1
|
Masloh S, Chevrel A, Culot M, Perrocheau A, Kalia YN, Frehel S, Gaussin R, Gosselet F, Huet S, Zeisser Labouebe M, Scapozza L. Enhancing Oral Delivery of Biologics: A Non-Competitive and Cross-Reactive Anti-Leptin Receptor Nanofitin Demonstrates a Gut-Crossing Capacity in an Ex Vivo Porcine Intestinal Model. Pharmaceutics 2024; 16:116. [PMID: 38258126 PMCID: PMC10820293 DOI: 10.3390/pharmaceutics16010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Biotherapeutics exhibit high efficacy in targeted therapy, but their oral delivery is impeded by the harsh conditions of the gastrointestinal (GI) tract and limited intestinal absorption. This article presents a strategy to overcome the challenges of poor intestinal permeability by using a protein shuttle that specifically binds to an intestinal target, the leptin receptor (LepR), and exploiting its capacity to perform a receptor-mediated transport. Our proof-of-concept study focuses on the characterization and transport of robust affinity proteins, known as Nanofitins, across an ex vivo porcine intestinal model. We describe the potential to deliver biologically active molecules across the mucosa by fusing them with the Nanofitin 1-F08 targeting the LepR. This particular Nanofitin was selected for its absence of competition with leptin, its cross-reactivity with LepR from human, mouse, and pig hosts, and its shuttle capability associated with its ability to induce a receptor-mediated transport. This study paves the way for future in vivo demonstration of a safe and efficient oral-to-systemic delivery of targeted therapies.
Collapse
Affiliation(s)
- Solene Masloh
- Blood Brain Barrier Laboratory, Faculty of Science Jean Perrin, Artois University, UR 2465, Rue Jean Souvraz, 62300 Lens, France (M.C.); (F.G.)
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France (A.P.); (R.G.)
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| | - Anne Chevrel
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France (A.P.); (R.G.)
| | - Maxime Culot
- Blood Brain Barrier Laboratory, Faculty of Science Jean Perrin, Artois University, UR 2465, Rue Jean Souvraz, 62300 Lens, France (M.C.); (F.G.)
| | | | - Yogeshvar N. Kalia
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| | - Samuel Frehel
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France (A.P.); (R.G.)
| | - Rémi Gaussin
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France (A.P.); (R.G.)
| | - Fabien Gosselet
- Blood Brain Barrier Laboratory, Faculty of Science Jean Perrin, Artois University, UR 2465, Rue Jean Souvraz, 62300 Lens, France (M.C.); (F.G.)
| | - Simon Huet
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France (A.P.); (R.G.)
| | - Magali Zeisser Labouebe
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| |
Collapse
|
2
|
Ávila-Moreno F. Nanofitins and their applications in human health and lung diseases. Mol Ther 2023; 31:2813-2814. [PMID: 37729903 PMCID: PMC10556214 DOI: 10.1016/j.ymthe.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023] Open
Affiliation(s)
- Federico Ávila-Moreno
- Lung Diseases and Functional Epigenomics Laboratory (LUDIFE), Biomedicine Research Unit (UBIMED). Facultad de Estudios Superiores-Iztacala (FES-Iztacala), Universidad Nacional Autónoma de México (UNAM). México State, Cp. 54090. México; Research Unit, Subdirección de Investigación Básica. Instituto Nacional de Cancerología (INCAN). México City, Cp. 14080. México; Research Unit. Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cosío Villegas. México City, Cp. 14080. México.
| |
Collapse
|
3
|
Ranaudo A, Cosentino U, Greco C, Moro G, Bonardi A, Maiocchi A, Moroni E. Evaluation of docking procedures reliability in affitins-partners interactions. Front Chem 2022; 10:1074249. [DOI: 10.3389/fchem.2022.1074249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
Affitins constitute a class of small proteins belonging to Sul7d family, which, in microorganisms such as Sulfolobus acidocaldarius, bind DNA preventing its denaturation. Thanks to their stability and small size (60–66 residues in length) they have been considered as ideal candidates for engineering and have been used for more than 10 years now, for different applications. The individuation of a mutant able to recognize a specific target does not imply the knowledge of the binding geometry between the two proteins. However, its identification is of undoubted importance but not always experimentally accessible. For this reason, computational approaches such as protein-protein docking can be helpful for an initial structural characterization of the complex. This method, which produces tens of putative binding geometries ordered according to a binding score, needs to be followed by a further reranking procedure for finding the most plausible one. In the present paper, we use the server ClusPro for generating docking models of affitins with different protein partners whose experimental structures are available in the Protein Data Bank. Then, we apply two protocols for reranking the docking models. The first one investigates their stability by means of Molecular Dynamics simulations; the second one, instead, compares the docking models with the interacting residues predicted by the Matrix of Local Coupling Energies method. Results show that the more efficient way to deal with the reranking problem is to consider the information given by the two protocols together, i.e. employing a consensus approach.
Collapse
|
4
|
Emerging affinity ligands and support materials for the enrichment of monoclonal antibodies. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Shipunova VO, Deyev SM. Artificial Scaffold Polypeptides As an Efficient Tool for the Targeted Delivery of Nanostructures In Vitro and In Vivo. Acta Naturae 2022; 14:54-72. [PMID: 35441046 PMCID: PMC9013437 DOI: 10.32607/actanaturae.11545] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
The use of traditional tools for the targeted delivery of nanostructures, such as antibodies, transferrin, lectins, or aptamers, often leads to an entire range of undesirable effects. The large size of antibodies often does not allow one to reach the required number of molecules on the surface of nanostructures during modification, and the constant domains of heavy chains, due to their effector functions, can induce phagocytosis. In the recent two decades, targeted polypeptide scaffold molecules of a non-immunoglobulin nature, antibody mimetics, have emerged as much more effective targeting tools. They are small in size (3-20 kDa), possess high affinity (from subnano- to femtomolar binding constants), low immunogenicity, and exceptional thermodynamic stability. These molecules can be effectively produced in bacterial cells, and, using genetic engineering manipulations, it is possible to create multispecific fusion proteins for the targeting of nanoparticles to cells with a given molecular portrait, which makes scaffold polypeptides an optimal tool for theranostics.
