1
|
Shivarov V, Tsvetkova G, Micheva I, Hadjiev E, Petrova J, Ivanova A, Madjarova G, Ivanova M. Differential modulation of mutant CALR and JAK2 V617F-driven oncogenesis by HLA genotype in myeloproliferative neoplasms. Front Immunol 2024; 15:1427810. [PMID: 39351227 PMCID: PMC11439724 DOI: 10.3389/fimmu.2024.1427810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
It has been demonstrated previously that human leukocyte antigen class I (HLA-I) and class II (HLA-II) alleles may modulate JAK2 V617F and CALR mutation (CALRmut)-associated oncogenesis in myeloproliferative neoplasms (MPNs). However, the role of immunogenetic factors in MPNs remains underexplored. We aimed to investigate the potential involvement of HLA genes in CALRmut+ MPNs. High-resolution genotyping of HLA-I and -II loci was conducted in 42 CALRmut+ and 158 JAK2 V617F+ MPN patients and 1,083 healthy controls. A global analysis of the diversity of HLA-I genotypes revealed no significant differences between CALRmut+ patients and controls. However, one HLA-I allele (C*06:02) showed an inverse correlation with presence of CALR mutation. A meta-analysis across independent cohorts and healthy individuals from the 1000 Genomes Project confirmed an inverse correlation between the presentation capabilities of the HLA-I loci for JAK2 V617F and CALRmut-derived peptides in both patients and healthy individuals. scRNA-Seq analysis revealed low expression of TAP1 and CIITA genes in CALRmut+ hematopoietic stem and progenitor cells. In conclusion, the HLA-I genotype differentially restricts JAK2 V617F and CALRmut-driven oncogenesis potentially explaining the mutual exclusivity of the two mutations and differences in their presentation latency. These findings have practical implications for the development of neoantigen-based vaccines in MPNs.
Collapse
Affiliation(s)
- Velizar Shivarov
- Department of Experimental Research, Medical University Pleven, Pleven, Bulgaria
| | - Gergana Tsvetkova
- Department of Clinical Hematology, Alexandrovska University Hospital, Medical University Sofia, Sofia, Bulgaria
| | - Ilina Micheva
- Department of Clinical Hematology, Saint Marina University Hospital, Medical University Varna, Varna, Bulgaria
| | - Evgueniy Hadjiev
- Department of Clinical Hematology, Alexandrovska University Hospital, Medical University Sofia, Sofia, Bulgaria
| | - Jasmina Petrova
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, Sofia, Bulgaria
| | - Anela Ivanova
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, Sofia, Bulgaria
| | - Galia Madjarova
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, Sofia, Bulgaria
| | - Milena Ivanova
- Department of Clinical Immunology, Alexandrovska University Hospital, Medical University Sofia, Sofia, Bulgaria
| |
Collapse
|
2
|
Ma J, Ayres CM, Brambley CA, Chandran SS, Rosales TJ, Corcelli SA, Kovrigin EL, Klebanoff CA, Baker BM. Dynamic allostery in the peptide/MHC complex enables TCR neoantigen selectivity. RESEARCH SQUARE 2024:rs.3.rs-4457195. [PMID: 38854019 PMCID: PMC11160895 DOI: 10.21203/rs.3.rs-4457195/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The inherent cross-reactivity of the T cell receptor (TCR) is balanced by high specificity, which often manifests in confounding ways not easily interpretable from static structures. We show here that TCR discrimination between an HLA-A*03:01 (HLA-A3)-restricted public neoantigen derived from mutant PIK3CA and its wild-type (WT) counterpart emerges from motions within the HLA binding groove that vary with the identity of the peptide's first primary anchor. The motions form a dynamic gate that in the complex with the WT peptide impedes a large conformational change required for TCR binding. The more rigid neoantigen is insusceptible to this limiting dynamic, and with the gate open, is able to transit its central tryptophan residue underneath the peptide backbone to the contralateral side of the HLA-A3 peptide binding groove, facilitating TCR binding. Our findings reveal a novel mechanism driving TCR specificity for a cancer neoantigen that is rooted in the dynamic and allosteric nature of peptide/MHC-I complexes, with implications for resolving long-standing and often confounding questions about the determinants of T cell specificity.
Collapse
Affiliation(s)
- Jiaqi Ma
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Cory M. Ayres
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Chad A. Brambley
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Smita S. Chandran
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Center for Cell Engineering, MSKCC, New York, NY, USA
| | - Tatiana J. Rosales
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Steven A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Evgenii L. Kovrigin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Christopher A. Klebanoff
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Center for Cell Engineering, MSKCC, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, New York, NY, USA
| | - Brian M. Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
3
|
Fasoulis R, Rigo MM, Lizée G, Antunes DA, Kavraki LE. APE-Gen2.0: Expanding Rapid Class I Peptide-Major Histocompatibility Complex Modeling to Post-Translational Modifications and Noncanonical Peptide Geometries. J Chem Inf Model 2024; 64:1730-1750. [PMID: 38415656 PMCID: PMC10936522 DOI: 10.1021/acs.jcim.3c01667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
The recognition of peptides bound to class I major histocompatibility complex (MHC-I) receptors by T-cell receptors (TCRs) is a determinant of triggering the adaptive immune response. While the exact molecular features that drive the TCR recognition are still unknown, studies have suggested that the geometry of the joint peptide-MHC (pMHC) structure plays an important role. As such, there is a definite need for methods and tools that accurately predict the structure of the peptide bound to the MHC-I receptor. In the past few years, many pMHC structural modeling tools have emerged that provide high-quality modeled structures in the general case. However, there are numerous instances of non-canonical cases in the immunopeptidome that the majority of pMHC modeling tools do not attend to, most notably, peptides that exhibit non-standard amino acids and post-translational modifications (PTMs) or peptides that assume non-canonical geometries in the MHC binding cleft. Such chemical and structural properties have been shown to be present in neoantigens; therefore, accurate structural modeling of these instances can be vital for cancer immunotherapy. To this end, we have developed APE-Gen2.0, a tool that improves upon its predecessor and other pMHC modeling tools, both in terms of modeling accuracy and the available modeling range of non-canonical peptide cases. Some of the improvements include (i) the ability to model peptides that have different types of PTMs such as phosphorylation, nitration, and citrullination; (ii) a new and improved anchor identification routine in order to identify and model peptides that exhibit a non-canonical anchor conformation; and (iii) a web server that provides a platform for easy and accessible pMHC modeling. We further show that structures predicted by APE-Gen2.0 can be used to assess the effects that PTMs have in binding affinity in a more accurate manner than just using solely the sequence of the peptide. APE-Gen2.0 is freely available at https://apegen.kavrakilab.org.
Collapse
Affiliation(s)
- Romanos Fasoulis
- Department
of Computer Science, Rice University, Houston, Texas 77005, United States
| | - Mauricio M. Rigo
- Department
of Computer Science, Rice University, Houston, Texas 77005, United States
| | - Gregory Lizée
- Department
of Melanoma Medical Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Dinler A. Antunes
- Department
of Biology and Biochemistry, University
of Houston, Houston, Texas 77004, United States
| | - Lydia E. Kavraki
- Department
of Computer Science, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Fasoulis R, Rigo MM, Antunes DA, Paliouras G, Kavraki LE. Transfer learning improves pMHC kinetic stability and immunogenicity predictions. IMMUNOINFORMATICS (AMSTERDAM, NETHERLANDS) 2024; 13:100030. [PMID: 38577265 PMCID: PMC10994007 DOI: 10.1016/j.immuno.2023.100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The cellular immune response comprises several processes, with the most notable ones being the binding of the peptide to the Major Histocompability Complex (MHC), the peptide-MHC (pMHC) presentation to the surface of the cell, and the recognition of the pMHC by the T-Cell Receptor. Identifying the most potent peptide targets for MHC binding, presentation and T-cell recognition is vital for developing peptide-based vaccines and T-cell-based immunotherapies. Data-driven tools that predict each of these steps have been developed, and the availability of mass spectrometry (MS) datasets has facilitated the development of accurate Machine Learning (ML) methods for class-I pMHC binding prediction. However, the accuracy of ML-based tools for pMHC kinetic stability prediction and peptide immunogenicity prediction is uncertain, as stability and immunogenicity datasets are not abundant. Here, we use transfer learning techniques to improve stability and immunogenicity predictions, by taking advantage of a large number of binding affinity and MS datasets. The resulting models, TLStab and TLImm, exhibit comparable or better performance than state-of-the-art approaches on different stability and immunogenicity test sets respectively. Our approach demonstrates the promise of learning from the task of peptide binding to improve predictions on downstream tasks. The source code of TLStab and TLImm is publicly available at https://github.com/KavrakiLab/TL-MHC.
Collapse
Affiliation(s)
- Romanos Fasoulis
- Department of Computer Science, Rice University, 6100 Main St, Houston, 77005, TX, United States
| | - Mauricio Menegatti Rigo
- Department of Computer Science, Rice University, 6100 Main St, Houston, 77005, TX, United States
| | - Dinler Amaral Antunes
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Rd, Houston, 77004, TX, United States
| | - Georgios Paliouras
- Institute of Informatics and Telecommunications, NCSR Demokritos, Patr. Gregoriou E and 27 Neapoleos St, Athens, 15341, Greece
| | - Lydia E. Kavraki
- Department of Computer Science, Rice University, 6100 Main St, Houston, 77005, TX, United States
| |
Collapse
|
5
|
Adams AC, Macy AM, Borden ES, Herrmann LM, Brambley CA, Ma T, Li X, Hughes A, Roe DJ, Mangold AR, Buetow KH, Wilson MA, Baker BM, Hastings KT. Distinct sets of molecular characteristics define tumor-rejecting neoantigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.579546. [PMID: 38405868 PMCID: PMC10888839 DOI: 10.1101/2024.02.13.579546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Challenges in identifying tumor-rejecting neoantigens limit the efficacy of neoantigen vaccines to treat cancers, including cutaneous squamous cell carcinoma (cSCC). A minority of human cSCC tumors shared neoantigens, supporting the need for personalized vaccines. Using a UV-induced mouse cSCC model which recapitulated the mutational signature and driver mutations found in human disease, we found that CD8 T cells constrain cSCC. Two MHC class I neoantigens were identified that constrained cSCC growth. Compared to the wild-type peptides, one tumor-rejecting neoantigen exhibited improved MHC binding and the other had increased solvent accessibility of the mutated residue. Across known neoantigens that do not impact MHC binding, structural modeling of the peptide/MHC complexes indicated that increased solvent accessibility, which will facilitate TCR recognition of the neoantigen, distinguished tumor-rejecting from non-immunogenic neoantigens. This work reveals characteristics of tumor-rejecting neoantigens that may be of considerable importance in identifying optimal vaccine candidates in cSCC and other cancers.
Collapse
|
6
|
Custodio JM, Ayres CM, Rosales TJ, Brambley CA, Arbuiso AG, Landau LM, Keller GLJ, Srivastava PK, Baker BM. Structural and physical features that distinguish tumor-controlling from inactive cancer neoepitopes. Proc Natl Acad Sci U S A 2023; 120:e2312057120. [PMID: 38085776 PMCID: PMC10742377 DOI: 10.1073/pnas.2312057120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Neoepitopes arising from amino acid substitutions due to single nucleotide polymorphisms are targets of T cell immune responses to cancer and are of significant interest in the development of cancer vaccines. However, understanding the characteristics of rare protective neoepitopes that truly control tumor growth has been a challenge, due to their scarcity as well as the challenge of verifying true, neoepitope-dependent tumor control in humans. Taking advantage of recent work in mouse models that circumvented these challenges, here, we compared the structural and physical properties of neoepitopes that range from fully protective to immunologically inactive. As neoepitopes are derived from self-peptides that can induce immune tolerance, we studied not only how the various neoepitopes differ from each other but also from their wild-type counterparts. We identified multiple features associated with protection, including features that describe how neoepitopes differ from self as well as features associated with recognition by diverse T cell receptor repertoires. We demonstrate both the promise and limitations of neoepitope structural analysis and predictive modeling and illustrate important aspects that can be incorporated into neoepitope prediction pipelines.
