1
|
Muñoz SM, Vallejos-Baccelliere G, Manubens A, Salazar ML, Nascimento AFZ, Tapia-Reyes P, Meneses C, Ambrosio ALB, Becker MI, Guixé V, Castro-Fernandez V. Structural insights into a functional unit from an immunogenic mollusk hemocyanin. Structure 2024; 32:812-823.e4. [PMID: 38513659 DOI: 10.1016/j.str.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/30/2024] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
Mollusk hemocyanins, among the largest known proteins, are used as immunostimulants in biomedical and clinical applications. The hemocyanin of the Chilean gastropod Concholepas concholepas (CCH) exhibits unique properties, which makes it safe and effective for human immunotherapy, as observed in animal models of bladder cancer and melanoma, and dendritical cell vaccine trials. Despite its potential, the structure and amino acid sequence of CCH remain unknown. This study reports two sequence fragments of CCH, representing three complete functional units (FUs). We also determined the high-resolution (1.5 Å) X-ray crystal structure of an "FU-g type" from the CCHB subunit. This structure enables in-depth analysis of chemical interactions at the copper-binding center and unveils an unusual, truncated N-glycosylation pattern. These features are linked to eliciting more robust immunological responses in animals, offering insights into CCH's enhanced immunostimulatory properties and opening new avenues for its potential applications in biomedical research and therapies.
Collapse
Affiliation(s)
- Sebastián M Muñoz
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 780003, Chile
| | - Gabriel Vallejos-Baccelliere
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 780003, Chile
| | - Augusto Manubens
- Departamento de Investigación y Desarrollo, Biosonda Corp., Santiago 7750629, Chile; Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750629, Chile
| | - Michelle L Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750629, Chile
| | - Andrey F Z Nascimento
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
| | - Patricio Tapia-Reyes
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomás, Santiago 8370003, Chile; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Claudio Meneses
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; Departamento de Fruticultura y Enología, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; Millennium Nucleus Development of Super Adaptable Plants (MN-SAP), Santiago 8331150, Chile; Millennium Institute Center for Genome Regulation (CRG), Santiago 8331150, Chile
| | - Andre L B Ambrosio
- Sao Carlos Institute of Physics (IFSC), University of Sao Paulo (USP), Sao Carlos, Sao Paulo 13563-120, Brazil
| | - María Inés Becker
- Departamento de Investigación y Desarrollo, Biosonda Corp., Santiago 7750629, Chile; Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750629, Chile
| | - Victoria Guixé
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 780003, Chile.
| | - Victor Castro-Fernandez
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 780003, Chile.
| |
Collapse
|
2
|
Yang J, Ran K, Ma W, Chen Y, Chen Y, Zhang C, Ye H, Lu Y, Ran C. Degradation of Amyloid-β Species by Multi-Copper Oxidases. J Alzheimers Dis 2024; 101:525-539. [PMID: 39213075 DOI: 10.3233/jad-240625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Reduction of the production of amyloid-β (Aβ) species has been intensively investigated as potential therapeutic approaches for Alzheimer's disease (AD). However, the degradation of Aβ species, another potential beneficial approach, has been far less explored. Objective To investigate the potential of multi-copper oxidases (MCOs) in degrading Aβ peptides and their potential benefits for AD treatment. Methods We investigated the degradation efficiency of MCOs by using electrophoresis and validated the ceruloplasmin (CP)-Aβ interaction using total internal reflection fluorescence microscopy, fluorescence photometer, and fluorescence polarization measurement. We also investigated the therapeutic effect of ascorbate oxidase (AO) by using induced pluripotent stem (iPS) neuron cells and electrophysiological analysis with brain slices. Results We discovered that CP, an important MCO in human blood, could degrade Aβ peptides. We also found that other MCOs could induce Aβ degradation as well. Remarkably, we revealed that AO had the strongest degrading effect among the tested MCOs. Using iPS neuron cells, we observed that AO could rescue neuron toxicity which induced by Aβ oligomers. In addition, our electrophysiological analysis with brain slices suggested that AO could prevent an Aβ-induced deficit in synaptic transmission in the hippocampus. Conclusions To the best of our knowledge, our report is the first to demonstrate that MCOs have a degrading function for peptides/proteins. Further investigations are warranted to explore the possible benefits of MCOs for future AD treatment.
Collapse
Affiliation(s)
- Jing Yang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA, USA
- School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Kathleen Ran
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA, USA
| | - Wenzhe Ma
- Department of System Biology, Harvard Medical School, Boston, MA, USA
| | - Yanshi Chen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA, USA
| | - Yanxin Chen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA, USA
| | - Can Zhang
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hui Ye
- Department of Biology, Loyola University Chicago, IL, USA
| | - Ying Lu
- Department of System Biology, Harvard Medical School, Boston, MA, USA
| | - Chongzhao Ran
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA, USA
| |
Collapse
|
3
|
Yang J, Ran K, Ma W, Chen L, Chen C, Zhang C, Ye H, Lu Y, Ran C. Degradation of amyloid beta species by multi-copper oxidases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547398. [PMID: 37461701 PMCID: PMC10350030 DOI: 10.1101/2023.07.02.547398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Reduction of the production of amyloid beta (Aβ) species has been intensively investigated as potential therapeutic approaches for Alzheimer's disease (AD). However, the degradation of Aβ species, another potential beneficial approach, has been far less explored. In this study, we discovered that ceruloplasmin (CP), an important multi-copper oxidase (MCO) in human blood, could degrade Aβ peptides. We also found that the presence of Vitamin C could enhance the degrading effect in a concentration-dependent manner. We then validated the CP-Aβ interaction using total internal reflection fluorescence (TIRF) microscopy, fluorescence photometer, and fluorescence polarization measurement. Based on the above discovery, we hypothesized that other MCOs had similar Aβ-degrading functions. Indeed, we found that other MCOs could induce Aβ degradation as well. Remarkably, we revealed that ascorbate oxidase (AO) had the strongest degrading effect among the tested MCOs. Using induced pluripotent stem (iPS) neuron cells, we observed that AO could rescue neuron toxicity which induced by Aβ oligomers. In addition, our electrophysiological analysis with brain slices suggested that AO could prevent an Ab-induced deficit in synaptic transmission in the hippocampus. To the best of our knowledge, our report is the first to demonstrate that MCOs have a degrading function for peptides/proteins. Further investigations are warranted to explore the possible benefits of MCOs for future AD treatment.
Collapse
Affiliation(s)
- Jing Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Kathleen Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129
| | - Wenzhe Ma
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Lucy Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129
| | - Cindy Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hui Ye
- Department of Biology, Loyola University Chicago, Chicago, IL, 60660
| | - Ying Lu
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129
| |
Collapse
|
4
|
Pasqualetto G, Mack A, Lewis E, Cooper R, Holland A, Borucu U, Mantell J, Davies T, Weckener M, Clare D, Green T, Kille P, Muhlhozl A, Young MT. CryoEM structure and Alphafold molecular modelling of a novel molluscan hemocyanin. PLoS One 2023; 18:e0287294. [PMID: 37347755 PMCID: PMC10286996 DOI: 10.1371/journal.pone.0287294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/03/2023] [Indexed: 06/24/2023] Open
Abstract
Hemocyanins are multimeric oxygen transport proteins present in the blood of arthropods and molluscs, containing up to 8 oxygen-binding functional units per monomer. In molluscs, hemocyanins are assembled in decamer 'building blocks' formed of 5 dimer 'plates', routinely forming didecamer or higher-order assemblies with d5 or c5 symmetry. Here we describe the cryoEM structures of the didecamer (20-mer) and tridecamer (30-mer) forms of a novel hemocyanin from the slipper limpet Crepidula fornicata (SLH) at 7.0 and 4.7 Å resolution respectively. We show that two decamers assemble in a 'tail-tail' configuration, forming a partially capped cylinder, with an additional decamer adding on in 'head-tail' configuration to make the tridecamer. Analysis of SLH samples shows substantial heterogeneity, suggesting the presence of many higher-order multimers including tetra- and pentadecamers, formed by successive addition of decamers in head-tail configuration. Retrieval of sequence data for a full-length isoform of SLH enabled the use of Alphafold to produce a molecular model of SLH, which indicated the formation of dimer slabs with high similarity to those found in keyhole limpet hemocyanin. The fit of the molecular model to the cryoEM density was excellent, showing an overall structure where the final two functional units of the subunit (FU-g and FU-h) form the partial cap at one end of the decamer, and permitting analysis of the subunit interfaces governing the assembly of tail-tail and head-tail decamer interactions as well as potential sites for N-glycosylation. Our work contributes to the understanding of higher-order oligomer formation in molluscan hemocyanins and demonstrates the utility of Alphafold for building accurate structural models of large oligomeric proteins.
