1
|
Wang Y, Ge H, Xiao Z, Huang C, Wang G, Duan X, Zheng L, Dong J, Huang X, Zhang Y, An H, Xu W, Wang Y. Spatial Proteome Reorganization of a Photosynthetic Model Cyanobacterium in Response to Abiotic Stresses. J Proteome Res 2023; 22:1255-1269. [PMID: 36930737 DOI: 10.1021/acs.jproteome.2c00759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Spatial proteome reorganization in response to a changing environment represents a different layer of adaptation mechanism in addition to differential expression of a subset of stress responsive genes in photosynthetic organisms. Profiling such reorganization events is critically important to extend our understanding how photosynthetic organisms adapt to adverse environments. Thus, we treated a unicellular photosynthetic model cyanobacterium, Synechocystis sp. PCC 6803 (hereafter referred to as Synechocystis), with five different types of abiotic stresses including nitrogen starvation, iron deficiency, cold, heat, and darkness, and systematically identified proteins showing stress-induced differential expression and/or redistribution between the membrane and the soluble fractions using a quantitative proteomics approach. A number of proteins showing such a redistribution in response to a single or multiple types of abiotic stresses were identified. These include 12 ribosomal proteins displaying unanimous cold-induced redistribution to the membrane and the protein FurA, a master regulator of iron acquisition, displaying iron deficiency- and nitrogen starvation-induced redistribution to the membrane. Such findings shed light on a novel regulatory mechanism underlying the corresponding stress responses, and establish the results in the present study as an important resource for future studies intended to understand how photosynthetic organisms cope with adverse environments.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Haitao Ge
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China
| | - Zhen Xiao
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Chengcheng Huang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Gaojie Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Xiaoxiao Duan
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Limin Zheng
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Jinghui Dong
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China
| | - Yuanya Zhang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China
| | - Hongyu An
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, United States
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| |
Collapse
|
2
|
Transcriptomic Response of the Diazotrophic Bacteria Gluconacetobacter diazotrophicus Strain PAL5 to Iron Limitation and Characterization of the fur Regulatory Network. Int J Mol Sci 2022; 23:ijms23158533. [PMID: 35955667 PMCID: PMC9368920 DOI: 10.3390/ijms23158533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
Gluconacetobacter diazotrophicus has been the focus of several studies aiming to understand the mechanisms behind this endophytic diazotrophic bacterium. The present study is the first global analysis of the early transcriptional response of exponentially growing G. diazotrophicus to iron, an essential cofactor for many enzymes involved in various metabolic pathways. RNA-seq, targeted gene mutagenesis and computational motif discovery tools were used to define the G. diazotrophicusfur regulon. The data analysis showed that genes encoding functions related to iron homeostasis were significantly upregulated in response to iron limitations. Certain genes involved in secondary metabolism were overexpressed under iron-limited conditions. In contrast, it was observed that the expression of genes involved in Fe-S cluster biosynthesis, flagellar biosynthesis and type IV secretion systems were downregulated in an iron-depleted culture medium. Our results support a model that controls transcription in G. diazotrophicus by fur function. The G. diazotrophicusfur protein was able to complement an E. colifur mutant. These results provide new insights into the effects of iron on the metabolism of G. diazotrophicus, as well as demonstrate the essentiality of this micronutrient for the main characteristics of plant growth promotion by G. diazotrophicus.
Collapse
|
3
|
Han Y, Zhang M, Chen X, Zhai W, Tan E, Tang K. Transcriptomic evidences for microbial carbon and nitrogen cycles in the deoxygenated seawaters of Bohai Sea. ENVIRONMENT INTERNATIONAL 2022; 158:106889. [PMID: 34619534 DOI: 10.1016/j.envint.2021.106889] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Eutrophication-induced water deoxygenation occurs continually in coastal oceans, and alters community structure, metabolic processes, and the energy shunt, resulting in a major threat to the ecological environment. Seasonal deoxygenation events have occurred in the Bohai Sea (China), however, how these affect the functional activity of microorganisms remains unclear. Here, through the use of absolute quantification of 16S rRNA genes amplicon sequencing and metatranscriptomics approaches, we investigated the structure of the microbial community and the patterns of transcriptional activity in deoxygenated seawaters. The dominant phyla were Proteobacteria (average value, 1.4 × 106 copies ml-1), Cyanobacteria (3.7 × 105 copies ml-1), Bacteroidetes (2.7 × 105 copies ml-1), and the ammonia-oxidizing archaea Thaumarchaeota (1.9 × 105 copies ml-1). Among the various environmental factors, dissolved oxygen, pH and temperature displayed the most significant correlation with microbial community composition and functional activity. Metatranscriptomic data showed high transcriptional activity of Thaumarchaeota in the deoxygenated waters, with a significant increase in the expression of core genes representing ammonia oxidation, ammonia transport, and carbon fixation (3-hydroxypropionic acid/4-hydroxybutyric acid cycle) pathways. The transcripts of Cyanobacteria involved in photosynthesis and carbon fixation (Calvin-Benson-Bassham cycle) significantly decreased in low oxygen waters. Meanwhile, the transcripts for the ribulose bisphosphate carboxylase-encoding gene shifted from being assigned to photoautotrophic to chemoautotrophic organisms in surface and bottom waters, respectively. Moreover, the transcription profile indicated that heterotrophs play a critical role in transforming low-molecular-weight dissolved organic nitrogen. Elevated abundances of transcripts related to microbial antioxidant activity corresponded to an enhanced aerobic metabolism of Thaumarchaeota in the low oxygen seawater. In general, our transcriptional evidences showed a population increase of Thaumarchaeota, especially the coastal ecotype of ammonia oxidizers, in low oxygen aquatic environments, and indicated an enhanced contribution of chemolithoautotrophic carbon fixation to carbon flow.
Collapse
Affiliation(s)
- Yu Han
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Mu Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Xiaofeng Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Weidong Zhai
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, Shandong, PR China
| | - Ehui Tan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, Hainan, PR China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, PR China.
| |
Collapse
|
4
|
Jia A, Zheng Y, Chen H, Wang Q. Regulation and Functional Complexity of the Chlorophyll-Binding Protein IsiA. Front Microbiol 2021; 12:774107. [PMID: 34867913 PMCID: PMC8635728 DOI: 10.3389/fmicb.2021.774107] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
As the oldest known lineage of oxygen-releasing photosynthetic organisms, cyanobacteria play the key roles in helping shaping the ecology of Earth. Iron is an ideal transition metal for redox reactions in biological systems. Cyanobacteria frequently encounter iron deficiency due to the environmental oxidation of ferrous ions to ferric ions, which are highly insoluble at physiological pH. A series of responses, including architectural changes to the photosynthetic membranes, allow cyanobacteria to withstand this condition and maintain photosynthesis. Iron-stress-induced protein A (IsiA) is homologous to the cyanobacterial chlorophyll (Chl)-binding protein, photosystem II core antenna protein CP43. IsiA is the major Chl-containing protein in iron-starved cyanobacteria, binding up to 50% of the Chl in these cells, and this Chl can be released from IsiA for the reconstruction of photosystems during the recovery from iron limitation. The pigment–protein complex (CPVI-4) encoded by isiA was identified and found to be expressed under iron-deficient conditions nearly 30years ago. However, its precise function is unknown, partially due to its complex regulation; isiA expression is induced by various types of stresses and abnormal physiological states besides iron deficiency. Furthermore, IsiA forms a range of complexes that perform different functions. In this article, we describe progress in understanding the regulation and functions of IsiA based on laboratory research using model cyanobacteria.
Collapse
Affiliation(s)
- Anqi Jia
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yanli Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
5
|
Norena-Caro DA, Zuniga C, Pete AJ, Saemundsson SA, Donaldson MR, Adams AJ, Dooley KM, Zengler K, Benton MG. Analysis of the cyanobacterial amino acid metabolism with a precise genome-scale metabolic reconstruction of Anabaena sp. UTEX 2576. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
6
|
New insights into the function of the proteins IsiC and IsiD from Synechocystis sp. PCC 6803 under iron limitation. Appl Microbiol Biotechnol 2021; 105:4693-4707. [PMID: 34019114 DOI: 10.1007/s00253-021-11347-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 10/25/2022]
Abstract
Iron is a common cofactor in biological processes such as respiration, photosynthesis, and nitrogen fixation. The genes isiC and isiD encode unknown proteins, and the growth of ΔisiC and ΔisiD mutants is inhibited under iron-deficient conditions. To study the regulatory mechanisms of IsiC and IsiD during iron starvation, we carried out transcriptome and metabolome sequencing. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the photosynthesis, nitrogen metabolism, and ABC transporter pathways play a vital role in regulating iron deficiency. Upon iron repletion, IsiC and IsiD also have a regulatory effect on these pathways. Additionally, KEGG analysis of the differential metabolites of wild type (WT) and mutants showed that they were all enriched in starch and sucrose metabolism after iron limitation. Weighted gene co-expression network analysis (WGCNA) constructed a co-expression network of differentially expressed genes with phenotypes and metabolites, and finally identified five modules. The turquoise module was positively correlated with iron deficiency. In contrast, the WT and blue module exhibited a negative correlation, and the mutants ΔisiC and ΔisiD were positively correlated with the gray and brown modules, respectively. WGCNA also analyzed the relationship between metabolites and phenotypes, and the green module was related to iron starvation. The co-expression network determined the hub genes and metabolites of each module. This study lays a foundation for a better understanding of cyanobacteria in response to iron deficiency. KEY POINTS: • Nitrogen metabolism and ABC transporters are involved in iron regulation. • Starch and sucrose metabolism is related to the regulation of iron deficiency. • WGCNA analyzes the correlation between genes and metabolites.
