1
|
The PKA-p38MAPK-NFAT5-Organic Osmolytes Pathway in Duchenne Muscular Dystrophy: From Essential Player in Osmotic Homeostasis, Inflammation and Skeletal Muscle Regeneration to Therapeutic Target. Biomedicines 2021; 9:biomedicines9040350. [PMID: 33808305 PMCID: PMC8066813 DOI: 10.3390/biomedicines9040350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD), the absence of dystrophin from the dystrophin-associated protein complex (DAPC) causes muscle membrane instability, which leads to myofiber necrosis, hampered regeneration, and chronic inflammation. The resulting disabled DAPC-associated cellular pathways have been described both at the molecular and the therapeutical level, with the Toll-like receptor nuclear factor kappa-light-chain-enhancer of activated B cells pathway (NF-ƘB), Janus kinase/signal transducer and activator of transcription proteins, and the transforming growth factor-β pathways receiving the most attention. In this review, we specifically focus on the protein kinase A/ mitogen-activated protein kinase/nuclear factor of activated T-cells 5/organic osmolytes (PKA-p38MAPK-NFAT5-organic osmolytes) pathway. This pathway plays an important role in osmotic homeostasis essential to normal cell physiology via its regulation of the influx/efflux of organic osmolytes. Besides, NFAT5 plays an essential role in cell survival under hyperosmolar conditions, in skeletal muscle regeneration, and in tissue inflammation, closely interacting with the master regulator of inflammation NF-ƘB. We describe the involvement of the PKA-p38MAPK-NFAT5-organic osmolytes pathway in DMD pathophysiology and provide a clear overview of which therapeutic molecules could be of potential benefit to DMD patients. We conclude that modulation of the PKA-p38MAPK-NFAT5-organic osmolytes pathway could be developed as supportive treatment for DMD in conjunction with genetic therapy.
Collapse
|
2
|
Uezu A, Hisey E, Kobayashi Y, Gao Y, Bradshaw TWA, Devlin P, Rodriguiz R, Tata PR, Soderling S. Essential role for InSyn1 in dystroglycan complex integrity and cognitive behaviors in mice. eLife 2019; 8:e50712. [PMID: 31829939 PMCID: PMC6944460 DOI: 10.7554/elife.50712] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
Human mutations in the dystroglycan complex (DGC) result in not only muscular dystrophy but also cognitive impairments. However, the molecular architecture critical for the synaptic organization of the DGC in neurons remains elusive. Here, we report Inhibitory Synaptic protein 1 (InSyn1) is a critical component of the DGC whose loss alters the composition of the GABAergic synapses, excitatory/inhibitory balance in vitro and in vivo, and cognitive behavior. Association of InSyn1 with DGC subunits is required for InSyn1 synaptic localization. InSyn1 null neurons also show a significant reduction in DGC and GABA receptor distribution as well as abnormal neuronal network activity. Moreover, InSyn1 null mice exhibit elevated neuronal firing patterns in the hippocampus and deficits in fear conditioning memory. Our results support the dysregulation of the DGC at inhibitory synapses and altered neuronal network activity and specific cognitive tasks via loss of a novel component, InSyn1.
