT dinucleotide sites. Furthermore, relative to Mn2+ the aggressive coordination of Co2+ and Ni2+ to guanine bases is observed to induce a shift in histone–DNA register around the nucleosome center by stabilizing DNA stretching over one region accompanied by expulsion of two bases at an opposing location. These ‘softer’ transition metals also associate with multiple histone protein sites, including inter-nucleosomal cross-linking, and display a proclivity for coordination to histidine. Sustained binding and the ability to induce structural perturbations at specific locations in the nucleosome may contribute to genetic and epigenetic mechanisms of carcinogenesis mediated by Co2+ and Ni2+.
Collapse
Affiliation(s)
- Kareem Mohideen
- Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | | | | |
Collapse
|
34
|
New insights into two distinct nucleosome distributions: comparison of cross-platform positioning datasets in the yeast genome. BMC Genomics 2010; 11:33. [PMID: 20078849 PMCID: PMC2824721 DOI: 10.1186/1471-2164-11-33] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Accepted: 01/15/2010] [Indexed: 11/30/2022] Open
Abstract
Background Recently, a number of high-resolution genome-wide maps of nucleosome locations in S. cerevisiae have been derived experimentally. However, nucleosome positions are determined in vivo by the combined effects of numerous factors. Consequently, nucleosomes are not simple static units, which may explain the discrepancies in reported nucleosome positions as measured by different experiments. In order to more accurately depict the genome-wide nucleosome distribution, we integrated multiple nucleosomal positioning datasets using a multi-angle analysis strategy. Results To evaluate the contribution of chromatin structure to transcription, we used the vast amount of available nucleosome analyzed data. Analysis of this data allowed for the comprehensive identification of the connections between promoter nucleosome positioning patterns and various transcription-dependent properties. Further, we characterised the function of nucleosome destabilisation in the context of transcription regulation. Our results indicate that genes with similar nucleosome occupancy patterns share general transcription attributes. We identified the local regulatory correlation (LRC) regions for two distinct types of nucleosomes and we assessed their regulatory properties. We also estimated the nucleosome reproducibility and measurement accuracy for high-confidence transcripts. We found that by maintaining a distance of ~13 bp between the upstream border of the +1 nucleosome and the transcription start sites (TSSs), the stable +1 nucleosome may form a barrier against the accessibility of the TSS and shape an optimum chromatin conformation for gene regulation. An in-depth analysis of nucleosome positioning in normally growing and heat shock cells suggested that the extent and patterns of nucleosome sliding are associated with gene activation. Conclusions Our results, which combine different types of data, suggest that cross-platform information, including discrepancy and consistency, reflects the mechanisms of nucleosome packaging in vivo more faithfully than individual studies. Furthermore, nucleosomes can be divided into two classes according to their stable and dynamic characteristics. We found that two different nucleosome-positioning characteristics may significantly impact transcription programs. Besides, some positioned-nucleosomes are involved in the transition from stable state to dynamic state in response to abrupt environmental changes.
Collapse
|
35
|
Nikolova EN, Al-Hashimi HM. Preparation, resonance assignment, and preliminary dynamics characterization of residue specific 13C/15N-labeled elongated DNA for the study of sequence-directed dynamics by NMR. JOURNAL OF BIOMOLECULAR NMR 2009; 45:9-16. [PMID: 19636798 DOI: 10.1007/s10858-009-9350-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 06/19/2009] [Indexed: 05/28/2023]
Abstract
DNA is a highly flexible molecule that undergoes functionally important structural transitions in response to external cellular stimuli. Atomic level spin relaxation NMR studies of DNA dynamics have been limited to short duplexes in which sensitivity to biologically relevant fluctuations occurring at nanosecond timescales is often inadequate. Here, we introduce a method for preparing residue-specific (13)C/(15)N-labeled elongated DNA along with a strategy for establishing resonance assignments and apply the approach to probe fast inter-helical bending motions induced by an adenine tract. Preliminary results suggest the presence of elevated A-tract independent end-fraying internal motions occurring at nanosecond timescales, which evade detection in short DNA constructs and that penetrate deep (7 bp) within the DNA helix and gradually fade away towards the helix interior.