Collapse
Affiliation(s)
- V. O. Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - S. M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
6
|
Mouratou B, Pecorari F. Application of Affitins for Affinity Purification of Proteins. Methods Mol Biol 2022; 2466:37-48. [PMID: 35585309 DOI: 10.1007/978-1-0716-2176-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Affinity chromatography is a powerful purification technique, as it allows proteins of interest to be obtained at a high degree of purity in a single step. This technique can be applied on a research laboratory scale as well as on an industrial scale. The interaction involved in affinity separation most often involves a natural ligand or an antibody specific for the protein of interest, or the recognition of a peptide tag artificially added to the recombinant protein. Unfortunately, natural ligands are not always available and it may be undesirable or impossible to add a purification tag, especially for the production of therapeutic proteins. We have developed Affitins as a new class of artificial affinity proteins that can be generated against virtually any protein of interest. Due to their very high selectivity, their remarkable robustness against extreme acid or alkaline conditions and their low production cost, Affitins are particularly suited to this technique. We describe here the production of Affitins and their immobilization on resin beads to prepare affinity chromatography columns. The protocol also describes the use of these columns.
Collapse
Affiliation(s)
- Barbara Mouratou
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes, France
| | - Frédéric Pecorari
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes, France.
| |
Collapse
|
7
|
Abstract
Engineered protein scaffolds have made a tremendous contribution to the panel of affinity tools owing to their favorable biophysical properties that make them useful for many applications. In 2007, our group paved the way for using archaeal Sul7d proteins for the design of artificial affinity ligands, so-called Affitins. For many years, Sac7d and Sso7d have been used as molecular basis to obtain binders for various targets. Recently, we characterized their old gifted protein family and identified Aho7c, originating from Acidianus hospitalis, as the shortest member (60 amino-acids) with impressive stability (96.5 °C, pH 0-12). Here, we describe the construction of Aho7c combinatorial libraries and their use for selection of binders by ribosome display.
Collapse
|
8
|
Béhar G, Renodon‐Cornière A, Kambarev S, Vukojicic P, Caroff N, Corvec S, Mouratou B, Pecorari F. Whole‐bacterium ribosome display selection for isolation of highly specific anti‐
Staphyloccocus aureus
Affitins for detection‐ and capture‐based biomedical applications. Biotechnol Bioeng 2019; 116:1844-1855. [DOI: 10.1002/bit.26989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/27/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Ghislaine Béhar
- CRCINA, INSERM, CNRSUniversité d'Angers, Université de NantesNantes France
| | | | - Stanimir Kambarev
- CRCINA, INSERM, CNRSUniversité d'Angers, Université de NantesNantes France
| | - Petar Vukojicic
- CRCINA, INSERM, CNRSUniversité d'Angers, Université de NantesNantes France
| | - Nathalie Caroff
- EA3826 Thérapeutiques cliniques et expérimentales des infections, UFR de MédecineUniversité de NantesNantes France
| | - Stéphane Corvec
- CRCINA, INSERMUniversité d'Angers, Université de NantesNantes France
- Service de Bactériologie – Hygiène hospitalièreCHU de NantesNantes France
| | - Barbara Mouratou
- CRCINA, INSERM, CNRSUniversité d'Angers, Université de NantesNantes France
| | - Frédéric Pecorari
- CRCINA, INSERM, CNRSUniversité d'Angers, Université de NantesNantes France
| |
Collapse
|
9
|
A review of magnetic separation of whey proteins and potential application to whey proteins recovery, isolation and utilization. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.10.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Kalichuk V, Renodon-Cornière A, Béhar G, Carrión F, Obal G, Maillasson M, Mouratou B, Préat V, Pecorari F. A novel, smaller scaffold for Affitins: Showcase with binders specific for EpCAM. Biotechnol Bioeng 2017; 115:290-299. [DOI: 10.1002/bit.26463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/17/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Valentina Kalichuk
- CRCINA, Inserm, CNRS, Université d'Angers; Université de Nantes; Nantes France
- Université Catholique de Louvain; Louvain Drug Research Institute; Advanced Drug Delivery and Biomaterials; Brussels Belgium
| | | | - Ghislaine Béhar
- CRCINA, Inserm, CNRS, Université d'Angers; Université de Nantes; Nantes France
| | - Federico Carrión
- Institut Pasteur de Montevideo; Protein Biophysics Unit; Montevideo Uruguay
| | - Gonzalo Obal
- Institut Pasteur de Montevideo; Protein Biophysics Unit; Montevideo Uruguay
| | - Mike Maillasson
- CRCINA, Inserm, CNRS, Université d'Angers; Université de Nantes; Nantes France
- Impact, CRCINA, Inserm, CNRS; Université d'Angers; Université de Nantes; Nantes France
| | - Barbara Mouratou
- CRCINA, Inserm, CNRS, Université d'Angers; Université de Nantes; Nantes France
| | - Véronique Préat
- Université Catholique de Louvain; Louvain Drug Research Institute; Advanced Drug Delivery and Biomaterials; Brussels Belgium
| | - Frédéric Pecorari
- CRCINA, Inserm, CNRS, Université d'Angers; Université de Nantes; Nantes France
| |
Collapse
|
11
|
Goux M, Becker G, Gorré H, Dammicco S, Desselle A, Egrise D, Leroi N, Lallemand F, Bahri MA, Doumont G, Plenevaux A, Cinier M, Luxen A. Nanofitin as a New Molecular-Imaging Agent for the Diagnosis of Epidermal Growth Factor Receptor Over-Expressing Tumors. Bioconjug Chem 2017; 28:2361-2371. [PMID: 28825794 DOI: 10.1021/acs.bioconjchem.7b00374] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidermal growth-factor receptor (EGFR) is involved in cell growth and proliferation and is over-expressed in malignant tissues. Although anti-EGFR-based immunotherapy became a standard of care for patients with EGFR-positive tumors, this strategy of addressing cancer tumors by targeting EGFR with monoclonal antibodies is less-developed for patient diagnostic and monitoring. Indeed, antibodies exhibit a slow blood clearance, which is detrimental for positron emission tomography (PET) imaging. New molecular probes are proposed to overcome such limitations for patient monitoring, making use of low-molecular-weight protein scaffolds as alternatives to antibodies, such as Nanofitins with better pharmacokinetic profiles. Anti-EGFR Nanofitin B10 was reformatted by genetic engineering to exhibit a unique cysteine moiety at its C-terminus, which allows the development of a fast and site-specific radiolabeling procedure with 18F-4-fluorobenzamido-N-ethylamino-maleimide (18F-FBEM). The in vivo tumor targeting and imaging profile of the anti-EGFR Cys-B10 Nanofitin was investigated in a double-tumor xenograft model by static small-animal PET at 2 h after tail-vein injection of the radiolabeled Nanofitin 18F-FBEM-Cys-B10. The image showed that the EGFR-positive tumor (A431) is clearly delineated in comparison to the EGFR-negative tumor (H520) with a significant tumor-to-background contrast. 18F-FBEM-Cys-B10 demonstrated a significantly higher retention in A431 tumors than in H520 tumors at 2.5 h post-injection with a A431-to-H520 uptake ratio of 2.53 ± 0.18 and a tumor-to-blood ratio of 4.55 ± 0.63. This study provides the first report of Nanofitin scaffold used as a targeted PET radiotracer for in vivo imaging of EGFR-positive tumor, with the anti-EGFR B10 Nanofitin used as proof-of-concept. The fast generation of specific Nanofitins via a fully in vitro selection process, together with the excellent imaging features of the Nanofitin scaffold, could facilitate the development of valuable PET-based companion diagnostics.