Collapse
Affiliation(s)
- Akiyoshi Uezu
- Department of Cell BiologyDuke University Medical SchoolDurhamUnited States
| | - Erin Hisey
- Department of Cell BiologyDuke University Medical SchoolDurhamUnited States
| | | | - Yudong Gao
- Department of Cell BiologyDuke University Medical SchoolDurhamUnited States
| | - Tyler WA Bradshaw
- Department of Cell BiologyDuke University Medical SchoolDurhamUnited States
| | - Patrick Devlin
- Department of Cell BiologyDuke University Medical SchoolDurhamUnited States
| | - Ramona Rodriguiz
- Department of Psychiatry and Behavioral SciencesDuke University Medical SchoolDurhamUnited States
- Mouse Behavioral and Neuroendocrine Analysis Core FacilityDuke University Medical SchoolDurhamUnited States
| | | | - Scott Soderling
- Department of Cell BiologyDuke University Medical SchoolDurhamUnited States
- Department of NeurobiologyDuke University Medical SchoolDurhamUnited States
| |
Collapse
|
3
|
Quaranta MT, Spinello I, Paolillo R, Macchia G, Boe A, Ceccarini M, Labbaye C, Macioce P. Identification of β-Dystrobrevin as a Direct Target of miR-143: Involvement in Early Stages of Neural Differentiation. PLoS One 2016; 11:e0156325. [PMID: 27223470 PMCID: PMC4880309 DOI: 10.1371/journal.pone.0156325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/12/2016] [Indexed: 11/25/2022] Open
Abstract
Duchenne Muscular Dystrophy, a genetic disorder that results in a gradual breakdown of muscle, is associated to mild to severe cognitive impairment in about one-third of dystrophic patients. The brain dysfunction is independent of the muscular pathology, occurs early, and is most likely due to defects in the assembly of the Dystrophin-associated Protein Complex (DPC) during embryogenesis. We have recently described the interaction of the DPC component β-dystrobrevin with members of complexes that regulate chromatin dynamics, and suggested that β-dystrobrevin may play a role in the initiation of neuronal differentiation. Since oxygen concentrations and miRNAs appear as well to be involved in the cellular processes related to neuronal development, we have studied how these factors act on β-dystrobrevin and investigated the possibility of their functional interplay using the NTera-2 cell line, a well-established model for studying neurogenesis. We followed the pattern of expression and regulation of β-dystrobrevin during the early stages of neuronal differentiation induced by exposure to retinoic acid (RA) under hypoxia as compared with normoxia, and found that β-dystrobrevin expression is regulated during RA-induced differentiation of NTera-2 cells. We also found that β-dystrobrevin pattern is delayed under hypoxic conditions, together with a delay in the differentiation and an increase in the proliferation rate of cells. We identified miRNA-143 as a direct regulator of β-dystrobrevin expression, demonstrated that β-dystrobrevin is expressed in the nucleus and showed that, in line with our previous in vitro results, β-dystrobrevin is a repressor of synapsin I in live cells. Altogether the newly identified regulatory pathway miR-143/β-dystrobrevin/synapsin I provides novel insights into the functions of β-dystrobrevin and opens up new perspectives for elucidating the molecular mechanisms underlying the neuronal involvement in muscular dystrophy.
Collapse
Affiliation(s)
- Maria Teresa Quaranta
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Isabella Spinello
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Rosa Paolillo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianfranco Macchia
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Boe
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Marina Ceccarini
- National Centre for Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Catherine Labbaye
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Pompeo Macioce
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
4
|
Bozzi M, Sciandra F, Brancaccio A. Role of gelatinases in pathological and physiological processes involving the dystrophin–glycoprotein complex. Matrix Biol 2015; 44-46:130-7. [DOI: 10.1016/j.matbio.2015.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 12/16/2022]
|
5
|
Dystrophin complex functions as a scaffold for signalling proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:635-42. [DOI: 10.1016/j.bbamem.2013.08.023] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/22/2013] [Accepted: 08/28/2013] [Indexed: 11/23/2022]
|
6
|
Fratini F, Macchia G, Torreri P, Matteucci A, Salzano AM, Crescenzi M, Macioce P, Petrucci TC, Ceccarini M. Phosphorylation on threonine 11 of β-dystrobrevin alters its interaction with kinesin heavy chain. FEBS J 2012; 279:4131-44. [PMID: 22978324 DOI: 10.1111/febs.12006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 11/30/2022]
Abstract
Dystrobrevin family members (α and β) are cytoplasmic components of the dystrophin-associated glycoprotein complex, a multimeric protein complex first isolated from skeletal muscle, which links the extracellular matrix to the actin cytoskeleton. Dystrobrevin shares high homology with the cysteine-rich and C-terminal domains of dystrophin and a common domain organization. The β-dystrobrevin isoform is restricted to nonmuscle tissues, serves as a scaffold for signaling complexes, and may participate in intracellular transport through its interaction with kinesin heavy chain. We have previously characterized the molecular determinants affecting the β-dystrobrevin-kinesin heavy chain interaction, among which is cAMP-dependent protein kinase [protein kinase A (PKA)] phosphorylation of β-dystrobrevin. In this study, we have identified β-dystrobrevin residues phosphorylated in vitro by PKA with pull-down assays, surface plasmon resonance measurements, and MS analysis. Among the identified phosphorylated residues, we demonstrated, by site-directed mutagenesis, that Thr11 is the regulatory site for the β-dystrobrevin-kinesin interaction. As dystrobrevin may function as a signaling scaffold for kinases/phosphatases, we also investigated whether β-dystrobrevin is phosphorylated in vitro by kinases other than PKA. Thr11 was phosphorylated by protein kinase C, suggesting that this represents a key residue modified by the activation of different signaling pathways.