Collapse
Affiliation(s)
- Gaia Pasqualetto
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Andrew Mack
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Emily Lewis
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ryan Cooper
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Alistair Holland
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ufuk Borucu
- Faculty of Life Sciences, GW4 Facility for High-Resolution Electron Cryo-Microscopy, Wolfson Bioimaging Facility, University of Bristol, Bristol, United Kingdom
| | - Judith Mantell
- Faculty of Life Sciences, GW4 Facility for High-Resolution Electron Cryo-Microscopy, Wolfson Bioimaging Facility, University of Bristol, Bristol, United Kingdom
| | - Tom Davies
- School of Chemistry, Cardiff University, Cardiff, United Kingdom
| | - Miriam Weckener
- The Rosalind Franklin Institute, Structural Biology, Harwell Science Campus, Didcot, United Kingdom
| | - Dan Clare
- Electron Bioimaging Centre, Diamond Light Source, Harwell, United Kingdom
| | - Tom Green
- Advanced Research Computing at Cardiff, Cardiff University, Cardiff, United Kingdom
| | - Pete Kille
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | - Mark T. Young
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
5
|
Liang C, Yang S, Cai D, Liu J, Yu S, Li T, Wang H, Liu Y, Nie H, Yang Z. Adaptively Reforming Natural Enzyme to Activate Catalytic Microenvironment for Polysulfide Conversion in Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1256-1264. [PMID: 36594345 DOI: 10.1021/acsami.2c18976] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Catalyzing polysulfide conversion is a promising way toward accelerating complex and sluggish sulfur redox reactions (SRRs) in lithium-sulfur batteries. Reasonable alteration of an enzyme provides a new means to expand the natural enzyme universe to catalytic reactions in abiotic systems. Herein, we design and fabricate a denatured hemocyanin (DHc) to efficiently catalyze the SRR. After denaturation, the unfolded β-sheet architectures with exposed rich atomically dispersed Cu, O, and N sites and intermolecular H-bonds are formed in DHc, which not only provides the polysulfides for a strong spatial confinement effect in microenvironment via S-O and Li···N interactions but also activates chemical channels for electron/Li+ transport into the Cu active center via H/Li-bonds to catalyze polysulfide conversion. As expected, the charge/discharge kinetics of DHc-containing cathodes is fundamentally improved in cyclability with nearly 100% Coulombic efficiency and capacity even under high sulfur loading (4.3 mg cm-2) and lean-electrolyte (8 μL mg-1) conditions.
Collapse
Affiliation(s)
- Ce Liang
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, People's Republic of China
| | - Shuo Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, People's Republic of China
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, People's Republic of China
| | - Dong Cai
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, People's Republic of China
| | - Jun Liu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Shuang Yu
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, People's Republic of China
| | - Tingting Li
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, People's Republic of China
| | - Haohao Wang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, People's Republic of China
| | - Yahui Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, People's Republic of China
| | - Huagui Nie
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, People's Republic of China
| | - Zhi Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, People's Republic of China
| |
Collapse
|
6
|
Lazić I, Wirix M, Leidl ML, de Haas F, Mann D, Beckers M, Pechnikova EV, Müller-Caspary K, Egoavil R, Bosch EGT, Sachse C. Single-particle cryo-EM structures from iDPC-STEM at near-atomic resolution. Nat Methods 2022; 19:1126-1136. [PMID: 36064775 PMCID: PMC9467914 DOI: 10.1038/s41592-022-01586-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 07/19/2022] [Indexed: 11/09/2022]
Abstract
In electron cryomicroscopy (cryo-EM), molecular images of vitrified biological samples are obtained by conventional transmission microscopy (CTEM) using large underfocuses and subsequently computationally combined into a high-resolution three-dimensional structure. Here, we apply scanning transmission electron microscopy (STEM) using the integrated differential phase contrast mode also known as iDPC-STEM to two cryo-EM test specimens, keyhole limpet hemocyanin (KLH) and tobacco mosaic virus (TMV). The micrographs show complete contrast transfer to high resolution and enable the cryo-EM structure determination for KLH at 6.5 Å resolution, as well as for TMV at 3.5 Å resolution using single-particle reconstruction methods, which share identical features with maps obtained by CTEM of a previously acquired same-sized TMV data set. These data show that STEM imaging in general, and in particular the iDPC-STEM approach, can be applied to vitrified single-particle specimens to determine near-atomic resolution cryo-EM structures of biological macromolecules.
Collapse
Affiliation(s)
- Ivan Lazić
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands.
| | - Maarten Wirix
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands
| | - Max Leo Leidl
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Jülich, Germany
- Department of Chemistry and Centre for NanoScience, Ludwig-Maximilians-University Munich, Munich, Germany
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-1): Physics of Nanoscale Systems, Jülich, Germany
- Institute for Biological Information Processing (IBI-6): Cellular Structural Biology, Jülich, Germany
| | - Felix de Haas
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands
| | - Daniel Mann
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Jülich, Germany
- Institute for Biological Information Processing (IBI-6): Cellular Structural Biology, Jülich, Germany
| | - Maximilian Beckers
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Jülich, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Evgeniya V Pechnikova
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands
| | - Knut Müller-Caspary
- Department of Chemistry and Centre for NanoScience, Ludwig-Maximilians-University Munich, Munich, Germany
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-1): Physics of Nanoscale Systems, Jülich, Germany
| | - Ricardo Egoavil
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands
| | - Eric G T Bosch
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, Netherlands
| | - Carsten Sachse
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Jülich, Germany.
- Institute for Biological Information Processing (IBI-6): Cellular Structural Biology, Jülich, Germany.
- Department of Biology, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
7
|
Díaz-Dinamarca DA, Salazar ML, Castillo BN, Manubens A, Vasquez AE, Salazar F, Becker MI. Protein-Based Adjuvants for Vaccines as Immunomodulators of the Innate and Adaptive Immune Response: Current Knowledge, Challenges, and Future Opportunities. Pharmaceutics 2022; 14:1671. [PMID: 36015297 PMCID: PMC9414397 DOI: 10.3390/pharmaceutics14081671] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/03/2022] Open
Abstract
New-generation vaccines, formulated with subunits or nucleic acids, are less immunogenic than classical vaccines formulated with live-attenuated or inactivated pathogens. This difference has led to an intensified search for additional potent vaccine adjuvants that meet safety and efficacy criteria and confer long-term protection. This review provides an overview of protein-based adjuvants (PBAs) obtained from different organisms, including bacteria, mollusks, plants, and humans. Notably, despite structural differences, all PBAs show significant immunostimulatory properties, eliciting B-cell- and T-cell-mediated immune responses to administered antigens, providing advantages over many currently adopted adjuvant approaches. Furthermore, PBAs are natural biocompatible and biodegradable substances that induce minimal reactogenicity and toxicity and interact with innate immune receptors, enhancing their endocytosis and modulating subsequent adaptive immune responses. We propose that PBAs can contribute to the development of vaccines against complex pathogens, including intracellular pathogens such as Mycobacterium tuberculosis, those with complex life cycles such as Plasmodium falciparum, those that induce host immune dysfunction such as HIV, those that target immunocompromised individuals such as fungi, those with a latent disease phase such as Herpes, those that are antigenically variable such as SARS-CoV-2 and those that undergo continuous evolution, to reduce the likelihood of outbreaks.
Collapse
Affiliation(s)
- Diego A. Díaz-Dinamarca
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Sección de Biotecnología, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7750000, Chile
| | - Michelle L. Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
| | - Byron N. Castillo
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
| | - Augusto Manubens
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Biosonda Corporation, Santiago 7750000, Chile
| | - Abel E. Vasquez
- Sección de Biotecnología, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7750000, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Providencia, Santiago 8320000, Chile
| | - Fabián Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, UK
| | - María Inés Becker
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Biosonda Corporation, Santiago 7750000, Chile
| |
Collapse
|
8
|
Mobley BR, Schmidt KE, Chen JPJ, Kirian RA. A Metropolis Monte Carlo algorithm for merging single-particle diffraction intensities. ACTA CRYSTALLOGRAPHICA SECTION A FOUNDATIONS AND ADVANCES 2022; 78:200-211. [DOI: 10.1107/s2053273322001395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/04/2022] [Indexed: 11/10/2022]
Abstract
Single-particle imaging with X-ray free-electron lasers depends crucially on algorithms that merge large numbers of weak diffraction patterns despite missing measurements of parameters such as particle orientations. The expand–maximize–compress (EMC) algorithm is highly effective at merging single-particle diffraction patterns with missing orientation values, but most implementations exhaustively sample the space of missing parameters and may become computationally prohibitive as the number of degrees of freedom extends beyond orientation angles. This paper describes how the EMC algorithm can be modified to employ Metropolis Monte Carlo sampling rather than grid sampling, which may be favorable for reconstruction problems with more than three missing parameters. Using simulated data, this variant is compared with the standard EMC algorithm.