Collapse
|
7
|
Nitrogen Sources and Iron Availability Affect Pigment Biosynthesis and Nutrient Consumption in Anabaena sp. UTEX 2576. Microorganisms 2021; 9:microorganisms9020431. [PMID: 33669780 PMCID: PMC7922959 DOI: 10.3390/microorganisms9020431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 11/17/2022] Open
Abstract
Anabaena sp. UTEX 2576 metabolizes multiple nitrogen (N) sources and is deemed a biotechnological platform for chemical production. Cyanobacteria have been identified as prolific producers of biofertilizers, biopolymers, biofuels, and other bioactive compounds. Here, we analyze the effect of different N-sources and Fe availability on the bioproduction of phycobiliproteins and β-carotene. We characterize nutrient demand in modified BG11 media, including data on CO2 fixation rates, N-source consumption, and mineral utilization (e.g., phosphorus (P), and 11 metallic elements). Results suggest that non-diazotrophic cultures grow up to 60% faster than diazotrophic cells, resulting in 20% higher CO2-fixation rates. While the production of β-carotene was maximum in medium with NaNO3, Fe starvation increased the cellular abundance of C-phycocyanin and allophycocyanin by at least 22%. Compared to cells metabolizing NaNO3 and N2, cultures adapted to urea media increased their P, calcium and manganese demands by at least 72%, 97% and 76%, respectively. Variations on pigmentation and nutrient uptake were attributed to changes in phycocyanobilin biosynthesis, light-induced oxidation of carotenoids, and urea-promoted peroxidation. This work presents insights into developing optimal Anabaena culture for efficient operations of bioproduction and wastewater bioremediation with cyanobacteria.
Collapse
|
8
|
Deschoenmaeker F, Mihara S, Niwa T, Taguchi H, Wakabayashi KI, Toyoshima M, Shimizu H, Hisabori T. Thioredoxin pathway in anabaena sp. PCC 7120: activity of NADPH-thioredoxin reductase C. J Biochem 2021; 169:709-719. [PMID: 33537746 DOI: 10.1093/jb/mvab014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
To understand the physiological role of NADPH-thioredoxin reductase C (NTRC) in cyanobacteria, we investigated an NTRC-deficient mutant strain of Anabaena sp., PCC 7120, cultivated under different regimes of nitrogen supplementation and light exposure. The deletion of ntrC did not induce a change in the cell structure and metabolic pathways. However, time-dependent changes in the abundance of specific proteins and metabolites were observed. A decrease in chlorophyll a was correlated with a decrease in chlorophyll a biosynthesis enzymes and PSI subunits. The deletion of ntrC led to a deregulation of nitrogen metabolism, including the NtcA accumulation and heterocyst-specific proteins while nitrate ions were available in the culture medium. Interestingly, this deletion resulted in a redox imbalance, indicated by higher peroxide levels, higher catalase activity, and the induction of chaperones such as MsrA. Surprisingly, the antioxidant protein 2-Cys Prx was down-regulated. The deficiency in ntrC also resulted in the accumulation of metabolites such as 6-phosphogluconate, ADP, and ATP. Higher levels of NADP+ and NADPH partly correlated with higher G6PDH activity. Rather than impacting protein expression levels, NTRC appears to be involved in the direct regulation of enzymes, especially during the dark to light transition period.
Collapse
Affiliation(s)
- Frédéric Deschoenmaeker
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, 226-8503, Japan
| | - Shoko Mihara
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, 226-8503, Japan.,Department of Life Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Tatsuya Niwa
- Cell Biology Center, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-S2-19, Midori-ku, Yokohama, 226-8503 Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-S2-19, Midori-ku, Yokohama, 226-8503 Japan
| | - Ken-Ichi Wakabayashi
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, 226-8503, Japan.,Department of Life Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Masakazu Toyoshima
- Department of Bioinformatic Engeneering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engeneering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, 226-8503, Japan.,Department of Life Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
9
|
Rapid Transcriptional Reprogramming Triggered by Alteration of the Carbon/Nitrogen Balance Has an Impact on Energy Metabolism in Nostoc sp. PCC 7120. Life (Basel) 2020; 10:life10110297. [PMID: 33233741 PMCID: PMC7699953 DOI: 10.3390/life10110297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Nostoc (Anabaena) sp. PCC 7120 is a filamentous cyanobacterial species that fixes N2 to nitrogenous compounds using specialised heterocyst cells. Changes in the intracellular ratio of carbon to nitrogen (C/N balance) is known to trigger major transcriptional reprogramming of the cell, including initiating the differentiation of vegetative cells to heterocysts. Substantial transcriptional analysis has been performed on Nostoc sp. PCC 7120 during N stepdown (low to high C/N), but not during C stepdown (high to low C/N). In the current study, we shifted the metabolic balance of Nostoc sp. PCC 7120 cultures grown at 3% CO2 by introducing them to atmospheric conditions containing 0.04% CO2 for 1 h, after which the changes in gene expression were measured using RNAseq transcriptomics. This analysis revealed strong upregulation of carbon uptake, while nitrogen uptake and metabolism and early stages of heterocyst development were downregulated in response to the shift to low CO2. Furthermore, gene expression changes revealed a decrease in photosynthetic electron transport and increased photoprotection and reactive oxygen metabolism, as well a decrease in iron uptake and metabolism. Differential gene expression was largely attributed to change in the abundances of the metabolites 2-phosphoglycolate and 2-oxoglutarate, which signal a rapid shift from fluent photoassimilation to glycolytic metabolism of carbon after transition to low CO2. This work shows that the C/N balance in Nostoc sp. PCC 7120 rapidly adjusts the metabolic strategy through transcriptional reprogramming, enabling survival in the fluctuating environment.
Collapse
|
10
|
Mihara S, Sugiura K, Yoshida K, Hisabori T. Thioredoxin targets are regulated in heterocysts of cyanobacterium Anabaena sp. PCC 7120 in a light-independent manner. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2018-2027. [PMID: 31863668 PMCID: PMC7242069 DOI: 10.1093/jxb/erz561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/18/2019] [Indexed: 05/22/2023]
Abstract
In the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120, glucose 6-phosphate dehydrogenase (G6PDH) plays an important role in producing the power for reducing nitrogenase under light conditions. Our previous study showed that thioredoxin suppresses G6PDH by reducing its activator protein OpcA, implying that G6PDH is inactivated under light conditions because thioredoxins are reduced by the photosynthetic electron transport system in cyanobacteria. To address how Anabaena sp. PCC 7120 maintains G6PDH activity even under light conditions when nitrogen fixation occurs, we investigated the redox regulation system in vegetative cells and specific nitrogen-fixing cells named heterocysts, individually. We found that thioredoxin target proteins were more oxidized in heterocysts than in vegetative cells under light conditions. Alterations in the redox regulation mechanism of heterocysts may affect the redox states of thioredoxin target proteins, including OpcA, so that G6PDH is activated in heterocysts even under light conditions.
Collapse
Affiliation(s)
- Shoko Mihara
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Kazunori Sugiura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Japan
- Present address: The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Keisuke Yoshida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Japan
- Correspondence:
| |
Collapse
|
11
|
Guío J, Sarasa-Buisan C, Velázquez-Campoy A, Bes MT, Fillat MF, Peleato ML, Sevilla E. 2-oxoglutarate modulates the affinity of FurA for the ntcA promoter in Anabaena sp. PCC 7120. FEBS Lett 2019; 594:278-289. [PMID: 31538336 DOI: 10.1002/1873-3468.13610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 11/11/2022]
Abstract
2-oxoglutarate (2-OG) is a central metabolite that acts as a signaling molecule informing about the status of the carbon/nitrogen balance of the cell. In recent years, some transcriptional regulators and even two-component systems have been described as 2-OG sensors. In the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120, two master regulators, NtcA and FurA, are deeply involved in the regulation of nitrogen metabolism. Both of them show a complex intertwined regulatory circuit to achieve a suitable regulation of nitrogen fixation. In this work, 2-OG is found to bind FurA, modulating the specific binding of FurA to the ntcA promoter. This study provides evidence of a new additional control point in the complex network controlled by the NtcA and FurA proteins.
Collapse
Affiliation(s)
- Jorge Guío
- Departamento de Bioquímica y Biología Molecular y Celular, Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Spain
| | - Cristina Sarasa-Buisan
- Departamento de Bioquímica y Biología Molecular y Celular, Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Departamento de Bioquímica y Biología Molecular y Celular, Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Spain.,Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Fundacion ARAID, Government of Aragon, Zaragoza, Spain
| | - María Teresa Bes
- Departamento de Bioquímica y Biología Molecular y Celular, Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Spain
| | - María F Fillat
- Departamento de Bioquímica y Biología Molecular y Celular, Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Spain
| | - María Luisa Peleato
- Departamento de Bioquímica y Biología Molecular y Celular, Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Spain
| | - Emma Sevilla
- Departamento de Bioquímica y Biología Molecular y Celular, Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Spain
| |
Collapse
|
12
|
Gao CH, Wei WP, Tao HL, Cai LK, Jia WZ, Hu L, Yang M. Cross-talk between the three furA orthologs in Mycobacterium smegmatis and the contribution to isoniazid resistance. J Biochem 2019; 166:237-243. [PMID: 30993320 DOI: 10.1093/jb/mvz030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/10/2019] [Indexed: 01/18/2023] Open
Abstract
The ferric uptake regulator A (FurA) plays an essential role in responding to oxidative stress in mycobacteria. The genome of Mycobacterium smegmatis harbours three FurA orthologs; however, the potential cross-talk and contribution to drug resistance of different furA operon remain underdetermined. In this study, we characterized the cross-regulation and effect in drug resistance of these orthologs from M. smegmatis. Cross-binding of FurA protein to furA promoter was observed. The binding of FurA1 to furA3p and FurA2 to furA1p or furA3p is even more pronounced than their self-binding. The three FurA proteins are all functional at repressing the expression of the peroxidase enzyme katG1/katG2 in vivo. When overexpressing any of the furA orthologs in M. smegmatis, the bacteria become more resistant to isoniazid (INH). This pattern is consistent with that in Mycobacterium bovis. However, the knockdown of furA does not affect the INH sensitivity. This is the first report of cross-talk and contribution to drug resistance of all three furA orthologs in M. smegmatis.