Collapse
Affiliation(s)
- Federica Fratini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
A Sleeping Beauty mutagenesis screen reveals a tumor suppressor role for Ncoa2/Src-2 in liver cancer. Proc Natl Acad Sci U S A 2012; 109:E1377-86. [PMID: 22556267 DOI: 10.1073/pnas.1115433109] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Sleeping Beauty (SB) transposon mutagenesis system is a powerful tool that facilitates the discovery of mutations that accelerate tumorigenesis. In this study, we sought to identify mutations that cooperate with MYC, one of the most commonly dysregulated genes in human malignancy. We performed a forward genetic screen with a mouse model of MYC-induced liver cancer using SB-mediated mutagenesis. We sequenced insertions in 63 liver tumor nodules and identified at least 16 genes/loci that contribute to accelerated tumor development. RNAi-mediated knockdown in a liver progenitor cell line further validate three of these genes, Ncoa2/Src-2, Zfx, and Dtnb, as tumor suppressors in liver cancer. Moreover, deletion of Ncoa2/Src-2 in mice predisposes to diethylnitrosamine-induced liver tumorigenesis. These findings reveal genes and pathways that functionally restrain MYC-mediated liver tumorigenesis and therefore may provide targets for cancer therapy.
Collapse
|
8
|
Kim J, Kim JS, Jeon YJ, Kim DW, Yang TH, Soh Y, Lee HK, Choi NJ, Park SB, Seo KS, Chung HM, Lee DS, Chae JI. Identification of maturation and protein synthesis related proteins from porcine oocytes during in vitro maturation. Proteome Sci 2011; 9:28. [PMID: 21649931 PMCID: PMC3236306 DOI: 10.1186/1477-5956-9-28] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 06/08/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In vitro maturation (IVM) of mammalian oocytes is divided into the GV (germinal vesicle stage), MI (metaphase I stage) and MII (metaphase II stage) stages, and only fully mature oocytes have acquired the ability to be fertilized and initiate zygotic development. These observations have been mostly based on morphological evaluations, but the molecular events governing these processes are not fully understood.The aim of the present study was to better understand the processes involved in the molecular regulation of IVM using 2-DE analysis followed by mass spectrometry to identify proteins that are differentially expressed during oocyte IVM. RESULT A total of 16 up-regulated and 12 down-regulated proteins were identified. To investigate the IVM process, we specifically focused on the proteins that were up-regulated during the MII stage when compared with the GV stage, which included PRDX 2, GST, SPSY, myomegalin, PED4D, PRKAB 1, and DTNA. These up-regulated proteins were functionally involved in redox regulation and the cAMP-dependent pathway, which are essential for the intracellular signaling involved in oocyte maturation. Interestingly, the PDE4D and its partner, myomegalin, during the MII stage was consistently confirmed up-regulation by western blot analyses. CONCLUSION These results could be used to better understand some aspects of the molecular mechanisms underlying porcine oocyte maturation. This study identified some regulatory proteins that may have important roles in the molecular events involved in porcine oocyte maturation, particularly with respect to the regulation of oocyte meiotic resumption, MII arrest and oocyte activation. In addition, this study may have beneficial applications not only to basic science with respect to the improvement of oocyte culture conditions but also to mammalian reproductive biotechnology with potential implications.