Collapse
|
9
|
Schäfer GG, Grebe LJ, Schinkel R, Lieb B. The Evolution of Hemocyanin Genes in Caenogastropoda: Gene Duplications and Intron Accumulation in Highly Diverse Gastropods. J Mol Evol 2021; 89:639-655. [PMID: 34757470 PMCID: PMC8599328 DOI: 10.1007/s00239-021-10036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022]
Abstract
Hemocyanin is the oxygen transport protein of most molluscs and represents an important physiological factor that has to be well-adapted to their environments because of the strong influences of abiotic factors on its oxygen affinity. Multiple independent gene duplications and intron gains have been reported for hemocyanin genes of Tectipleura (Heterobranchia) and the caenogastropod species Pomacea canaliculata, which contrast with the uniform gene architectures of hemocyanins in Vetigastropoda. The goal of this study was to analyze hemocyanin gene evolution within the diverse group of Caenogastropoda in more detail. Our findings reveal multiple gene duplications and intron gains and imply that these represent general features of Apogastropoda hemocyanins. Whereas hemocyanin exon–intron structures are identical within different Tectipleura lineages, they differ strongly within Caenogastropoda among phylogenetic groups as well as between paralogous hemocyanin genes of the same species. Thus, intron accumulation took place more gradually within Caenogastropoda but finally led to a similar consequence, namely, a multitude of introns. Since both phenomena occurred independently within Heterobranchia and Caenogastropoda, the results support the hypothesis that introns may contribute to adaptive radiation by offering new opportunities for genetic variability (multiple paralogs that may evolve differently) and regulation (multiple introns). Our study indicates that adaptation of hemocyanin genes may be one of several factors that contributed to the evolution of the large diversity of Apogastropoda. While questions remain, this hypothesis is presented as a starting point for the further study of hemocyanin genes and possible correlations between hemocyanin diversity and adaptive radiation.
Collapse
Affiliation(s)
- Gabriela Giannina Schäfer
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, Johann-Joachim-Becher-Weg 7, 55128, Mainz, Germany
| | - Lukas Jörg Grebe
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, Johann-Joachim-Becher-Weg 7, 55128, Mainz, Germany
| | - Robin Schinkel
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, Johann-Joachim-Becher-Weg 7, 55128, Mainz, Germany
| | - Bernhard Lieb
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, Johann-Joachim-Becher-Weg 7, 55128, Mainz, Germany.
| |
Collapse
|
10
|
Villar J, Salazar ML, Jiménez JM, Campo MD, Manubens A, Gleisner MA, Ávalos I, Salazar-Onfray F, Salazar F, Mitchell DA, Alshahrani MY, Martínez-Pomares L, Becker MI. C-type lectin receptors MR and DC-SIGN are involved in recognition of hemocyanins, shaping their immunostimulatory effects on human dendritic cells. Eur J Immunol 2021; 51:1715-1731. [PMID: 33891704 DOI: 10.1002/eji.202149225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/16/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022]
Abstract
Hemocyanins are used as immunomodulators in clinical applications because they induce a strong Th1-biased cell-mediated immunity, which has beneficial effects. They are multiligand glycosylated molecules with abundant and complex mannose-rich structures. It remains unclear whether these structures influence hemocyanin-induced immunostimulatory processes in human APCs. We have previously shown that hemocyanin glycans from Concholepas concholepas (CCH), Fissurella latimarginata (FLH), and Megathura crenulata (KLH), participate in their immune recognition and immunogenicity in mice, interacting with murine C-type lectin receptors (CLRs). Here, we studied the interactions of these hemocyanins with two major mannose-binding CLRs on monocyte-derived human DCs: MR (mannose receptor) and DC-SIGN (DC-specific ICAM-3-grabbing nonintegrin). Diverse analyses showed that hemocyanins are internalized by a mannose-sensitive mechanism. This process was calcium dependent. Moreover, hemocyanins colocalized with MR and DC-SIGN, and were partly internalized through clathrin-mediated endocytosis. The hemocyanin-mediated proinflammatory cytokine response was impaired when using deglycosylated FLH and KLH compared to CCH. We further showed that hemocyanins bind to human MR and DC-SIGN in a carbohydrate-dependent manner with affinity constants in the physiological concentration range. Overall, we showed that these three clinically valuable hemocyanins interact with human mannose-sensitive CLRs, initiating an immune response and promoting a Th1 cell-driving potential.
Collapse
Affiliation(s)
- Javiera Villar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - Michelle L Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - José M Jiménez
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - Miguel Del Campo
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - Augusto Manubens
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile.,Biosonda Corporation, Santiago, Chile
| | - María Alejandra Gleisner
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Ignacio Ávalos
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Fabián Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile.,Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Daniel A Mitchell
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - María Inés Becker
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile.,Biosonda Corporation, Santiago, Chile
| |
Collapse
|
11
|
Schäfer GG, Grebe LJ, Depoix F, Lieb B. Hemocyanins of Muricidae: New 'Insights' Unravel an Additional Highly Hydrophilic 800 kDa Mass Within the Molecule. J Mol Evol 2021; 89:62-72. [PMID: 33439299 PMCID: PMC7884596 DOI: 10.1007/s00239-020-09986-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/17/2020] [Indexed: 02/03/2023]
Abstract
Hemocyanins are giant oxygen transport proteins that freely float within the hemolymph of most molluscs. The basic quaternary structure of molluscan hemocyanins is a cylindrical decamer with a diameter of 35 nm which is built of 400 kDa subunits. Previously published results, however, showed that one out of two hemocyanin subunits of Rapana venosa encompasses two polypeptides, one 300 kDa and one 100 kDa polypeptide which aggregate to typical 4 MDa and 8 MDa hemocyanin (di-)decamer molecules. It was shown that the polypeptides are bound most probably by one or more cysteine disulfide bridges but it remained open if these polypeptides were coded by one or two genes. Our here presented results clearly showed that both polypeptides are coded by one gene only and that this phenomenon can also be found in the gastropod Nucella lapillus. Thus, it can be defined as clade-specific for Muricidae, a group of the very diverse Caenogastropoda. In addition, we discovered a further deviation of this hemocyanin subunit within both species, namely a region of 340 mainly hydrophilic amino acids (especially histidines and aspartic acids) which have not been identified in any other molluscan hemocyanin, yet. Our results indicate that, within the quaternary structure, these additional amino acids most probably protrude within the inner part of didecamer cylinders, forming a large extra mass of up to 800 kDa. They presumably influence the structure of the protein and may affect the functionality. Thus, these findings reveal further insights into the evolution and structures of gastropod hemocyanins.
Collapse
Affiliation(s)
- Gabriela Giannina Schäfer
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, Johann-Joachim-Becher-Weg 7, 55128, Mainz, Germany.
| | - Lukas Jörg Grebe
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, Johann-Joachim-Becher-Weg 7, 55128, Mainz, Germany
| | - Frank Depoix
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, Johann-Joachim-Becher-Weg 7, 55128, Mainz, Germany
| | - Bernhard Lieb
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, Johann-Joachim-Becher-Weg 7, 55128, Mainz, Germany
| |
Collapse
|
12
|
Al-Azzawi A, Ouadou A, Duan Y, Cheng J. Auto3DCryoMap: an automated particle alignment approach for 3D cryo-EM density map reconstruction. BMC Bioinformatics 2020; 21:534. [PMID: 33371884 PMCID: PMC7768659 DOI: 10.1186/s12859-020-03885-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Cryo-EM data generated by electron tomography (ET) contains images for individual protein particles in different orientations and tilted angles. Individual cryo-EM particles can be aligned to reconstruct a 3D density map of a protein structure. However, low contrast and high noise in particle images make it challenging to build 3D density maps at intermediate to high resolution (1-3 Å). To overcome this problem, we propose a fully automated cryo-EM 3D density map reconstruction approach based on deep learning particle picking. RESULTS A perfect 2D particle mask is fully automatically generated for every single particle. Then, it uses a computer vision image alignment algorithm (image registration) to fully automatically align the particle masks. It calculates the difference of the particle image orientation angles to align the original particle image. Finally, it reconstructs a localized 3D density map between every two single-particle images that have the largest number of corresponding features. The localized 3D density maps are then averaged to reconstruct a final 3D density map. The constructed 3D density map results illustrate the potential to determine the structures of the molecules using a few samples of good particles. Also, using the localized particle samples (with no background) to generate the localized 3D density maps can improve the process of the resolution evaluation in experimental maps of cryo-EM. Tested on two widely used datasets, Auto3DCryoMap is able to reconstruct good 3D density maps using only a few thousand protein particle images, which is much smaller than hundreds of thousands of particles required by the existing methods. CONCLUSIONS We design a fully automated approach for cryo-EM 3D density maps reconstruction (Auto3DCryoMap). Instead of increasing the signal-to-noise ratio by using 2D class averaging, our approach uses 2D particle masks to produce locally aligned particle images. Auto3DCryoMap is able to accurately align structural particle shapes. Also, it is able to construct a decent 3D density map from only a few thousand aligned particle images while the existing tools require hundreds of thousands of particle images. Finally, by using the pre-processed particle images, Auto3DCryoMap reconstructs a better 3D density map than using the original particle images.