Collapse
Affiliation(s)
- Jean M. Custodio
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN46556
| | - Cory M. Ayres
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN46556
| | - Tatiana J. Rosales
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN46556
| | - Chad A. Brambley
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN46556
| | - Alyssa G. Arbuiso
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN46556
| | - Lauren M. Landau
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN46556
| | - Grant L. J. Keller
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN46556
| | - Pramod K. Srivastava
- Department of Immunology, and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT06030
| | - Brian M. Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN46556
| |
Collapse
|
7
|
Osei-Hwedieh DO, Sedlacek AL, Hernandez LM, Yamoah AA, Iyer SG, Weiss KR, Binder RJ. Immunosurveillance shapes the emergence of neo-epitope landscapes of sarcomas, revealing prime targets for immunotherapy. JCI Insight 2023; 8:e170324. [PMID: 37427594 PMCID: PMC10371341 DOI: 10.1172/jci.insight.170324] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
T cells recognize tumor-derived mutated peptides presented on MHC by tumors. The recognition of these neo-epitopes leads to rejection of tumors, an event that is critical for successful cancer immunosurveillance. Determination of tumor-rejecting neo-epitopes in human tumors has proved difficult, though recently developed systems approaches are becoming increasingly useful at evaluating their immunogenicity. We have used the differential aggretope index to determine the neo-epitope burden of sarcomas and observed a conspicuously titrated antigenic landscape, ranging from the highly antigenic osteosarcomas to the low antigenic leiomyosarcomas and liposarcomas. We showed that the antigenic landscape of the tumors inversely reflected the historical T cell responses in the tumor-bearing patients. We predicted that highly antigenic tumors with poor antitumor T cell responses, such as osteosarcomas, would be responsive to T cell-based immunotherapy regimens and demonstrated this in a murine osteosarcoma model. Our study presents a potentially novel pipeline for determining antigenicity of human tumors, provides an accurate predictor of potential neo-epitopes, and will be an important indicator of which cancers to target with T cell-enhancing immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Kurt R. Weiss
- Department of Orthopaedic Surgery, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
8
|
Amaya-Ramirez D, Martinez-Enriquez LC, Parra-López C. Usefulness of Docking and Molecular Dynamics in Selecting Tumor Neoantigens to Design Personalized Cancer Vaccines: A Proof of Concept. Vaccines (Basel) 2023; 11:1174. [PMID: 37514989 PMCID: PMC10386133 DOI: 10.3390/vaccines11071174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 07/30/2023] Open
Abstract
Personalized cancer vaccines based on neoantigens are a new and promising treatment for cancer; however, there are still multiple unresolved challenges to using this type of immunotherapy. Among these, the effective identification of immunogenic neoantigens stands out, since the in silico tools used generate a significant portion of false positives. Inclusion of molecular simulation techniques can refine the results these tools produce. In this work, we explored docking and molecular dynamics to study the association between the stability of peptide-HLA complexes and their immunogenicity, using as a proof of concept two HLA-A2-restricted neoantigens that were already evaluated in vitro. The results obtained were in accordance with the in vitro immunogenicity, since the immunogenic neoantigen ASTN1 remained bound at both ends to the HLA-A2 molecule. Additionally, molecular dynamic simulation suggests that position 1 of the peptide has a more relevant role in stabilizing the N-terminus than previously proposed. Likewise, the mutations may have a "delocalized" effect on the peptide-HLA interaction, which means that the mutated amino acid influences the intensity of the interactions of distant amino acids of the peptide with the HLA. These findings allow us to propose the inclusion of molecular simulation techniques to improve the identification of neoantigens for cancer vaccines.
Collapse
Affiliation(s)
| | - Laura Camila Martinez-Enriquez
- Grupo de Inmunología y Medicina Traslacional, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Carlos Parra-López
- Grupo de Inmunología y Medicina Traslacional, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| |
Collapse
|
9
|
Grailer J, Cheng ZJ, Hartnett J, Slater M, Fan F, Cong M. A Novel Cell-based Luciferase Reporter Platform for the Development and Characterization of T-Cell Redirecting Therapies and Vaccine Development. J Immunother 2023; 46:96-106. [PMID: 36809225 PMCID: PMC9988225 DOI: 10.1097/cji.0000000000000453] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
T-cell immunotherapies are promising strategies to generate T-cell responses towards tumor-derived or pathogen-derived antigens. Adoptive transfer of T cells genetically modified to express antigen receptor transgenes has shown promise for the treatment of cancer. However, the development of T-cell redirecting therapies relies on the use of primary immune cells and is hampered by the lack of easy-to-use model systems and sensitive readouts to facilitate candidate screening and development. Particularly, testing T-cell receptor (TCR)-specific responses in primary T cells and immortalized T cells is confounded by the presence of endogenous TCR expression which results in mixed alpha/beta TCR pairings and compresses assay readouts. Herein, we describe the development of a novel cell-based TCR knockout (TCR-KO) reporter assay platform for the development and characterization of T-cell redirecting therapies. CRISPR/Cas9 was used to knockout the endogenous TCR chains in Jurkat cells stably expressing a human interleukin-2 promoter-driven luciferase reporter gene to measure TCR signaling. Reintroduction of a transgenic TCR into the TCR-KO reporter cells results in robust antigen-specific reporter activation compared with parental reporter cells. The further development of CD4/CD8 double-positive and double-negative versions enabled low-avidity and high-avidity TCR screening with or without major histocompatibility complex bias. Furthermore, stable TCR-expressing reporter cells generated from TCR-KO reporter cells exhibit sufficient sensitivity to probe in vitro T-cell immunogenicity of protein and nucleic acid-based vaccines. Therefore, our data demonstrated that TCR-KO reporter cells can be a useful tool for the discovery, characterization, and deployment of T-cell immunotherapy.
Collapse
|
10
|
Gupta S, Nerli S, Kandy SK, Mersky GL, Sgourakis NG. HLA3DB: comprehensive annotation of peptide/HLA complexes enables blind structure prediction of T cell epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533510. [PMID: 36993660 PMCID: PMC10055217 DOI: 10.1101/2023.03.20.533510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The class I proteins of the major histocompatibility complex (MHC-I) display epitopic peptides derived from endogenous proteins on the cell surface for immune surveillance. Accurate modeling of peptide/HLA (pHLA, the human MHC) structures has been mired by conformational diversity of the central peptide residues, which are critical for recognition by T cell receptors. Here, analysis of X-ray crystal structures within a curated database (HLA3DB) shows that pHLA complexes encompassing multiple HLA allotypes present a discrete set of peptide backbone conformations. Leveraging these representative backbones, we employ a regression model trained on terms of a physically relevant energy function to develop a comparative modeling approach for nonamer peptide/HLA structures named RepPred. Our method outperforms the top pHLA modeling approach by up to 19% in terms of structural accuracy, and consistently predicts blind targets not included in our training set. Insights from our work provide a framework for linking conformational diversity with antigen immunogenicity and receptor cross-reactivity.
Collapse
|
11
|
Keller GLJ, Weiss LI, Baker BM. Physicochemical Heuristics for Identifying High Fidelity, Near-Native Structural Models of Peptide/MHC Complexes. Front Immunol 2022; 13:887759. [PMID: 35547730 PMCID: PMC9084917 DOI: 10.3389/fimmu.2022.887759] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
There is long-standing interest in accurately modeling the structural features of peptides bound and presented by class I MHC proteins. This interest has grown with the advent of rapid genome sequencing and the prospect of personalized, peptide-based cancer vaccines, as well as the development of molecular and cellular therapeutics based on T cell receptor recognition of peptide-MHC. However, while the speed and accessibility of peptide-MHC modeling has improved substantially over the years, improvements in accuracy have been modest. Accuracy is crucial in peptide-MHC modeling, as T cell receptors are highly sensitive to peptide conformation and capturing fine details is therefore necessary for useful models. Studying nonameric peptides presented by the common class I MHC protein HLA-A*02:01, here we addressed a key question common to modern modeling efforts: from a set of models (or decoys) generated through conformational sampling, which is best? We found that the common strategy of decoy selection by lowest energy can lead to substantial errors in predicted structures. We therefore adopted a data-driven approach and trained functions capable of predicting near native decoys with exceptionally high accuracy. Although our implementation is limited to nonamer/HLA-A*02:01 complexes, our results serve as an important proof of concept from which improvements can be made and, given the significance of HLA-A*02:01 and its preference for nonameric peptides, should have immediate utility in select immunotherapeutic and other efforts for which structural information would be advantageous.
Collapse
Affiliation(s)
- Grant L J Keller
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
| | - Laura I Weiss
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
| | - Brian M Baker
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
12
|
Hopkins JR, MacLachlan BJ, Harper S, Sewell AK, Cole DK. Unconventional modes of peptide-HLA-I presentation change the rules of TCR engagement. DISCOVERY IMMUNOLOGY 2022; 1:kyac001. [PMID: 38566908 PMCID: PMC10917088 DOI: 10.1093/discim/kyac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 04/04/2024]
Abstract
The intracellular proteome of virtually every nucleated cell in the body is continuously presented at the cell surface via the human leukocyte antigen class I (HLA-I) antigen processing pathway. This pathway classically involves proteasomal degradation of intracellular proteins into short peptides that can be presented by HLA-I molecules for interrogation by T-cell receptors (TCRs) expressed on the surface of CD8+ T cells. During the initiation of a T-cell immune response, the TCR acts as the T cell's primary sensor, using flexible loops to mould around the surface of the pHLA-I molecule to identify foreign or dysregulated antigens. Recent findings demonstrate that pHLA-I molecules can also be highly flexible and dynamic, altering their shape according to minor polymorphisms between different HLA-I alleles, or interactions with different peptides. These flexible presentation modes have important biological consequences that can, for example, explain why some HLA-I alleles offer greater protection against HIV, or why some cancer vaccine approaches have been ineffective. This review explores how these recent findings redefine the rules for peptide presentation by HLA-I molecules and extend our understanding of the molecular mechanisms that govern TCR-mediated antigen discrimination.
Collapse
Affiliation(s)
- Jade R Hopkins
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Bruce J MacLachlan
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | | | - Andrew K Sewell
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - David K Cole
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| |
Collapse
|
13
|
Ballabio F, Broggini L, Paissoni C, Han X, Peqini K, Sala BM, Sun R, Sandalova T, Barbiroli A, Achour A, Pellegrino S, Ricagno S, Camilloni C. l- to d-Amino Acid Substitution in the Immunodominant LCMV-Derived Epitope gp33 Highlights the Sensitivity of the TCR Recognition Mechanism for the MHC/Peptide Structure and Dynamics. ACS OMEGA 2022; 7:9622-9635. [PMID: 35350306 PMCID: PMC8945122 DOI: 10.1021/acsomega.1c06964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Presentation of pathogen-derived epitopes by major histocompatibility complex I (MHC-I) can lead to the activation and expansion of specific CD8+ T cell clones, eventually resulting in the destruction of infected target cells. Altered peptide ligands (APLs), designed to elicit immunogenicity toward a wild-type peptide, may affect the overall stability of MHC-I/peptide (pMHC) complexes and modulate the recognition by T cell receptors (TCR). Previous works have demonstrated that proline substitution at position 3 (p3P) of different MHC-restricted epitopes, including the immunodominant LCMV-derived epitope gp33 and escape variants, may be an effective design strategy to increase epitope immunogenicity. These studies hypothesized that the p3P substitution increases peptide rigidity, facilitating TCR binding. Here, molecular dynamics simulations indicate that the p3P modification rigidifies the APLs in solution predisposing them for the MHC-I loading as well as once bound to H-2Db, predisposing them for TCR binding. Our results also indicate that peptide position 6, key for interaction of H-2Db/gp33 with the TCR P14, takes a suboptimal conformation before as well as after binding to the TCR. Analyses of H-2Db in complex with APLs, in which position 6 was subjected to an l- to d-amino acid modification, revealed small conformational changes and comparable pMHC thermal stability. However, the l- to d-modification reduced significantly the binding to P14 even in the presence of the p3P modification. Our combined data highlight the sensitivity of the TCR for the conformational dynamics of pMHC and provide further tools to dissect and modulate TCR binding and immunogenicity via APLs.