Collapse
Affiliation(s)
- Jumi Kim
- CHA Bio & Diostech Co., Ltd. 606-16 Yeoksam 1 dong, Gangnam gu, Seoul 135-907, Korea
| | - Ji-Su Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungbuk 363-883, Korea
| | - Young-Joo Jeon
- Department of Dental Pharmacology, School of Dentistry, Brain Korea 21 Project, Chonbuk National University, Jeonju, 561-756, Korea
| | - Dong-Wook Kim
- Department of Dental Pharmacology, School of Dentistry, Brain Korea 21 Project, Chonbuk National University, Jeonju, 561-756, Korea
| | - Tae-Ho Yang
- Division of Biological Sciences, Chonbuk National University, Jeonju 561-756, Korea
| | - Yunjo Soh
- Department of Dental Pharmacology, School of Dentistry, Brain Korea 21 Project, Chonbuk National University, Jeonju, 561-756, Korea
| | - Hak Kyo Lee
- Genomic Informatics Center, Hankyong National University, 67 Sukjong-dong, Ansung-city, Kyongi-do, 456-749, Korea
| | - Nag-Jin Choi
- Department of Animal Science, College of Agricultural & Life Science, Chonbuk National University, Jeonju, Korea
| | - Soo-Bong Park
- National Institute of animal Science, Suwon 441-706 Korea
| | - Kang Seok Seo
- Department of Animal Science and Technology, Sunchon National University, Suncheon 540-742, Korea
| | - Hyung Min Chung
- CHA Bio & Diostech Co., Ltd. 606-16 Yeoksam 1 dong, Gangnam gu, Seoul 135-907, Korea.,Graduate School of Life Science, CHA Stem Cell Institute, College of Medicine, CHA University, 605 -21 Yeoksam 1 dong, Gangnam gu, Seoul 135-907, Korea
| | - Dong-Seok Lee
- College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry, Brain Korea 21 Project, Chonbuk National University, Jeonju, 561-756, Korea
| |
Collapse
|
9
|
Zhang JP, Burdick KE, Lencz T, Malhotra AK. Meta-analysis of genetic variation in DTNBP1 and general cognitive ability. Biol Psychiatry 2010; 68:1126-33. [PMID: 21130223 PMCID: PMC3026311 DOI: 10.1016/j.biopsych.2010.09.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 07/30/2010] [Accepted: 09/06/2010] [Indexed: 01/31/2023]
Abstract
BACKGROUND The human dystrobrevin binding protein 1 (DTNBP1) gene has been linked to risk for schizophrenia. Recent studies indicate that several single nucleotide polymorphisms (SNPs) in the DTNBP1 gene may also influence general cognitive ability in both schizophrenic patients and healthy control subjects. We examined the relationship between DTNBP1 SNPs and general cognitive ability in nonpsychiatric healthy samples via meta-analysis. METHODS MEDLINE search (12/31/09) yielded 11 articles examining DTNBP1 variation and general cognitive ability, of which 8 studies had data available encompassing 10 independent cohorts (total n = 7592). The phenotype was defined as either the first principal component score from multiple neuropsychological tests (Spearman's g) or full-scale IQ. Meta-analyses were conducted for nine SNPs for which cognitive data were available from at least three cohorts. For each SNP in each cohort, effect size was computed between major allele homozygotes and minor allele carriers; effect size was then pooled across studies using a random effect model. RESULTS Pooled effect sizes from two of the nine SNPs (rs1018381 and rs2619522) were -.123 and -.083, ps < .01, respectively, suggesting that the minor allele carriers of these SNPs had lower cognitive ability scores than the major allele homozygotes. Results remained significant after examining heterogeneity among samples and potential publication biases. Other SNPs did not show significant effects on general cognitive ability. CONCLUSIONS Genetic variation in DTNBP1 modestly influences general cognitive ability. Further studies are needed to elucidate the biological mechanisms that may account for this relationship.