Collapse
Affiliation(s)
- Adil Al-Azzawi
- Electrical Engineering and Computer Science Department, University of Missouri, Columbia, MO 65211 USA
| | - Anes Ouadou
- Electrical Engineering and Computer Science Department, University of Missouri, Columbia, MO 65211 USA
| | - Ye Duan
- Electrical Engineering and Computer Science Department, University of Missouri, Columbia, MO 65211 USA
| | - Jianlin Cheng
- Electrical Engineering and Computer Science Department, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
13
|
Bobkov SA, Teslyuk AB, Baymukhametov TN, Pichkur EB, Chesnokov YM, Assalauova D, Poyda AA, Novikov AM, Zolotarev SI, Ikonnikova KA, Velikhov VE, Vartanyants IA, Vasiliev AL, Ilyin VA. Advances in Modern Information Technologies for Data Analysis in CRYO-EM and XFEL Experiments. CRYSTALLOGR REP+ 2020. [DOI: 10.1134/s1063774520060085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Dolashka P, Daskalova A, Dolashki A, Voelter W. De Novo Structural Determination of the Oligosaccharide Structure of Hemocyanins from Molluscs. Biomolecules 2020; 10:biom10111470. [PMID: 33105875 PMCID: PMC7690630 DOI: 10.3390/biom10111470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/04/2022] Open
Abstract
A number of studies have shown that glycosylation of proteins plays diverse functions in the lives of organisms, has crucial biological and physiological roles in pathogen–host interactions, and is involved in a large number of biological events in the immune system, and in virus and bacteria recognition. The large amount of scientific interest in glycoproteins of molluscan hemocyanins is due not only to their complex quaternary structures, but also to the great diversity of their oligosaccharide structures with a high carbohydrate content (2–9%). This great variety is due to their specific monosaccharide composition and different side chain composition. The determination of glycans and glycopeptides was performed with the most commonly used methods for the analysis of biomolecules, including peptides and proteins, including Matrix Assisted Laser Desorption/Ionisation–Time of Flight (MALDI-TOF-TOF), Liquid Chromatography - Electrospray Ionization-Mass Spectrometry (LC/ESI-MS), Liquid Chromatography (LC-Q-trap-MS/MS) or Nano- Electrospray Ionization-Mass Spectrometry (nano-ESI-MS) and others. The molluscan hemocyanins have complex carbohydrate structures with predominant N-linked glycans. Of interest are identified structures with methylated hexoses and xyloses arranged at different positions in the carbohydrate moieties of molluscan hemocyanins. Novel acidic glycan structures with specific glycosylation positions, e.g., hemocyanins that enable a deeper insight into the glycosylation process, were observed in Rapana venosa, Helix lucorum, and Haliotis tuberculata. Recent studies demonstrate that glycosylation plays a crucial physiological role in the immunostimulatory and therapeutic effect of glycoproteins. The remarkable diversity of hemocyanin glycan content is an important feature of their immune function and provides a new concept in the antibody–antigen interaction through clustered carbohydrate epitopes.
Collapse
Affiliation(s)
- Pavlina Dolashka
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria or (A.D.); (A.D.)
- Correspondence: or ; Tel.:+359-887193423
| | - Asya Daskalova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria or (A.D.); (A.D.)
| | - Aleksandar Dolashki
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria or (A.D.); (A.D.)
| | - Wolfgang Voelter
- Interfacultary Institute of Biochemistry, University of Tuebingen, 72074 Tuebingen, Germany;
| |
Collapse
|
15
|
Abstract
Instead of the red blood of vertebrates, most molluscs have blue hemolymph containing hemocyanin, a type-3 copper-containing protein. The hemoglobin of vertebrate blood is replaced in most molluscs with hemocyanin, which plays the role of an oxygen transporter. Oxygen-binding in hemocyanin changes its hue from colorless deoxygenated hemocyanin into blue oxygenated hemocyanin. Molecules of molluscan hemocyanin are huge, cylindrical multimeric proteins-one of the largest protein molecules in the natural world. Their huge molecular weight (from 3.3 MDa to more than 10 MDa) are the defining characteristic of molluscan hemocyanin, a property that has complicated structural analysis of the molecules for a long time. Recently, the structural analysis of a cephalopod (squid) hemocyanin has succeeded using a hybrid method employing both X-ray crystallography and cryo-EM. In a biochemical breakthrough for molluscan hemocyanin, the first quaternary structure with atomic resolution is on the verge of solving the mystery of molluscan hemocyanin. Here we describe the latest information about the molecular structure, classification and evolution of the molecule, and the physiology of molluscan hemocyanin.
Collapse
|
16
|
Ou L, Kong WP, Chuang GY, Ghosh M, Gulla K, O'Dell S, Varriale J, Barefoot N, Changela A, Chao CW, Cheng C, Druz A, Kong R, McKee K, Rawi R, Sarfo EK, Schön A, Shaddeau A, Tsybovsky Y, Verardi R, Wang S, Wanninger TG, Xu K, Yang GJ, Zhang B, Zhang Y, Zhou T, Arnold FJ, Doria-Rose NA, Lei QP, Ryan ET, Vann WF, Mascola JR, Kwong PD. Preclinical Development of a Fusion Peptide Conjugate as an HIV Vaccine Immunogen. Sci Rep 2020; 10:3032. [PMID: 32080235 PMCID: PMC7033230 DOI: 10.1038/s41598-020-59711-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/10/2019] [Indexed: 11/30/2022] Open
Abstract
The vaccine elicitation of broadly neutralizing antibodies against HIV-1 is a long-sought goal. We previously reported the amino-terminal eight residues of the HIV-1-fusion peptide (FP8) - when conjugated to the carrier protein, keyhole limpet hemocyanin (KLH) - to be capable of inducing broadly neutralizing responses against HIV-1 in animal models. However, KLH is a multi-subunit particle derived from a natural source, and its manufacture as a clinical product remains a challenge. Here we report the preclinical development of recombinant tetanus toxoid heavy chain fragment (rTTHC) linked to FP8 (FP8-rTTHC) as a suitable FP-conjugate vaccine immunogen. We assessed 16 conjugates, made by coupling the 4 most prevalent FP8 sequences with 4 carrier proteins: the aforementioned KLH and rTTHC; the H. influenzae protein D (HiD); and the cross-reactive material from diphtheria toxin (CRM197). While each of the 16 FP8-carrier conjugates could elicit HIV-1-neutralizing responses, rTTHC conjugates induced higher FP-directed responses overall. A Sulfo-SIAB linker yielded superior results over an SM(PEG)2 linker but combinations of carriers, conjugation ratio of peptide to carrier, or choice of adjuvant (Adjuplex or Alum) did not significantly impact elicited FP-directed neutralizing responses in mice. Overall, SIAB-linked FP8-rTTHC appears to be a promising vaccine candidate for advancing to clinical assessment.
Collapse
Affiliation(s)
- Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Mridul Ghosh
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Krishana Gulla
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Joseph Varriale
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Nathan Barefoot
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Anita Changela
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Cara W Chao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Rui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Edward K Sarfo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Andrew Shaddeau
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Timothy G Wanninger
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Gengcheng J Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Yaqiu Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Frank J Arnold
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Q Paula Lei
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Edward T Ryan
- Massachusetts General Hospital, Boston, 02114, MA, USA
| | - Willie F Vann
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, 20993, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA.
| |
Collapse
|
17
|
Chiumiento IR, Ituarte S, Sun J, Qiu JW, Heras H, Dreon MS. Hemocyanin of the caenogastropod Pomacea canaliculata exhibits evolutionary differences among gastropod clades. PLoS One 2020; 15:e0228325. [PMID: 31999773 PMCID: PMC6992001 DOI: 10.1371/journal.pone.0228325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/10/2020] [Indexed: 11/20/2022] Open
Abstract
Structural knowledge of gastropod hemocyanins is scarce. To better understand their evolution and diversity we studied the hemocyanin of a caenogastropod, Pomacea canaliculata (PcH). Through a proteomic and genomic approach, we identified 4 PcH subunit isoforms, in contrast with other gastropods that usually have 2 or 3. Each isoform has the typical Keyhole limpet-type hemocyanin architecture, comprising a string of eight globular functional units (FUs). Correspondingly, genes are organized in eight FUs coding regions. All FUs in the 4 genes are encoded by more than one exon, a feature not found in non- caenogastropods. Transmission electron microscopy images of PcH showed a cylindrical structure organized in di, tri and tetra-decamers with an internal collar structure, being the di and tri-decameric cylinders the most abundant ones. PcH is N-glycosylated with high mannose and hybrid-type structures, and complex-type N-linked glycans, with absence of sialic acid. Terminal β-N-GlcNAc residues and nonreducing terminal α-GalNAc are also present. The molecule lacks O-linked glycosylation but presents the T-antigen (Gal-β1,3-GalNAc). Using an anti-PcH polyclonal antibody, no cross-immunoreactivity was observed against other gastropod hemocyanins, highlighting the presence of clade-specific structural differences among gastropod hemocyanins. This is, to the best of our knowledge, the first gene structure study of a Caenogastropoda hemocyanin.