Collapse
Affiliation(s)
- Chun-Hui Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, China
| | - Wen-Ping Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, China
| | - Hui-Ling Tao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, China
| | - Li-Kai Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, China
| | - Wan-Zhong Jia
- The State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, No. 1, Xujiaping, Chengguan District, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lihua Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, China
| | - Min Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, China
| |
Collapse
|
13
|
Yu S, Li C, Xu C, Effiong K, Xiao X. Understanding the inhibitory mechanism of antialgal allelochemical flavonoids from genetic variations: Photosynthesis, toxin synthesis and nutrient utility. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 177:18-24. [PMID: 30954008 DOI: 10.1016/j.ecoenv.2019.03.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/22/2019] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
Flavonoids are natural polyphenolic compounds from plants. As a new biotechnological algaecide, the molecular mechanism of plant flavonoids on the inhibition of Microcystis aeruginosa is still unknown. Therefore, in this study, we analyzed the variation of expressions of photosynthesis-related genes, microcystin synthesis-related genes and the genes involved in N and P acquisition in M. aeruginosa under the flavonoids stress. The results showed that the expression of psbD1, psaB and rbcL related to photosynthesis were influenced by three flavonoids but with different changing tendencies. The transcription of mcyA, mcyD and mcyH related to microcystin synthesis were decreased after 5-d of exposure, which could block microcystin synthesis. Meanwhile, flavonoids treatments resulted in the inhibition of N and P acquisition related genes transcription to affect the absorption of N and P in algal cells, and further influenced the physiological metabolic process of M. aeruginosa.
Collapse
Affiliation(s)
- Shumiao Yu
- Ocean College, Zhejiang University, 310058, Hangzhou, PR China
| | - Chao Li
- Ocean College, Zhejiang University, 310058, Hangzhou, PR China
| | - Caicai Xu
- Ocean College, Zhejiang University, 310058, Hangzhou, PR China
| | | | - Xi Xiao
- Ocean College, Zhejiang University, 310058, Hangzhou, PR China; Key Laboratory of Integrated Marine Monitoring and Applied Technologies for Harmful Algal Blooms, S.O.A., MATHAB, Shanghai, PR China.
| |
Collapse
|
14
|
Sevilla E, Sarasa-Buisan C, González A, Cases R, Kufryk G, Peleato ML, Fillat MF. Regulation by FurC in Anabaena Links the Oxidative Stress Response to Photosynthetic Metabolism. PLANT & CELL PHYSIOLOGY 2019; 60:1778-1789. [PMID: 31111929 DOI: 10.1093/pcp/pcz094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
The FUR (Ferric Uptake Regulator) family in Anabaena sp. PCC 7120 consists of three paralogs named FurA (Fur), FurB (Zur) and FurC (PerR). furC seems to be an essential gene in the filamentous nitrogen-fixing strain Anabaena sp. PCC 7120, suggesting that it plays a fundamental role in this organism. In order to better understand the functions of FurC in Anabaena, the phenotype of a derivative strain that overexpresses this regulator (EB2770FurC) has been characterized. The furC-overexpressing variant presented alterations in growth rate, morphology and ultrastructure, as well as higher sensitivity to peroxide than Anabaena sp. PCC 7120. Interestingly, the overexpression of furC led to reduced photosynthetic O2 evolution, increased respiratory activity, and had a significant influence in the composition and efficiency of both photosystems. Comparative transcriptional analyses, together with electrophoretic mobility shift assays allowed the identification of different genes directly controlled by FurC, and involved in processes not previously related to PerR proteins, such as the cell division gene ftsZ and the major thylakoid membrane protease ftsH. The rise in the transcription of ftsH in EB2770FurC cells correlated with reduced levels of the D1 protein, which is involved in the PSII repair cycle. Deregulation of the oxidative stress response in EB2770FurC cells led to the identification of novel FurC targets involved in the response to H2O2 through different mechanisms. These results, together with the effect of furC overexpression on the composition, stability and efficiency of the photosynthetic machinery of Anabaena, disclose novel links between PerR proteins, cell division and photosynthesis in filamentous cyanobacteria.
Collapse
Affiliation(s)
- Emma Sevilla
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, Spain
| | - Cristina Sarasa-Buisan
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, Spain
| | - Andrés González
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragón), Zaragoza, Spain
| | - Rafael Cases
- Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza-CSIC, Zaragoza, Spain
| | - Galyna Kufryk
- College of Science, Engineering and Technology, Grand Canyon University, 3300 W. Camelback Rd, Phoenix, AZ, USA
| | - M Luisa Peleato
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, Spain
| | - María F Fillat
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, Spain
| |
Collapse
|
15
|
Kaushik MS, Mishra AK. Iron deficiency influences NtcA-dependent regulation of fatty acid desaturation and heterocyte envelop formation in Anabaena sp. PCC 7120. PHYSIOLOGIA PLANTARUM 2019; 166:570-584. [PMID: 30035317 DOI: 10.1111/ppl.12806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
In Anabaena sp. PCC 7120, iron is an essential trace element and its availability determines proper functioning of several kinds of metabolisms. Iron deficiency leads to several unavoidable consequences including membrane damage. In the present study, we dealt with the impact of iron deficiency on NtcA (global nitrogen regulator)-dependent regulation of two important processes, i.e. fatty acid desaturation and heterocyte envelop formation in cyanobacterium Anabaena sp. PCC 7120. In Anabaena sp. PCC 7120, NtcA regulates fatty acid desaturation by regulating enzyme fatty acid desaturases. The NtcA-based regulation of fatty acid desaturation may be direct or indirect. Furthermore, the expression of genes involved in the heterocyte envelope polysaccharide (HEP) layer formation (hepABCK) and heterocyte-specific glycolipids (HGLs) synthesis (devH, hglEA , prpJ and devB) were also under the control of NtcA and reduced under iron deficiency background. The enhanced expression of furA and early downregulation of ntcA under iron deficiency is responsible for reduction in fatty acid desaturation as well as decrease in the expression of genes involved in HEP layer formation and HGL synthesis. Overall results confirmed that iron deficiency influences the NtcA-based regulation of fatty acid desaturation and heterocyte envelop formation in Anabaena sp. PCC 7120.
Collapse
Affiliation(s)
- Manish S Kaushik
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Arun K Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
16
|
Biosensors-Based In Vivo Quantification of 2-Oxoglutarate in Cyanobacteria and Proteobacteria. Life (Basel) 2018; 8:life8040051. [PMID: 30373229 PMCID: PMC6315671 DOI: 10.3390/life8040051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 01/12/2023] Open
Abstract
2-oxoglutarate (α-ketoglutarate; 2-OG) is an intermediate of the Krebs cycle, and constitutes the carbon skeleton for nitrogen assimilation and the synthesis of a variety of compounds. In addition to being an important metabolite, 2-OG is a signaling molecule with a broad regulatory repertoire in a variety of organisms, including plants, animals, and bacteria. Although challenging, measuring the levels and variations of metabolic signals in vivo is critical to better understand how cells control specific processes. To measure cellular 2-OG concentrations and dynamics, we designed a set of biosensors based on the fluorescence resonance energy transfer (FRET) technology that can be used in vivo in different organisms. For this purpose, we took advantage of the conformational changes of two cyanobacterial proteins induced by 2-OG binding. We show that these biosensors responded immediately and specifically to different 2-OG levels, and hence allowed to measure 2-OG variations in function of environmental modifications in the proteobacterium Escherichia coli and in the cyanobacterium Anabaena sp. PCC 7120. Our results pave the way to study 2-OG dynamics at the cellular level in uni- and multi-cellular organisms.
Collapse
|
17
|
Abstract
Antibiotics have saved millions of lives over the past decades. However, the accumulation of so many antibiotic resistance genes by some clinically relevant pathogens has begun to lead to untreatable infections worldwide. The current antibiotic resistance crisis will require greater efforts by governments and the scientific community to increase the research and development of new antibacterial drugs with new mechanisms of action. A major challenge is the identification of novel microbial targets, essential for in vivo growth or pathogenicity, whose inhibitors can overcome the currently circulating resistome of human pathogens. In this article, we focus on the potential high value of bacterial transcriptional regulators as targets for the development of new antibiotics, discussing in depth the molecular role of these regulatory proteins in bacterial physiology and pathogenesis. Recent advances in the search for novel compounds that inhibit the biological activity of relevant transcriptional regulators in pathogenic bacteria are reviewed.
Collapse
|
18
|
Impairment of ntcA gene revealed its role in regulating iron homeostasis, ROS production and cellular phenotype under iron deficiency in cyanobacterium Anabaena sp. PCC 7120. World J Microbiol Biotechnol 2017; 33:158. [DOI: 10.1007/s11274-017-2323-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/16/2017] [Indexed: 10/19/2022]
|
19
|
Molecular and physiological evidence of genetic assimilation to high CO2 in the marine nitrogen fixer Trichodesmium. Proc Natl Acad Sci U S A 2016; 113:E7367-E7374. [PMID: 27830646 DOI: 10.1073/pnas.1605202113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Most investigations of biogeochemically important microbes have focused on plastic (short-term) phenotypic responses in the absence of genetic change, whereas few have investigated adaptive (long-term) responses. However, no studies to date have investigated the molecular progression underlying the transition from plasticity to adaptation under elevated CO2 for a marine nitrogen-fixer. To address this gap, we cultured the globally important cyanobacterium Trichodesmium at both low and high CO2 for 4.5 y, followed by reciprocal transplantation experiments to test for adaptation. Intriguingly, fitness actually increased in all high-CO2 adapted cell lines in the ancestral environment upon reciprocal transplantation. By leveraging coordinated phenotypic and transcriptomic profiles, we identified expression changes and pathway enrichments that rapidly responded to elevated CO2 and were maintained upon adaptation, providing strong evidence for genetic assimilation. These candidate genes and pathways included those involved in photosystems, transcriptional regulation, cell signaling, carbon/nitrogen storage, and energy metabolism. Conversely, significant changes in specific sigma factor expression were only observed upon adaptation. These data reveal genetic assimilation as a potentially adaptive response of Trichodesmium and importantly elucidate underlying metabolic pathways paralleling the fixation of the plastic phenotype upon adaptation, thereby contributing to the few available data demonstrating genetic assimilation in microbial photoautotrophs. These molecular insights are thus critical for identifying pathways under selection as drivers in plasticity and adaptation.