Collapse
Affiliation(s)
| | - Katherine E. Burdick
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, NY, Center for Psychiatric Neurosciences, Feinstein Institute for Medical Research, Manhasset, NY, Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine, Bronx, NY
| | - Todd Lencz
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, NY, Center for Psychiatric Neurosciences, Feinstein Institute for Medical Research, Manhasset, NY, Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine, Bronx, NY, Department of Psychiatry, Hofstra University School of Medicine, Hempstead, NY
| | - Anil K. Malhotra
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, NY, Center for Psychiatric Neurosciences, Feinstein Institute for Medical Research, Manhasset, NY, Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
10
|
Artegiani B, Labbaye C, Sferra A, Quaranta MT, Torreri P, Macchia G, Ceccarini M, Petrucci TC, Macioce P. The interaction with HMG20a/b proteins suggests a potential role for beta-dystrobrevin in neuronal differentiation. J Biol Chem 2010; 285:24740-50. [PMID: 20530487 DOI: 10.1074/jbc.m109.090654] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alpha and beta dystrobrevins are cytoplasmic components of the dystrophin-associated protein complex that are thought to play a role as scaffold proteins in signal transduction and intracellular transport. In the search of new insights into the functions of beta-dystrobrevin, the isoform restricted to non-muscle tissues, we performed a two-hybrid screen of a mouse cDNA library to look for interacting proteins. Among the positive clones, one encodes iBRAF/HMG20a, a high mobility group (HMG)-domain protein that activates REST (RE-1 silencing transcription factor)-responsive genes, playing a key role in the initiation of neuronal differentiation. We characterized the beta-dystrobrevin-iBRAF interaction by in vitro and in vivo association assays, localized the binding region of one protein to the other, and assessed the kinetics of the interaction as one of high affinity. We also found that beta-dystrobrevin directly binds to BRAF35/HMG20b, a close homologue of iBRAF and a member of a co-repressor complex required for the repression of neural specific genes in neuronal progenitors. In vitro assays indicated that beta-dystrobrevin binds to RE-1 and represses the promoter activity of synapsin I, a REST-responsive gene that is a marker for neuronal differentiation. Altogether, our data demonstrate a direct interaction of beta-dystrobrevin with the HMG20 proteins iBRAF and BRAF35 and suggest that beta-dystrobrevin may be involved in regulating chromatin dynamics, possibly playing a role in neuronal differentiation.
Collapse
Affiliation(s)
- Benedetta Artegiani
- Department of Cell Biology and Neuroscience, National Center for Rare Diseases, Istituto Superiore di Sanità, Rome 00161, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ghahramani Seno MM, Trollet C, Athanasopoulos T, Graham IR, Hu P, Dickson G. Transcriptomic analysis of dystrophin RNAi knockdown reveals a central role for dystrophin in muscle differentiation and contractile apparatus organization. BMC Genomics 2010; 11:345. [PMID: 20515474 PMCID: PMC2890566 DOI: 10.1186/1471-2164-11-345] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 06/01/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disorder caused by mutations in the dystrophin gene. DMD has a complex and as yet incompletely defined molecular pathophysiology hindering development of effective ameliorative approaches. Transcriptomic studies so far conducted on dystrophic cells and tissues suffer from non-specific changes and background noise due to heterogeneous comparisons and secondary pathologies. A study design in which a perfectly matched control cell population is used as reference for transcriptomic studies will give a much more specific insight into the effects of dystrophin deficiency and DMD pathophysiology. RESULTS Using RNA interference (RNAi) to knock down dystrophin in myotubes from C57BL10 mice, we created a homogenous model to study the transcriptome of dystrophin-deficient myotubes. We noted significant differences in the global gene expression pattern between these myotubes and their matched control cultures. In particular, categorical analyses of the dysregulated genes demonstrated significant enrichment of molecules associated with the components of muscle cell contractile unit, ion channels, metabolic pathways and kinases. Additionally, some of the dysregulated genes could potentially explain conditions and endophenotypes associated with dystrophin deficiency, such as dysregulation of calcium homeostasis (Pvalb and Casq1), or cardiomyopathy (Obscurin, Tcap). In addition to be validated by qPCR, our data gains another level of validity by affirmatively reproducing several independent studies conducted previously at genes and/or protein levels in vivo and in vitro. CONCLUSION Our results suggest that in striated muscles, dystrophin is involved in orchestrating proper development and organization of myofibers as contractile units, depicting a novel pathophysiology for DMD where the absence of dystrophin results in maldeveloped myofibers prone to physical stress and damage. Therefore, it becomes apparent that any gene therapy approaches for DMD should target early stages in muscle development to attain a maximum clinical benefit. With a clear and specific definition of the transcriptome of dystrophin deficiency, manipulation of identified dysregulated molecules downstream of dystrophin may lead to novel ameliorative approaches for DMD.