Collapse
Affiliation(s)
- Federico Ballabio
- Dipartimento
di Bioscienze, Università degli Studi
di Milano, Milano 20133, Italy
| | - Luca Broggini
- Dipartimento
di Bioscienze, Università degli Studi
di Milano, Milano 20133, Italy
- Institute
of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, San Donato Milanese 20097, Italy
| | - Cristina Paissoni
- Dipartimento
di Bioscienze, Università degli Studi
di Milano, Milano 20133, Italy
| | - Xiao Han
- Science
for Life Laboratory, Department of Medicine, Karolinska Institute,
& Division of Infectious Diseases, Karolinska
University Hospital, Stockholm 14186, Sweden
| | - Kaliroi Peqini
- DISFARM,
Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e
Organica, Università degli Studi
di Milano, Milano 20122, Italy
| | - Benedetta Maria Sala
- Science
for Life Laboratory, Department of Medicine, Karolinska Institute,
& Division of Infectious Diseases, Karolinska
University Hospital, Stockholm 14186, Sweden
| | - Renhua Sun
- Science
for Life Laboratory, Department of Medicine, Karolinska Institute,
& Division of Infectious Diseases, Karolinska
University Hospital, Stockholm 14186, Sweden
| | - Tatyana Sandalova
- Science
for Life Laboratory, Department of Medicine, Karolinska Institute,
& Division of Infectious Diseases, Karolinska
University Hospital, Stockholm 14186, Sweden
| | - Alberto Barbiroli
- Dipartimento
di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, Milano 20122, Italy
| | - Adnane Achour
- Science
for Life Laboratory, Department of Medicine, Karolinska Institute,
& Division of Infectious Diseases, Karolinska
University Hospital, Stockholm 14186, Sweden
| | - Sara Pellegrino
- DISFARM,
Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e
Organica, Università degli Studi
di Milano, Milano 20122, Italy
| | - Stefano Ricagno
- Dipartimento
di Bioscienze, Università degli Studi
di Milano, Milano 20133, Italy
- Institute
of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, San Donato Milanese 20097, Italy
| | - Carlo Camilloni
- Dipartimento
di Bioscienze, Università degli Studi
di Milano, Milano 20133, Italy
| |
Collapse
|
14
|
Jantz-Naeem N, Springer S. Venus flytrap or pas de trois? The dynamics of MHC class I molecules. Curr Opin Immunol 2021; 70:82-89. [PMID: 33993034 DOI: 10.1016/j.coi.2021.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 11/25/2022]
Abstract
The peptide binding site of major histocompatibility complex (MHC) class I molecules is natively unfolded when devoid of peptides. Peptide binding stabilizes the structure and slows the dynamics, but peptide-specific and subtype-specific motions influence, and are influenced by, interaction with assembly chaperones, the T cell receptor, and other class I-binding proteins. The molecular mechanisms of cooperation between peptide, class I heavy chain, and beta-2 microglobulin are insufficiently known but are being elucidated by nuclear magnetic resonance and other modern methods. It appears that micropolymorphic clusters of charged amino acids, often hidden in the molecule interior, determine the dynamics and thus chaperone dependence, cellular fate, and disease association of class I.
Collapse
Affiliation(s)
- Nouria Jantz-Naeem
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany.
| |
Collapse
|
15
|
Smith AR, Alonso JA, Ayres CM, Singh NK, Hellman LM, Baker BM. Structurally silent peptide anchor modifications allosterically modulate T cell recognition in a receptor-dependent manner. Proc Natl Acad Sci U S A 2021; 118:e2018125118. [PMID: 33468649 PMCID: PMC7848747 DOI: 10.1073/pnas.2018125118] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Presentation of peptides by class I MHC proteins underlies T cell immune responses to pathogens and cancer. The association between peptide binding affinity and immunogenicity has led to the engineering of modified peptides with improved MHC binding, with the hope that these peptides would be useful for eliciting cross-reactive immune responses directed toward their weak binding, unmodified counterparts. Increasing evidence, however, indicates that T cell receptors (TCRs) can perceive such anchor-modified peptides differently than wild-type (WT) peptides, although the scope of discrimination is unclear. We show here that even modifications at primary anchors that have no discernible structural impact can lead to substantially stronger or weaker T cell recognition depending on the TCR. Surprisingly, the effect of peptide anchor modification can be sensed by a TCR at regions distant from the site of modification, indicating a through-protein mechanism in which the anchor residue serves as an allosteric modulator for TCR binding. Our findings emphasize caution in the use and interpretation of results from anchor-modified peptides and have implications for how anchor modifications are accounted for in other circumstances, such as predicting the immunogenicity of tumor neoantigens. Our data also highlight an important need to better understand the highly tunable dynamic nature of class I MHC proteins and the impact this has on various forms of immune recognition.
Collapse
MESH Headings
- Allosteric Regulation
- Binding Sites
- Cloning, Molecular
- Crystallography, X-Ray
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- HLA-A2 Antigen/chemistry
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/immunology
- Humans
- Jurkat Cells
- Kinetics
- Models, Molecular
- Peptides/chemistry
- Peptides/genetics
- Peptides/immunology
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Engineering
- Protein Interaction Domains and Motifs
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Th2 Cells/cytology
- Th2 Cells/immunology
- Thermodynamics
Collapse
Affiliation(s)
- Angela R Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556
| | - Jesus A Alonso
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556
| | - Cory M Ayres
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556
| | - Nishant K Singh
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556
| | - Lance M Hellman
- Department of Physical and Life Sciences, Nevada State College, Henderson, NV 89002
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556;
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
16
|
Ivanova M, Tsvetkova G, Lukanov T, Stoimenov A, Hadjiev E, Shivarov V. Probable HLA-mediated immunoediting of JAK2 V617F-driven oncogenesis. Exp Hematol 2020; 92:75-88.e10. [DOI: 10.1016/j.exphem.2020.09.200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/13/2022]
|
17
|
Assmus LM, Guan J, Wu T, Farenc C, Sng XYX, Zareie P, Nguyen A, Nguyen AT, Tscharke DC, Thomas PG, Rossjohn J, Gras S, Croft NP, Purcell AW, La Gruta NL. Overlapping Peptides Elicit Distinct CD8 + T Cell Responses following Influenza A Virus Infection. THE JOURNAL OF IMMUNOLOGY 2020; 205:1731-1742. [PMID: 32868409 DOI: 10.4049/jimmunol.2000689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022]
Abstract
The presentation of pathogen-derived peptides on MHC class I molecules is essential for the initiation of adaptive CD8+ T cell immunity, which in turn is critical for effective control of many significant human infections. The identification of immunogenic pathogen-derived epitopes and a detailed understanding of how they are recognized by TCRs is essential for the design of effective T cell-based vaccines. In this study, we have characterized the T cell recognition and immune responses in mice to two naturally presented influenza A virus-derived peptides previously identified from virally infected cells via mass spectrometry. These neuraminidase-derived peptides, NA181-190 (SGPDNGAVAV) and NA181-191 (SGPDNGAVAVL), are completely overlapping with the exception of a 1 aa extension at the C terminus of the longer peptide. This minor peptidic difference results in the induction of two completely independent and non-cross-reactive T cell populations that show distinct functional characteristics after influenza A virus infection of B6 mice. We show that the unique TCR reactivity to the overlapping peptides is present in the naive repertoire prior to immune expansion in B6 mice. Moreover, we provide a structural explanation underlying the distinct CD8+ T cell reactivities, which reinforces the concept that peptide length is a key determinant of Ag specificity in CD8+ T cell responses.
Collapse
Affiliation(s)
- Lisa M Assmus
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia.,Institute of Experimental Immunology, University Hospital Bonn, 53105 Bonn, Germany
| | - Jing Guan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Ting Wu
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Carine Farenc
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Xavier Y X Sng
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Pirooz Zareie
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Angela Nguyen
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Andrea T Nguyen
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - David C Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; and.,Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Nathan P Croft
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia;
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia;
| | - Nicole L La Gruta
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia;
| |
Collapse
|
18
|
Antunes DA, Abella JR, Hall-Swan S, Devaurs D, Conev A, Moll M, Lizée G, Kavraki LE. HLA-Arena: A Customizable Environment for the Structural Modeling and Analysis of Peptide-HLA Complexes for Cancer Immunotherapy. JCO Clin Cancer Inform 2020; 4:623-636. [PMID: 32667823 PMCID: PMC7397777 DOI: 10.1200/cci.19.00123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE HLA protein receptors play a key role in cellular immunity. They bind intracellular peptides and display them for recognition by T-cell lymphocytes. Because T-cell activation is partially driven by structural features of these peptide-HLA complexes, their structural modeling and analysis are becoming central components of cancer immunotherapy projects. Unfortunately, this kind of analysis is limited by the small number of experimentally determined structures of peptide-HLA complexes. Overcoming this limitation requires developing novel computational methods to model and analyze peptide-HLA structures. METHODS Here we describe a new platform for the structural modeling and analysis of peptide-HLA complexes, called HLA-Arena, which we have implemented using Jupyter Notebook and Docker. It is a customizable environment that facilitates the use of computational tools, such as APE-Gen and DINC, which we have previously applied to peptide-HLA complexes. By integrating other commonly used tools, such as MODELLER and MHCflurry, this environment includes support for diverse tasks in structural modeling, analysis, and visualization. RESULTS To illustrate the capabilities of HLA-Arena, we describe 3 example workflows applied to peptide-HLA complexes. Leveraging the strengths of our tools, DINC and APE-Gen, the first 2 workflows show how to perform geometry prediction for peptide-HLA complexes and structure-based binding prediction, respectively. The third workflow presents an example of large-scale virtual screening of peptides for multiple HLA alleles. CONCLUSION These workflows illustrate the potential benefits of HLA-Arena for the structural modeling and analysis of peptide-HLA complexes. Because HLA-Arena can easily be integrated within larger computational pipelines, we expect its potential impact to vastly increase. For instance, it could be used to conduct structural analyses for personalized cancer immunotherapy, neoantigen discovery, or vaccine development.
Collapse
Affiliation(s)
| | | | - Sarah Hall-Swan
- Department of Computer Science, Rice University, Houston, TX
| | | | - Anja Conev
- Department of Computer Science, Rice University, Houston, TX
| | - Mark Moll
- Department of Computer Science, Rice University, Houston, TX
| | - Gregory Lizée
- Department of Melanoma Medical Oncology–Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
19
|
Tarbe M, Miles JJ, Edwards ESJ, Miles KM, Sewell AK, Baker BM, Quideau S. Synthesis and Biological Evaluation of Hapten-Clicked Analogues of The Antigenic Peptide Melan-A/MART-1 26(27L)-35. ChemMedChem 2020; 15:799-807. [PMID: 32162475 PMCID: PMC7473458 DOI: 10.1002/cmdc.202000038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/03/2020] [Indexed: 11/12/2022]
Abstract
A click-chemistry-based approach was implemented to prepare peptidomimetics designed in silico and made from aromatic azides and a propargylated GIGI-mimicking platform derived from the altered Melan-A/MART-126(27L)-35 antigenic peptide ELAGIGILTV. The CuI -catalyzed Huisgen cycloaddition was carried out on solid support to generate rapidly a first series of peptidomimetics, which were evaluated for their capacity to dock at the interface between the major histocompatibility complex class-I (MHC-I) human leucocyte antigen (HLA)-A2 and T-cell receptors (TCRs). Despite being a weak HLA-A2 ligand, one of these 11 first synthetic compounds bearing a p-nitrobenzyl-triazole side chain was recognized by the receptor proteins of Melan-A/MART-1-specific T-cells. After modification of the N and C termini of this agonist, which was intended to enhance HLA-A2 binding, one of the resulting seven additional compounds triggered significant T-cell responses. Thus, these results highlight the capacity of naturally circulating human TCRs that are specific for the native Melan-A/MART-126-35 peptide to cross-react with peptidomimetics bearing organic motifs structurally different from the native central amino acids.