Collapse
|
20
|
Physiological and Proteomic Responses of Continuous Cultures of Microcystis aeruginosa PCC 7806 to Changes in Iron Bioavailability and Growth Rate. Appl Environ Microbiol 2016; 82:5918-29. [PMID: 27474713 DOI: 10.1128/aem.01207-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/24/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The hepatotoxin microcystin (MCYST) is produced by a variety of freshwater cyanobacterial species, including Microcystis aeruginosa Interestingly, MCYST-producing M. aeruginosa strains have been shown to outcompete their nontoxic counterparts under iron-limiting conditions. However, the reasons for this are unclear. Here we examined the proteomic response of M. aeruginosa PCC 7806 continuous cultures under different iron and growth regimes. Iron limitation was correlated with a global reduction in levels of proteins associated with energy metabolism and photosynthesis. These proteomic changes were consistent with physiological observations, including reduced chlorophyll a content and reduced cell size. While levels of MCYST biosynthesis proteins did not fluctuate during the study period, both intra- and extracellular toxin quotas were significantly higher under iron-limiting conditions. Our results support the hypothesis that intracellular MCYST plays a role in protecting the cell against oxidative stress. Further, we propose that extracellular MCYST may act as a signaling molecule, stimulating MCYST production under conditions of iron limitation and enhancing the fitness of bloom populations. IMPORTANCE Microcystin production in water supply reservoirs is a global public health problem. Understanding the ecophysiology of hepatotoxic cyanobacteria, including their responses to the presence of key micronutrient metals such as iron, is central to managing harmful blooms. To our knowledge, this was the first study to examine proteomic and physiological changes occurring in M. aeruginosa continuous cultures under conditions of iron limitation at different growth rates.
Collapse
|
21
|
Rudolf M, Stevanovic M, Kranzler C, Pernil R, Keren N, Schleiff E. Multiplicity and specificity of siderophore uptake in the cyanobacterium Anabaena sp. PCC 7120. PLANT MOLECULAR BIOLOGY 2016; 92:57-69. [PMID: 27325117 DOI: 10.1007/s11103-016-0495-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/19/2016] [Indexed: 06/06/2023]
Abstract
Many cyanobacteria secrete siderophores to sequester iron. Alternatively, mechanisms to utilize xenosiderophores have evolved. The overall uptake systems are comparable to that of other bacteria involving outer membrane transporters energized by TonB as well as plasma membrane-localized transporters. However, the function of the bioinformatically-inferred components is largely not established and recent studies showed a high diversity of the complexity of the uptake systems in different cyanobacteria. Thus, we approached the systems of the filamentous Anabaena sp. PCC 7120 as a model of a siderophore-secreting cyanobacterium. Anabaena sp. produces schizokinen and uptake of Fe-schizokinen involves the TonB-dependent transporter, schizokinen transporter (SchT), and the ABC-type transport system FhuBCD. We confirm that this system is also relevant for the uptake of structurally similar Fe-siderophore complexes like Fe-aerobactin. Moreover, we demonstrate a function of the TonB-dependent transporter IutA2 in Fe-schizokinen uptake in addition to SchT. The iutA2 mutant shows growth defects upon iron limitation, alterations in Fe-schizokinen uptake and in the transcription profile of the Fe-schizokinen uptake system. The physiological properties of the mutant confirm the importance of iron uptake for cellular function, e.g. for the Krebs cycle. Based on the relative relation of expression of schT and iutA2 as well as of the iron uptake rate to the degree of starvation, a model for the need of the co-existence of two different outer membrane transporters for the same substrate is discussed.
Collapse
Affiliation(s)
- Mareike Rudolf
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Mara Stevanovic
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Chana Kranzler
- Department of Plant and Environmental Science, The Alexander Silberman Institute of Life Sciences, The Hebrew University in Jerusalem, Jerusalem, Israel
| | - Rafael Pernil
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Nir Keren
- Department of Plant and Environmental Science, The Alexander Silberman Institute of Life Sciences, The Hebrew University in Jerusalem, Jerusalem, Israel
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt, Germany.
- Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt, 60438, Frankfurt, Germany.
- Buchman Institute for Molecular Life Sciences, Goethe University Frankfurt, Max von Laue Str. 9, N200/3.02, 60438, Frankfurt, Germany.
| |
Collapse
|
22
|
Hilton JA, Meeks JC, Zehr JP. Surveying DNA Elements within Functional Genes of Heterocyst-Forming Cyanobacteria. PLoS One 2016; 11:e0156034. [PMID: 27206019 PMCID: PMC4874684 DOI: 10.1371/journal.pone.0156034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 04/14/2016] [Indexed: 01/13/2023] Open
Abstract
Some cyanobacteria are capable of differentiating a variety of cell types in response to environmental factors. For instance, in low nitrogen conditions, some cyanobacteria form heterocysts, which are specialized for N2 fixation. Many heterocyst-forming cyanobacteria have DNA elements interrupting key N2 fixation genes, elements that are excised during heterocyst differentiation. While the mechanism for the excision of the element has been well-studied, many questions remain regarding the introduction of the elements into the cyanobacterial lineage and whether they have been retained ever since or have been lost and reintroduced. To examine the evolutionary relationships and possible function of DNA sequences that interrupt genes of heterocyst-forming cyanobacteria, we identified and compared 101 interruption element sequences within genes from 38 heterocyst-forming cyanobacterial genomes. The interruption element lengths ranged from about 1 kb (the minimum able to encode the recombinase responsible for element excision), up to nearly 1 Mb. The recombinase gene sequences served as genetic markers that were common across the interruption elements and were used to track element evolution. Elements were found that interrupted 22 different orthologs, only five of which had been previously observed to be interrupted by an element. Most of the newly identified interrupted orthologs encode proteins that have been shown to have heterocyst-specific activity. However, the presence of interruption elements within genes with no known role in N2 fixation, as well as in three non-heterocyst-forming cyanobacteria, indicates that the processes that trigger the excision of elements may not be limited to heterocyst development or that the elements move randomly within genomes. This comprehensive analysis provides the framework to study the history and behavior of these unique sequences, and offers new insight regarding the frequency and persistence of interruption elements in heterocyst-forming cyanobacteria.
Collapse
Affiliation(s)
- Jason A. Hilton
- University of California Department of Ocean Sciences, Santa Cruz, California, United States of America
- * E-mail:
| | - John C. Meeks
- University of California Department of Microbiology and Molecular Genetics, Davis, California, United States of America
| | - Jonathan P. Zehr
- University of California Department of Ocean Sciences, Santa Cruz, California, United States of America
| |
Collapse
|
23
|
González A, Sevilla E, Bes MT, Peleato ML, Fillat MF. Pivotal Role of Iron in the Regulation of Cyanobacterial Electron Transport. Adv Microb Physiol 2016; 68:169-217. [PMID: 27134024 DOI: 10.1016/bs.ampbs.2016.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iron-containing metalloproteins are the main cornerstones for efficient electron transport in biological systems. The abundance and diversity of iron-dependent proteins in cyanobacteria makes those organisms highly dependent of this micronutrient. To cope with iron imbalance, cyanobacteria have developed a survey of adaptation strategies that are strongly related to the regulation of photosynthesis, nitrogen metabolism and other central electron transfer pathways. Furthermore, either in its ferrous form or as a component of the haem group, iron plays a crucial role as regulatory signalling molecule that directly or indirectly modulates the composition and efficiency of cyanobacterial redox reactions. We present here the major mechanism used by cyanobacteria to couple iron homeostasis to the regulation of electron transport, making special emphasis in processes specific in those organisms.
Collapse
Affiliation(s)
| | - E Sevilla
- University of Zaragoza, Zaragoza, Spain
| | - M T Bes
- University of Zaragoza, Zaragoza, Spain
| | | | - M F Fillat
- University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
24
|
Expanding the Role of FurA as Essential Global Regulator in Cyanobacteria. PLoS One 2016; 11:e0151384. [PMID: 26967347 PMCID: PMC4788461 DOI: 10.1371/journal.pone.0151384] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/26/2016] [Indexed: 01/03/2023] Open
Abstract
In the nitrogen-fixing heterocyst-forming cyanobacterium Anabaena sp. PCC 7120, the ferric uptake regulator FurA plays a global regulatory role. Failures to eliminate wild-type copies of furA gene from the polyploid genome suggest essential functions. In the present study, we developed a selectively regulated furA expression system by the replacement of furA promoter in the Anabaena sp. chromosomes with the Co2+/Zn2+ inducible coaT promoter from Synechocystis sp. PCC 6803. By removing Co2+ and Zn2+ from the medium and shutting off furA expression, we showed that FurA was absolutely required for cyanobacterial growth. RNA-seq based comparative transcriptome analyses of the furA-turning off strain and its parental wild-type in conjunction with subsequent electrophoretic mobility shift assays and semi-quantitative RT-PCR were carried out in order to identify direct transcriptional targets and unravel new biological roles of FurA. The results of such approaches led us to identify 15 novel direct iron-dependent transcriptional targets belonging to different functional categories including detoxification and defences against oxidative stress, phycobilisome degradation, chlorophyll catabolism and programmed cell death, light sensing and response, heterocyst differentiation, exopolysaccharide biosynthesis, among others. Our analyses evidence novel interactions in the complex regulatory network orchestrated by FurA in cyanobacteria.