Collapse
|
12
|
Pilgram GSK, Potikanond S, Baines RA, Fradkin LG, Noordermeer JN. The roles of the dystrophin-associated glycoprotein complex at the synapse. Mol Neurobiol 2009; 41:1-21. [PMID: 19899002 PMCID: PMC2840664 DOI: 10.1007/s12035-009-8089-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 10/15/2009] [Indexed: 12/30/2022]
Abstract
Duchenne muscular dystrophy is caused by mutations in the dystrophin gene and is characterized by progressive muscle wasting. A number of Duchenne patients also present with mental retardation. The dystrophin protein is part of the highly conserved dystrophin-associated glycoprotein complex (DGC) which accumulates at the neuromuscular junction (NMJ) and at a variety of synapses in the peripheral and central nervous systems. Many years of research into the roles of the DGC in muscle have revealed its structural function in stabilizing the sarcolemma. In addition, the DGC also acts as a scaffold for various signaling pathways. Here, we discuss recent advances in understanding DGC roles in the nervous system, gained from studies in both vertebrate and invertebrate model systems. From these studies, it has become clear that the DGC is important for the maturation of neurotransmitter receptor complexes and for the regulation of neurotransmitter release at the NMJ and central synapses. Furthermore, roles for the DGC have been established in consolidation of long-term spatial and recognition memory. The challenges ahead include the integration of the behavioral and mechanistic studies and the use of this information to identify therapeutic targets.
Collapse
Affiliation(s)
- Gonneke S K Pilgram
- Department of Molecular and Cell Biology, Leiden University Medical Center, The Netherlands
| | | | | | | | | |
Collapse
|
13
|
Iijima S, Masaki H, Wakayama Y, Inoue M, Jimi T, Hara H, Unaki A, Oniki H, Nakano K, Hirayama Y, Kishimoto K. Immunohistochemical detection of dysbindin at the astroglial endfeet around the capillaries of mouse brain. J Mol Histol 2009; 40:117-21. [PMID: 19495999 DOI: 10.1007/s10735-009-9221-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 05/18/2009] [Indexed: 12/14/2022]
Abstract
Dysbindin was first identified by the yeast two hybrid assay as a binding partner of dystrobrevin which is a cytoplasmic member of dystrophin glycoprotein complex. Immunolocalization of dystrobrevin in the astrocyte endfeet and endothelial cells in the rat cerebellum was reported. Therefore, we were interested in the expression and localization of dystrobrevin binding protein dysbindin in the mouse brain capillary wall and its surrounding astroglial endfeet. We examined whether the dysbindin expression is present in astroglial endfeet and/or capillary endothelial cells at light and electron microscopic levels. Using brain samples from five normal mice (C57BL/6ScSn), we prepared the anti-dysbindin antibody stained brain samples with immunoperoxidase method at light microscopic level and with immunogold method at ultrastructural level. Immunohistochemistry showed that dysbindin was located in the brain capillary at light microscopic level. Immunogold electron microscopy revealed that dysbindin signal was observed at the inside surface of plasma membrane of glial endfeet which surrounded the brain capillary endothelial cells and pericytes.