Collapse
Affiliation(s)
- Marion Tarbe
- Université de Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - John J Miles
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Emily S J Edwards
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
- Department of Immunology and Pathology, Central Clinical School, Monash University, Level 6, 89 Commercial Road, Melbourne, Victoria, 3004, Australia
| | - Kim M Miles
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Brian M Baker
- Department of Chemistry & Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Stéphane Quideau
- Université de Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
- Institut Universitaire de France, 1 rue Descartes, 75231, Paris Cedex 05, France
| |
Collapse
|
20
|
Abstract
T cells recognize and respond to self antigens in both cancer and autoimmunity. One strategy to influence this response is to incorporate amino acid substitutions into these T cell-specific epitopes. This strategy is being reconsidered now with the goal of increasing time to regression with checkpoint blockade therapies in cancer and antigen-specific immunotherapies in autoimmunity. We discuss how these amino acid substitutions change the interactions with the MHC class I or II molecule and the responding T cell repertoire. Amino acid substitutions in epitopes that are the most effective in therapies bind more strongly to T cell receptor and/or MHC molecules and cross-react with the same repertoire of T cells as the natural antigen.
Collapse
Affiliation(s)
- Jill E Slansky
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E. 19thAvenue, Aurora, CO 80045, USA.
| | - Maki Nakayama
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E. 19thAvenue, Aurora, CO 80045, USA; Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, 1775 Aurora Court, Aurora, CO 80045, USA
| |
Collapse
|
21
|
Trowitzsch S, Tampé R. Multifunctional Chaperone and Quality Control Complexes in Adaptive Immunity. Annu Rev Biophys 2020; 49:135-161. [PMID: 32004089 DOI: 10.1146/annurev-biophys-121219-081643] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The fundamental process of adaptive immunity relies on the differentiation of self from nonself. Nucleated cells are continuously monitored by effector cells of the immune system, which police the peptide status presented via cell surface molecules. Recent integrative structural approaches have provided insights toward our understanding of how sophisticated cellular machineries shape such hierarchical immune surveillance. Biophysical and structural achievements were invaluable for defining the interconnection of many key factors during antigen processing and presentation, and helped to solve several conundrums that persisted for many years. In this review, we illuminate the numerous quality control machineries involved in different steps during the maturation of major histocompatibility complex class I (MHC I) proteins, from their synthesis in the endoplasmic reticulum to folding and trafficking via the secretory pathway, optimization of antigenic cargo, final release to the cell surface, and engagement with their cognate receptors on cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; ,
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; ,
| |
Collapse
|
22
|
Wickström SL, Lövgren T, Volkmar M, Reinhold B, Duke-Cohan JS, Hartmann L, Rebmann J, Mueller A, Melief J, Maas R, Ligtenberg M, Hansson J, Offringa R, Seliger B, Poschke I, Reinherz EL, Kiessling R. Cancer Neoepitopes for Immunotherapy: Discordance Between Tumor-Infiltrating T Cell Reactivity and Tumor MHC Peptidome Display. Front Immunol 2019; 10:2766. [PMID: 31921104 PMCID: PMC6918724 DOI: 10.3389/fimmu.2019.02766] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022] Open
Abstract
Tumor-infiltrating lymphocytes (TIL) are considered enriched for T cells recognizing shared tumor antigens or mutation-derived neoepitopes. We performed exome sequencing and HLA-A*02:01 epitope prediction from tumor cell lines from two HLA-A2-positive melanoma patients whose TIL displayed strong tumor reactivity. The potential neoepitopes were screened for recognition using autologous TIL by immunological assays and presentation on tumor major histocompatibility complex class I (MHC-I) molecules by Poisson detection mass spectrometry (MS). TIL from the patients recognized 5/181 and 3/49 of the predicted neoepitopes, respectively. MS screening detected 3/181 neoepitopes on tumor MHC-I from the first patient but only one was also among those recognized by TIL. Consequently, TIL enriched for neoepitope specificity failed to recognize tumor cells, despite being activated by peptides. For the second patient, only after IFN-γ treatment of the tumor cells was one of 49 predicted neoepitopes detected by MS, and this coincided with recognition by TIL sorted for the same specificity. Importantly, specific T cells could be expanded from patient and donor peripheral blood mononuclear cells (PBMC) for all neoepitopes recognized by TIL and/or detected on tumor MHC-I. In summary, stimulating the appropriate inflammatory environment within tumors may promote neoepitope MHC presentation while expanding T cells in blood may circumvent lack of specific TIL. The discordance in detection between physical and functional methods revealed here can be rationalized and used to improve neoantigen-targeted T cell immunotherapy.
Collapse
Affiliation(s)
- Stina L Wickström
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Tanja Lövgren
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Michael Volkmar
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bruce Reinhold
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Jonathan S Duke-Cohan
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Laura Hartmann
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Janina Rebmann
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anja Mueller
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jeroen Melief
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Roeltje Maas
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Maarten Ligtenberg
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Hansson
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Rienk Offringa
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Isabel Poschke
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany.,DKTK Immune Monitoring Unit, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Ellis L Reinherz
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Rolf Kiessling
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Riley TP, Keller GLJ, Smith AR, Davancaze LM, Arbuiso AG, Devlin JR, Baker BM. Structure Based Prediction of Neoantigen Immunogenicity. Front Immunol 2019; 10:2047. [PMID: 31555277 PMCID: PMC6724579 DOI: 10.3389/fimmu.2019.02047] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/13/2019] [Indexed: 12/30/2022] Open
Abstract
The development of immunological therapies that incorporate peptide antigens presented to T cells by MHC proteins is a long sought-after goal, particularly for cancer, where mutated neoantigens are being explored as personalized cancer vaccines. Although neoantigens can be identified through sequencing, bioinformatics and mass spectrometry, identifying those which are immunogenic and able to promote tumor rejection remains a significant challenge. Here we examined the potential of high-resolution structural modeling followed by energetic scoring of structural features for predicting neoantigen immunogenicity. After developing a strategy to rapidly and accurately model nonameric peptides bound to the common class I MHC protein HLA-A2, we trained a neural network on structural features that influence T cell receptor (TCR) and peptide binding energies. The resulting structurally-parameterized neural network outperformed methods that do not incorporate explicit structural or energetic properties in predicting CD8+ T cell responses of HLA-A2 presented nonameric peptides, while also providing insight into the underlying structural and biophysical mechanisms governing immunogenicity. Our proof-of-concept study demonstrates the potential for structure-based immunogenicity predictions in the development of personalized peptide-based vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Brian M. Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
24
|
Madura F, Rizkallah PJ, Legut M, Holland CJ, Fuller A, Bulek A, Schauenburg AJ, Trimby A, Hopkins JR, Wells SA, Godkin A, Miles JJ, Sami M, Li Y, Liddy N, Jakobsen BK, Loveridge EJ, Cole DK, Sewell AK. TCR-induced alteration of primary MHC peptide anchor residue. Eur J Immunol 2019; 49:1052-1066. [PMID: 31091334 PMCID: PMC6618058 DOI: 10.1002/eji.201948085] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/21/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
The HLA-A*02:01-restricted decapeptide EAAGIGILTV, derived from melanoma antigen recognized by T-cells-1 (MART-1) protein, represents one of the best-studied tumor associated T-cell epitopes, but clinical results targeting this peptide have been disappointing. This limitation may reflect the dominance of the nonapeptide, AAGIGILTV, at the melanoma cell surface. The decapeptide and nonapeptide are presented in distinct conformations by HLA-A*02:01 and TCRs from clinically relevant T-cell clones recognize the nonapeptide poorly. Here, we studied the MEL5 TCR that potently recognizes the nonapeptide. The structure of the MEL5-HLA-A*02:01-AAGIGILTV complex revealed an induced fit mechanism of antigen recognition involving altered peptide-MHC anchoring. This "flexing" at the TCR-peptide-MHC interface to accommodate the peptide antigen explains previously observed incongruences in this well-studied system and has important implications for future therapeutic approaches. Finally, this study expands upon the mechanisms by which molecular plasticity can influence antigen recognition by T cells.
Collapse
Affiliation(s)
| | | | | | | | - Anna Fuller
- School of MedicineCardiff UniversityCardiffUK
| | - Anna Bulek
- School of MedicineCardiff UniversityCardiffUK
| | | | | | | | | | | | - John J. Miles
- School of MedicineCardiff UniversityCardiffUK
- Centre for Biodiscovery and Molecular Development of TherapeuticsAustralian Institute of Tropical Health and MedicineJames Cook UniversityCairnsQueenslandAustralia
| | | | - Yi Li
- Immunocore Ltd.AbingdonUK
| | | | | | - E. Joel Loveridge
- School of ChemistryCardiff UniversityCardiffUK
- Department of ChemistrySwansea UniversitySwanseaUK
| | - David K. Cole
- School of MedicineCardiff UniversityCardiffUK
- Immunocore Ltd.AbingdonUK
| | - Andrew K. Sewell
- School of MedicineCardiff UniversityCardiffUK
- Systems Immunity Research InstituteCardiff UniversityCardiffUK
| |
Collapse
|
25
|
Ayres CM, Abualrous ET, Bailey A, Abraham C, Hellman LM, Corcelli SA, Noé F, Elliott T, Baker BM. Dynamically Driven Allostery in MHC Proteins: Peptide-Dependent Tuning of Class I MHC Global Flexibility. Front Immunol 2019; 10:966. [PMID: 31130956 PMCID: PMC6509175 DOI: 10.3389/fimmu.2019.00966] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/15/2019] [Indexed: 11/21/2022] Open
Abstract
T cell receptor (TCR) recognition of antigenic peptides bound and presented by class I major histocompatibility complex (MHC) proteins underlies the cytotoxic immune response to diseased cells. Crystallographic structures of TCR-peptide/MHC complexes have demonstrated how TCRs simultaneously interact with both the peptide and the MHC protein. However, it is increasingly recognized that, beyond serving as a static platform for peptide presentation, the physical properties of class I MHC proteins are tuned by different peptides in ways that are not always structurally visible. These include MHC protein motions, or dynamics, which are believed to influence interactions with a variety of MHC-binding proteins, including not only TCRs, but other activating and inhibitory receptors as well as components of the peptide loading machinery. Here, we investigated the mechanisms by which peptides tune the dynamics of the common class I MHC protein HLA-A2. By examining more than 50 lengthy molecular dynamics simulations of HLA-A2 presenting different peptides, we identified regions susceptible to dynamic tuning, including regions in the peptide binding domain as well as the distal α3 domain. Further analyses of the simulations illuminated mechanisms by which the influences of different peptides are communicated throughout the protein, and involve regions of the peptide binding groove, the β2-microglobulin subunit, and the α3 domain. Overall, our results demonstrate that the class I MHC protein is a highly tunable peptide sensor whose physical properties vary considerably with bound peptide. Our data provides insight into the underlying principles and suggest a role for dynamically driven allostery in the immunological function of MHC proteins.
Collapse
Affiliation(s)
- Cory M Ayres
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States.,Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Esam T Abualrous
- Computational Molecular Biology Group, Institute for Mathematics, Freie Universität Berlin, Berlin, Germany
| | - Alistair Bailey
- Institute for Life Sciences and Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | - Christian Abraham
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States.,Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Lance M Hellman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States.,Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Steven A Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Frank Noé
- Computational Molecular Biology Group, Institute for Mathematics, Freie Universität Berlin, Berlin, Germany
| | - Tim Elliott
- Institute for Life Sciences and Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States.,Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| |
Collapse
|
26
|
Riley TP, Hellman LM, Gee MH, Mendoza JL, Alonso JA, Foley KC, Nishimura MI, Vander Kooi CW, Garcia KC, Baker BM. T cell receptor cross-reactivity expanded by dramatic peptide-MHC adaptability. Nat Chem Biol 2018; 14:934-942. [PMID: 30224695 PMCID: PMC6371774 DOI: 10.1038/s41589-018-0130-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
T cell receptor cross-reactivity allows a fixed T cell repertoire to respond to a much larger universe of potential antigens. Recent work has emphasized the importance of peptide structural and chemical homology, as opposed to sequence similarity, in T cell receptor cross-reactivity. Surprisingly though, T cell receptors can also cross-react between ligands with little physiochemical commonalities. Studying the clinically relevant receptor DMF5, we demonstrate that cross-recognition of such divergent antigens can occur through mechanisms that involve heretofore unanticipated rearrangements in the peptide and presenting MHC protein, including binding-induced peptide register shifts and extensions from MHC peptide binding grooves. Moreover, cross-reactivity can proceed even when such dramatic rearrangements do not translate into structural or chemical molecular mimicry. Beyond demonstrating new principles of T cell receptor cross-reactivity, our results have implications for efforts to predict and control T cell specificity and cross-reactivity, and highlight challenges associated with predicting T cell reactivities.