Collapse
|
25
|
Regulation of the scp Genes in the Cyanobacterium Synechocystis sp. PCC 6803--What is New? Molecules 2015; 20:14621-37. [PMID: 26274949 PMCID: PMC6331805 DOI: 10.3390/molecules200814621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 11/18/2022] Open
Abstract
In the cyanobacterium Synechocystis sp. PCC 6803 there are five genes encoding small CAB-like (SCP) proteins, which have been shown to be up-regulated under stress. Analyses of the promoter sequences of the scp genes revealed the existence of an NtcA binding motif in two scp genes, scpB and scpE. Binding of NtcA, the key transcriptional regulator during nitrogen stress, to the promoter regions was shown by electrophoretic mobility shift assay. The metabolite 2-oxoglutarate did not increase the affinity of NtcA for binding to the promoters of scpB and scpE. A second motif, the HIP1 palindrome 5ʹ GGCGATCGCC 3ʹ, was detected in the upstream regions of scpB and scpC. The transcription factor encoded by sll1130 has been suggested to recognize this motif to regulate heat-responsive genes. Our data suggest that HIP1 is not a regulatory element within the scp genes. Further, the presence of the high light regulatory (HLR1) motif was confirmed in scpB-E, in accordance to their induced transcriptions in cells exposed to high light. The HLR1 motif was newly discovered in eight additional genes.
Collapse
|
26
|
Kaushik MS, Singh P, Tiwari B, Mishra AK. Ferric Uptake Regulator (FUR) protein: properties and implications in cyanobacteria. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1134-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
27
|
Yingping F, Lemeille S, González A, Risoul V, Denis Y, Richaud P, Lamrabet O, Fillat MF, Zhang CC, Latifi A. The Pkn22 Ser/Thr kinase in Nostoc PCC 7120: role of FurA and NtcA regulators and transcript profiling under nitrogen starvation and oxidative stress. BMC Genomics 2015. [PMID: 26220092 PMCID: PMC4518582 DOI: 10.1186/s12864-015-1703-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background The filamentous cyanobacterium Nostoc sp. strain PCC 7120 can fix N2 when combined nitrogen is not available. Furthermore, it has to cope with reactive oxygen species generated as byproducts of photosynthesis and respiration. We have previously demonstrated the synthesis of Ser/Thr kinase Pkn22 as an important survival response of Nostoc to oxidative damage. In this study we wished to investigate the possible involvement of this kinase in signalling peroxide stress and nitrogen deprivation. Results Quantitative RT-PCR experiments revealed that the pkn22 gene is induced in response to peroxide stress and to combined nitrogen starvation. Electrophoretic motility assays indicated that the pkn22 promoter is recognized by the global transcriptional regulators FurA and NtcA. Transcriptomic analysis comparing a pkn22-insertion mutant and the wild type strain indicated that this kinase regulates genes involved in important cellular functions such as photosynthesis, carbon metabolism and iron acquisition. Since metabolic changes may lead to oxidative stress, we investigated whether this is the case with nitrogen starvation. Our results rather invalidate this hypothesis thereby suggesting that the function of Pkn22 under nitrogen starvation is independent of its role in response to peroxide stress. Conclusions Our analyses have permitted a more complete functional description of Ser/Thr kinase in Nostoc. We have decrypted the transcriptional regulation of the pkn22 gene, and analysed the whole set of genes under the control of this kinase in response to the two environmental changes often encountered by cyanobacteria in their natural habitat: oxidative stress and nitrogen deprivation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1703-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fan Yingping
- Aix-Marseille University and CNRS, Laboratoire de Chimie Bactérienne - UMR7283, IMM, 31 Chemin Joseph Aiguier, 13402, Marseille cedex 20, France.
| | - Sylvain Lemeille
- Department of Microbiology and Molecular Medicine, CMU, Medical Faculty, University of Geneva, Genève, 1211, Switzerland.
| | - Andrés González
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009, Zaragoza, Spain.
| | - Véronique Risoul
- Aix-Marseille University and CNRS, Laboratoire de Chimie Bactérienne - UMR7283, IMM, 31 Chemin Joseph Aiguier, 13402, Marseille cedex 20, France.
| | - Yann Denis
- Plate-forme Transcriptome FR3479, IMM-CNRS, Marseille, France.
| | - Pierre Richaud
- CEA, DSV, IBEB, SBVME, Saint-Paul-lez-Durance, F-13108, France. .,CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, F-13108, France. .,Aix Marseille Université, BVME UMR7265, Marseille, F-13284, France.
| | - Otmane Lamrabet
- Aix-Marseille University and CNRS, Laboratoire de Chimie Bactérienne - UMR7283, IMM, 31 Chemin Joseph Aiguier, 13402, Marseille cedex 20, France.
| | - Maria F Fillat
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009, Zaragoza, Spain.
| | - Cheng-Cai Zhang
- Aix-Marseille University and CNRS, Laboratoire de Chimie Bactérienne - UMR7283, IMM, 31 Chemin Joseph Aiguier, 13402, Marseille cedex 20, France.
| | - Amel Latifi
- Aix-Marseille University and CNRS, Laboratoire de Chimie Bactérienne - UMR7283, IMM, 31 Chemin Joseph Aiguier, 13402, Marseille cedex 20, France.
| |
Collapse
|
28
|
Li X, Sandh G, Nenninger A, Muro-Pastor AM, Stensjö K. Differential transcriptional regulation of orthologous dps genes from two closely related heterocyst-forming cyanobacteria. FEMS Microbiol Lett 2015; 362:fnv017. [PMID: 25663155 DOI: 10.1093/femsle/fnv017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In cyanobacteria, DNA-binding proteins from starved cells (Dps) play an important role in the cellular response to oxidative and nutritional stresses. In this study, we have characterized the cell-type specificity and the promoter regions of two orthologous dps genes, Npun_R5799 in Nostoc punctiforme and alr3808 in Anabaena sp. PCC 7120. A transcriptional start site (TSS), identical in location to the previously identified proximal TSS of alr3808, was identified for Npun_R5799 under both combined nitrogen supplemented and N2-fixing growth conditions. However, only alr3808 was also transcribed from a second distal TSS. Sequence homologies suggest that the promoter region containing the distal TSS is not conserved upstream of orthologous genes among heterocyst-forming cyanobacteria. The analysis of promoter GFP-reporter strains showed a different role in governing cell-type specificity between the proximal and distal promoter of alr3808. We here confirmed the heterocyst specificity of the distal promoter of alr3808 and described a very early induction of its expression during proheterocyst differentiation. In contrast, the complete promoters of both genes were active in all cells. Even though Npun_R5799 and alr3808 are orthologs, the regulation of their respective expression differs, indicating distinctions in the function of these cyanobacterial Dps proteins depending on the strain and cell type.
Collapse
Affiliation(s)
- Xin Li
- Microbial Chemistry, Department of Chemistry - Ångström Laboratory, Science for Life Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Gustaf Sandh
- Microbial Chemistry, Department of Chemistry - Ångström Laboratory, Science for Life Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Anja Nenninger
- Microbial Chemistry, Department of Chemistry - Ångström Laboratory, Science for Life Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Alicia M Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, E-41092 Seville, Spain
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry - Ångström Laboratory, Science for Life Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| |
Collapse
|
29
|
Zhu Y, Pei G, Niu X, Shi M, Zhang M, Chen L, Zhang W. Metabolomic analysis reveals functional overlapping of three signal transduction proteins in regulating ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803. MOLECULAR BIOSYSTEMS 2014; 11:770-82. [PMID: 25502571 DOI: 10.1039/c4mb00651h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low ethanol tolerance is a crucial factor that restricts the feasibility of bioethanol production in renewable cyanobacterial systems. Our previous studies showed that several transcriptional regulators were differentially regulated by exogenous ethanol in Synechocystis. In this study, by constructing knockout mutants of 34 Synechocystis putative transcriptional regulator-encoding genes and analyzing their phenotypes under ethanol stress, we found that three mutants of regulatory gene sll1392, sll1712 and slr1860 grew poorly in the BG11 medium supplemented with ethanol when compared with the wild type in the same medium, suggesting that the genes may be involved in the regulation of ethanol tolerance. To decipher the regulatory mechanism, targeted LC-MS and untargeted GC-MS approaches were employed to determine metabolic profiles of the three mutants and the wild type under both normal and ethanol stress conditions. The results were then subjected to PCA and WGCNA analyses to determine the responsive metabolites and metabolic modules related to ethanol tolerance. Interestingly, the results showed that there was a significant overlapping of the responsive metabolites and metabolic modules between three regulatory proteins, suggesting that a possible crosstalk between various regulatory proteins may be involved in combating against ethanol toxicity in Synechocystis. The study provided new insights into ethanol-tolerance regulation and knowledge important to rational tolerance engineering in Synechocystis.
