1
|
Levanova AA, Poranen MM. Utilization of Bacteriophage phi6 for the Production of High-Quality Double-Stranded RNA Molecules. Viruses 2024; 16:166. [PMID: 38275976 PMCID: PMC10818839 DOI: 10.3390/v16010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Double-stranded RNA (dsRNA) molecules are mediators of RNA interference (RNAi) in eukaryotic cells. RNAi is a conserved mechanism of post-transcriptional silencing of genes cognate to the sequences of the applied dsRNA. RNAi-based therapeutics for the treatment of rare hereditary diseases have recently emerged, and the first sprayable dsRNA biopesticide has been proposed for registration. The range of applications of dsRNA molecules will likely expand in the future. Therefore, cost-effective methods for the efficient large-scale production of high-quality dsRNA are in demand. Conventional approaches to dsRNA production rely on the chemical or enzymatic synthesis of single-stranded (ss)RNA molecules with a subsequent hybridization of complementary strands. However, the yield of properly annealed biologically active dsRNA molecules is low. As an alternative approach, we have developed methods based on components derived from bacteriophage phi6, a dsRNA virus encoding RNA-dependent RNA polymerase (RdRp). Phi6 RdRp can be harnessed for the enzymatic production of high-quality dsRNA molecules. The isolated RdRp efficiently synthesizes dsRNA in vitro on a heterologous ssRNA template of any length and sequence. To scale up dsRNA production, we have developed an in vivo system where phi6 polymerase complexes produce target dsRNA molecules inside Pseudomonas cells.
Collapse
Affiliation(s)
- Alesia A. Levanova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland;
| | | |
Collapse
|
2
|
Desselberger U. 14th International dsRNA Virus Symposium, Banff, Alberta, Canada, 10-14 October 2022. Virus Res 2023; 324:199032. [PMID: 36584760 PMCID: PMC10242350 DOI: 10.1016/j.virusres.2022.199032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
This triennial International dsRNA Virus Symposium covered original data which have accrued during the most recent five years. In detail, the genomic diversity of these viruses continued to be explored; various structure-function studies were carried out using reverse genetics and biophysical techniques; intestinal organoids proved to be very suitable for special pathogenesis studies; and the potential of next generation rotavirus vaccines including use of rotavirus recombinants as vectored vaccine candidates was explored. 'Non-lytic release of enteric viruses in cloaked vesicles' was the topic of the keynote lecture by Nihal Altan-Bonnet, NIH, Bethesda, USA. The Jean Cohen lecturer of this meeting was Polly Roy, London School of Hygiene and Tropical Medicine, who spoke on aspects of the replication cycle of bluetongue viruses, and how some of the data are similar to details of rotavirus replication.
Collapse
Affiliation(s)
- Ulrich Desselberger
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K..
| |
Collapse
|
3
|
Gottlieb P, Alimova A. RNA Packaging in the Cystovirus Bacteriophages: Dynamic Interactions during Capsid Maturation. Int J Mol Sci 2022; 23:ijms23052677. [PMID: 35269819 PMCID: PMC8910881 DOI: 10.3390/ijms23052677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/10/2022] Open
Abstract
The bacteriophage family Cystoviridae consists of a single genus, Cystovirus, that is lipid-containing with three double-stranded RNA (ds-RNA) genome segments. With regard to the segmented dsRNA genome, they resemble the family Reoviridae. Therefore, the Cystoviruses have long served as a simple model for reovirus assembly. This review focuses on important developments in the study of the RNA packaging and replication mechanisms, emphasizing the structural conformations and dynamic changes during maturation of the five proteins required for viral RNA synthesis, P1, P2, P4, P7, and P8. Together these proteins constitute the procapsid/polymerase complex (PC) and nucleocapsid (NC) of the Cystoviruses. During viral assembly and RNA packaging, the five proteins must function in a coordinated fashion as the PC and NC undergo expansion with significant position translation. The review emphasizes this facet of the viral assembly process and speculates on areas suggestive of additional research efforts.