Collapse
Affiliation(s)
| | | | - Harmony Gorré
- Affilogic SAS , 21 rue La Noue Bras de Fer, 44200 Nantes, France
| | | | - Ariane Desselle
- Affilogic SAS , 21 rue La Noue Bras de Fer, 44200 Nantes, France
| | - Dominique Egrise
- Centre for Microscopy and Molecular Imaging, Université Libre de Bruxelles , 8 Rue Adrienne Bolland, 6041 Gosselies, Belgium.,Service de Médecine Nucléaire, Hôpital Erasme, Université Libre de Bruxelles , Brussels, Belgium
| | - Natacha Leroi
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège , Avenue de l'Hopital, 4000 Liège, Belgium
| | | | | | - Gilles Doumont
- Centre for Microscopy and Molecular Imaging, Université Libre de Bruxelles , 8 Rue Adrienne Bolland, 6041 Gosselies, Belgium
| | | | - Mathieu Cinier
- Affilogic SAS , 21 rue La Noue Bras de Fer, 44200 Nantes, France
| | | |
Collapse
|
12
|
Dammicco S, Goux M, Lemaire C, Becker G, Bahri MA, Plenevaux A, Cinier M, Luxen A. Regiospecific radiolabelling of Nanofitin on Ni magnetic beads with [ 18 F]FBEM and in vivo PET studies. Nucl Med Biol 2017; 51:33-39. [DOI: 10.1016/j.nucmedbio.2017.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/20/2017] [Accepted: 04/24/2017] [Indexed: 12/27/2022]
|
13
|
Affiliation(s)
- Nika Kruljec
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Tomaž Bratkovič
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
14
|
Burgess RR. Gentle antibody-mimetic affinity chromatography with polyol-responsive nanoCLAMPs. Protein Expr Purif 2017. [PMID: 28633910 DOI: 10.1016/j.pep.2017.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Richard R Burgess
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States
| |
Collapse
|
15
|
Tools and limitations to study the molecular composition of synapses by fluorescence microscopy. Biochem J 2017; 473:3385-3399. [PMID: 27729584 DOI: 10.1042/bcj20160366] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/23/2016] [Indexed: 01/21/2023]
Abstract
The synapse is densely packed with proteins involved in various highly regulated processes. Synaptic protein copy numbers and their stoichiometric distribution have a drastic influence on neuronal integrity and function. Therefore, the molecular analysis of synapses is a key element to understand their architecture and function. The overall structure of the synapse has been revealed with an exquisite amount of details by electron microscopy. However, the molecular composition and the localization of proteins are more easily addressed with fluorescence imaging, especially with the improved resolution achieved by super-resolution microscopy techniques. Notably, the fast improvement of imaging instruments has not been reflected in the optimization of biological sample preparation. During recent years, large efforts have been made to generate affinity probes smaller than conventional antibodies adapted for fluorescent super-resolution imaging. In this review, we briefly discuss the current views on synaptic organization and necessary key technologies to progress in the understanding of synaptic physiology. We also highlight the challenges faced by current fluorescent super-resolution methods, and we describe the prerequisites for an ideal study of synaptic organization.
Collapse
|
16
|
Yu X, Yang YP, Dikici E, Deo SK, Daunert S. Beyond Antibodies as Binding Partners: The Role of Antibody Mimetics in Bioanalysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:293-320. [PMID: 28375702 PMCID: PMC5895458 DOI: 10.1146/annurev-anchem-061516-045205] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The emergence of novel binding proteins or antibody mimetics capable of binding to ligand analytes in a manner analogous to that of the antigen-antibody interaction has spurred increased interest in the biotechnology and bioanalytical communities. The goal is to produce antibody mimetics designed to outperform antibodies with regard to binding affinities, cellular and tumor penetration, large-scale production, and temperature and pH stability. The generation of antibody mimetics with tailored characteristics involves the identification of a naturally occurring protein scaffold as a template that binds to a desired ligand. This scaffold is then engineered to create a superior binder by first creating a library that is then subjected to a series of selection steps. Antibody mimetics have been successfully used in the development of binding assays for the detection of analytes in biological samples, as well as in separation methods, cancer therapy, targeted drug delivery, and in vivo imaging. This review describes recent advances in the field of antibody mimetics and their applications in bioanalytical chemistry, specifically in diagnostics and other analytical methods.
Collapse
Affiliation(s)
- Xiaowen Yu
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136;
| | - Yu-Ping Yang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136;
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136;
| | - Sapna K Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136;
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136;
| |
Collapse
|
17
|
Development of polyol-responsive antibody mimetics for single-step protein purification. Protein Expr Purif 2017; 134:114-124. [DOI: 10.1016/j.pep.2017.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 12/11/2022]
|
18
|
Abstract
In spite of their widespread applications as therapeutic, diagnostic, and detection agents, the limitations of polyclonal and monoclonal antibodies have enthused scientists to plan for next-generation biomedical agents, the so-called antibody mimetics, which offer many advantages compared to traditional antibodies. Antibody mimetics could be designed through protein-directed evolution or fusion of complementarity-determining regions with intervening framework regions. In the recent decade, extensive progress has been made in exploiting human, butterfly (Pieris brassicae), and bacterial systems to design and select mimetics using display technologies. Notably, some of the mimetics have made their way to market. Numerous limitations lie ahead in developing mimetics for different biomedical usage, particularly for which conventional antibodies are ineffective. This chapter presents a brief overview of the current characteristics, construction, and applications of antibody mimetics.