Collapse
Affiliation(s)
- Shoji Iijima
- Department of Neurology, Showa University Fujigaoka Hospital, 1-30 Fujigaoka, Aoba-ku, Yokohama 227-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Röder IV, Lissandron V, Martin J, Petersen Y, Di Benedetto G, Zaccolo M, Rudolf R. PKA microdomain organisation and cAMP handling in healthy and dystrophic muscle in vivo. Cell Signal 2009; 21:819-26. [PMID: 19263518 DOI: 10.1016/j.cellsig.2009.01.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Signalling through protein kinase A (PKA) triggers a multitude of intracellular effects in response to a variety of extracellular stimuli. To guarantee signal specificity, different PKA isoforms are compartmentalised by Akinase anchoring proteins (AKAPs) into functional microdomains. By using genetically encoded fluorescent reporters of cAMP concentration that are targeted to the intracellular sites where PKA type I and PKA type II isoforms normally reside, we directly show for the first time spatially and functionally separate PKA microdomains in mouse skeletal muscle in vivo. The reporters localised into clearly distinct patterns within sarcomers, from where they could be displaced by means of AKAP disruptor peptides indicating the presence of disparate PKA type I and PKA type II anchor sites within skeletal muscle fibres. The functional relevance of such differential localisation was underscored by the finding of mutually exclusive and AKAP-dependent increases in [cAMP] in the PKA type I and PKA type II microdomains upon application of different cAMP agonists. Specifically, the sensors targeted to the PKA type II compartment responded only to norepinephrine, whereas those targeted to the PKA type I compartment responded only to alpha-calcitonin gene-related peptide. Notably, in dystrophic mdx mice the localisation pattern of the reporters was altered and the functional separation of the cAMP microdomains was abolished. In summary, our data indicate that an efficient organisation in microdomains of the cAMP/PKA pathway exists in the healthy skeletal muscle and that such organisation is subverted in dystrophic skeletal muscle.
Collapse
Affiliation(s)
- Ira Verena Röder
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Albrecht DE, Sherman DL, Brophy PJ, Froehner SC. The ABCA1 cholesterol transporter associates with one of two distinct dystrophin-based scaffolds in Schwann cells. Glia 2008; 56:611-8. [PMID: 18286648 PMCID: PMC4335170 DOI: 10.1002/glia.20636] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cytoskeletal scaffolding complexes help organize specialized membrane domains with unique functions on the surface of cells. In this study, we define the scaffolding potential of the Schwann cell dystrophin glycoprotein complex (DGC) by establishing the presence of four syntrophin isoforms, (alpha1, beta1, beta2, and gamma2), and one dystrobrevin isoform, (alpha-dystrobrevin-1), in the abaxonal membrane. Furthermore, we demonstrate the existence of two separate DGCs in Schwann cells that divide the abaxonal membrane into spatially distinct domains, the DRP2/periaxin rich plaques and the Cajal bands that contain Dp116, utrophin, alpha-dystrobrevin-1 and four syntrophin isoforms. Finally, we show that the two different DGCs can scaffold unique accessory molecules in distinct areas of the Schwann cell membrane. Specifically, the cholesterol transporter ABCA1, associates with the Dp116/syntrophin complex in Cajal bands and is excluded from the DRP2/periaxin rich plaques.
Collapse
Affiliation(s)
- Douglas E Albrecht
- Department of Physiology and Biophysics, University of Washington, 1959 NE Pacific St, Box 357290, Seattle WA 98195-7290, USA
| | | | | | | |
Collapse
|
17
|
Reynolds JG, McCalmon SA, Donaghey JA, Naya FJ. Deregulated protein kinase A signaling and myospryn expression in muscular dystrophy. J Biol Chem 2008; 283:8070-4. [PMID: 18252718 DOI: 10.1074/jbc.c700221200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alterations in signaling pathway activity have been implicated in the pathogenesis of Duchenne muscular dystrophy, a degenerative muscle disease caused by a deficiency in the costameric protein dystrophin. Accordingly, the notion of the dystrophin-glycoprotein complex, and by extension the costamere, as harboring signaling components has received increased attention in recent years. The localization of most, if not all, signaling enzymes to this subcellular region relies on interactions with scaffolding proteins directly or indirectly associated with the dystrophin-glycoprotein complex. One of these scaffolds is myospryn, a large, muscle-specific protein kinase A (PKA) anchoring protein or AKAP. Previous studies have demonstrated a dysregulation of myospryn expression in human Duchenne muscular dystrophy, suggesting a connection to the pathophysiology of the disorder. Here we report that dystrophic muscle exhibits reduced PKA activity resulting, in part, from severely mislocalized myospryn and the type II regulatory subunit (RIIalpha) of PKA. Furthermore, we show that myospryn and dystrophin coimmunoprecipitate in native muscle extracts and directly interact in vitro. Our findings reveal for the first time abnormalities in the PKA signal transduction pathway and myospryn regulation in dystrophin deficiency.
Collapse
Affiliation(s)
- Joseph G Reynolds
- Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, MA 02215, USA
| | | | | | | |
Collapse
|