Collapse
|
4
|
Zhang C, Li Y, Samad A, Zheng P, Ji Z, Chen F, Zhang H, Jin T. Structure and mutation analysis of the hexameric P4 from Pseudomonas aeruginosa phage phiYY. Int J Biol Macromol 2022; 194:42-49. [PMID: 34856215 DOI: 10.1016/j.ijbiomac.2021.11.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/27/2022]
Abstract
phiYY is a foremost member of Cystoviridae isolated from Pseudomonas aeruginosa. Its P4 protein with NTPase activity is a molecular motor for their genome packing during viral particle assembly. Previously studies on the P4 from four Pseudomonas phages phi6, phi8, phi12 and phi13 reveal that despite of belonging to the same protein family, they are unique in sequence, structure and biochemical properties. To better understand the structure and function of phiYY P4, four crystal structures of phiYY P4 in apo-form or combined with different ligands were solved at the resolution between 1.85 Å and 2.43 Å, which showed drastic conformation change of the H1 motif in ligand-bound forms compared with in apo-form, a four residue-mutation at the ligand binding pocket abolished its ATPase activity. Furthermore, the truncation mutation of the 50 residues at the C-terminal did not impair the hexamerization and ATP hydrolysis.
Collapse
Affiliation(s)
- Caiying Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yuelong Li
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Abdus Samad
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Peiyi Zheng
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Zheng Ji
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Feng Chen
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; CAS Center for Excellence in Molecular Cell Science, Shanghai, China.
| |
Collapse
|
5
|
Abstract
Double-stranded RNA viruses infect a wide spectrum of hosts, including animals, plants, fungi, and bacteria. Yet genome replication mechanisms of these viruses are conserved. During the infection cycle, a proteinaceous capsid, the polymerase complex, is formed. An essential component of this capsid is the viral RNA polymerase that replicates and transcribes the enclosed viral genome. The polymerase complex structure is well characterized for many double-stranded RNA viruses. However, much less is known about the hierarchical molecular interactions that take place in building up such complexes. Using the bacteriophage Φ6 self-assembly system, we obtained novel insights into the processes that mediate polymerase subunit incorporation into the polymerase complex for generation of functional structures. The results presented pave the way for the exploitation and engineering of viral self-assembly processes for biomedical and synthetic biology applications. An understanding of viral assembly processes at the molecular level may also facilitate the development of antivirals that target viral capsid assembly. Double-stranded RNA (dsRNA) viruses package several RNA-dependent RNA polymerases (RdRp) together with their dsRNA genome into an icosahedral protein capsid known as the polymerase complex. This structure is highly conserved among dsRNA viruses but is not found in any other virus group. RdRp subunits typically interact directly with the main capsid proteins, close to the 5-fold symmetric axes, and perform viral genome replication and transcription within the icosahedral protein shell. In this study, we utilized Pseudomonas phage Φ6, a well-established virus self-assembly model, to probe the potential roles of the RdRp in dsRNA virus assembly. We demonstrated that Φ6 RdRp accelerates the polymerase complex self-assembly process and contributes to its conformational stability and integrity. We highlight the role of specific amino acid residues on the surface of the RdRp in its incorporation during the self-assembly reaction. Substitutions of these residues reduce RdRp incorporation into the polymerase complex during the self-assembly reaction. Furthermore, we determined that the overall transcription efficiency of the Φ6 polymerase complex increased when the number of RdRp subunits exceeded the number of genome segments. These results suggest a mechanism for RdRp recruitment in the polymerase complex and highlight its novel role in virion assembly, in addition to the canonical RNA transcription and replication functions.