Collapse
Affiliation(s)
- Timothy P Riley
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Lance M Hellman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Marvin H Gee
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Juan L Mendoza
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jesus A Alonso
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kendra C Foley
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| | - Michael I Nishimura
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| | - Craig W Vander Kooi
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA. .,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
27
|
Cuendet MA, Margul DT, Schneider E, Vogt-Maranto L, Tuckerman ME. Endpoint-restricted adiabatic free energy dynamics approach for the exploration of biomolecular conformational equilibria. J Chem Phys 2018; 149:072316. [DOI: 10.1063/1.5027479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Michel A. Cuendet
- Molecular Modeling Group, Swiss Institute of Bioinformatics, UNIL Sorge, 1015 Lausanne, Switzerland
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York 10065, USA
| | - Daniel T. Margul
- Department of Chemistry, New York University, New York, New York 10003, USA
| | - Elia Schneider
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | | - Mark E. Tuckerman
- Department of Chemistry, New York University, New York, New York 10003, USA
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
| |
Collapse
|
28
|
Hafstrand I, Doorduijn EM, Sun R, Talyzina A, Sluijter M, Pellegrino S, Sandalova T, Duru AD, van Hall T, Achour A. The Immunogenicity of a Proline-Substituted Altered Peptide Ligand toward the Cancer-Associated TEIPP Neoepitope Trh4 Is Unrelated to Complex Stability. THE JOURNAL OF IMMUNOLOGY 2018; 200:2860-2868. [PMID: 29507106 DOI: 10.4049/jimmunol.1700228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 02/07/2018] [Indexed: 01/05/2023]
Abstract
Human cancers frequently display defects in Ag processing and presentation allowing for immune evasion, and they therefore constitute a significant challenge for T cell-based immunotherapy. We have previously demonstrated that the antigenicity of tumor-associated Ags can be significantly enhanced through unconventional residue modifications as a novel tool for MHC class I (MHC-I)-based immunotherapy approaches. We have also previously identified a novel category of cancer neo-epitopes, that is, T cell epitopes associated with impaired peptide processing (TEIPP), that are selectively presented by MHC-I on cells lacking the peptide transporter TAP. In this study, we demonstrate that substitution of the nonanchoring position 3 into a proline residue of the first identified TEIPP peptide, the murine Trh4, results in significantly enhanced recognition by antitumor CTLs toward the wild-type epitope. Although higher immunogenicity has in most cases been associated with increased MHC/peptide complex stability, our results demonstrate that the overall stability of H-2Db in complex with the highly immunogenic altered peptide ligand Trh4-p3P is significantly reduced compared with wild-type H-2Db/Trh4. Comparison of the crystal structures of the H-2Db/Trh4-p3P and H-2Db/Trh4 complexes revealed that the conformation of the nonconventional methionine anchor residue p5M is altered, deleting its capacity to form adequate sulfur-π interactions with H-2Db residues, thus reducing the overall longevity of the complex. Collectively, our results indicate that vaccination with Thr4-p3P significantly enhances T cell recognition of targets presenting the wild-type TEIPP epitope and that higher immunogenicity is not necessarily directly related to MHC/peptide complex stability, opening for the possibility to design novel peptide vaccines with reduced MHC/peptide complex stability.
Collapse
Affiliation(s)
- Ida Hafstrand
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, 17165 Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
| | - Elien M Doorduijn
- Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Renhua Sun
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, 17165 Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
| | - Anna Talyzina
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, 17165 Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
| | - Marjolein Sluijter
- Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Sara Pellegrino
- Department of Pharmaceutical Science, General and Organic Chemistry Section, University of Milan, 20133 Milan, Italy
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, 17165 Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
| | - Adil Doganay Duru
- Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL 33314; and.,College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328
| | - Thorbald van Hall
- Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands;
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, 17165 Stockholm, Sweden; .,Department of Infectious Diseases, Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
| |
Collapse
|
29
|
Singh NK, Riley TP, Baker SCB, Borrman T, Weng Z, Baker BM. Emerging Concepts in TCR Specificity: Rationalizing and (Maybe) Predicting Outcomes. THE JOURNAL OF IMMUNOLOGY 2017; 199:2203-2213. [PMID: 28923982 DOI: 10.4049/jimmunol.1700744] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
T cell specificity emerges from a myriad of processes, ranging from the biological pathways that control T cell signaling to the structural and physical mechanisms that influence how TCRs bind peptides and MHC proteins. Of these processes, the binding specificity of the TCR is a key component. However, TCR specificity is enigmatic: TCRs are at once specific but also cross-reactive. Although long appreciated, this duality continues to puzzle immunologists and has implications for the development of TCR-based therapeutics. In this review, we discuss TCR specificity, emphasizing results that have emerged from structural and physical studies of TCR binding. We show how the TCR specificity/cross-reactivity duality can be rationalized from structural and biophysical principles. There is excellent agreement between predictions from these principles and classic predictions about the scope of TCR cross-reactivity. We demonstrate how these same principles can also explain amino acid preferences in immunogenic epitopes and highlight opportunities for structural considerations in predictive immunology.
Collapse
Affiliation(s)
- Nishant K Singh
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556; and
| | - Timothy P Riley
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556; and
| | - Sarah Catherine B Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556; and
| | - Tyler Borrman
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556; .,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556; and
| |
Collapse
|
30
|
Hall CE, Koparde VN, Jameson-Lee M, Elnasseh AG, Scalora AF, Kobulnicky DJ, Serrano MG, Roberts CH, Buck GA, Neale MC, Nixon DE, Toor AA. Sequence homology between HLA-bound cytomegalovirus and human peptides: A potential trigger for alloreactivity. PLoS One 2017; 12:e0178763. [PMID: 28800601 PMCID: PMC5553991 DOI: 10.1371/journal.pone.0178763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 05/18/2017] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (hCMV) reactivation may often coincide with the development of graft-versus-host-disease (GVHD) in stem cell transplantation (SCT). Seventy seven SCT donor-recipient pairs (DRP) (HLA matched unrelated donor (MUD), n = 50; matched related donor (MRD), n = 27) underwent whole exome sequencing to identify single nucleotide polymorphisms (SNPs) generating alloreactive peptide libraries for each DRP (9-mer peptide-HLA complexes); Human CMV CROSS (Cross-Reactive Open Source Sequence) database was compiled from NCBI; HLA class I binding affinity for each DRPs HLA was calculated by NetMHCpan 2.8 and hCMV- derived 9-mers algorithmically compared to the alloreactive peptide-HLA complex libraries. Short consecutive (≥6) amino acid (AA) sequence homology matching hCMV to recipient peptides was considered for HLA-bound-peptide (IC50<500nM) cross reactivity. Of the 70,686 hCMV 9-mers contained within the hCMV CROSS database, an average of 29,658 matched the MRD DRP alloreactive peptides and 52,910 matched MUD DRP peptides (p<0.001). In silico analysis revealed multiple high affinity, immunogenic CMV-Human peptide matches (IC50<500 nM) expressed in GVHD-affected tissue-specific manner. hCMV+GVHD was found in 18 patients, 13 developing hCMV viremia before GVHD onset. Analysis of patients with GVHD identified potential cross reactive peptide expression within affected organs. We propose that hCMV peptide sequence homology with human alloreactive peptides may contribute to the pathophysiology of GVHD.
Collapse
Affiliation(s)
- Charles E. Hall
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Vishal N. Koparde
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Maximilian Jameson-Lee
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Abdelrhman G. Elnasseh
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Allison F. Scalora
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - David J. Kobulnicky
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Myrna G. Serrano
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Catherine H. Roberts
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Gregory A. Buck
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Michael C. Neale
- Departments of Psychiatry and Human & Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Daniel E. Nixon
- Division of Infectious Diseases, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Amir A. Toor
- Bone Marrow Transplant Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
31
|
Ayres CM, Corcelli SA, Baker BM. Peptide and Peptide-Dependent Motions in MHC Proteins: Immunological Implications and Biophysical Underpinnings. Front Immunol 2017; 8:935. [PMID: 28824655 PMCID: PMC5545744 DOI: 10.3389/fimmu.2017.00935] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/21/2017] [Indexed: 01/28/2023] Open
Abstract
Structural biology of peptides presented by class I and class II MHC proteins has transformed immunology, impacting our understanding of fundamental immune mechanisms and allowing researchers to rationalize immunogenicity and design novel vaccines. However, proteins are not static structures as often inferred from crystallographic structures. Their components move and breathe individually and collectively over a range of timescales. Peptides bound within MHC peptide-binding grooves are no exception and their motions have been shown to impact recognition by T cell and other receptors in ways that influence function. Furthermore, peptides tune the motions of MHC proteins themselves, which impacts recognition of peptide/MHC complexes by other proteins. Here, we review the motional properties of peptides in MHC binding grooves and discuss how peptide properties can influence MHC motions. We briefly review theoretical concepts about protein motion and highlight key data that illustrate immunological consequences. We focus primarily on class I systems due to greater availability of data, but segue into class II systems as the concepts and consequences overlap. We suggest that characterization of the dynamic “energy landscapes” of peptide/MHC complexes and the resulting functional consequences is one of the next frontiers in structural immunology.
Collapse
Affiliation(s)
- Cory M Ayres
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States.,Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Steven A Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States.,Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| |
Collapse
|
32
|
Ayres CM, Riley TP, Corcelli SA, Baker BM. Modeling Sequence-Dependent Peptide Fluctuations in Immunologic Recognition. J Chem Inf Model 2017; 57:1990-1998. [PMID: 28696685 DOI: 10.1021/acs.jcim.7b00118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In cellular immunity, T cells recognize peptide antigens bound and presented by major histocompatibility complex (MHC) proteins. The motions of peptides bound to MHC proteins play a significant role in determining immunogenicity. However, existing approaches for investigating peptide/MHC motional dynamics are challenging or of low throughput, hindering the development of algorithms for predicting immunogenicity from large databases, such as those of tumor or genetically unstable viral genomes. We addressed this by performing extensive molecular dynamics simulations on a large structural database of peptides bound to the most commonly expressed human class-I MHC protein, HLA-A*0201. The simulations reproduced experimental indicators of motion and were used to generate simple models for predicting site-specific, rapid motions of bound peptides through differences in their sequence and chemical composition alone. The models can easily be applied on their own or incorporated into immunogenicity prediction algorithms. Beyond their predictive power, the models provide insight into how amino acid substitutions can influence peptide and protein motions and how dynamic information is communicated across peptides. They also indicate a link between peptide rigidity and hydrophobicity, two features known to be important in influencing cellular immune responses.
Collapse
Affiliation(s)
- Cory M Ayres
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Timothy P Riley
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Steven A Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
33
|
How an alloreactive T-cell receptor achieves peptide and MHC specificity. Proc Natl Acad Sci U S A 2017; 114:E4792-E4801. [PMID: 28572406 DOI: 10.1073/pnas.1700459114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
T-cell receptor (TCR) allorecognition is often presumed to be relatively nonspecific, attributable to either a TCR focus on exposed major histocompatibility complex (MHC) polymorphisms or the degenerate recognition of allopeptides. However, paradoxically, alloreactivity can proceed with high peptide and MHC specificity. Although the underlying mechanisms remain unclear, the existence of highly specific alloreactive TCRs has led to their use as immunotherapeutics that can circumvent central tolerance and limit graft-versus-host disease. Here, we show how an alloreactive TCR achieves peptide and MHC specificity. The HCV1406 TCR was cloned from T cells that expanded when a hepatitis C virus (HCV)-infected HLA-A2- individual received an HLA-A2+ liver allograft. HCV1406 was subsequently shown to recognize the HCV nonstructural protein 3 (NS3):1406-1415 epitope with high specificity when presented by HLA-A2. We show that NS3/HLA-A2 recognition by the HCV1406 TCR is critically dependent on features unique to both the allo-MHC and the NS3 epitope. We also find cooperativity between structural mimicry and a crucial peptide "hot spot" and demonstrate its role, along with the MHC, in directing the specificity of allorecognition. Our results help explain the paradox of specificity in alloreactive TCRs and have implications for their use in immunotherapy and related efforts to manipulate TCR recognition, as well as alloreactivity in general.