Collapse
Affiliation(s)
- Evgenia N Nikolova
- Department of Chemistry, Biophysics and Chemical Biology Program, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
36
|
van Vugt JJFA, de Jager M, Murawska M, Brehm A, van Noort J, Logie C. Multiple aspects of ATP-dependent nucleosome translocation by RSC and Mi-2 are directed by the underlying DNA sequence. PLoS One 2009; 4:e6345. [PMID: 19626125 PMCID: PMC2710519 DOI: 10.1371/journal.pone.0006345] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 06/25/2009] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Chromosome structure, DNA metabolic processes and cell type identity can all be affected by changing the positions of nucleosomes along chromosomal DNA, a reaction that is catalysed by SNF2-type ATP-driven chromatin remodelers. Recently it was suggested that in vivo, more than 50% of the nucleosome positions can be predicted simply by DNA sequence, especially within promoter regions. This seemingly contrasts with remodeler induced nucleosome mobility. The ability of remodeling enzymes to mobilise nucleosomes over short DNA distances is well documented. However, the nucleosome translocation processivity along DNA remains elusive. Furthermore, it is unknown what determines the initial direction of movement and how new nucleosome positions are adopted. METHODOLOGY/PRINCIPAL FINDINGS We have used AFM imaging and high resolution PAGE of mononucleosomes on 600 and 2500 bp DNA molecules to analyze ATP-dependent nucleosome repositioning by native and recombinant SNF2-type enzymes. We report that the underlying DNA sequence can control the initial direction of translocation, translocation distance, as well as the new positions adopted by nucleosomes upon enzymatic mobilization. Within a strong nucleosomal positioning sequence both recombinant Drosophila Mi-2 (CHD-type) and native RSC from yeast (SWI/SNF-type) repositioned the nucleosome at 10 bp intervals, which are intrinsic to the positioning sequence. Furthermore, RSC-catalyzed nucleosome translocation was noticeably more efficient when beyond the influence of this sequence. Interestingly, under limiting ATP conditions RSC preferred to position the nucleosome with 20 bp intervals within the positioning sequence, suggesting that native RSC preferentially translocates nucleosomes with 15 to 25 bp DNA steps. CONCLUSIONS/SIGNIFICANCE Nucleosome repositioning thus appears to be influenced by both remodeler intrinsic and DNA sequence specific properties that interplay to define ATPase-catalyzed repositioning. Here we propose a successive three-step framework consisting of initiation, translocation and release steps to describe SNF2-type enzyme mediated nucleosome translocation along DNA. This conceptual framework helps resolve the apparent paradox between the high abundance of ATP-dependent remodelers per nucleus and the relative success of sequence-based predictions of nucleosome positioning in vivo.
Collapse
Affiliation(s)
- Joke J. F. A. van Vugt
- Department of Molecular Biology, NCMLS, Radboud University, Nijmegen, The Netherlands
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Martijn de Jager
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Magdalena Murawska
- Institut für Molekularbiologie und Tumorforschung, University of Marburg, Marburg, Germany
| | - Alexander Brehm
- Institut für Molekularbiologie und Tumorforschung, University of Marburg, Marburg, Germany
| | - John van Noort
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Colin Logie
- Department of Molecular Biology, NCMLS, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
37
|
Salih F, Salih B, Kogan S, Trifonov EN. Epigenetic nucleosomes: Alu sequences and CG as nucleosome positioning element. J Biomol Struct Dyn 2008; 26:9-16. [PMID: 18533722 DOI: 10.1080/07391102.2008.10507219] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Alu sequences carry periodical pattern with CG dinucleotides (CpG) repeating every 31-32 bases. Similar distances are observed in distribution of DNA curvature in crystallized nucleosomes, at positions +/-1.5 and +/-4.5 periods of DNA from nucleosome DNA dyad. Since CG elements are also found to impart to nucleosomes higher stability when positioned at +/-1.5 sites, it suggests that CG dinucleotides may play a role in modulation of the nucleosome strength when the CG elements are methylated. Thus, Alu sequences may harbor special epigenetic nucleosomes with methylation-dependent regulatory functions. Nucleosome DNA sequence probe is suggested to detect locations of such regulatory nucleosomes in the sequences.
Collapse
Affiliation(s)
- F Salih
- Genome Diversity Center, Institute of Evolution, University of Haifa, Israel
| | | | | | | |
Collapse
|
38
|
Prediction and analysis of nucleosome exclusion regions in the human genome. BMC Genomics 2008; 9:186. [PMID: 18430246 PMCID: PMC2386137 DOI: 10.1186/1471-2164-9-186] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 04/22/2008] [Indexed: 11/28/2022] Open
Abstract
Background Nucleosomes are the basic structural units of eukaryotic chromatin, and they play a significant role in regulating gene expression. Specific DNA sequence patterns are known, from empirical and theoretical studies, to influence DNA bending and flexibility, and have been shown to exclude nucleosomes. A whole genome localization of these patterns, and their analysis, can add important insights on the gene regulation mechanisms that depend upon the structure of chromatin in and around a gene. Results A whole genome annotation for nucleosome exclusion regions (NXRegions) was carried out on the human genome. Nucleosome exclusion scores (NXScores) were calculated individually for each nucleotide, giving a measure of how likely a specific nucleotide and its immediate neighborhood would impair DNA bending and, consequently, exclude nucleosomes. The resulting annotations were correlated with 19055 gene expression profiles. We developed a new method based on Grubbs' outliers test for ranking genes based on their tissue specificity, and correlated this ranking with NXScores. The results show a strong correlation between tissue specificity of a gene and the propensity of its promoter to exclude nucleosomes (the promoter region was taken as -1500 to +500 bp from the RefSeq-annotated transcription start site). In addition, NXScores correlated well with gene density, gene expression levels, and DNaseI hypersensitive sites. Conclusion We present, for the first time, a whole genome prediction of nucleosome exclusion regions for the human genome (the data are available for download from Additional Materials). Nucleosome exclusion patterns are correlated with various factors that regulate gene expression, which emphasizes the need to include chromatin structural parameters in experimental analysis of gene expression.
Collapse
|