Collapse
|
6
|
Sun Z, El Omari K, Sun X, Ilca SL, Kotecha A, Stuart DI, Poranen MM, Huiskonen JT. Double-stranded RNA virus outer shell assembly by bona fide domain-swapping. Nat Commun 2017; 8:14814. [PMID: 28287099 PMCID: PMC5355851 DOI: 10.1038/ncomms14814] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/26/2017] [Indexed: 12/30/2022] Open
Abstract
Correct outer protein shell assembly is a prerequisite for virion infectivity in many multi-shelled dsRNA viruses. In the prototypic dsRNA bacteriophage φ6, the assembly reaction is promoted by calcium ions but its biomechanics remain poorly understood. Here, we describe the near-atomic resolution structure of the φ6 double-shelled particle. The outer T=13 shell protein P8 consists of two alpha-helical domains joined by a linker, which allows the trimer to adopt either a closed or an open conformation. The trimers in an open conformation swap domains with each other. Our observations allow us to propose a mechanistic model for calcium concentration regulated outer shell assembly. Furthermore, the structure provides a prime exemplar of bona fide domain-swapping. This leads us to extend the theory of domain-swapping from the level of monomeric subunits and multimers to closed spherical shells, and to hypothesize a mechanism by which closed protein shells may arise in evolution. Double-shelled bacteriophage φ6 is a well-studied model system used to understand assembly of dsRNA viruses. Here the authors report a near-atomic resolution cryo-EM structure of φ6 and propose a model for the structural transitions occurring in the outer shell during genome packaging.
Collapse
Affiliation(s)
- Zhaoyang Sun
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Kamel El Omari
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Xiaoyu Sun
- Department of Biosciences, University of Helsinki, Viikinkaari 9, Helsinki 00014, Finland
| | - Serban L Ilca
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Abhay Kotecha
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - David I Stuart
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Minna M Poranen
- Department of Biosciences, University of Helsinki, Viikinkaari 9, Helsinki 00014, Finland
| | - Juha T Huiskonen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.,Department of Biosciences, University of Helsinki, Viikinkaari 9, Helsinki 00014, Finland
| |
Collapse
|
7
|
Alphonse S, Ghose R. Cystoviral RNA-directed RNA polymerases: Regulation of RNA synthesis on multiple time and length scales. Virus Res 2017; 234:135-152. [PMID: 28104452 PMCID: PMC5476504 DOI: 10.1016/j.virusres.2017.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 12/18/2022]
Abstract
Role of the RNA polymerase in the cystoviral life-cycle. Spatio-temporal regulation of RNA synthesis in cystoviruses. Emerging role of conformational dynamics in polymerase function.
P2, an RNA-directed RNA polymerase (RdRP), is encoded on the largest of the three segments of the double-stranded RNA genome of cystoviruses. P2 performs the dual tasks of replication and transcription de novo on single-stranded RNA templates, and plays a critical role in the viral life-cycle. Work over the last few decades has yielded a wealth of biochemical and structural information on the functional regulation of P2, on its role in the spatiotemporal regulation of RNA synthesis and its variability across the Cystoviridae family. These range from atomic resolution snapshots of P2 trapped in functionally significant states, in complex with catalytic/structural metal ions, polynucleotide templates and substrate nucleoside triphosphates, to P2 in the context of viral capsids providing structural insight into the assembly of supramolecular complexes and regulatory interactions therein. They include in vitro biochemical studies using P2 purified to homogeneity and in vivo studies utilizing infectious core particles. Recent advances in experimental techniques have also allowed access to the temporal dimension and enabled the characterization of dynamics of P2 on the sub-nanosecond to millisecond timescale through measurements of nuclear spin relaxation in solution and single molecule studies of transcription from seconds to minutes. Below we summarize the most significant results that provide critical insight into the role of P2 in regulating RNA synthesis in cystoviruses.
Collapse
Affiliation(s)
- Sébastien Alphonse
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, United States.