Collapse
|
34
|
Connelley TK, Li X, MacHugh N, Colau D, Graham SP, van der Bruggen P, Taracha EL, Gill A, Morrison WI. CD8 T-cell responses against the immunodominant Theileria parva peptide Tp249-59 are composed of two distinct populations specific for overlapping 11-mer and 10-mer epitopes. Immunology 2016; 149:172-85. [PMID: 27317384 PMCID: PMC5011678 DOI: 10.1111/imm.12637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 01/30/2023] Open
Abstract
Immunity against Theileria parva is associated with CD8 T-cell responses that exhibit immunodominance, focusing the response against limited numbers of epitopes. As candidates for inclusion in vaccines, characterization of responses against immunodominant epitopes is a key component in novel vaccine development. We have previously demonstrated that the Tp249-59 and Tp1214-224 epitopes dominate CD8 T-cell responses in BoLA-A10 and BoLA-18 MHC I homozygous animals, respectively. In this study, peptide-MHC I tetramers for these epitopes, and a subdominant BoLA-A10-restricted epitope (Tp298-106 ), were generated to facilitate accurate and rapid enumeration of epitope-specific CD8 T cells. During validation of these tetramers a substantial proportion of Tp249-59 -reactive T cells failed to bind the tetramer, suggesting that this population was heterogeneous with respect to the recognized epitope. We demonstrate that Tp250-59 represents a distinct epitope and that tetramers produced with Tp50-59 and Tp49-59 show no cross-reactivity. The Tp249-59 and Tp250-59 epitopes use different serine residues as the N-terminal anchor for binding to the presenting MHC I molecule. Molecular dynamic modelling predicts that the two peptide-MHC I complexes adopt structurally different conformations and Tcell receptor β sequence analysis showed that Tp249-59 and Tp250-59 are recognized by non-overlapping T-cell receptor repertoires. Together these data demonstrate that although differing by only a single residue, Tp249-59 and Tp250-59 epitopes form distinct ligands for T-cell receptor recognition. Tetramer analysis of T. parva-specific CD8 T-cell lines confirmed the immunodominance of Tp1214-224 in BoLA-A18 animals and showed in BoLA-A10 animals that the Tp249-59 epitope response was generally more dominant than the Tp250-59 response and confirmed that the Tp298-106 response was subdominant.
Collapse
Affiliation(s)
- Timothy K. Connelley
- Division of Immunity and InfectionThe Roslin InstituteThe University of EdinburghMidlothianUK
| | - Xiaoying Li
- Division of Immunity and InfectionThe Roslin InstituteThe University of EdinburghMidlothianUK
- Present address: School of Life Sciences and TechnologyXinxiang Medical UniversityLaboratory Building Room 232XinxiangHenanCN 453003China
| | - Niall MacHugh
- Division of Immunity and InfectionThe Roslin InstituteThe University of EdinburghMidlothianUK
| | - Didier Colau
- Ludwig Institute for Cancer Research and de Duve InstituteUniversite catholique de LouvainBrusselsBelgium
| | - Simon P. Graham
- The International Livestock Research InstituteNairobiKenya
- Present address: The Pirbright InstituteAsh RoadPirbrightGU24 0NFUK
| | - Pierre van der Bruggen
- Ludwig Institute for Cancer Research and de Duve InstituteUniversite catholique de LouvainBrusselsBelgium
| | - Evans L. Taracha
- The International Livestock Research InstituteNairobiKenya
- Present address: Institute of Primate ResearchPO Box 24481‐00502KarenKenya
| | - Andy Gill
- Division of NeurobiologyThe Roslin InstituteThe University of EdinburghMidlothianUK
| | - William Ivan Morrison
- Division of Immunity and InfectionThe Roslin InstituteThe University of EdinburghMidlothianUK
| |
Collapse
|
35
|
Rosendahl Huber SK, Luimstra JJ, van Beek J, Hoppes R, Jacobi RHJ, Hendriks M, Kapteijn K, Ouwerkerk C, Rodenko B, Ovaa H, de Jonge J. Chemical Modification of Influenza CD8+ T-Cell Epitopes Enhances Their Immunogenicity Regardless of Immunodominance. PLoS One 2016; 11:e0156462. [PMID: 27333291 PMCID: PMC4917206 DOI: 10.1371/journal.pone.0156462] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/13/2016] [Indexed: 11/19/2022] Open
Abstract
T cells are essential players in the defense against infection. By targeting the MHC class I antigen-presenting pathway with peptide-based vaccines, antigen-specific T cells can be induced. However, low immunogenicity of peptides poses a challenge. Here, we set out to increase immunogenicity of influenza-specific CD8+ T cell epitopes. By substituting amino acids in wild type sequences with non-proteogenic amino acids, affinity for MHC can be increased, which may ultimately enhance cytotoxic CD8+ T cell responses. Since preventive vaccines against viruses should induce a broad immune response, we used this method to optimize influenza-specific epitopes of varying dominance. For this purpose, HLA-A*0201 epitopes GILGFVFTL, FMYSDFHFI and NMLSTVLGV were selected in order of decreasing MHC-affinity and dominance. For all epitopes, we designed chemically enhanced altered peptide ligands (CPLs) that exhibited greater binding affinity than their WT counterparts; even binding scores of the high affinity GILGFVFTL epitope could be improved. When HLA-A*0201 transgenic mice were vaccinated with selected CPLs, at least 2 out of 4 CPLs of each epitope showed an increase in IFN-γ responses of splenocytes. Moreover, modification of the low affinity epitope NMLSTVLGV led to an increase in the number of mice that responded. By optimizing three additional influenza epitopes specific for HLA-A*0301, we show that this strategy can be extended to other alleles. Thus, enhancing binding affinity of peptides provides a valuable tool to improve the immunogenicity and range of preventive T cell-targeted peptide vaccines.
Collapse
Affiliation(s)
- Sietske K. Rosendahl Huber
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Jolien J. Luimstra
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Institute for Chemical Immunology (ICI), Utrecht, the Netherlands
| | - Josine van Beek
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Rieuwert Hoppes
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ronald H. J. Jacobi
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Marion Hendriks
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Kim Kapteijn
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Casper Ouwerkerk
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Boris Rodenko
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Huib Ovaa
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Institute for Chemical Immunology (ICI), Utrecht, the Netherlands
| | - Jørgen de Jonge
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- * E-mail:
| |
Collapse
|
36
|
Lasso P, Cárdenas C, Guzmán F, Rosas F, Thomas MC, López MC, González JM, Cuéllar A, Campanera JM, Luque FJ, Puerta CJ. Effect of secondary anchor amino acid substitutions on the immunogenic properties of an HLA-A*0201-restricted T cell epitope derived from the Trypanosoma cruzi KMP-11 protein. Peptides 2016; 78:68-76. [PMID: 26854383 DOI: 10.1016/j.peptides.2016.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
Abstract
The TcTLE peptide (TLEEFSAKL) is a CD8(+) T cell HLA-A*0201-restricted epitope derived from the Trypanosoma cruzi KMP-11 protein that is efficiently processed, presented and recognized by CD8(+) T cells from chagasic patients. Since the immunogenic properties of wild-type epitopes may be enhanced by suitable substitutions in secondary anchor residues, we have studied the effect of introducing specific mutations at position 3, 6 and 7 of the TcTLE peptide. Mutations (E3L, S6V and A7F) were chosen on the basis of in silico predictions and in vitro assays were performed to determine the TcTLE-modified peptide binding capacity to the HLA-A*0201 molecule. In addition, the functional activity of peptide-specific CD8(+) T cells in HLA-A2(+) chagasic patients was also interrogated. In contrast to bioinformatics predictions, the TcTLE-modified peptide was found to have lower binding affinity and stability than the original peptide. Nevertheless, CD8(+) T cells from chronic chagasic patients recognized the TcTLE-modified peptide producing TNF-α and INF-γ and expressing CD107a/b, though in less extension than the response triggered by the original peptide. Overall, although the amino acids at positions 3, 6 and 7 of TcTLE are critical for the peptide affinity, they have a limited effect on the immunogenic properties of the TcTLE epitope.
Collapse
Affiliation(s)
- Paola Lasso
- Laboratorio de Parasitología Molecular, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá D.C., Colombia; Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá D.C., Colombia; Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, s/n.18016, Granada, Spain
| | - Constanza Cárdenas
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaíso, Chile
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaíso, Chile
| | - Fernando Rosas
- Instituto de Arritmias Joseph Brugada, Fundación Clínica Abood Shaio, Diagonal 115A No. 70C-75, Bogotá D.C., Colombia
| | - María Carmen Thomas
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, s/n.18016, Granada, Spain
| | - Manuel Carlos López
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, s/n.18016, Granada, Spain
| | - John Mario González
- Grupo de Ciencias Básicas Médicas, Facultad de Medicina, Universidad de los Andes, Carrera 1 No. 18A-10, Bogotá D.C., Colombia
| | - Adriana Cuéllar
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá D.C., Colombia
| | - Josep Maria Campanera
- Departament de Fisicoquímica, Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - F Javier Luque
- Departament de Fisicoquímica, Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Concepción Judith Puerta
- Laboratorio de Parasitología Molecular, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá D.C., Colombia.
| |
Collapse
|
37
|
Differential scanning fluorimetry based assessments of the thermal and kinetic stability of peptide-MHC complexes. J Immunol Methods 2016; 432:95-101. [PMID: 26906089 DOI: 10.1016/j.jim.2016.02.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 11/20/2022]
Abstract
Measurements of thermal stability by circular dichroism (CD) spectroscopy have been widely used to assess the binding of peptides to MHC proteins, particularly within the structural immunology community. Although thermal stability assays offer advantages over other approaches such as IC50 measurements, CD-based stability measurements are hindered by large sample requirements and low throughput. Here we demonstrate that an alternative approach based on differential scanning fluorimetry (DSF) yields results comparable to those based on CD for both class I and class II complexes. As they require much less sample, DSF-based measurements reduce demands on protein production strategies and are amenable for high throughput studies. DSF can thus not only replace CD as a means to assess peptide/MHC thermal stability, but can complement other peptide-MHC binding assays used in screening, epitope discovery, and vaccine design. Due to the physical process probed, DSF can also uncover complexities not observed with other techniques. Lastly, we show that DSF can also be used to assess peptide/MHC kinetic stability, allowing for a single experimental setup to probe both binding equilibria and kinetics.
Collapse
|
38
|
Abstract
T-cell receptor (TCR) binding to peptide/MHC determines specificity and initiates signaling in antigen-specific cellular immune responses. Structures of TCR-pMHC complexes have provided enormous insight to cellular immune functions, permitted a rational understanding of processes such as pathogen escape, and led to the development of novel approaches for the design of vaccines and other therapeutics. As production, crystallization, and structure determination of TCR-pMHC complexes can be challenging, there is considerable interest in modeling new complexes. Here we describe a rapid approach to TCR-pMHC modeling that takes advantage of structural features conserved in known complexes, such as the restricted TCR binding site and the generally conserved diagonal docking mode. The approach relies on the powerful Rosetta suite and is implemented using the PyRosetta scripting environment. We show how the approach can recapitulate changes in TCR binding angles and other structural details, and highlight areas where careful evaluation of parameters is needed and alternative choices might be made. As TCRs are highly sensitive to subtle structural perturbations, there is room for improvement. Our method nonetheless generates high-quality models that can be foundational for structure-based hypotheses regarding TCR recognition.
Collapse
Affiliation(s)
- Timothy P Riley
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
| | - Nishant K Singh
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
| | - Brian G Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA.
- Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA.
| |
Collapse
|
39
|
DockTope: a Web-based tool for automated pMHC-I modelling. Sci Rep 2015; 5:18413. [PMID: 26674250 PMCID: PMC4682062 DOI: 10.1038/srep18413] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 11/18/2015] [Indexed: 11/08/2022] Open
Abstract
The immune system is constantly challenged, being required to protect the organism against a wide variety of infectious pathogens and, at the same time, to avoid autoimmune disorders. One of the most important molecules involved in these events is the Major Histocompatibility Complex class I (MHC-I), responsible for binding and presenting small peptides from the intracellular environment to CD8+ T cells. The study of peptide:MHC-I (pMHC-I) molecules at a structural level is crucial to understand the molecular mechanisms underlying immunologic responses. Unfortunately, there are few pMHC-I structures in the Protein Data Bank (PDB) (especially considering the total number of complexes that could be formed combining different peptides), and pMHC-I modelling tools are scarce. Here, we present DockTope, a free and reliable web-based tool for pMHC-I modelling, based on crystal structures from the PDB. DockTope is fully automated and allows any researcher to construct a pMHC-I complex in an efficient way. We have reproduced a dataset of 135 non-redundant pMHC-I structures from the PDB (Cα RMSD below 1 Å). Modelling of pMHC-I complexes is remarkably important, contributing to the knowledge of important events such as cross-reactivity, autoimmunity, cancer therapy, transplantation and rational vaccine design.
Collapse
|
40
|
Motozono C, Pearson JA, De Leenheer E, Rizkallah PJ, Beck K, Trimby A, Sewell AK, Wong FS, Cole DK. Distortion of the Major Histocompatibility Complex Class I Binding Groove to Accommodate an Insulin-derived 10-Mer Peptide. J Biol Chem 2015; 290:18924-33. [PMID: 26085090 PMCID: PMC4521012 DOI: 10.1074/jbc.m114.622522] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 06/12/2015] [Indexed: 01/23/2023] Open
Abstract
The non-obese diabetic mouse model of type 1 diabetes continues to be an important tool for delineating the role of T-cell-mediated destruction of pancreatic β-cells. However, little is known about the molecular mechanisms that enable this disease pathway. We show that insulin reactivity by a CD8(+) T-cell clone, known to induce type 1 diabetes, is characterized by weak T-cell antigen receptor binding to a relatively unstable peptide-MHC. The structure of the native 9- and 10-mer insulin epitopes demonstrated that peptide residues 7 and 8 form a prominent solvent-exposed bulge that could potentially be the main focus of T-cell receptor binding. The C terminus of the peptide governed peptide-MHC stability. Unexpectedly, we further demonstrate a novel mode of flexible peptide presentation in which the MHC peptide-binding groove is able to "open the back door" to accommodate extra C-terminal peptide residues.
Collapse
Affiliation(s)
- Chihiro Motozono
- From the Division of Infection and Immunity and the Department of Immunology, Kinki University School of Medicine, Osaka 589-8511, Japan, and
| | - James A Pearson
- the Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Evy De Leenheer
- the Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | | | - Konrad Beck
- the Cardiff University School of Dentistry, Heath Park, Cardiff CF14 4XY, United Kingdom
| | | | | | - F Susan Wong
- the Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom,
| | | |
Collapse
|
41
|
Ramalho-Ortigão M, Coutinho-Abreu IV, Balbino VQ, Figueiredo CAS, Mukbel R, Dayem H, Hanafi HA, El-Hossary SS, Fawaz EEDY, Abo-Shehada M, Hoel DF, Stayback G, Wadsworth M, Shoue DA, Abrudan J, Lobo NF, Mahon AR, Emrich SJ, Kamhawi S, Collins FH, McDowell MA. Phlebotomus papatasi SP15: mRNA expression variability and amino acid sequence polymorphisms of field populations. Parasit Vectors 2015; 8:298. [PMID: 26022221 PMCID: PMC4472253 DOI: 10.1186/s13071-015-0914-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 05/22/2015] [Indexed: 11/20/2022] Open
Abstract
Background The Phlebotomus papatasi salivary protein PpSP15 was shown to protect mice against Leishmania major, suggesting that incorporation of salivary molecules in multi-component vaccines may be a viable strategy for anti-Leishmania vaccines. Methods Here, we investigated PpSP15 predicted amino acid sequence variability and mRNA profile of P. papatasi field populations from the Middle East. In addition, predicted MHC class II T-cell epitopes were obtained and compared to areas of amino acid sequence variability within the secreted protein. Results The analysis of PpSP15 expression from field populations revealed significant intra- and interpopulation variation.. In spite of the variability detected for P. papatasi populations, common epitopes for MHC class II binding are still present and may potentially be used to boost the response against Le. major infections. Conclusions Conserved epitopes of PpSP15 could potentially be used in the development of a salivary gland antigen-based vaccine. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-0914-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Iliano V Coutinho-Abreu
- Laboratory of Malaria and Vector Research, NIAID-NIH, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA.
| | - Valdir Q Balbino
- Department of Genetics, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | | | - Rami Mukbel
- Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Hussan Dayem
- Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Hanafi A Hanafi
- Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Shabaan S El-Hossary
- Vector Biology Research Program, U.S. Naval Medical Research Unit No. 3 (NAMRU-3), Cairo, Egypt.
| | - Emad El-Din Y Fawaz
- Vector Biology Research Program, U.S. Naval Medical Research Unit No. 3 (NAMRU-3), Cairo, Egypt.
| | - Mahmoud Abo-Shehada
- Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - David F Hoel
- Department of Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Gwen Stayback
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Mariha Wadsworth
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Douglas A Shoue
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Jenica Abrudan
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA.
| | - Neil F Lobo
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Andrew R Mahon
- Department of Biology, Central Michigan University, Mount Pleasant, Detroit, MI, 48859, USA.
| | - Scott J Emrich
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Shaden Kamhawi
- Laboratory of Malaria and Vector Research, NIAID-NIH, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA.
| | - Frank H Collins
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Mary Ann McDowell
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
42
|
Dyson J. T-cell receptors: tugging on the anchor for a tighter hold on the tumor-associated peptide. Eur J Immunol 2015; 45:380-2. [PMID: 25581444 DOI: 10.1002/eji.201445385] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 01/01/2015] [Accepted: 01/07/2015] [Indexed: 11/08/2022]
Abstract
Although it has been shown that human tumor-associated, HLA anchor residue modified "heteroclitic" peptides may induce stronger immune responses than wild-type peptides in cancer vaccine trials, it has also been shown that some T cells primed with these heteroclitic peptides subsequently fail to recognize the natural, tumor-expressed peptide efficiently. This may provide a molecular reason for why clinical trials of these peptides have been thus far unsuccessful. In this issue of the European Journal of Immunology, Madura et al. [Eur. J. Immunol. 2015. 45: 584-591] highlight a novel twist on T-cell receptor (TCR) recognition of HLA-peptide complexes. Tumor-associated peptides often lack canonical anchor residues, which can be substituted for the optimal residue to improve their antigenicity. T-cell cross-reactivity between the natural and modified (heteroclitic) peptides is essential for this approach to work and depends on whether the anchor residue substitution influences peptide conformation. The Melan-A/MART-126-35 peptide epitope is an example where T cells can make this distinction, with the natural peptide stimulating higher affinity CD8(+) T cells than the heteroclitic peptide, despite the heteroclitic peptide's more stable association with HLA-A2. The molecular basis for peptide discrimination is identified through the structure of the TCR bound to the natural peptide; TCR engagement of the natural peptide "lifts" its amino-terminus partly away from the HLA peptide binding groove, forming a higher affinity interface with the TCR than is formed with the anchor residue "optimized" heteroclitic peptide, which cannot be "pulled" from the HLA groove.
Collapse
Affiliation(s)
- Julian Dyson
- Section of Molecular Immunology, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
43
|
Madura F, Rizkallah PJ, Holland CJ, Fuller A, Bulek A, Godkin AJ, Schauenburg AJ, Cole DK, Sewell AK. Structural basis for ineffective T-cell responses to MHC anchor residue-improved "heteroclitic" peptides. Eur J Immunol 2015; 45:584-91. [PMID: 25471691 PMCID: PMC4357396 DOI: 10.1002/eji.201445114] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 10/03/2014] [Accepted: 11/26/2014] [Indexed: 12/11/2022]
Abstract
MHC anchor residue-modified "heteroclitic" peptides have been used in many cancer vaccine trials and often induce greater immune responses than the wild-type peptide. The best-studied system to date is the decamer MART-1/Melan-A26-35 peptide, EAAGIGILTV, where the natural alanine at position 2 has been modified to leucine to improve human leukocyte antigen (HLA)-A*0201 anchoring. The resulting ELAGIGILTV peptide has been used in many studies. We recently showed that T cells primed with the ELAGIGILTV peptide can fail to recognize the natural tumor-expressed peptide efficiently, thereby providing a potential molecular reason for why clinical trials of this peptide have been unsuccessful. Here, we solved the structure of a TCR in complex with HLA-A*0201-EAAGIGILTV peptide and compared it with its heteroclitic counterpart , HLA-A*0201-ELAGIGILTV. The data demonstrate that a suboptimal anchor residue at position 2 enables the TCR to "pull" the peptide away from the MHC binding groove, facilitating extra contacts with both the peptide and MHC surface. These data explain how a TCR can distinguish between two epitopes that differ by only a single MHC anchor residue and demonstrate how weak MHC anchoring can enable an induced-fit interaction with the TCR. Our findings constitute a novel demonstration of the extreme sensitivity of the TCR to minor alterations in peptide conformation.
Collapse
MESH Headings
- Alanine/chemistry
- Alanine/genetics
- Amino Acid Sequence
- Amino Acid Substitution
- Crystallography, X-Ray
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- HLA-A2 Antigen/chemistry
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/immunology
- Humans
- Leucine/chemistry
- Leucine/genetics
- MART-1 Antigen/chemistry
- MART-1 Antigen/genetics
- MART-1 Antigen/immunology
- Models, Molecular
- Molecular Sequence Data
- Peptides/chemistry
- Peptides/genetics
- Peptides/immunology
- Protein Binding
- Protein Interaction Domains and Motifs
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Florian Madura
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Pierre J Rizkallah
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Christopher J Holland
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Anna Fuller
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Anna Bulek
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Andrew J Godkin
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Andrea J Schauenburg
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - David K Cole
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| |
Collapse
|
44
|
Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, McCluskey J. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol 2014; 33:169-200. [PMID: 25493333 DOI: 10.1146/annurev-immunol-032414-112334] [Citation(s) in RCA: 508] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Major Histocompatibility Complex (MHC) locus encodes classical MHC class I and MHC class II molecules and nonclassical MHC-I molecules. The architecture of these molecules is ideally suited to capture and present an array of peptide antigens (Ags). In addition, the CD1 family members and MR1 are MHC class I-like molecules that bind lipid-based Ags and vitamin B precursors, respectively. These Ag-bound molecules are subsequently recognized by T cell antigen receptors (TCRs) expressed on the surface of T lymphocytes. Structural and associated functional studies have been highly informative in providing insight into these interactions, which are crucial to immunity, and how they can lead to aberrant T cell reactivity. Investigators have determined over thirty unique TCR-peptide-MHC-I complex structures and twenty unique TCR-peptide-MHC-II complex structures. These investigations have shown a broad consensus in docking geometry and provided insight into MHC restriction. Structural studies on TCR-mediated recognition of lipid and metabolite Ags have been mostly confined to TCRs from innate-like natural killer T cells and mucosal-associated invariant T cells, respectively. These studies revealed clear differences between TCR-lipid-CD1, TCR-metabolite-MR1, and TCR-peptide-MHC recognition. Accordingly, TCRs show remarkable structural and biological versatility in engaging different classes of Ag that are presented by polymorphic and monomorphic Ag-presenting molecules of the immune system.