Collapse
|
19
|
Kalichuk V, Béhar G, Renodon-Cornière A, Danovski G, Obal G, Barbet J, Mouratou B, Pecorari F. The archaeal "7 kDa DNA-binding" proteins: extended characterization of an old gifted family. Sci Rep 2016; 6:37274. [PMID: 27853299 PMCID: PMC5112516 DOI: 10.1038/srep37274] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/27/2016] [Indexed: 01/06/2023] Open
Abstract
The “7 kDa DNA-binding” family, also known as the Sul7d family, is composed of chromatin proteins from the Sulfolobales archaeal order. Among them, Sac7d and Sso7d have been the focus of several studies with some characterization of their properties. Here, we studied eleven other proteins alongside Sac7d and Sso7d under the same conditions. The dissociation constants of the purified proteins for binding to double-stranded DNA (dsDNA) were determined in phosphate-buffered saline at 25 °C and were in the range from 11 μM to 22 μM with a preference for G/C rich sequences. In accordance with the extremophilic origin of their hosts, the proteins were found highly stable from pH 0 to pH 12 and at temperatures from 85.5 °C to 100 °C. Thus, these results validate eight putative “7 kDa DNA-binding” family proteins and show that they behave similarly regarding both their function and their stability among various genera and species. As Sac7d and Sso7d have found numerous uses as molecular biology reagents and artificial affinity proteins, this study also sheds light on even more attractive proteins that will facilitate engineering of novel highly robust reagents.
Collapse
Affiliation(s)
- Valentina Kalichuk
- CRCNA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Ghislaine Béhar
- CRCNA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | | | - Georgi Danovski
- CRCNA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Gonzalo Obal
- Institut Pasteur de Montevideo, Protein Biophysics Unit, Montevideo, Uruguay
| | - Jacques Barbet
- CRCNA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Barbara Mouratou
- CRCNA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Frédéric Pecorari
- CRCNA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| |
Collapse
|
20
|
Affitins for protein purification by affinity magnetic fishing. J Chromatogr A 2016; 1457:50-8. [DOI: 10.1016/j.chroma.2016.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/25/2016] [Accepted: 06/06/2016] [Indexed: 12/21/2022]
|
21
|
Affitins as robust tailored reagents for affinity chromatography purification of antibodies and non-immunoglobulin proteins. J Chromatogr A 2016; 1441:44-51. [DOI: 10.1016/j.chroma.2016.02.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/10/2016] [Accepted: 02/23/2016] [Indexed: 01/16/2023]
|
22
|
Zhao N, Schmitt MA, Fisk JD. Phage display selection of tight specific binding variants from a hyperthermostable Sso7d scaffold protein library. FEBS J 2016; 283:1351-67. [DOI: 10.1111/febs.13674] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/21/2015] [Accepted: 01/28/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Ning Zhao
- Department of Chemical and Biological Engineering; Colorado State University; Fort Collins CO USA
| | - Margaret A. Schmitt
- Department of Chemical and Biological Engineering; Colorado State University; Fort Collins CO USA
| | - John D. Fisk
- Department of Chemical and Biological Engineering; Colorado State University; Fort Collins CO USA
- Department of Chemistry; Colorado State University; Fort Collins CO USA
- School of Biomedical Engineering; Colorado State University; Fort Collins CO USA
| |
Collapse
|
23
|
Huet S, Gorre H, Perrocheau A, Picot J, Cinier M. Use of the Nanofitin Alternative Scaffold as a GFP-Ready Fusion Tag. PLoS One 2015; 10:e0142304. [PMID: 26539718 PMCID: PMC4634965 DOI: 10.1371/journal.pone.0142304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/19/2015] [Indexed: 11/26/2022] Open
Abstract
With the continuous diversification of recombinant DNA technologies, the possibilities for new tailor-made protein engineering have extended on an on-going basis. Among these strategies, the use of the green fluorescent protein (GFP) as a fusion domain has been widely adopted for cellular imaging and protein localization. Following the lead of the direct head-to-tail fusion of GFP, we proposed to provide additional features to recombinant proteins by genetic fusion of artificially derived binders. Thus, we reported a GFP-ready fusion tag consisting of a small and robust fusion-friendly anti-GFP Nanofitin binding domain as a proof-of-concept. While limiting steric effects on the carrier, the GFP-ready tag allows the capture of GFP or its blue (BFP), cyan (CFP) and yellow (YFP) alternatives. Here, we described the generation of the GFP-ready tag from the selection of a Nanofitin variant binding to the GFP and its spectral variants with a nanomolar affinity, while displaying a remarkable folding stability, as demonstrated by its full resistance upon thermal sterilization process or the full chemical synthesis of Nanofitins. To illustrate the potential of the Nanofitin-based tag as a fusion partner, we compared the expression level in Escherichia coli and activity profile of recombinant human tumor necrosis factor alpha (TNFα) constructs, fused to a SUMO or GFP-ready tag. Very similar expression levels were found with the two fusion technologies. Both domains of the GFP-ready tagged TNFα were proved fully active in ELISA and interferometry binding assays, allowing the simultaneous capture by an anti-TNFα antibody and binding to the GFP, and its spectral mutants. The GFP-ready tag was also shown inert in a L929 cell based assay, demonstrating the potent TNFα mediated apoptosis induction by the GFP-ready tagged TNFα. Eventually, we proposed the GFP-ready tag as a versatile capture and labeling system in addition to expected applications of anti-GFP Nanofitins (as illustrated with previously described state-of-the-art anti-GFP binders applied to living cells and in vitro applications). Through a single fusion domain, the GFP-ready tagged proteins benefit from subsequent customization within a wide range of fluorescence spectra upon indirect binding of a chosen GFP variant.