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, United States; Graduate Programs in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, United States; Graduate Programs in Chemistry, The Graduate Center of CUNY, New York, NY 10016, United States; Graduate Programs in Physics, The Graduate Center of CUNY, New York, NY 10016, United States.
| |
Collapse
|
8
|
Alimova A, Wei H, Katz A, Spatz L, Gottlieb P. The ϕ6 cystovirus protein P7 becomes accessible to antibodies in the transcribing nucleocapsid: a probe for viral structural elements. PLoS One 2015; 10:e0122160. [PMID: 25799314 PMCID: PMC4370446 DOI: 10.1371/journal.pone.0122160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/15/2015] [Indexed: 01/01/2023] Open
Abstract
Protein P7 is a component of the cystovirus viral polymerase complex. In the unpackaged procapsid, the protein is situated in close proximity to the viral directed RNA polymerase, P2. Cryo-electron microscopy difference maps from the species ϕ6 procapsid have demonstrated that P7 and P2 likely interact prior to viral RNA packaging. The location of P7 in the post-packaged nucleocapsid (NC) remains unknown. P7 may translocate closer to the five-fold axis of a filled procapsid but this has not been directly visualized. We propose that monoclonal antibodies (Mabs) can be selected that serve as probe- reagents for viral assembly and structure. A set of Mabs have been isolated that recognize and bind to the ϕ6 P7. The antibody set contains five unique Mabs, four of which recognize a linear epitope and one which recognizes a conformational epitope. The four unique Mabs that recognize a linear epitope display restricted utilization of Vκ and VH genes. The restricted genetic range among 4 of the 5 antibodies implies that the antibody repertoire is limited. The limitation could be the consequence of a paucity of exposed antigenic sites on the ϕ6 P7 surface. It is further demonstrated that within ϕ6 nucleocapsids that are primed for early-phase transcription, P7 is partially accessible to the Mabs, indicating that the nucleocapsid shell (protein P8) has undergone partial disassembly exposing the protein’s antigenic sites.
Collapse
Affiliation(s)
- Alexandra Alimova
- Sophie Davis School of Biomedical Education, City College of New York, New York, NY 10031, United States of America
| | - Hui Wei
- Sophie Davis School of Biomedical Education, City College of New York, New York, NY 10031, United States of America
| | - Al Katz
- Department of Physics, City College of New York, New York, NY 10031, United States of America
| | - Linda Spatz
- Sophie Davis School of Biomedical Education, City College of New York, New York, NY 10031, United States of America
| | - Paul Gottlieb
- Sophie Davis School of Biomedical Education, City College of New York, New York, NY 10031, United States of America
- * E-mail:
| |
Collapse
|
9
|
Alphonse S, Arnold JJ, Bhattacharya S, Wang H, Kloss B, Cameron CE, Ghose R. Cystoviral polymerase complex protein P7 uses its acidic C-terminal tail to regulate the RNA-directed RNA polymerase P2. J Mol Biol 2014; 426:2580-93. [PMID: 24813120 DOI: 10.1016/j.jmb.2014.04.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/25/2014] [Accepted: 04/30/2014] [Indexed: 01/24/2023]
Abstract
In bacteriophages of the cystovirus family, the polymerase complex (PX) encodes a 75-kDa RNA-directed RNA polymerase (P2) that transcribes the double-stranded RNA genome. Also a constituent of the PX is the essential protein P7 that, in addition to accelerating PX assembly and facilitating genome packaging, plays a regulatory role in transcription. Deletion of P7 from the PX leads to aberrant plus-strand synthesis suggesting its influence on the transcriptase activity of P2. Here, using solution NMR techniques and the P2 and P7 proteins from cystovirus ϕ12, we demonstrate their largely electrostatic interaction in vitro. Chemical shift perturbations on P7 in the presence of P2 suggest that this interaction involves the dynamic C-terminal tail of P7, more specifically an acidic cluster therein. Patterns of chemical shift changes induced on P2 by the P7 C-terminus resemble those seen in the presence of single-stranded RNA suggesting similarities in binding. This association between P2 and P7 reduces the affinity of the former toward template RNA and results in its decreased activity both in de novo RNA synthesis and in extending a short primer. Given the presence of C-terminal acidic tracts on all cystoviral P7 proteins, the electrostatic nature of the P2/P7 interaction is likely conserved within the family and could constitute a mechanism through which P7 regulates transcription in cystoviruses.