Collapse
Affiliation(s)
- Ye Zhu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Sein-Echaluce VC, González A, Napolitano M, Luque I, Barja F, Peleato ML, Fillat MF. Zur (FurB) is a key factor in the control of the oxidative stress response inAnabaenasp. PCC 7120. Environ Microbiol 2014; 17:2006-17. [DOI: 10.1111/1462-2920.12628] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/05/2014] [Accepted: 09/09/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Violeta C. Sein-Echaluce
- Departamento de Bioquímica y Biología Molecular y Celular; Instituto de Biocomputación y Física de Sistemas Complejos; Universidad de Zaragoza; Zaragoza 50009 Spain
| | - Andrés González
- Departamento de Bioquímica y Biología Molecular y Celular; Instituto de Biocomputación y Física de Sistemas Complejos; Universidad de Zaragoza; Zaragoza 50009 Spain
| | - Mauro Napolitano
- Instituto de Bioquímica Vegetal y Fotosíntesis; CSIC-Universidad de Sevilla; Sevilla E-41092 Spain
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis; CSIC-Universidad de Sevilla; Sevilla E-41092 Spain
| | - Francisco Barja
- Microbiology Unit; Botany and Plant Biology Department; University of Geneva; Ch. Des Embrouchis 10 Jussy-Geneva CH-1254 Switzerland
| | - M. Luisa Peleato
- Departamento de Bioquímica y Biología Molecular y Celular; Instituto de Biocomputación y Física de Sistemas Complejos; Universidad de Zaragoza; Zaragoza 50009 Spain
| | - María F. Fillat
- Departamento de Bioquímica y Biología Molecular y Celular; Instituto de Biocomputación y Física de Sistemas Complejos; Universidad de Zaragoza; Zaragoza 50009 Spain
| |
Collapse
|
31
|
The regulation of HanA during heterocyst development in cyanobacterium Anabaena sp. PCC 7120. World J Microbiol Biotechnol 2014; 30:2673-80. [PMID: 24980942 DOI: 10.1007/s11274-014-1691-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
In response to deprivation of combined nitrogen, the filamentous cyanobacterium Anabaena sp. strain PCC 7120 develops heterocyst, which is specifically involved in the nitrogen fixation. In this study, we focused on the regulation of HanA, a histone-like protein, in heterocyst development. Electrophoretic mobility shift assay results showed that NtcA, a global nitrogen regulator necessary for heterocyst differentiation, could bind to two NtcA-binding motifs in the hanA promoter region. qPCR results also showed that NtcA may regulate the expression of hanA. By using the hanA promoter-controlled gfp as a reporter gene and performing western blot we found that the amount of HanA in mature heterocysts was decreased gradually.
Collapse
|
32
|
Botello-Morte L, Bes MT, Heras B, Fernández-Otal Á, Peleato ML, Fillat MF. Unraveling the redox properties of the global regulator FurA from Anabaena sp. PCC 7120: disulfide reductase activity based on its CXXC motifs. Antioxid Redox Signal 2014; 20:1396-406. [PMID: 24093463 PMCID: PMC3936511 DOI: 10.1089/ars.2013.5376] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
UNLABELLED Cyanobacterial FurA works as a global regulator linking iron homeostasis to photosynthetic metabolism and the responses to different environmental stresses. Additionally, FurA modulates several genes involved in redox homeostasis and fulfills the characteristics of a heme-sensor protein whose interaction with this cofactor negatively affects its DNA binding ability. FurA from Anabaena PCC 7120 contains five cysteine residues, four of them arranged in two redox CXXC motifs. AIMS Our goals were to analyze in depth the putative contribution of these CXXC motifs in the redox properties of FurA and to identify potential interacting partners of this regulator. RESULTS Insulin reduction assays unravel that FurA exhibits disulfide reductase activity. Simultaneous presence of both CXXC signatures greatly enhances the reduction rate, although the redox motif containing Cys(101) and Cys(104) seems a major contributor to this activity. Disulfide reductase activity was not detected in other ferric uptake regulator (Fur) proteins isolated from heterotrophic bacteria. In vivo, FurA presents different redox states involving intramolecular disulfide bonds when is partially oxidized. Redox potential values for CXXC motifs, -235 and -238 mV, are consistent with those reported for other proteins displaying disulfide reductase activity. Pull-down and two-hybrid assays unveil potential FurA interacting partners, namely phosphoribulokinase Alr4123, the hypothetical amidase-containing domain All1140 and the DNA-binding protein HU. INNOVATION A novel biochemical activity of cyanobacterial FurA based on its cysteine arrangements and the identification of novel interacting partners are reported. CONCLUSION The present study discloses a putative connection of FurA with the cyanobacterial redox-signaling pathway.
Collapse
Affiliation(s)
- Laura Botello-Morte
- 1 Department of Biochemistry and Molecular and Cell Biology, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza , Zaragoza, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Fillat MF. The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Arch Biochem Biophys 2014; 546:41-52. [PMID: 24513162 DOI: 10.1016/j.abb.2014.01.029] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/27/2014] [Accepted: 01/31/2014] [Indexed: 11/17/2022]
Abstract
Control of metal homeostasis is essential for life in all kingdoms. In most prokaryotic organisms the FUR (ferric uptake regulator) family of transcriptional regulators is involved in the regulation of iron and zinc metabolism through control by Fur and Zur proteins. A third member of this family, the peroxide-stress response PerR, is present in most Gram-positives, establishing a tight functional interaction with the global regulator Fur. These proteins play a pivotal role for microbial survival under adverse conditions and in the expression of virulence in most pathogens. In this paper we present the current state of the art in the knowledge of the FUR family, including those members only present in more reduced numbers of bacteria, namely Mur, Nur and Irr. The huge amount of work done in the two last decades shows that FUR proteins present considerable diversity in their regulatory mechanisms and interesting structural differences. However, much work needs to be done to obtain a more complete picture of this family, especially in connection with the roles of some members as gas and redox sensors as well as to fully characterize their participation in bacterial adaptative responses.
Collapse
Affiliation(s)
- María F Fillat
- Department of Biochemistry and Molecular and Cell Biology, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain.
| |
Collapse
|
34
|
González A, Angarica VE, Sancho J, Fillat MF. The FurA regulon in Anabaena sp. PCC 7120: in silico prediction and experimental validation of novel target genes. Nucleic Acids Res 2014; 42:4833-46. [PMID: 24503250 PMCID: PMC4005646 DOI: 10.1093/nar/gku123] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the filamentous cyanobacterium Anabaena sp. PCC 7120, the ferric uptake regulator FurA functions as a global transcriptional regulator. Despite several analyses have focused on elucidating the FurA-regulatory network, the number of target genes described for this essential transcription factor is limited to a handful of examples. In this article, we combine an in silico genome-wide predictive approach with experimental determinations to better define the FurA regulon. Predicted FurA-binding sites were identified upstream of 215 genes belonging to diverse functional categories including iron homeostasis, photosynthesis and respiration, heterocyst differentiation, oxidative stress defence and light-dependent signal transduction mechanisms, among others. The probabilistic model proved to be effective at discerning FurA boxes from non-cognate sequences, while subsequent electrophoretic mobility shift assay experiments confirmed the in vitro specific binding of FurA to at least 20 selected predicted targets. Gene-expression analyses further supported the dual role of FurA as transcriptional modulator that can act both as repressor and as activator. In either role, the in vitro affinity of the protein to its target sequences is strongly dependent on metal co-regulator and reducing conditions, suggesting that FurA couples in vivo iron homeostasis and the response to oxidative stress to major physiological processes in cyanobacteria.
Collapse
Affiliation(s)
- Andrés González
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain and Unidad Asociada BIFI-IQFR (CSIC), 28006 Madrid, Spain
| | | | | | | |
Collapse
|
35
|
Picossi S, Flores E, Herrero A. ChIP analysis unravels an exceptionally wide distribution of DNA binding sites for the NtcA transcription factor in a heterocyst-forming cyanobacterium. BMC Genomics 2014; 15:22. [PMID: 24417914 PMCID: PMC3898017 DOI: 10.1186/1471-2164-15-22] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 12/26/2013] [Indexed: 11/20/2022] Open
Abstract
Background The CRP-family transcription factor NtcA, universally found in cyanobacteria, was initially discovered as a regulator operating N control. It responds to the N regime signaled by the internal 2-oxoglutarate levels, an indicator of the C to N balance of the cells. Canonical NtcA-activated promoters bear an NtcA-consensus binding site (GTAN8TAC) centered at about 41.5 nucleotides upstream from the transcription start point. In strains of the Anabaena/Nostoc genera NtcA is pivotal for the differentiation of heterocysts in response to N stress. Results In this study, we have used chromatin immunoprecipitation followed by high-throughput sequencing to identify the whole catalog of NtcA-binding sites in cells of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 three hours after the withdrawal of combined N. NtcA has been found to bind to 2,424 DNA regions in the genome of Anabaena, which have been ascribed to 2,153 genes. Interestingly, only a small proportion of those genes are involved in N assimilation and metabolism, and 65% of the binding regions were located intragenically. Conclusions The distribution of NtcA-binding sites identified here reveals the largest bacterial regulon described to date. Our results show that NtcA has a much wider role in the physiology of the cell than it has been previously thought, acting both as a global transcriptional regulator and possibly also as a factor influencing the superstructure of the chromosome (and plasmids).
Collapse
Affiliation(s)
- Silvia Picossi
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, Seville E-41092, Spain.
| | | | | |
Collapse
|
36
|
Gupta N, Gupta A, Kumar S, Mishra R, Singh C, Tripathi AK. Cross-talk between cognate and noncognate RpoE sigma factors and Zn(2+)-binding anti-sigma factors regulates photooxidative stress response in Azospirillum brasilense. Antioxid Redox Signal 2014; 20:42-59. [PMID: 23725220 DOI: 10.1089/ars.2013.5314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Azospirillum brasilense harbors two redox-sensitive Zinc-binding anti-sigma (ZAS) factors (ChrR1 and ChrR2), which negatively regulate the activity of their cognate extra-cytoplasmic function (ECF) σ factors (RpoE1 and RpoE2) by occluding their binding to the core enzyme. Both pairs of RpoE-ChrR control responses to photooxidative stress. The aim of this study was to investigate whether the two RpoE-ChrR pairs cross-talk while responding to the stress. RESULTS In silico analysis showed a high sequence similarity between ChrR1 and ChrR2 proteins, but differences in redox sensitivity. Using in silico and in vitro methods of protein-protein interaction, we have shown that both ChrR1 and ChrR2 proteins physically bind to their noncognate RpoE proteins. Restoration of the phenotypes of chrR1::Tn5 and chrR2::Km mutants related to carotenoid biosynthesis and photooxidative stress tolerance by expressing chrR1 or chrR2 provided in vivo evidence for the cross-talk. In addition, up- or down-regulation of several identical proteins by expressing chrR1 or chrR2 in the chrR1::Tn5 mutant provided another in vivo evidence for the cross-talk. INNOVATION Although multiple redox-sensitive ZAS anti-σ factors occur in some Gram-positive bacteria, no cross-talk is reported among them. We report here, for the first time, that the two ZAS anti-σ factors of A. brasilense also interact with their noncognate σ factors and affect gene expression. CONCLUSION The two redox-sensitive ZAS anti-σ factors in A. brasilense may interact with their cognate as well as noncognate ECF σ factors to play an important role in redox homeostasis by facilitating recovery from the oxidative stress.