Collapse
Affiliation(s)
- Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; ,
| | | | | | | | | | | |
Collapse
|
45
|
Reiser JB, Legoux F, Gras S, Trudel E, Chouquet A, Léger A, Le Gorrec M, Machillot P, Bonneville M, Saulquin X, Housset D. Analysis of relationships between peptide/MHC structural features and naive T cell frequency in humans. THE JOURNAL OF IMMUNOLOGY 2014; 193:5816-26. [PMID: 25392532 DOI: 10.4049/jimmunol.1303084] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The structural rules governing peptide/MHC (pMHC) recognition by T cells remain unclear. To address this question, we performed a structural characterization of several HLA-A2/peptide complexes and assessed in parallel their antigenicity, by analyzing the frequency of the corresponding Ag-specific naive T cells in A2(+) and A2(-) individuals, as well as within CD4(+) and CD8(+) subsets. We were able to find a correlation between specific naive T cell frequency and peptide solvent accessibility and/or mobility for a subset of moderately prominent peptides. However, one single structural parameter of the pMHC complexes could not be identified to explain each peptide antigenicity. Enhanced pMHC antigenicity was associated with both highly biased TRAV usage, possibly reflecting favored interaction between particular pMHC complexes and germline TRAV loops, and peptide structural features allowing interactions with a broad range of permissive CDR3 loops. In this context of constrained TCR docking mode, an optimal peptide solvent exposed surface leading to an optimal complementarity with TCR interface may constitute one of the key features leading to high frequency of specific T cells. Altogether our results suggest that frequency of specific T cells depends on the fine-tuning of several parameters, the structural determinants governing TCR-pMHC interaction being just one of them.
Collapse
Affiliation(s)
- Jean-Baptiste Reiser
- Université de Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'énergie atomique et aux énergies alternatives, Direction des sciences du vivant, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre national de la recherche scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - François Legoux
- Institut national de la santé et de la recherche médicale, Unité mixte de recherche 892, Centre de Recherche en Cancérologie Nantes Angers, F-44000 Nantes, France; and
| | - Stéphanie Gras
- Université de Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'énergie atomique et aux énergies alternatives, Direction des sciences du vivant, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre national de la recherche scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Eric Trudel
- Université de Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'énergie atomique et aux énergies alternatives, Direction des sciences du vivant, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre national de la recherche scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Anne Chouquet
- Université de Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'énergie atomique et aux énergies alternatives, Direction des sciences du vivant, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre national de la recherche scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Alexandra Léger
- Institut national de la santé et de la recherche médicale, Unité mixte de recherche 892, Centre de Recherche en Cancérologie Nantes Angers, F-44000 Nantes, France; and
| | - Madalen Le Gorrec
- Université de Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'énergie atomique et aux énergies alternatives, Direction des sciences du vivant, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre national de la recherche scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Paul Machillot
- Université de Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'énergie atomique et aux énergies alternatives, Direction des sciences du vivant, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre national de la recherche scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Marc Bonneville
- Institut national de la santé et de la recherche médicale, Unité mixte de recherche 892, Centre de Recherche en Cancérologie Nantes Angers, F-44000 Nantes, France; and
| | - Xavier Saulquin
- Institut national de la santé et de la recherche médicale, Unité mixte de recherche 892, Centre de Recherche en Cancérologie Nantes Angers, F-44000 Nantes, France; and Université de Nantes, F-44000 Nantes, France
| | - Dominique Housset
- Université de Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'énergie atomique et aux énergies alternatives, Direction des sciences du vivant, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre national de la recherche scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France;
| |
Collapse
|
46
|
Romero P, Speiser DE, Rufer N. Deciphering the unusual HLA-A2/Melan-A/MART-1-specific TCR repertoire in humans. Eur J Immunol 2014; 44:2567-70. [PMID: 25154881 DOI: 10.1002/eji.201445004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 07/30/2014] [Accepted: 08/20/2014] [Indexed: 11/11/2022]
Abstract
The Melan-A/MART-1(26-35) antigenic peptide is one of the best studied human tumor-associated antigens. It is expressed in healthy melanocytes and malignant melanoma and is recognized by CD8(+) T cells in the context of the MHC class I molecule HLA-A*0201. While an unusually large repertoire of CD8(+) T cells specific for this antigen has been documented, the reasons for its generation have remained elusive. In this issue of the European Journal of Immunology, Pinto et al. [Eur. J. Immunol. 2014. 44: 2811-2821] uncover one important mechanism by comparing the thymic expression of the Melan-A gene to that in the melanocyte lineage. This study shows that medullary thymic epithelial cells (mTECs) dominantly express a truncated Melan-A transcript, the product of misinitiation of transcription. Consequently, the protein product in mTECs lacks the immunodominant epitope spanning residues 26-35, thus precluding central tolerance to this antigen. In contrast, melanocytes and melanoma tumor cells express almost exclusively the full-length Melan-A transcript, thus providing the target antigen for efficient recognition by HLA-A2-restricted CD8(+) T cells. The frequency of these alternative gene transcription modes may be more common than previously appreciated and may represent an important factor modulating the efficiency of central tolerance induction in the thymus.
Collapse
Affiliation(s)
- Pedro Romero
- Ludwig Cancer Research Center, Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
47
|
Smith SN, Wang Y, Baylon JL, Singh NK, Baker BM, Tajkhorshid E, Kranz DM. Changing the peptide specificity of a human T-cell receptor by directed evolution. Nat Commun 2014; 5:5223. [PMID: 25376839 PMCID: PMC4225554 DOI: 10.1038/ncomms6223] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/10/2014] [Indexed: 11/09/2022] Open
Abstract
Binding of a T-cell receptor (TCR) to a peptide/major histocompatibility complex is the key interaction involved in antigen specificity of T cells. The recognition involves up to six complementarity determining regions (CDR) of the TCR. Efforts to examine the structural basis of these interactions and to exploit them in adoptive T-cell therapies has required the isolation of specific T-cell clones and their clonotypic TCRs. Here we describe a strategy using in vitro-directed evolution of a single TCR to change its peptide specificity, thereby avoiding the need to isolate T-cell clones. The human TCR A6, which recognizes the viral peptide Tax/HLA-A2, was converted to TCR variants that recognized the cancer peptide MART1/HLA-A2. Mutational studies and molecular dynamics simulations identified CDR residues that were predicted to be important in the specificity switch. Thus, in vitro engineering strategies alone can be used to discover TCRs with desired specificities.
Collapse
Affiliation(s)
- Sheena N. Smith
- Department of Biochemistry, University of Illinois, 600 S. Matthews Ave., Urbana, IL 61801, USA
| | - Yuhang Wang
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61802, USA
| | - Javier L. Baylon
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61802, USA
| | - Nishant K. Singh
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 1234 Notre Dame Avenue, South Bend, IN 46557, USA
| | - Brian M. Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 1234 Notre Dame Avenue, South Bend, IN 46557, USA
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois, 600 S. Matthews Ave., Urbana, IL 61801, USA
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61802, USA
| | - David M. Kranz
- Department of Biochemistry, University of Illinois, 600 S. Matthews Ave., Urbana, IL 61801, USA
| |
Collapse
|
48
|
Duan F, Duitama J, Al Seesi S, Ayres CM, Corcelli SA, Pawashe AP, Blanchard T, McMahon D, Sidney J, Sette A, Baker BM, Mandoiu II, Srivastava PK. Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity. J Exp Med 2014; 211:2231-48. [PMID: 25245761 PMCID: PMC4203949 DOI: 10.1084/jem.20141308] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/05/2014] [Indexed: 12/23/2022] Open
Abstract
The mutational repertoire of cancers creates the neoepitopes that make cancers immunogenic. Here, we introduce two novel tools that identify, with relatively high accuracy, the small proportion of neoepitopes (among the hundreds of potential neoepitopes) that protect the host through an antitumor T cell response. The two tools consist of (a) the numerical difference in NetMHC scores between the mutated sequences and their unmutated counterparts, termed the differential agretopic index, and (b) the conformational stability of the MHC I-peptide interaction. Mechanistically, these tools identify neoepitopes that are mutated to create new anchor residues for MHC binding, and render the overall peptide more rigid. Surprisingly, the protective neoepitopes identified here elicit CD8-dependent immunity, even though their affinity for K(d) is orders of magnitude lower than the 500-nM threshold considered reasonable for such interactions. These results greatly expand the universe of target cancer antigens and identify new tools for human cancer immunotherapy.
Collapse
Affiliation(s)
- Fei Duan
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Jorge Duitama
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269
| | - Sahar Al Seesi
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269
| | - Cory M Ayres
- Department of Chemistry and Biochemistry and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556
| | - Steven A Corcelli
- Department of Chemistry and Biochemistry and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556
| | - Arpita P Pawashe
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Tatiana Blanchard
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT 06030
| | - David McMahon
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT 06030
| | - John Sidney
- LaJolla Institute of Allergy and Immunology, La Jolla, CA 92037
| | | | - Brian M Baker
- Department of Chemistry and Biochemistry and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556
| | - Ion I Mandoiu
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269
| | - Pramod K Srivastava
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT 06030
| |
Collapse
|
49
|
Pierce BG, Weng Z. A flexible docking approach for prediction of T cell receptor-peptide-MHC complexes. Protein Sci 2014; 22:35-46. [PMID: 23109003 DOI: 10.1002/pro.2181] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 10/15/2012] [Indexed: 11/10/2022]
Abstract
T cell receptors (TCRs) are immune proteins that specifically bind to antigenic molecules, which are often foreign peptides presented by major histocompatibility complex proteins (pMHCs), playing a key role in the cellular immune response. To advance our understanding and modeling of this dynamic immunological event, we assembled a protein-protein docking benchmark consisting of 20 structures of crystallized TCR/pMHC complexes for which unbound structures exist for both TCR and pMHC. We used our benchmark to compare predictive performance using several flexible and rigid backbone TCR/pMHC docking protocols. Our flexible TCR docking algorithm, TCRFlexDock, improved predictive success over the fixed backbone protocol, leading to near-native predictions for 80% of the TCR/pMHC cases among the top 10 models, and 100% of the cases in the top 30 models. We then applied TCRFlexDock to predict the two distinct docking modes recently described for a single TCR bound to two different antigens, and tested several protein modeling scoring functions for prediction of TCR/pMHC binding affinities. This algorithm and benchmark should enable future efforts to predict, and design of uncharacterized TCR/pMHC complexes.
Collapse
Affiliation(s)
- Brian G Pierce
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
50
|
Malecek K, Grigoryan A, Zhong S, Gu WJ, Johnson LA, Rosenberg SA, Cardozo T, Krogsgaard M. Specific increase in potency via structure-based design of a TCR. THE JOURNAL OF IMMUNOLOGY 2014; 193:2587-99. [PMID: 25070852 DOI: 10.4049/jimmunol.1302344] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adoptive immunotherapy with Ag-specific T lymphocytes is a powerful strategy for cancer treatment. However, most tumor Ags are nonreactive "self" proteins, which presents an immunotherapy design challenge. Recent studies have shown that tumor-specific TCRs can be transduced into normal PBLs, which persist after transfer in ∼30% of patients and effectively destroy tumor cells in vivo. Although encouraging, the limited clinical responses underscore the need for enrichment of T cells with desirable antitumor capabilities prior to patient transfer. In this study, we used structure-based design to predict point mutations of a TCR (DMF5) that enhance its binding affinity for an agonist tumor Ag-MHC (peptide-MHC [pMHC]), Mart-1 (27L)-HLA-A2, which elicits full T cell activation to trigger immune responses. We analyzed the effects of selected TCR point mutations on T cell activation potency and analyzed cross-reactivity with related Ags. Our results showed that the mutated TCRs had improved T cell activation potency while retaining a high degree of specificity. Such affinity-optimized TCRs have demonstrated to be very specific for Mart-1 (27L), the epitope for which they were structurally designed. Although of somewhat limited clinical relevance, these studies open the possibility for future structural-based studies that could potentially be used in adoptive immunotherapy to treat melanoma while avoiding adverse autoimmunity-derived effects.
Collapse
Affiliation(s)
- Karolina Malecek
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016; Program in Structural Biology, New York University School of Medicine, New York, NY 10016
| | - Arsen Grigoryan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Shi Zhong
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Wei Jun Gu
- Department of Chemistry, New York University, New York, NY 10012
| | - Laura A Johnson
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Steven A Rosenberg
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Timothy Cardozo
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Michelle Krogsgaard
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016; Program in Structural Biology, New York University School of Medicine, New York, NY 10016; Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY 10016
| |
Collapse
|