Collapse
|
24
|
Béhar G, Pacheco S, Maillasson M, Mouratou B, Pecorari F. Switching an anti-IgG binding site between archaeal extremophilic proteins results in Affitins with enhanced pH stability. J Biotechnol 2015; 192 Pt A:123-9. [PMID: 25450641 DOI: 10.1016/j.jbiotec.2014.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/28/2014] [Accepted: 10/07/2014] [Indexed: 12/23/2022]
Abstract
As a useful reagent for biotechnological applications, a scaffold protein needs to be as stable as possible to ensure longer lifetimes. We have developed archaeal extremophilic proteins from the “7 kDa DNA-binding” family as scaffolds to derive affinity proteins (Affitins). In this study, we evaluated a rational structure/sequence-guided approach to stabilize an Affitin derived from Sac7d by transferring its human IgG binding site onto the framework of the more thermally stable Sso7d homolog. The chimera obtained was functional, well expressed in Escherichia coli, but less thermally stable than the original Affitin (T(m) = 74.2 °C vs. T(m) = 80.4 °C). Two single mutations described as thermally stabilizing wild type Sso7d were introduced into chimeras. Only the double mutation nearly restored thermal stability (T(m) = 76.9 °C). Interestingly, the chimera and its double mutant were stable from pH 0 up to at least pH 13. Our results show that it is possible to increase further the stability of Affitins toward alkaline conditions (+2 pH units) while conserving their advantageous properties. As Affitins are based on a growing family of homologs from archaeal extremophiles, we conclude that this approach offers new potential for their improvement, which will be useful in demanding biotechnological applications.
Collapse
|
25
|
Non-immunoglobulin scaffolds: a focus on their targets. Trends Biotechnol 2015; 33:408-18. [DOI: 10.1016/j.tibtech.2015.03.012] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 12/21/2022]
|
26
|
Pacheco S, Béhar G, Maillasson M, Mouratou B, Pecorari F. Affinity transfer to the archaeal extremophilic Sac7d protein by insertion of a CDR. Protein Eng Des Sel 2015; 27:431-8. [PMID: 25301962 DOI: 10.1093/protein/gzu042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Artificially transforming a scaffold protein into binders often consists of introducing diversity into its natural binding region by directed mutagenesis. We have previously developed the archaeal extremophilic Sac7d protein as a scaffold to derive affinity reagents (Affitins) by randomization of only a flat surface, or a flat surface and two short loops with natural lengths. Short loops are believed to contribute to stability of extremophilic proteins, and loop extension has been reported detrimental for the thermal and chemical stabilities of mesophilic proteins. In this work, we wanted to evaluate the possibility of designing target-binding proteins based on Sac7d by using a complementary determining region (CDR). To this aim, we inserted into three different loops a 10 residues CDR from the cAb-Lys3 anti-lysozyme camel antibody. The chimeras obtained were as stable as wild-type (WT) Sac7d at extreme pH and their structural integrity was supported. Chimeras were thermally stable, but with T(m)s from 60.9 to 66.3°C (cf. 91°C for Sac7d) which shows that loop extension is detrimental for thermal stability of Sac7d. The loop 3 enabled anti-lysozyme activity. These results pave the way for the use of CDR(s) from antibodies and/or extended randomized loop(s) to increase the potential of binding of Affitins.
Collapse
Affiliation(s)
- Sabino Pacheco
- CRCNA - UMR 892 INSERM, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France 6299 CNRS, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France University of Nantes, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France Institut Pasteur, CNRS UMR 3528, Unité de Microbiologie Structurale, 25 rue du Dr. Roux, 72724 Paris Cedex 15, France
| | - Ghislaine Béhar
- CRCNA - UMR 892 INSERM, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France 6299 CNRS, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France University of Nantes, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France
| | - Mike Maillasson
- CRCNA - UMR 892 INSERM, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France 6299 CNRS, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France University of Nantes, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France Plate-forme IMPACT Biogenouest, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France
| | - Barbara Mouratou
- CRCNA - UMR 892 INSERM, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France 6299 CNRS, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France University of Nantes, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France
| | - Frédéric Pecorari
- CRCNA - UMR 892 INSERM, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France 6299 CNRS, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France University of Nantes, 8 quai Moncousu, BP 70721, 44007 Nantes, Cedex 1, France
| |
Collapse
|
27
|
Artificial affinity proteins as ligands of immunoglobulins. Biomolecules 2015; 5:60-75. [PMID: 25647098 PMCID: PMC4384111 DOI: 10.3390/biom5010060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/17/2014] [Accepted: 01/23/2015] [Indexed: 12/17/2022] Open
Abstract
A number of natural proteins are known to have affinity and specificity for immunoglobulins. Some of them are widely used as reagents for detection or capture applications, such as Protein G and Protein A. However, these natural proteins have a defined spectrum of recognition that may not fit specific needs. With the development of combinatorial protein engineering and selection techniques, it has become possible to design artificial affinity proteins with the desired properties. These proteins, termed alternative scaffold proteins, are most often chosen for their stability, ease of engineering and cost-efficient recombinant production in bacteria. In this review, we focus on alternative scaffold proteins for which immunoglobulin binders have been identified and characterized.
Collapse
|
28
|
Baloch AR, Baloch AW, Sutton BJ, Zhang X. Antibody mimetics: promising complementary agents to animal-sourced antibodies. Crit Rev Biotechnol 2014; 36:268-75. [PMID: 25264572 DOI: 10.3109/07388551.2014.958431] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite their wide use as therapeutic, diagnostic and detection agents, the limitations of polyclonal and monoclonal antibodies have inspired scientists to design the next generation biomedical agents, so-called antibody mimetics that offer many advantages over conventional antibodies. Antibody mimetics can be constructed by protein-directed evolution or fusion of complementarity-determining regions through intervening framework regions. Substantial progress in exploiting human, butterfly (Pieris brassicae) and bacterial systems to design and select mimetics using display technologies has been made in the past 10 years, and one of these mimetics [Kalbitor® (Dyax)] has made its way to market. Many challenges lie ahead to develop mimetics for various biomedical applications, especially those for which conventional antibodies are ineffective, and this review describes the current characteristics, construction and applications of antibody mimetics compared to animal-sourced antibodies. The possible limitations of mimetics and future perspectives are also discussed.