Collapse
Affiliation(s)
- Ignacio Rafael Chiumiento
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP)–CONICET, La Plata, Argentina
| | - Santiago Ituarte
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP)–CONICET, La Plata, Argentina
| | - Jin Sun
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Jian Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP)–CONICET, La Plata, Argentina
- Cátedra de Química Biológica, Facultad de Ciencias Naturales y Museo, UNLP, La Plata, Argentina
| | - Marcos Sebastián Dreon
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP)–CONICET, La Plata, Argentina
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, UNLP, La Plata, Argentina
- * E-mail:
| |
Collapse
|
18
|
Salazar ML, Jiménez JM, Villar J, Rivera M, Báez M, Manubens A, Becker MI. N-Glycosylation of mollusk hemocyanins contributes to their structural stability and immunomodulatory properties in mammals. J Biol Chem 2019; 294:19546-19564. [PMID: 31719148 PMCID: PMC6926458 DOI: 10.1074/jbc.ra119.009525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
Hemocyanins are widely used as carriers, adjuvants, and nonspecific immunostimulants in cancer because they promote Th1 immunity in mammals. Hemocyanins also interact with glycan-recognizing innate immune receptors on antigen-presenting cells, such as the C-type lectin immune receptors mannose receptor (MR), macrophage galactose lectin (MGL), and the Toll-like receptors (TLRs), stimulating proinflammatory cytokine secretion. However, the role of N-linked oligosaccharides on the structural and immunological properties of hemocyanin is unclear. Mollusk hemocyanins, such as Concholepas concholepas (CCH), Fissurella latimarginata (FLH), and Megathura crenulata (KLH), are oligomeric glycoproteins with complex dodecameric quaternary structures and heterogeneous glycosylation patterns, primarily consisting of mannose-rich N-glycans. Here, we report that enzyme-catalyzed N-deglycosylation of CCH, FLH, and KLH disrupts their quaternary structure and impairs their immunogenic effects. Biochemical analyses revealed that the deglycosylation does not change hemocyanin secondary structure but alters their refolding mechanism and dodecameric structure. Immunochemical analyses indicated decreased binding of N-deglycosylated hemocyanins to the MR and MGL receptors and TLR4 and reduced endocytosis concomitant with an impaired production of tumor necrosis factor α, and interleukins 6 and 12 (IL-6 and IL-12p40, respectively) in macrophages. Evaluating the function of N-deglycosylated hemocyanins in the humoral immune response and their nonspecific antitumor effects in the B16F10 melanoma model, we found that compared with native hemocyanins N-deglycosylated hemocyanins elicited reduced antibody titers, as well as partially diminished antitumor effects and altered carrier activities. In conclusion, the glycan content of hemocyanins is, among other structural characteristics, critically required for their immunological activities and should be considered in biomedical applications.
Collapse
Affiliation(s)
- Michelle L Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750269, Chile
| | - José M Jiménez
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750269, Chile
| | - Javiera Villar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750269, Chile
| | - Maira Rivera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| | - Mauricio Báez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| | - Augusto Manubens
- Departamento de Investigación y Desarrollo, Biosonda Corp., Santiago 7750269, Chile
| | - María Inés Becker
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750269, Chile .,Departamento de Investigación y Desarrollo, Biosonda Corp., Santiago 7750269, Chile
| |
Collapse
|
19
|
Jiménez JM, Salazar ML, Arancibia S, Villar J, Salazar F, Brown GD, Lavelle EC, Martínez-Pomares L, Ortiz-Quintero J, Lavandero S, Manubens A, Becker MI. TLR4, but Neither Dectin-1 nor Dectin-2, Participates in the Mollusk Hemocyanin-Induced Proinflammatory Effects in Antigen-Presenting Cells From Mammals. Front Immunol 2019; 10:1136. [PMID: 31214162 PMCID: PMC6554540 DOI: 10.3389/fimmu.2019.01136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/07/2019] [Indexed: 11/18/2022] Open
Abstract
Mollusk hemocyanins have biomedical uses as carriers/adjuvants and nonspecific immunostimulants with beneficial clinical outcomes by triggering the production of proinflammatory cytokines in antigen-presenting cells (APCs) and driving immune responses toward type 1 T helper (Th1) polarization. Significant structural features of hemocyanins as a model antigen are their glycosylation patterns. Indeed, hemocyanins have a multivalent nature as highly mannosylated antigens. We have previously shown that hemocyanins are internalized by APCs through receptor-mediated endocytosis with proteins that contain C-type lectin domains, such as mannose receptor (MR). However, the contribution of other innate immune receptors to the proinflammatory signaling pathway triggered by hemocyanins is unknown. Thus, we studied the roles of Dectin-1, Dectin-2, and Toll-like receptor 4 (TLR4) in the hemocyanin activation of murine APCs, both in dendritic cells (DCs) and macrophages, using hemocyanins from Megathura crenulata (KLH), Concholepas concholepas (CCH) and Fissurella latimarginata (FLH). The results showed that these hemocyanins bound to chimeric Dectin-1 and Dectin-2 receptors in vitro; which significantly decreased when the glycoproteins were deglycosylated. However, hemocyanin-induced proinflammatory effects in APCs from Dectin-1 knock-out (KO) and Dectin-2 KO mice were independent of both receptors. Moreover, when wild-type APCs were cultured in the presence of hemocyanins, phosphorylation of Syk kinase was not detected. We further showed that KLH and FLH induced ERK1/2 phosphorylation, a key event involved in the TLR signaling pathway. We confirmed a glycan-dependent binding of hemocyanins to chimeric TLR4 in vitro. Moreover, DCs from mice deficient for MyD88-adapter-like (Mal), a downstream adapter molecule of TLR4, were partially activated by FLH, suggesting a role of the TLR pathway in hemocyanin recognition to activate APCs. The participation of TLR4 was confirmed through a decrease in IL-12p40 and IL-6 secretion induced by FLH when a TLR4 blocking antibody was used; a reduction was also observed in DCs from C3H/HeJ mice, a mouse strain with a nonfunctional mutation for this receptor. Moreover, IL-6 secretion induced by FLH was abolished in macrophages deficient for TLR4. Our data showed the involvement of TLR4 in the hemocyanin-mediated proinflammatory response in APCs, which could cooperate with MR in innate immune recognition of these glycoproteins.
Collapse
Affiliation(s)
- José M. Jiménez
- Fundación Ciencia y Tecnología Para el Desarrollo (FUCITED), Santiago, Chile
| | - Michelle L. Salazar
- Fundación Ciencia y Tecnología Para el Desarrollo (FUCITED), Santiago, Chile
| | - Sergio Arancibia
- Fundación Ciencia y Tecnología Para el Desarrollo (FUCITED), Santiago, Chile
| | - Javiera Villar
- Fundación Ciencia y Tecnología Para el Desarrollo (FUCITED), Santiago, Chile
| | - Fabián Salazar
- Fundación Ciencia y Tecnología Para el Desarrollo (FUCITED), Santiago, Chile
- Aberdeen Fungal Group, Medical Research Council Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
| | - Gordon D. Brown
- Aberdeen Fungal Group, Medical Research Council Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
| | - Ed C. Lavelle
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Jafet Ortiz-Quintero
- Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Advanced Center for Chronic Diseases, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Advanced Center for Chronic Diseases, Universidad de Chile, Santiago, Chile
| | | | - María Inés Becker
- Fundación Ciencia y Tecnología Para el Desarrollo (FUCITED), Santiago, Chile
- Biosonda Corporation, Santiago, Chile
| |
Collapse
|
20
|
Baruffaldi F, Raleigh MD, King SJ, Roslawski MJ, Birnbaum AK, Hassler C, Carroll FI, Runyon SP, Winston S, Pentel PR, Pravetoni M. Formulation and Characterization of Conjugate Vaccines to Reduce Opioid Use Disorders Suitable for Pharmaceutical Manufacturing and Clinical Evaluation. Mol Pharm 2019; 16:2364-2375. [PMID: 31018096 DOI: 10.1021/acs.molpharmaceut.8b01296] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study focused on formulating conjugate vaccines targeting oxycodone and heroin for technology transfer, good manufacturing practice (GMP), and clinical evaluation. Lead vaccines used the highly immunogenic carrier protein keyhole limpet hemocyanin (KLH), which poses formulation problems because of its size. To address this barrier to translation, an oxycodone-based hapten conjugated to GMP-grade subunit KLH (OXY-sKLH) and adsorbed on alum adjuvant was studied with regard to carbodiimide coupling reaction time, buffer composition, purification methods for conjugates, conjugate size, state of aggregation, and protein/alum ratio. Vaccine formulations were screened for post-immunization antibody levels and efficacy in reducing oxycodone distribution to the brain in rats. While larger conjugates were more immunogenic, their size prevented characterization of the haptenation ratio by standard analytical methods and sterilization by filtration. To address this issue, conjugation chemistry and vaccine formulation were optimized for maximal efficacy, and conjugate size was measured by dynamic light scattering prior to adsorption to alum. An analogous heroin vaccine (M-sKLH) was also optimized for conjugation chemistry, formulated in alum, and characterized for potency against heroin in rats. Finally, this study found that the efficacy of OXY-sKLH was preserved when co-administered with M-sKLH, supporting the proof of concept for a bivalent vaccine formulation targeting both heroin and oxycodone. This study suggests methods for addressing the unique formulation and characterization challenges posed by conjugating small molecules to sKLH while preserving vaccine efficacy.