Collapse
Affiliation(s)
- Namrata Gupta
- Faculty of Science, School of Biotechnology, Banaras Hindu University , Varanasi, India
| | | | | | | | | | | |
Collapse
|
37
|
da Silva Neto JF, Lourenço RF, Marques MV. Global transcriptional response of Caulobacter crescentus to iron availability. BMC Genomics 2013; 14:549. [PMID: 23941329 PMCID: PMC3751524 DOI: 10.1186/1471-2164-14-549] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 08/09/2013] [Indexed: 01/22/2023] Open
Abstract
Background In the alpha subclass of proteobacteria iron homeostasis is controlled by diverse iron responsive regulators. Caulobacter crescentus, an important freshwater α-proteobacterium, uses the ferric uptake repressor (Fur) for such purpose. However, the impact of the iron availability on the C. crescentus transcriptome and an overall perspective of the regulatory networks involved remain unknown. Results In this work we report the identification of iron-responsive and Fur-regulated genes in C. crescentus using microarray-based global transcriptional analyses. We identified 42 genes that were strongly upregulated both by mutation of fur and by iron limitation condition. Among them, there are genes involved in iron uptake (four TonB-dependent receptor gene clusters, and feoAB), riboflavin biosynthesis and genes encoding hypothetical proteins. Most of these genes are associated with predicted Fur binding sites, implicating them as direct targets of Fur-mediated repression. These data were validated by β-galactosidase and EMSA assays for two operons encoding putative transporters. The role of Fur as a positive regulator is also evident, given that 27 genes were downregulated both by mutation of fur and under low-iron condition. As expected, this group includes many genes involved in energy metabolism, mostly iron-using enzymes. Surprisingly, included in this group are also TonB-dependent receptors genes and the genes fixK, fixT and ftrB encoding an oxygen signaling network required for growth during hypoxia. Bioinformatics analyses suggest that positive regulation by Fur is mainly indirect. In addition to the Fur modulon, iron limitation altered expression of 113 more genes, including induction of genes involved in Fe-S cluster assembly, oxidative stress and heat shock response, as well as repression of genes implicated in amino acid metabolism, chemotaxis and motility. Conclusions Using a global transcriptional approach, we determined the C. crescentus iron stimulon. Many but not all of iron responsive genes were directly or indirectly controlled by Fur. The iron limitation stimulon overlaps with other regulatory systems, such as the RpoH and FixK regulons. Altogether, our results showed that adaptation of C. crescentus to iron limitation not only involves increasing the transcription of iron-acquisition systems and decreasing the production of iron-using proteins, but also includes novel genes and regulatory mechanisms.
Collapse
Affiliation(s)
- José F da Silva Neto
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av Prof Lineu Prestes 1374, 05508-000 São Paulo, Brazil.
| | | | | |
Collapse
|
38
|
González A, Valladares A, Peleato ML, Fillat MF. FurA influences heterocyst differentiation in Anabaena sp. PCC 7120. FEBS Lett 2013; 587:2682-90. [PMID: 23851073 DOI: 10.1016/j.febslet.2013.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 01/14/2023]
Abstract
In Anabaena sp. PCC 7120, FurA is a global transcriptional regulator whose expression is strongly induced by NtcA in proheterocysts and remains stably expressed in mature heterocysts. In the present study, overexpression of furA partially suppressed heterocyst differentiation by impairing morphogenesis at an early stage. Recombinant purified FurA specifically bound in vitro to the promoter regions of ntcA, while quantitative RT-PCR analyses indicated that furA overexpression strongly affected the transient increase of ntcA expression that occurs shortly after nitrogen step-down. Overall, the results suggest a connection between iron homeostasis and heterocyst differentiation via FurA, by modulating the expression of ntcA.
Collapse
Affiliation(s)
- Andrés González
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | | | | | | |
Collapse
|
39
|
González A, Bes MT, Valladares A, Peleato ML, Fillat MF. FurA is the master regulator of iron homeostasis and modulates the expression of tetrapyrrole biosynthesis genes inAnabaenasp. PCC 7120. Environ Microbiol 2012; 14:3175-87. [DOI: 10.1111/j.1462-2920.2012.02897.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/06/2012] [Accepted: 09/09/2012] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Ana Valladares
- Instituto de Bioquímica Vegetal y Fotosíntesis; Centro de Investigaciones Científicas Isla de la Cartuja; CSIC-Universidad de Sevilla; E-41092; Seville; Spain
| | | | | |
Collapse
|
40
|
Abstract
Background Phenotypes exhibited by microorganisms can be useful for several purposes, e.g., ethanol as an alternate fuel. Sometimes, the target phenotype maybe required in combination with other phenotypes, in order to be useful, for e.g., an industrial process may require that the organism survive in an anaerobic, alcohol rich environment and be able to feed on both hexose and pentose sugars to produce ethanol. This combination of traits may not be available in any existing organism or if they do exist, the mechanisms involved in the phenotype-expression may not be efficient enough to be useful. Thus, it may be required to genetically modify microorganisms. However, before any genetic modification can take place, it is important to identify the underlying cellular subsystems responsible for the expression of the target phenotype. Results In this paper, we develop a method to identify statistically significant and phenotypically-biased functional modules. The method can compare the organismal network information from hundreds of phenotype expressing and phenotype non-expressing organisms to identify cellular subsystems that are more prone to occur in phenotype-expressing organisms than in phenotype non-expressing organisms. We have provided literature evidence that the phenotype-biased modules identified for phenotypes such as hydrogen production (dark and light fermentation), respiration, gram-positive, gram-negative and motility, are indeed phenotype-related. Conclusion Thus we have proposed a methodology to identify phenotype-biased cellular subsystems. We have shown the effectiveness of our methodology by applying it to several target phenotypes. The code and all supplemental files can be downloaded from (http://freescience.org/cs/phenotype-biased-biclusters/).
Collapse
|
41
|
Kaplan A, Harel M, Kaplan-Levy RN, Hadas O, Sukenik A, Dittmann E. The languages spoken in the water body (or the biological role of cyanobacterial toxins). Front Microbiol 2012; 3:138. [PMID: 22529842 PMCID: PMC3328848 DOI: 10.3389/fmicb.2012.00138] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 03/23/2012] [Indexed: 11/13/2022] Open
Abstract
Although intensification of toxic cyanobacterial blooms over the last decade is a matter of growing concern due to bloom impact on water quality, the biological role of most of the toxins produced is not known. In this critical review we focus primarily on the biological role of two toxins, microcystins and cylindrospermopsin, in inter- and intra-species communication and in nutrient acquisition. We examine the experimental evidence supporting some of the dogmas in the field and raise several open questions to be dealt with in future research. We do not discuss the health and environmental implications of toxin presence in the water body.
Collapse
Affiliation(s)
- Aaron Kaplan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
42
|
Qian H, Pan X, Chen J, Zhou D, Chen Z, Zhang L, Fu Z. Analyses of gene expression and physiological changes in Microcystis aeruginosa reveal the phytotoxicities of three environmental pollutants. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:847-859. [PMID: 22218976 DOI: 10.1007/s10646-011-0845-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/16/2011] [Indexed: 05/31/2023]
Abstract
When the concentrations of ampicillin (Amp), atrazine (Atr) and cadmium chloride (Cd) reach excessive quantities, they become toxic to aquatic organisms. Due to the acceleration of the industrialization and the intensification of human activities, the incidence and concentrations of these types of pollutants in aquatic systems are increasing. The primary purpose of this study was to evaluate the short-term effects of Amp, Atr and Cd on the physiological indices and gene expression levels in Microcystis aeruginosa. These three pollutants significantly induced antioxidant activity but continuously accelerated the cellular oxidative damage in microalgae, which suggests an imbalance between the oxidant and the antioxidant systems. Amp, Atr and Cd also decreased the transcription of psaB, psbD1 and rbcL; the lowest transcription of these genes was only 38.1, 23.7 and 7% of the control, respectively. These three pollutants affected nitrogen (N) and phosphorous (P) uptake by inhibiting the transcription of N or P absorbing and transporting related genes, and they down regulated the transcription of microcystin-related genes, which caused a decrease of microcystin levels; and the lowest level of microcystin was only 42.4% of the control. Our results suggest that these pollutants may cause pleiotropic effects on algal growth and physiological and biochemical reactions, and they may even affect secondary metabolic processes.
Collapse
Affiliation(s)
- Haifeng Qian
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310032 Zhejiang, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Neilan BA, Pearson LA, Muenchhoff J, Moffitt MC, Dittmann E. Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ Microbiol 2012; 15:1239-53. [PMID: 22429476 DOI: 10.1111/j.1462-2920.2012.02729.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Over the past 15 years, the genetic basis for production of many cyanobacterial bioactive compounds has been described. This knowledge has enabled investigations into the environmental factors that regulate the production of these toxins at the molecular level. Such molecular or systems level studies are also likely to reveal the physiological role of the toxin and contribute to effective water resource management. This review focuses on the environmental regulation of some of the most relevant cyanotoxins, namely the microcystins, nodularin, cylindrospermopsin, saxitoxins, anatoxins and jamaicamides.