Collapse
Affiliation(s)
- Abdul Rasheed Baloch
- a College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi , China
| | - Abdul Wahid Baloch
- b Department of Plant Breeding and Genetics , Sindh Agriculture University , Tandojam , Pakistan , and
| | - Brian J Sutton
- c Randall Division of Cell and Molecular Biophysics, King's College London , London , UK
| | - Xiaoying Zhang
- a College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi , China
| |
Collapse
|
29
|
Type II secretion system: A magic beanstalk or a protein escalator. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1568-77. [DOI: 10.1016/j.bbamcr.2013.12.020] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/13/2013] [Accepted: 12/23/2013] [Indexed: 12/12/2022]
|
30
|
Correa A, Pacheco S, Mechaly AE, Obal G, Béhar G, Mouratou B, Oppezzo P, Alzari PM, Pecorari F. Potent and specific inhibition of glycosidases by small artificial binding proteins (affitins). PLoS One 2014; 9:e97438. [PMID: 24823716 PMCID: PMC4019568 DOI: 10.1371/journal.pone.0097438] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/17/2014] [Indexed: 01/05/2023] Open
Abstract
Glycosidases are associated with various human diseases. The development of efficient and specific inhibitors may provide powerful tools to modulate their activity. However, achieving high selectivity is a major challenge given that glycosidases with different functions can have similar enzymatic mechanisms and active-site architectures. As an alternative approach to small-chemical compounds, proteinaceous inhibitors might provide a better specificity by involving a larger surface area of interaction. We report here the design and characterization of proteinaceous inhibitors that specifically target endoglycosidases representative of the two major mechanistic classes; retaining and inverting glycosidases. These inhibitors consist of artificial affinity proteins, Affitins, selected against the thermophilic CelD from Clostridium thermocellum and lysozyme from hen egg. They were obtained from libraries of Sac7d variants, which involve either the randomization of a surface or the randomization of a surface and an artificially-extended loop. Glycosidase binders exhibited affinities in the nanomolar range with no cross-recognition, with efficient inhibition of lysozyme (Ki = 45 nM) and CelD (Ki = 95 and 111 nM), high expression yields in Escherichia coli, solubility, and thermal stabilities up to 81.1°C. The crystal structures of glycosidase-Affitin complexes validate our library designs. We observed that Affitins prevented substrate access by two modes of binding; covering or penetrating the catalytic site via the extended loop. In addition, Affitins formed salt-bridges with residues essential for enzymatic activity. These results lead us to propose the use of Affitins as versatile selective glycosidase inhibitors and, potentially, as enzymatic inhibitors in general.
Collapse
Affiliation(s)
- Agustín Correa
- Institut Pasteur de Montevideo, Recombinant Protein Unit, Montevideo, Uruguay
- Institut Pasteur, Unité de Microbiologie Structurale, CNRS UMR 3528, Paris, France
| | - Sabino Pacheco
- Institut Pasteur, Unité de Microbiologie Structurale, CNRS UMR 3528, Paris, France
- INSERM UMR 892 - CRCNA, Nantes, France
- CNRS UMR 6299, Nantes, France
- University of Nantes, Nantes, France
| | - Ariel E. Mechaly
- Institut Pasteur, Unité de Microbiologie Structurale, CNRS UMR 3528, Paris, France
| | - Gonzalo Obal
- Institut Pasteur de Montevideo, Protein Biophysics Unit, Montevideo, Uruguay
| | - Ghislaine Béhar
- INSERM UMR 892 - CRCNA, Nantes, France
- CNRS UMR 6299, Nantes, France
- University of Nantes, Nantes, France
| | - Barbara Mouratou
- INSERM UMR 892 - CRCNA, Nantes, France
- CNRS UMR 6299, Nantes, France
- University of Nantes, Nantes, France
| | - Pablo Oppezzo
- Institut Pasteur de Montevideo, Recombinant Protein Unit, Montevideo, Uruguay
| | - Pedro M. Alzari
- Institut Pasteur, Unité de Microbiologie Structurale, CNRS UMR 3528, Paris, France
| | - Frédéric Pecorari
- INSERM UMR 892 - CRCNA, Nantes, France
- CNRS UMR 6299, Nantes, France
- University of Nantes, Nantes, France
| |
Collapse
|
31
|
Abstract
Proteins called secretins form large multimeric complexes that are essential for macromolecular transit across the outer membrane of Gram-negative bacteria. Evidence suggests that the channels formed by some secretin complexes are not tightly closed, but their permeability properties have not been well characterized. Here, we used cell-free synthesis coupled with spontaneous insertion into liposomes to investigate the permeability of the secretin PulD. Leakage assays using preloaded liposomes indicated that PulD allows the efflux of small fluorescent molecules with a permeation cutoff similar to that of general porins. Other secretins were also found to form similar pores. To define the polypeptide region involved in determining the pore size, we analyzed a collection of PulD variants and studied the roles of gates 1 and 2, which were previously reported to affect the pore size of filamentous phage f1 secretin pIV, in assembly and pore formation. Liposome leakage and a novel in vivo assay showed that replacement of the conserved proline residue at position 443 in PulD by leucine increased the apparent size of the pore. The in vitro approach described here could be used to study the pore properties of membrane proteins whose production in vivo is toxic.
Collapse
|
32
|
Collin S, Krehenbrink M, Guilvout I, Pugsley AP. The targeting, docking and anti-proteolysis functions of the secretin chaperone PulS. Res Microbiol 2013; 164:390-6. [PMID: 23567323 DOI: 10.1016/j.resmic.2013.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/20/2013] [Indexed: 01/09/2023]
Abstract
The Klebsiella oxytoca lipoprotein PulS might function as either or both a pilot and a docking factor in the outer membrane targeting and assembly of the Type II secretion system secretin PulD. In the piloting model, PulS binds to PulD monomers and targets them to the outer membrane via the lipoprotein sorting pathway components LolA and LolB. In this model, PulS also protects the PulD monomers from proteolysis during transit through the periplasm. In the docking model, PulS is targeted alone to the outer membrane, where it acts as a receptor for PulD monomers, allowing them to accumulate and assemble specifically in this membrane. PulS was shown to dissociate from and/or re-associate freely with PulD multimers in zwitterionic detergent, making it difficult to determine whether PulS remains associated with PulD dodecamers in the outer membrane by co-purification. However, PulD protomers in the dodecamer were shown to be stable in the absence of PulS, indicating that PulS is only required to protect the protease-susceptible monomer. DegP was identified as one of the proteases that could contribute to PulD degradation in the absence of PulS. Studies on the in vitro assembly and targeting of PulD into Escherichia coli membrane vesicles demonstrated its strong preference to insert into the inner membrane, as is the case in vivo in the absence of PulS. However, PulD could be targeted to outer membrane fragments in vitro if they were preloaded with PulS, indicating the technical feasibility of the docking model. We conclude that both modes of action might contribute to efficient outer membrane targeting of PulD in vivo, although the piloting function is likely to predominate.