Collapse
Affiliation(s)
- F Baruffaldi
- Hennepin Healthcare Research Institute , Minneapolis , Minnesota 55404 , United States
| | - M D Raleigh
- Hennepin Healthcare Research Institute , Minneapolis , Minnesota 55404 , United States
| | - S J King
- Hennepin Healthcare Research Institute , Minneapolis , Minnesota 55404 , United States
| | - M J Roslawski
- University of Minnesota College of Pharmacy , Minneapolis , Minnesota 55455 , United States
| | - A K Birnbaum
- University of Minnesota College of Pharmacy , Minneapolis , Minnesota 55455 , United States
| | - C Hassler
- RTI International , Research Triangle Park , North Carolina 27709-2194 , United States
| | - F I Carroll
- RTI International , Research Triangle Park , North Carolina 27709-2194 , United States
| | - S P Runyon
- RTI International , Research Triangle Park , North Carolina 27709-2194 , United States
| | - S Winston
- Winston Biopharmaceutical Consulting , 4475 Laguna Place #215 , Boulder , Colorado 80303 , United States
| | - P R Pentel
- Hennepin Healthcare Research Institute , Minneapolis , Minnesota 55404 , United States
| | - M Pravetoni
- Hennepin Healthcare Research Institute , Minneapolis , Minnesota 55404 , United States
| |
Collapse
|
21
|
Tanaka Y, Kato S, Stabrin M, Raunser S, Matsui T, Gatsogiannis C. Cryo-EM reveals the asymmetric assembly of squid hemocyanin. IUCRJ 2019; 6:426-437. [PMID: 31098023 PMCID: PMC6503924 DOI: 10.1107/s205225251900321x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
The oxygen transporter of molluscs, hemocyanin, consists of long pearl-necklace-like subunits of several globular domains. The subunits assemble in a complex manner to form cylindrical decamers. Typically, the first six domains of each subunit assemble together to form the cylinder wall, while the C-terminal domains form a collar that fills or caps the cylinder. During evolution, various molluscs have been able to fine-tune their oxygen binding by deleting or adding C-terminal domains and adjusting their inner-collar architecture. However, squids have duplicated one of the wall domains of their subunits instead. Here, using cryo-EM and an optimized refinement protocol implemented in SPHIRE, this work tackled the symmetry-mismatched structure of squid hemocyanin, revealing the precise effect of this duplication on its quaternary structure and providing a potential model for its structural evolution.
Collapse
Affiliation(s)
- Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Japan Science and Technology Agency, PRESTO, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Sanae Kato
- Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0056, Japan
| | - Markus Stabrin
- Max Planck Institute of Molecular Physiology, Department of Structural Biochemistry, Otto Hahn Strasse 11, Dortmund 44227, Germany
| | - Stefan Raunser
- Max Planck Institute of Molecular Physiology, Department of Structural Biochemistry, Otto Hahn Strasse 11, Dortmund 44227, Germany
| | - Takashi Matsui
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Christos Gatsogiannis
- Max Planck Institute of Molecular Physiology, Department of Structural Biochemistry, Otto Hahn Strasse 11, Dortmund 44227, Germany
| |
Collapse
|
22
|
Yao T, Zhao MM, He J, Han T, Peng W, Zhang H, Wang JY, Jiang JZ. Gene expression and phenoloxidase activities of hemocyanin isoforms in response to pathogen infections in abalone Haliotis diversicolor. Int J Biol Macromol 2019; 129:538-551. [PMID: 30731165 DOI: 10.1016/j.ijbiomac.2019.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/02/2019] [Accepted: 02/02/2019] [Indexed: 12/13/2022]
Abstract
Hemocyanins (Hc), the main protein components of hemolymph in invertebrates, are not only involved in oxygen transport but also linked to non-specific immune responses. In this study, we used abalone (Haliotis diversicolor) Hc to study the basis of its diversified functions through gene, protein, peptides, and phenoloxidase (PO) activity levels. Three complete hemocyanin gene (HdH) sequences were cloned for the first time. By comparing the copies and location of HdH between abalone and other mollusks, we propose that Hc gene duplication and linkage is likely to be common during the evolution of mollusk respiratory proteins. We further demonstrate that all three genes could be expressed in abalone, with expression varying based on the developmental stages, tissue types, and different pathogen infections. However, HdH1 and HdH2 appear to be synthesized by the same cells by fluorescence in situ hybridization. Furthermore, the PO activity of HdH can be induced by trypsin, urea, and SDS in vitro. Viral infection can stimulate its PO activity in vivo by cleaving the protein into fragments. Consequently, we present a comprehensive study of abalone hemocyanin, providing important evidence for an in-depth understanding of the physiological and immune functions of Hc in mollusks.
Collapse
Affiliation(s)
- Tuo Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Man-Man Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China; Novoprotein Scientific Inc., Wujiang, Jiangsu 215200, PR China
| | - Jian He
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, PR China
| | - Tao Han
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Wen Peng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Han Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Jiang-Yong Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Jing-Zhe Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China.
| |
Collapse
|
23
|
Baruffaldi F, Kelcher AH, Laudenbach M, Gradinati V, Limkar A, Roslawski M, Birnbaum A, Lees A, Hassler C, Runyon S, Pravetoni M. Preclinical Efficacy and Characterization of Candidate Vaccines for Treatment of Opioid Use Disorders Using Clinically Viable Carrier Proteins. Mol Pharm 2018; 15:4947-4962. [PMID: 30240216 DOI: 10.1021/acs.molpharmaceut.8b00592] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vaccines may offer a new treatment strategy for opioid use disorders and opioid-related overdoses. To speed translation, this study evaluates opioid conjugate vaccines containing components suitable for pharmaceutical manufacturing and compares analytical assays for conjugate characterization. Three oxycodone-based haptens (OXY) containing either PEGylated or tetraglycine [(Gly)4] linkers were conjugated to a keyhole limpet hemocyanin (KLH) carrier protein via carbodiimide (EDAC) or maleimide chemistry. The EDAC-conjugated OXY(Gly)4-KLH was most effective in reducing oxycodone distribution to the brain in mice. Vaccine efficacy was T cell-dependent. The lead OXY hapten was conjugated to the KLH, tetanus toxoid, diphtheria cross-reactive material (CRM), as well as the E. coli-expressed CRM (EcoCRM) and nontoxic tetanus toxin heavy chain fragment C (rTTHc) carrier proteins. All vaccines induced early hapten-specific B cell expansion and showed equivalent efficacy against oxycodone in mice. However, some hapten-protein conjugates were easier to characterize for molecular weight and size. Finally, heroin vaccines formulated with either EcoCRM or KLH were equally effective in reducing heroin-induced antinociception and distribution to the brain of heroin and its metabolites in mice. This study identifies vaccine candidates and vaccine components for further development.