Collapse
Affiliation(s)
- Sébastien Alphonse
- Department of Chemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Jamie J Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shibani Bhattacharya
- The New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - Hsin Wang
- Department of Chemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Brian Kloss
- The New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ranajeet Ghose
- Department of Chemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA; The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA.
| |
Collapse
|
10
|
Electrostatic interactions drive the self-assembly and the transcription activity of the Pseudomonas phage ϕ6 procapsid. J Virol 2014; 88:7112-6. [PMID: 24719418 DOI: 10.1128/jvi.00467-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Assembly of an empty procapsid is a crucial step in the formation of many complex viruses. Here, we used the self-assembly system of the double-stranded RNA bacteriophage ϕ6 to study the role of electrostatic interactions in a scaffolding-independent procapsid assembly pathway. We demonstrate that ϕ6 procapsid assembly is sensitive to salt at both the nucleation and postnucleation steps. Furthermore, we observed that the salt sensitivity of ϕ6 procapsid-directed transcription is reversible.
Collapse
|
11
|
Sun X, Pirttimaa MJ, Bamford DH, Poranen MM. Rescue of maturation off-pathway products in the assembly of Pseudomonas phage φ 6. J Virol 2013; 87:13279-86. [PMID: 24089550 PMCID: PMC3838280 DOI: 10.1128/jvi.02285-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/23/2013] [Indexed: 12/30/2022] Open
Abstract
Many complex viruses use an assembly pathway in which their genome is packaged into an empty procapsid which subsequently matures into its final expanded form. We utilized Pseudomonas phage 6, a well-established virus assembly model, to probe the plasticity of the procapsid maturation pathway. The 6 packaging nucleoside triphosphatase (NTPase), which powers sequential translocation of the three viral genomic single-stranded RNA molecules to the procapsid during capsid maturation, is part of the mature 6 virion but may spontaneously be dissociated from the procapsid shell. We demonstrate that the dissociation of NTPase subunits results in premature capsid expansion, which is detected as a change in the sedimentation velocity and as defects in RNA packaging and transcription activity. However, this dead-end conformation of the procapsids was rescued by the addition of purified NTPase hexamers, which efficiently associated on the NTPase-deficient particles and subsequently drove their contraction to the compact naive conformation. The resulting particles regained their biological and enzymatic activities, directing them into a productive maturation pathway. These observations imply that the maturation pathways of complex viruses may contain reversible steps that allow the rescue of the off-pathway conformation in an overall unidirectional virion assembly pathway. Furthermore, we provide direct experimental evidence that particles which have different physical properties (distinct sedimentation velocities and conformations) display different stages of the genome packaging program and show that the transcriptional activity of the 6 procapsids correlates with the number of associated NTPase subunits.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Biosciences
- Institute of Biotechnology, University of Helsinki, Viikki Biocenter, Helsinki, Finland
| | - Markus J. Pirttimaa
- Department of Biosciences
- Institute of Biotechnology, University of Helsinki, Viikki Biocenter, Helsinki, Finland
| | - Dennis H. Bamford
- Department of Biosciences
- Institute of Biotechnology, University of Helsinki, Viikki Biocenter, Helsinki, Finland
| | | |
Collapse
|
12
|
Nemecek D, Boura E, Wu W, Cheng N, Plevka P, Qiao J, Mindich L, Heymann JB, Hurley JH, Steven AC. Subunit folds and maturation pathway of a dsRNA virus capsid. Structure 2013; 21:1374-83. [PMID: 23891288 PMCID: PMC3742642 DOI: 10.1016/j.str.2013.06.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/08/2013] [Accepted: 06/14/2013] [Indexed: 12/24/2022]
Abstract
The cystovirus ϕ6 shares several distinct features with other double-stranded RNA (dsRNA) viruses, including the human pathogen, rotavirus: segmented genomes, nonequivalent packing of 120 subunits in its icosahedral capsid, and capsids as compartments for transcription and replication. ϕ6 assembles as a dodecahedral procapsid that undergoes major conformational changes as it matures into the spherical capsid. We determined the crystal structure of the capsid protein, P1, revealing a flattened trapezoid subunit with an α-helical fold. We also solved the procapsid with cryo-electron microscopy to comparable resolution. Fitting the crystal structure into the procapsid disclosed substantial conformational differences between the two P1 conformers. Maturation via two intermediate states involves remodeling on a similar scale, besides huge rigid-body rotations. The capsid structure and its stepwise maturation that is coupled to sequential packaging of three RNA segments sets the cystoviruses apart from other dsRNA viruses as a dynamic molecular machine.