Collapse
Affiliation(s)
- Séverine Collin
- Institut Pasteur, Molecular Genetics Unit, 25 rue du Dr. Roux, 70105 Paris, France
| | | | | | | |
Collapse
|
33
|
Béhar G, Bellinzoni M, Maillasson M, Paillard-Laurance L, Alzari PM, He X, Mouratou B, Pecorari F. Tolerance of the archaeal Sac7d scaffold protein to alternative library designs: characterization of anti-immunoglobulin G Affitins. Protein Eng Des Sel 2013; 26:267-75. [PMID: 23315487 DOI: 10.1093/protein/gzs106] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Engineered protein scaffolds have received considerable attention as alternatives to antibodies in both basic and applied research, as they can offer superior biophysical properties often associated with a simpler molecular organization. Sac7d has been demonstrated as an effective scaffold for molecular recognition. Here, we used the initial L1 'flat surface' library constructed by randomization of 14 residues, to identify ligands specific for human immunoglobulin G. To challenge the plasticity of the Sac7d protein scaffold, we designed the alternative L2 'flat surface & loops' library whereof only 10 residues are randomized. Representative binders (Affitins) of the two libraries exhibited affinities in the low nanomolar range and were able to recognize different epitopes within human immunoglobulin G. These Affitins were stable up to pH 12 while largely conserving other favorable properties of Sac7d protein, such as high expression yields in Escherichia coli, solubility, thermal stability up to 80.7°C, and acidic stability (pH 0). In agreement with our library designs, mutagenesis study revealed two distinct binding areas, one including loops. Together, our results indicate that the Sac7d scaffold tolerates alternative library designs, which further expands the diversity of Affitins and may provide a general way to create tailored affinity tools for demanding applications.
Collapse
Affiliation(s)
- Ghislaine Béhar
- Université de Nantes, UMR CNRS 6204, Ingénierie de la reconnaissance, F-44322 Nantes, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Signal peptide-independent secretory expression and characterization of pullulanase from a newly isolated Klebsiella variicola SHN-1 in Escherichia coli. Appl Biochem Biotechnol 2012; 169:41-54. [PMID: 23129508 DOI: 10.1007/s12010-012-9948-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Abstract
A strain with the power to produce extracellular pullulanase was obtained from the sample taken from a flour mill. By sequencing its 16S rDNA, the isolate was identified as Klebsiella variicola SHN-1. When the gene encoding pullulanase, containing the N-terminal signal sequence, was cloned into Escherichia coli BL21 (DE3), extracellular activity was detected up to 10 U/ml, a higher level compared with the results in published literature. Subsequently, the recombinant pullulanase was purified and characterized. The main end product from pullulan hydrolyzed by recombinant pullulanase was determined as maltotriose with HPLC, and hence, the recombinant pullulanase was identified as type I pullulanase, which could be efficiently employed in starch processing to produce maltotriose with higher purity and even to evaluate the purity of pullulan. To investigate the effect of signal peptide on secretion of the recombinant enzyme, the signal sequence was removed from the constructed vector. However, secretion of pullulanase in E. coli was not influenced, which was seldom reported previously. By localizing the distribution of pullulanase on subcellular fractions, the secretion of recombinant pullulanase in E. coli BL21 (DE3) was confirmed, even from the expression system of nonsecretory type without the assistance of signal peptide.
Collapse
|
35
|
Yuann JMP, Tseng WH, Lin HY, Hou MH. The effects of loop size on Sac7d-hairpin DNA interactions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1009-15. [PMID: 22683438 DOI: 10.1016/j.bbapap.2012.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/29/2012] [Indexed: 02/07/2023]
|
36
|
Mouratou B, Béhar G, Paillard-Laurance L, Colinet S, Pecorari F. Ribosome display for the selection of Sac7d scaffolds. Methods Mol Biol 2012; 805:315-331. [PMID: 22094814 DOI: 10.1007/978-1-61779-379-0_18] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Combinatorial libraries of Sac7d have proved to be a valuable source of proteins with favorable biophysical properties and novel ligand specificities, so-called Nanofitins. Thus, Sac7d represents a promising scaffold alternative to antibodies for biotechnological and potentially clinical applications. We describe here the methodology for the construction of a library of Sac7d and its use for selection by ribosome display.
Collapse
Affiliation(s)
- Barbara Mouratou
- Unité de Biotechnologie, Biocatalyse et Biorégulation, UMR6204 CNRS, Université de Nantes, Nantes, France
| | | | | | | | | |
Collapse
|
37
|
Engineering of a phosphorylatable tag for specific protein binding on zirconium phosphonate based microarrays. J Biol Inorg Chem 2011; 17:399-407. [DOI: 10.1007/s00775-011-0863-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 11/15/2011] [Indexed: 10/14/2022]
|
38
|
Tarry M, Jääskeläinen M, Paino A, Tuominen H, Ihalin R, Högbom M. The extra-membranous domains of the competence protein HofQ show DNA binding, flexibility and a shared fold with type I KH domains. J Mol Biol 2011; 409:642-53. [PMID: 21530539 DOI: 10.1016/j.jmb.2011.04.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/08/2011] [Accepted: 04/12/2011] [Indexed: 10/18/2022]
Abstract
Secretins form large oligomeric assemblies in the membrane that control both macromolecular secretion and uptake. Several Pasteurellaceae are naturally competent for transformation, but the mechanism for DNA assimilation is largely unknown. In Haemophilus influenzae, the secretin ComE has been demonstrated to be essential for DNA uptake. In closely related Aggregatibacter actinomycetemcomitans, an opportunistic pathogen in periodontitis, the ComE homolog HofQ is believed to be the outer membrane DNA translocase. Here, we report the structure of the extra-membranous domains of HofQ at 2.3 Å resolution by X-ray crystallography. We also show that the extra-membranous domains of HofQ are capable of DNA binding. The structure reveals two secretin-like folds, the first of which is formed by means of a domain swap. The second domain displays extensive structural similarity to K homology (KH) domains, including the presence of a GxxG motif, which is essential for the nucleotide-binding function of KH domains, suggesting a possible mechanism for DNA binding by HofQ. The data indicate a direct involvement in DNA acquisition and provide insight into the molecular basis for natural competence.