Collapse
Affiliation(s)
- Federico Baruffaldi
- Hennepin Healthcare Research Institute (HHRI, formerly Minneapolis Medical Research Foundation or MMRF) , 701 Park Avenue , Minneapolis , Minnesota 55415 , United States
| | - April Huseby Kelcher
- Hennepin Healthcare Research Institute (HHRI, formerly Minneapolis Medical Research Foundation or MMRF) , 701 Park Avenue , Minneapolis , Minnesota 55415 , United States
| | - Megan Laudenbach
- Hennepin Healthcare Research Institute (HHRI, formerly Minneapolis Medical Research Foundation or MMRF) , 701 Park Avenue , Minneapolis , Minnesota 55415 , United States
| | - Valeria Gradinati
- Hennepin Healthcare Research Institute (HHRI, formerly Minneapolis Medical Research Foundation or MMRF) , 701 Park Avenue , Minneapolis , Minnesota 55415 , United States.,Dipartimento di Chimica e Tecnologie Farmaceutiche, Socrates Program , Universitá degli Studi di Milano , Milan 20122 , Italy
| | - Ajinkya Limkar
- University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | | | - Angela Birnbaum
- University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Andrew Lees
- Fina Biosolutions, LLC , Rockville , Maryland 20850 , United States
| | - Carla Hassler
- RTI International , Research Triangle Park , North Carolina 27709-2194 , United States
| | - Scott Runyon
- RTI International , Research Triangle Park , North Carolina 27709-2194 , United States
| | - Marco Pravetoni
- Hennepin Healthcare Research Institute (HHRI, formerly Minneapolis Medical Research Foundation or MMRF) , 701 Park Avenue , Minneapolis , Minnesota 55415 , United States.,Departments of Medicine and Pharmacology, Center for Immunology , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
24
|
Schumacher J, Bacic T, Staritzbichler R, Daneschdar M, Klamp T, Arnold P, Jägle S, Türeci Ö, Markl J, Sahin U. Enhanced stability of a chimeric hepatitis B core antigen virus-like-particle (HBcAg-VLP) by a C-terminal linker-hexahistidine-peptide. J Nanobiotechnology 2018; 16:39. [PMID: 29653575 PMCID: PMC5897928 DOI: 10.1186/s12951-018-0363-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Virus-like-particles (VLPs) are attractive nanoparticulate scaffolds for broad applications in material/biological sciences and medicine. Prior their functionalization, specific adaptations have to be carried out. These adjustments frequently lead to disordered particles, but the particle integrity is an essential factor for the VLP suitability. Therefore, major requirements for particle stabilization exist. The objective of this study was to evaluate novel stabilizing elements for functionalized chimeric hepatitis B virus core antigen virus-like particles (HBcAg-VLP), with beneficial characteristics for vaccine development, imaging or delivery. RESULTS The effects of a carboxy-terminal polyhistidine-peptide and an intradimer disulfide-bridge on the stability of preclinically approved chimeric HBcAg-VLPs were assessed. We purified recombinant chimeric HBcAg-VLPs bearing different modified C-termini and compared their physical and chemical particle stability by quantitative protein-biochemical and biophysical techniques. We observed lower chemical resistance of T = 3- compared to T = 4-VLP (triangulation number) capsids and profound impairment of accessibility of hexahistidine-peptides in assembled VLPs. Histidines attached to the C-terminus were associated with superior mechanical and/or chemical particle stability depending on the number of histidine moieties. A molecular modeling approach based on cryo-electron microscopy and biolayer interferometry revealed the underlying structural mechanism for the strengthening of the integrity of VLPs. Interactions triggering capsid stabilization occur on a highly conserved residue on the basis of HBcAg-monomers as well as on hexahistidine-peptides of adjacent monomers. This new stabilization mechanism appears to mimic an evolutionary conserved stabilization concept for hepadnavirus core proteins. CONCLUSIONS These findings establish the genetically simply transferable C-terminal polyhistidine-peptide as a general stabilizing element for chimeric HBcAg-VLPs to increase their suitability.
Collapse
Affiliation(s)
- Jens Schumacher
- Biopharmaceutical New Technologies (BioNTech) Protein Therapeutics Corporation, An der Goldgrube 12, 55131, Mainz, Germany.,Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tijana Bacic
- Biopharmaceutical New Technologies (BioNTech) Protein Therapeutics Corporation, An der Goldgrube 12, 55131, Mainz, Germany.,Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - René Staritzbichler
- TRON Translational Oncology, University Medical Center of Johannes Gutenberg University, TRON gGmbH, Freiligrathstrasse 12, 55131, Mainz, Germany
| | - Matin Daneschdar
- Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Thorsten Klamp
- Biopharmaceutical New Technologies (BioNTech) Protein Therapeutics Corporation, An der Goldgrube 12, 55131, Mainz, Germany.,Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Philipp Arnold
- Institute of Zoology, Johannes Gutenberg University, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany.,Anatomical Institute, Otto-Hahn Platz 8, 24118, Kiel, Germany
| | - Sabrina Jägle
- Biopharmaceutical New Technologies (BioNTech) Protein Therapeutics Corporation, An der Goldgrube 12, 55131, Mainz, Germany.,Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Özlem Türeci
- Ganymed Pharmaceuticals AG, An der Goldgrube 12, 55131, Mainz, Germany
| | - Jürgen Markl
- Institute of Zoology, Johannes Gutenberg University, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany
| | - Ugur Sahin
- Biopharmaceutical New Technologies (BioNTech) Protein Therapeutics Corporation, An der Goldgrube 12, 55131, Mainz, Germany. .,Department of Internal Medicine III, Translational and Experimental Oncology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany. .,TRON Translational Oncology, University Medical Center of Johannes Gutenberg University, TRON gGmbH, Freiligrathstrasse 12, 55131, Mainz, Germany.
| |
Collapse
|
25
|
Kato S, Matsui T, Gatsogiannis C, Tanaka Y. Molluscan hemocyanin: structure, evolution, and physiology. Biophys Rev 2017; 10:191-202. [PMID: 29235083 DOI: 10.1007/s12551-017-0349-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022] Open
Abstract
Most molluscs have blue blood because their respiratory molecule is hemocyanin, a type-3 copper-binding protein that turns blue upon oxygen binding. Molluscan hemocyanins are huge cylindrical multimeric glycoproteins that are found freely dissolved in the hemolymph. With molecular masses ranging from 3.3 to 13.5 MDa, molluscan hemocyanins are among the largest known proteins. They form decamers or multi-decamers of 330- to 550-kDa subunits comprising more than seven paralogous functional units. Based on the organization of functional domains, they assemble to form decamers, di-decamers, and tri-decamers. Their structure has been investigated using a combination of single particle electron cryo-microsopy of the entire structure and high-resolution X-ray crystallography of the functional unit, although, the one exception is squid hemocyanin for which a crystal structure analysis of the entire molecule has been carried out. In this review, we explain the molecular characteristics of molluscan hemocyanin mainly from the structural viewpoint, in which the structure of the functional unit, architecture of the huge cylindrical multimer, relationship between the composition of the functional unit and entire tertiary structure, and possible functions of the carbohydrates are introduced. We also discuss the evolutionary implications and physiological significance of molluscan hemocyanin.
Collapse
Affiliation(s)
- Sanae Kato
- Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, 890-0056, Japan.
| | - Takashi Matsui
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Christos Gatsogiannis
- Department of Structural Biochemistry, Max Planck Institute Molecular Physiology, 44227, Dortmund, Germany
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan. .,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Sendai, 980-8577, Japan.
| |
Collapse
|
26
|
Ishwarya R, Vaseeharan B, Iswarya A, Karthikeyan S. Haemolytic and antibiofilm properties of haemocyanin purified from the haemolymph of Indian white shrimp Fenneropenaeus indicus. FISH & SHELLFISH IMMUNOLOGY 2016; 59:447-455. [PMID: 27815202 DOI: 10.1016/j.fsi.2016.10.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/17/2016] [Accepted: 10/30/2016] [Indexed: 06/06/2023]
Abstract
Haemocyanin (Hc) is an important non-specific immune macromolecule present in the haemolymph of both mollusks and crustaceans. In the present study, Hc was purified from the haemolymph of Indian white shrimp Fenneropenaeus indicus by gel filtration chromatography and it exhibits a single band with a molecular weight of 74 kDa on SDS-PAGE. The X-ray diffraction (XRD) and High performance liquid chromatography (HPLC) result of purified Hc express single peak at 31.5° be a sign of crystalline nature and appear as a single peak with a retention time of 5.6 min signify the homogeneity nature of the protein respectively. The purified Hc exhibited haemolytic activity against chicken erythrocytes. The haemolytic activity of purified Hc in optimum conditions observed to be pH 6.0, temperature 40 °C, in the presence of calcium. As well purified Hc exhibited the antibiofilm activity against both Gram positive and Gram negative bacteria. Moreover, the haemolysis can be inhibited to different degrees by osmoprotectants of diverse molecular masses, signifying that it follows a colloid-osmotic mechanism. This study conclude that purified Hc from F. indicus remarkably possess haemolytic and antibiofilm activity.
Collapse
Affiliation(s)
- Ramachandran Ishwarya
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 4th Floor, Burma Colony, Karaikudi, 630004, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 4th Floor, Burma Colony, Karaikudi, 630004, Tamil Nadu, India.
| | - Arokiadhas Iswarya
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 4th Floor, Burma Colony, Karaikudi, 630004, Tamil Nadu, India
| | | |
Collapse
|
27
|
Wu J, Cunningham AL, Dehghani F, Diefenbach RJ. Comparison of Haliotis rubra hemocyanin isoforms 1 and 2. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
Ayyer K, Lan TY, Elser V, Loh ND. Dragonfly: an implementation of the expand-maximize-compress algorithm for single-particle imaging. J Appl Crystallogr 2016; 49:1320-1335. [PMID: 27504078 PMCID: PMC4970497 DOI: 10.1107/s1600576716008165] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/19/2016] [Indexed: 02/07/2023] Open
Abstract
Single-particle imaging (SPI) with X-ray free-electron lasers has the potential to change fundamentally how biomacromolecules are imaged. The structure would be derived from millions of diffraction patterns, each from a different copy of the macromolecule before it is torn apart by radiation damage. The challenges posed by the resultant data stream are staggering: millions of incomplete, noisy and un-oriented patterns have to be computationally assembled into a three-dimensional intensity map and then phase reconstructed. In this paper, the Dragonfly software package is described, based on a parallel implementation of the expand-maximize-compress reconstruction algorithm that is well suited for this task. Auxiliary modules to simulate SPI data streams are also included to assess the feasibility of proposed SPI experiments at the Linac Coherent Light Source, Stanford, California, USA.