Collapse
Affiliation(s)
- Daniel Nemecek
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Evzen Boura
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2. 16600 Prague 6, Czech Republic
| | - Weimin Wu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
| | - Naiqian Cheng
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907
| | - Jian Qiao
- Department of Microbiology, Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, 225 Warren Street, Newark, NJ 07103
| | - Leonard Mindich
- Department of Microbiology, Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, 225 Warren Street, Newark, NJ 07103
| | - J. Bernard Heymann
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
| | - James H. Hurley
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
| | - Alasdair C. Steven
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
| |
Collapse
|
13
|
Protein P7 of the cystovirus φ6 is located at the three-fold axis of the unexpanded procapsid. PLoS One 2012; 7:e47489. [PMID: 23077625 PMCID: PMC3471842 DOI: 10.1371/journal.pone.0047489] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/11/2012] [Indexed: 11/19/2022] Open
Abstract
The objective of this study was to determine the location of protein P7, the RNA packaging factor, in the procapsid of the φ6 cystovirus. A comparison of cryo-electron microscopy high-resolution single particle reconstructions of the φ6 complete unexpanded procapsid, the protein P2-minus procapsid (P2 is the RNA directed RNA-polymerase), and the P7-minus procapsid, show that prior to RNA packaging the P7 protein is located near the three-fold axis of symmetry. Difference maps highlight the precise position of P7 and demonstrate that in P7-minus particles the P2 proteins are less localized with reduced densities at the three-fold axes. We propose that P7 performs the mechanical function of stabilizing P2 on the inner protein P1 shell which ensures that entering viral single-stranded RNA is replicated.
Collapse
|
14
|
Probing, by self-assembly, the number of potential binding sites for minor protein subunits in the procapsid of double-stranded RNA bacteriophage Φ6. J Virol 2012; 86:12208-16. [PMID: 22933292 DOI: 10.1128/jvi.01505-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The double-stranded RNA bacteriophage Φ6 is an extensively studied prokaryotic model system for virus assembly. There are established in vitro assembly protocols available for the Φ6 system for obtaining infectious particles from purified protein and RNA constituents. The polymerase complex is a multifunctional nanomachine that replicates, transcribes, and translocates viral RNA molecules in a highly specific manner. The complex is composed of (i) the major structural protein (P1), forming a T=1 icosahedral lattice with two protein subunits in the icosahedral asymmetric unit; (ii) the RNA-dependent RNA polymerase (P2); (iii) the hexameric packaging nucleoside triphosphatase (NTPase) (P4); and (iv) the assembly cofactor (P7). In this study, we analyzed several Φ6 virions and recombinant polymerase complexes to investigate the relative copy numbers of P2, P4, and P7, and we applied saturated concentrations of these proteins in the self-assembly system to probe their maximal numbers of binding sites in the P1 shell. Biochemical quantitation confirmed that the composition of the recombinant particles was similar to that of the virion cores. By including a high concentration of P2 or P7 in the self-assembly reaction mix, we observed that the numbers of these proteins in the resulting particles could be increased beyond those observed in the virion. Our results also suggest a previously unidentified P2-P7 dependency in the assembly reaction. Furthermore, it appeared that P4 must initially be incorporated at each, or a majority, of the 5-fold symmetry positions of the P1 shell for particle assembly. Although required for nucleation, excess P4 resulted in slower assembly kinetics.