Collapse
Affiliation(s)
- Brett A Neilan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
44
|
Martin-Luna B, Sevilla E, Gonzalez A, Bes MT, Fillat MF, Peleato ML. Expression of fur and its antisense α-fur from Microcystis aeruginosa PCC7806 as response to light and oxidative stress. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:2244-2250. [PMID: 21940066 DOI: 10.1016/j.jplph.2011.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 07/27/2011] [Accepted: 08/04/2011] [Indexed: 05/31/2023]
Abstract
Ferric uptake regulation (Fur) proteins are prokaryotic transcriptional regulators that integrate signaling of iron metabolism and oxidative stress responses with several environmental stresses. In photosynthetic organisms, Fur proteins regulate many genes involved in photosynthesis, nitrogen metabolism and other key processes. Also, Fur triggers the expression of virulence factors in many bacterial pathogens, and Fur from Microcystis aeruginosa has been shown to bind promoter regions of the microcystin synthesis gene cluster. In this work, we studied transcriptional responses of fur genes under different light intensities and oxidative stress. An antisense of fur, the α-fur RNA, plays an important role in regulating fur expression under oxidative stress, affecting levels of Fur protein in cells. Importantly, an active photosynthetic electron chain is required for the expression of the fur gene.
Collapse
Affiliation(s)
- Beatriz Martin-Luna
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias and BIFI, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | | | | | | | | | | |
Collapse
|
45
|
Sevilla E, Martín-Luna B, González A, Gonzalo-Asensio JA, Peleato ML, Fillat MF. Identification of three novel antisense RNAs in the fur locus from unicellular cyanobacteria. Microbiology (Reading) 2011; 157:3398-3404. [DOI: 10.1099/mic.0.048231-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The interplay between Fur (ferric uptake regulator) proteins and small, non-coding RNAs has been described as a key regulatory loop in several bacteria. In the filamentous cyanobacterium Anabaena sp. PCC 7120, a large dicistronic transcript encoding the putative membrane protein Alr1690 and an α-furA RNA is involved in the modulation of the global regulator FurA. In this work we report the existence of three novel antisense RNAs in cyanobacteria and show that a cis α-furA RNA is conserved in very different genomic contexts, namely in the unicellular cyanobacteria Microcystis aeruginosa PCC 7806 and Synechocystis sp. PCC 6803. Syα-fur RNA covers only part of the coding sequence of the fur orthologue sll0567, whose flanking genes encode two hypothetical proteins. Transcriptional analysis of fur and its adjacent genes in Microcystis unravels a highly compact organization of this locus involving overlapping transcripts. Maα-fur RNA spans the whole Mafur CDS and part of the flanking dnaJ and sufE sequences. In addition, Mafur seems to be part of a dicistronic operon encoding this regulator and an α-sufE RNA. These results allow new insights into the transcriptomes of two unicellular cyanobacteria and suggest that in M. aeruginosa PCC 7806, the α-fur and α-sufE RNAs might participate in a regulatory connection between the genes of the dnaJ–fur–sufE locus.
Collapse
Affiliation(s)
- Emma Sevilla
- Department of Biochemistry and Molecular and Cell Biology, and Biocomputation and Complex Systems Physics Institute (BiFi), University of Zaragoza, Zaragoza, Spain
| | - Beatriz Martín-Luna
- Department of Biochemistry and Molecular and Cell Biology, and Biocomputation and Complex Systems Physics Institute (BiFi), University of Zaragoza, Zaragoza, Spain
| | - Andrés González
- Department of Biochemistry and Molecular and Cell Biology, and Biocomputation and Complex Systems Physics Institute (BiFi), University of Zaragoza, Zaragoza, Spain
| | - Jesús A. Gonzalo-Asensio
- Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | - María Luisa Peleato
- Department of Biochemistry and Molecular and Cell Biology, and Biocomputation and Complex Systems Physics Institute (BiFi), University of Zaragoza, Zaragoza, Spain
| | - María F. Fillat
- Department of Biochemistry and Molecular and Cell Biology, and Biocomputation and Complex Systems Physics Institute (BiFi), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
46
|
Stevanovic M, Hahn A, Nicolaisen K, Mirus O, Schleiff E. The components of the putative iron transport system in the cyanobacterium Anabaena sp. PCC 7120. Environ Microbiol 2011; 14:1655-70. [DOI: 10.1111/j.1462-2920.2011.02619.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Kuniyoshi TM, Gonzalez A, Lopez-Gomollon S, Valladares A, Bes MT, Fillat MF, Peleato ML. 2-oxoglutarate enhances NtcA binding activity to promoter regions of the microcystin synthesis gene cluster. FEBS Lett 2011; 585:3921-6. [PMID: 22062155 DOI: 10.1016/j.febslet.2011.10.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 10/15/2022]
Abstract
The binding affinity of NtcA towards promoter regions of the microcystin gene cluster from Microcystis aeruginosa PCC 7806 has been analyzed by band-shift assay (EMSA). The key nitrogen transcriptional regulator exhibits affinity for two fragments of the bidirectional mcyDA promoter, as well as for promoter regions of mcyE and mcyH. The presence of 2-oxoglutarate increased by 2.5 fold the affinity of NtcA for the mcyA promoter region. The 2-oxoglutarate effect peaked at 0.8 mM, a physiological concentration for this compound under nitrogen-limiting conditions. The results suggest that the 2-oxoglutarate level, as a signal of the C to N balance of the cells, regulates the microcystin gene cluster.
Collapse
Affiliation(s)
- Taís M Kuniyoshi
- Departamento de Bioquimica y Biologia Molecular y Celular, Facultad de Ciencias and BIFI, Unidad Asociada Rocasolano (CSIC), Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Hendrix W, Rocha AM, Padmanabhan K, Choudhary A, Scott K, Mihelcic JR, Samatova NF. DENSE: efficient and prior knowledge-driven discovery of phenotype-associated protein functional modules. BMC SYSTEMS BIOLOGY 2011; 5:172. [PMID: 22024446 PMCID: PMC3231954 DOI: 10.1186/1752-0509-5-172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 10/24/2011] [Indexed: 01/09/2023]
Abstract
Background Identifying cellular subsystems that are involved in the expression of a target phenotype has been a very active research area for the past several years. In this paper, cellular subsystem refers to a group of genes (or proteins) that interact and carry out a common function in the cell. Most studies identify genes associated with a phenotype on the basis of some statistical bias, others have extended these statistical methods to analyze functional modules and biological pathways for phenotype-relatedness. However, a biologist might often have a specific question in mind while performing such analysis and most of the resulting subsystems obtained by the existing methods might be largely irrelevant to the question in hand. Arguably, it would be valuable to incorporate biologist's knowledge about the phenotype into the algorithm. This way, it is anticipated that the resulting subsytems would not only be related to the target phenotype but also contain information that the biologist is likely to be interested in. Results In this paper we introduce a fast and theoretically guranteed method called DENSE (Dense and ENriched Subgraph Enumeration) that can take in as input a biologist's prior knowledge as a set of query proteins and identify all the dense functional modules in a biological network that contain some part of the query vertices. The density (in terms of the number of network egdes) and the enrichment (the number of query proteins in the resulting functional module) can be manipulated via two parameters γ and μ, respectively. Conclusion This algorithm has been applied to the protein functional association network of Clostridium acetobutylicum ATCC 824, a hydrogen producing, acid-tolerant organism. The algorithm was able to verify relationships known to exist in literature and also some previously unknown relationships including those with regulatory and signaling functions. Additionally, we were also able to hypothesize that some uncharacterized proteins are likely associated with the target phenotype. The DENSE code can be downloaded from http://www.freescience.org/cs/DENSE/
Collapse
Affiliation(s)
- Willam Hendrix
- Department of Computer Science, North Carolina State University, Raleigh, 27695, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
González A, Bes MT, Peleato ML, Fillat MF. Unravelling the regulatory function of FurA in Anabaena sp. PCC 7120 through 2-D DIGE proteomic analysis. J Proteomics 2011; 74:660-71. [DOI: 10.1016/j.jprot.2011.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 01/25/2011] [Accepted: 02/02/2011] [Indexed: 01/19/2023]
|
50
|
Surplus photosynthetic antennae complexes underlie diagnostics of iron limitation in a cyanobacterium. PLoS One 2011; 6:e18753. [PMID: 21533084 PMCID: PMC3080375 DOI: 10.1371/journal.pone.0018753] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 03/17/2011] [Indexed: 11/23/2022] Open
Abstract
Chlorophyll fluorescence from phytoplankton provides a tool to assess iron limitation in the oceans, but the physiological mechanism underlying the fluorescence response is not understood. We examined fluorescence properties of the model cyanobacterium Synechocystis PCC6803 and a ΔisiA knock-out mutant of the same species grown under three culture conditions which simulate nutrient conditions found in the open ocean: (1) nitrate and iron replete, (2) limiting-iron and high-nitrate, representative of natural high-nitrate, low-chlorophyll regions, and (3) iron and nitrogen co-limiting. We show that low variable fluorescence, a key diagnostic of iron limitation, results from synthesis of antennae complexes far in excess of what can be accommodated by the iron-restricted pool of photosynthetic reaction centers. Under iron and nitrogen co-limiting conditions, there are no excess antennae complexes and variable fluorescence is high. These results help to explain the well-established fluorescence characteristics of phytoplankton in high-nutrient, low-chlorophyll ocean regions, while also accounting for the lack of these properties in low-iron, low-nitrogen regions. Importantly, our results complete the link between unique molecular consequences of iron stress in phytoplankton and global detection of iron stress in natural populations from space.
Collapse
|