Collapse
Affiliation(s)
- Michael Tarry
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
39
|
Collin S, Guilvout I, Nickerson NN, Pugsley AP. Sorting of an integral outer membrane protein via the lipoprotein-specific Lol pathway and a dedicated lipoprotein pilotin. Mol Microbiol 2011; 80:655-65. [PMID: 21338419 DOI: 10.1111/j.1365-2958.2011.07596.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lipoprotein PulS is a dedicated chaperone that is required to target the secretin PulD to the outer membrane in Klebsiella or Escherichia coli, and to protect it from proteolysis. Here, we present indirect evidence that PulD protomers do not assemble into the secretin dodecamer before they reach the outer membrane, and that PulS reaches the outer membrane in a soluble heterodimer with the general lipoprotein chaperone LolA. However, we could not find any direct evidence for PulD protomer association with the PulS-LolA heterodimer. Instead, in cells producing PulD and a permanently locked PulS-LolA dimer (in which LolA carries an R43L substitution that prevents lipoprotein transfer to LolB in the outer membrane), LolAR43L was found in the inner membrane, probably still associated with PulS bound to PulD that had been incorrectly targeted because of the LolAR43L substitution. It is speculated that PulD protomers normally cross the periplasm together with PulS bound to LolA but when the latter cannot be separated (due to the mutation in lolA), the PulD protomers form dodecamers that insert into the inner membrane.
Collapse
Affiliation(s)
- Séverine Collin
- Institut Pasteur, Molecular Genetics Unit, Microbiology Department, 75015 Paris, France
| | | | | | | |
Collapse
|
40
|
Cinier M, Petit M, Williams MN, Fabre RM, Pecorari F, Talham DR, Bujoli B, Tellier C. Bisphosphonate Adaptors for Specific Protein Binding on Zirconium Phosphonate-based Microarrays. Bioconjug Chem 2009; 20:2270-7. [DOI: 10.1021/bc9002597] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mathieu Cinier
- Laboratoire de Biotechnologie, Biocatalyse et Biorégulation, UFR Sciences et Techniques, Université de Nantes, CNRS, UMR 6204, 2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, France, Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM), Université de Nantes, CNRS, UMR 6230, 2 Rue de la Houssinière, BP92208, 44322 Nantes Cedex 03, France, and Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
| | - Marc Petit
- Laboratoire de Biotechnologie, Biocatalyse et Biorégulation, UFR Sciences et Techniques, Université de Nantes, CNRS, UMR 6204, 2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, France, Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM), Université de Nantes, CNRS, UMR 6230, 2 Rue de la Houssinière, BP92208, 44322 Nantes Cedex 03, France, and Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
| | - Monique N. Williams
- Laboratoire de Biotechnologie, Biocatalyse et Biorégulation, UFR Sciences et Techniques, Université de Nantes, CNRS, UMR 6204, 2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, France, Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM), Université de Nantes, CNRS, UMR 6230, 2 Rue de la Houssinière, BP92208, 44322 Nantes Cedex 03, France, and Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
| | - Roxane M. Fabre
- Laboratoire de Biotechnologie, Biocatalyse et Biorégulation, UFR Sciences et Techniques, Université de Nantes, CNRS, UMR 6204, 2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, France, Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM), Université de Nantes, CNRS, UMR 6230, 2 Rue de la Houssinière, BP92208, 44322 Nantes Cedex 03, France, and Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
| | - Frédéric Pecorari
- Laboratoire de Biotechnologie, Biocatalyse et Biorégulation, UFR Sciences et Techniques, Université de Nantes, CNRS, UMR 6204, 2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, France, Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM), Université de Nantes, CNRS, UMR 6230, 2 Rue de la Houssinière, BP92208, 44322 Nantes Cedex 03, France, and Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
| | - Daniel R. Talham
- Laboratoire de Biotechnologie, Biocatalyse et Biorégulation, UFR Sciences et Techniques, Université de Nantes, CNRS, UMR 6204, 2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, France, Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM), Université de Nantes, CNRS, UMR 6230, 2 Rue de la Houssinière, BP92208, 44322 Nantes Cedex 03, France, and Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
| | - Bruno Bujoli
- Laboratoire de Biotechnologie, Biocatalyse et Biorégulation, UFR Sciences et Techniques, Université de Nantes, CNRS, UMR 6204, 2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, France, Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM), Université de Nantes, CNRS, UMR 6230, 2 Rue de la Houssinière, BP92208, 44322 Nantes Cedex 03, France, and Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
| | - Charles Tellier
- Laboratoire de Biotechnologie, Biocatalyse et Biorégulation, UFR Sciences et Techniques, Université de Nantes, CNRS, UMR 6204, 2, rue de la Houssinière, BP 92208, 44322 NANTES Cedex 3, France, Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM), Université de Nantes, CNRS, UMR 6230, 2 Rue de la Houssinière, BP92208, 44322 Nantes Cedex 03, France, and Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
| |
Collapse
|
41
|
Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol 2009; 13:245-55. [DOI: 10.1016/j.cbpa.2009.04.627] [Citation(s) in RCA: 269] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 04/20/2009] [Indexed: 12/26/2022]
|
42
|
A conserved structural motif mediates formation of the periplasmic rings in the type III secretion system. Nat Struct Mol Biol 2009; 16:468-76. [PMID: 19396170 DOI: 10.1038/nsmb.1603] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 04/08/2009] [Indexed: 11/09/2022]
Abstract
The type III secretion system (T3SS) is a macromolecular 'injectisome' that allows bacterial pathogens to transport virulence proteins into the eukaryotic host cell. This macromolecular complex is composed of connected ring-like structures that span both bacterial membranes. The crystal structures of the periplasmic domain of the outer membrane secretin EscC and the inner membrane protein PrgH reveal the conservation of a modular fold among the three proteins that form the outer membrane and inner membrane rings of the T3SS. This leads to the hypothesis that this conserved fold provides a common ring-building motif that allows for the assembly of the variably sized outer membrane and inner membrane rings characteristic of the T3SS. Using an integrated structural and experimental approach, we generated ring models for the periplasmic domain of EscC and placed them in the context of the assembled T3SS, providing evidence for direct interaction between the outer membrane and inner membrane ring components and an unprecedented span of the outer membrane secretin.
Collapse
|