Collapse
|
15
|
Packaging accessory protein P7 and polymerase P2 have mutually occluding binding sites inside the bacteriophage 6 procapsid. J Virol 2012; 86:11616-24. [PMID: 22896624 DOI: 10.1128/jvi.01347-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacteriophage 6 is a double-stranded RNA (dsRNA) virus whose genome is packaged sequentially as three single-stranded RNA (ssRNA) segments into an icosahedral procapsid which serves as a compartment for genome replication and transcription. The procapsid shell consists of 60 copies each of P1(A) and P1(B), two nonequivalent conformers of the P1 protein. Hexamers of the packaging ATPase P4 are mounted over the 5-fold vertices, and monomers of the RNA-dependent RNA polymerase (P2) attach to the inner surface, near the 3-fold axes. A fourth protein, P7, is needed for packaging and also promotes assembly. We used cryo-electron microscopy to localize P7 by difference mapping of procapsids with different protein compositions. We found that P7 resides on the interior surface of the P1 shell and appears to be monomeric. Its binding sites are arranged around the 3-fold axes, straddling the interface between two P1(A) subunits. Thus, P7 may promote assembly by stabilizing an initiation complex. Only about 20% of the 60 P7 binding sites were occupied in our preparations. P7 density overlaps P2 density similarly mapped, implying mutual occlusion. The known structure of the 12 homolog fits snugly into the P7 density. Both termini-which have been implicated in RNA binding-are oriented toward the adjacent 5-fold vertex, the entry pathway of ssRNA segments. Thus, P7 may promote packaging either by interacting directly with incoming RNA or by modulating the structure of the translocation pore.
Collapse
|
16
|
Bacteriophage ϕ6 nucleocapsid surface protein 8 interacts with virus-specific membrane vesicles containing major envelope protein 9. J Virol 2012; 86:5376-9. [PMID: 22379079 DOI: 10.1128/jvi.00172-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enveloped double-stranded RNA (dsRNA) bacterial virus Pseudomonas phage ϕ6 has been developed into an advanced assembly system where purified virion proteins and genome segments self-assemble into infectious viral particles, inferring the assembly pathway. The most intriguing step is the membrane assembly occurring inside the bacterial cell. Here, we demonstrate that the middle virion shell, made of protein 8, associates with the expanded viral core particle and the virus-specific membrane vesicle.
Collapse
|
17
|
Assembly of Large Icosahedral Double-Stranded RNA Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:379-402. [DOI: 10.1007/978-1-4614-0980-9_17] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Cvirkaitė-Krupovič V, Poranen MM, Bamford DH. Phospholipids act as secondary receptor during the entry of the enveloped, double-stranded RNA bacteriophage φ6. J Gen Virol 2010; 91:2116-2120. [DOI: 10.1099/vir.0.020305-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage φ6 is the type member of the family Cystoviridae and infects Gram-negative Pseudomonas syringae cells. The virion consists of a protein-rich lipid envelope enclosing a nucleocapsid. The nucleocapsid covers the icosahedral polymerase complex that encloses the double-stranded RNA genome. Here, we demonstrate that nucleocapsid surface protein P8 is the single nucleocapsid component interacting with the cytoplasmic membrane. This interaction takes place between P8 and phospholipid. Based on this and previous studies, we propose a model where the periplasmic nucleocapsid interacts with the phospholipid head groups and, when the membrane voltage exceeds the threshold of 110 mV, this interaction drives the nucleocapsid through the cytoplasmic membrane, resulting in an intracellular vesicle containing the nucleocapsid.
Collapse
Affiliation(s)
- Virginija Cvirkaitė-Krupovič
- Department of Biosciences and Institute of Biotechnology, Biocenter 2, PO Box 56 (Viikinkaari 5), FIN-00014 University of Helsinki, Finland
| | - Minna M. Poranen
- Department of Biosciences and Institute of Biotechnology, Biocenter 2, PO Box 56 (Viikinkaari 5), FIN-00014 University of Helsinki, Finland
| | - Dennis H. Bamford
- Department of Biosciences and Institute of Biotechnology, Biocenter 2, PO Box 56 (Viikinkaari 5), FIN-00014 University of Helsinki, Finland
| |
Collapse
|