Collapse
Affiliation(s)
- Kartik Ayyer
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Ti-Yen Lan
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Veit Elser
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - N. Duane Loh
- Centre for Bio-imaging Sciences, National University of Singapore, 14 Science Drive 4, 117557, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117551, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117557, Singapore
| |
Collapse
|
29
|
Zhong TY, Arancibia S, Born R, Tampe R, Villar J, Del Campo M, Manubens A, Becker MI. Hemocyanins Stimulate Innate Immunity by Inducing Different Temporal Patterns of Proinflammatory Cytokine Expression in Macrophages. THE JOURNAL OF IMMUNOLOGY 2016; 196:4650-62. [PMID: 27183578 DOI: 10.4049/jimmunol.1501156] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 03/24/2016] [Indexed: 12/20/2022]
Abstract
Hemocyanins induce a potent Th1-dominant immune response with beneficial clinical outcomes when used as a carrier/adjuvant in vaccines and nonspecific immunostimulant in cancer. However, the mechanisms by which hemocyanins trigger innate immune responses, leading to beneficial adaptive immune responses, are unknown. This response is triggered by a proinflammatory signal from various components, of which macrophages are an essential part. To understand how these proteins influence macrophage response, we investigated the effects of mollusks hemocyanins with varying structural and immunological properties, including hemocyanins from Concholepas concholepas, Fissurella latimarginata, and Megathura crenulata (keyhole limpet hemocyanin), on cultures of peritoneal macrophages. Hemocyanins were phagocytosed and slowly processed. Analysis of this process showed differential gene expression along with protein levels of proinflammatory markers, including IL-1β, IL-6, IL-12p40, and TNF-α. An extended expression analysis of 84 cytokines during a 24-h period showed a robust proinflammatory response for F. latimarginata hemocyanin in comparison with keyhole limpet hemocyanin and C. concholepas hemocyanin, which was characterized by an increase in the transcript levels of M1 cytokines involved in leukocyte recruitment. These cytokine genes included chemokines (Cxcl1, Cxcl3, Cxcl5, Ccl2, and Ccl3), ILs (Il1b and Ifng), growth factors (Csf2 and Csf3), and TNF family members (Cd40lg). The protein levels of certain cytokines were increased. However, every hemocyanin maintains downregulated key M2 cytokine genes, including Il4 and Il5 Collectively, our data demonstrate that hemocyanins are able to trigger the release of proinflammatory factors with different patterns of cytokine expression, suggesting differential signaling pathways and transcriptional network mechanisms that lead to the activation of M1-polarized macrophages.
Collapse
Affiliation(s)
- Ta-Ying Zhong
- Fundación Ciencia y Tecnología para el Desarrollo, Santiago 7750269, Chile; and
| | - Sergio Arancibia
- Fundación Ciencia y Tecnología para el Desarrollo, Santiago 7750269, Chile; and
| | - Raimundo Born
- Fundación Ciencia y Tecnología para el Desarrollo, Santiago 7750269, Chile; and
| | - Ricardo Tampe
- Fundación Ciencia y Tecnología para el Desarrollo, Santiago 7750269, Chile; and
| | - Javiera Villar
- Fundación Ciencia y Tecnología para el Desarrollo, Santiago 7750269, Chile; and
| | - Miguel Del Campo
- Fundación Ciencia y Tecnología para el Desarrollo, Santiago 7750269, Chile; and
| | | | - María Inés Becker
- Fundación Ciencia y Tecnología para el Desarrollo, Santiago 7750269, Chile; and Biosonda Corporation, Santiago 7750269, Chile
| |
Collapse
|
30
|
Abalone Hemocyanin Blocks the Entry of Herpes Simplex Virus 1 into Cells: a Potential New Antiviral Strategy. Antimicrob Agents Chemother 2015; 60:1003-12. [PMID: 26643336 DOI: 10.1128/aac.01738-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/22/2015] [Indexed: 02/07/2023] Open
Abstract
A marine-derived compound, abalone hemocyanin, from Haliotis rubra was shown to have a unique mechanism of antiviral activity against herpes simplex virus 1 (HSV-1) infections. In vitro assays demonstrated the dose-dependent and inhibitory effect of purified hemocyanin against HSV-1 infection in Vero cells with a 50% effective dose (ED50) of 40 to 50 nM and no significant toxicity. In addition, hemocyanin specifically inhibited viral attachment and entry by binding selectively to the viral surface glycoproteins gD, gB, and gC, probably by mimicking their receptors. However, hemocyanin had no effect on postentry events and did not block infection by binding to cellular receptors for HSV. By the use of different mutants of gD and gB and a competitive heparin binding assay, both protein charge and conformation were shown to be the driving forces of the interaction between hemocyanin and viral glycoproteins. These findings also suggested that hemocyanin may have different motifs for binding to each of the viral glycoproteins B and D. The dimer subunit of hemocyanin with a 10-fold-smaller molecular mass exhibited similar binding to viral surface glycoproteins, showing that the observed inhibition did not require the entire multimer. Therefore, a small hemocyanin analogue could serve as a new antiviral candidate for HSV infections.
Collapse
|
31
|
Crystal Structure of the 3.8-MDa Respiratory Supermolecule Hemocyanin at 3.0 Å Resolution. Structure 2015; 23:2204-2212. [DOI: 10.1016/j.str.2015.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/03/2015] [Accepted: 09/14/2015] [Indexed: 11/17/2022]
|
32
|
Recent advances in the molecular design of synthetic vaccines. Nat Chem 2015; 7:952-60. [DOI: 10.1038/nchem.2396] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/13/2015] [Indexed: 01/07/2023]
|
33
|
On the Ultrastructure and Function of Rhogocytes from the Pond Snail Lymnaea stagnalis. PLoS One 2015; 10:e0141195. [PMID: 26488403 PMCID: PMC4619347 DOI: 10.1371/journal.pone.0141195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 10/06/2015] [Indexed: 11/19/2022] Open
Abstract
Rhogocytes, also termed "pore cells", occur as solitary or clustered cells in the connective tissue of gastropod molluscs. Rhogocytes possess an enveloping lamina of extracellular matrix and enigmatic extracellular lacunae bridged by cytoplasmic bars that form 20 nm diaphragmatic slits likely to act as a molecular sieve. Recent papers highlight the embryogenesis and ultrastructure of these cells, and their role in heavy metal detoxification. Rhogocytes are the site of hemocyanin or hemoglobin biosynthesis in gastropods. Based on electron microscopy, we recently proposed a possible pathway of hemoglobin exocytosis through the slit apparatus, and provided molecular evidence of a common phylogenetic origin of molluscan rhogocytes, insect nephrocytes and vertebrate podocytes. However, the previously proposed secretion mode of the respiratory proteins into the hemolymph is still rather hypothetical, and the possible role of rhogocytes in detoxification requires additional data. Although our previous study on rhogocytes of the red-blooded (hemoglobin-containing) freshwater snail Biomphalaria glabrata provided much new information, a disadvantage was that the hemoglobin molecules were not unequivocally defined in the electron microscope. This made it difficult to trace the exocytosis pathway of this protein. Therefore, we have now performed a similar study on the rhogocytes of the blue-blooded (hemocyanin-containing) freshwater snail Lymnaea stagnalis. The intracellular hemocyanin could be identified in the electron microscope, either as individual molecules or as pseudo-crystalline arrays. Based on 3D-electron microscopy, and supplemented by in situ hybridization, immunocytochemistry and stress response experiments, we provide here additional details on the structure and hemocyanin biosynthesis of rhogocytes, and on their response in animals under cadmium and starvation stress. Moreover, we present an advanced model on the release of synthesized hemocyanin molecules through the slit apparatus into the hemolymph, and the uptake of much smaller particles such as cadmium ions from the hemolymph through the slit apparatus into the cytoplasm.
Collapse
|
34
|
Transmission electron microscopy in molecular structural biology: A historical survey. Arch Biochem Biophys 2015; 581:3-18. [DOI: 10.1016/j.abb.2014.11.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/14/2014] [Accepted: 11/21/2014] [Indexed: 01/21/2023]
|
35
|
Matsuno A, Gai Z, Tanaka M, Kato K, Kato S, Katoh T, Shimizu T, Yoshioka T, Kishimura H, Tanaka Y, Yao M. Crystallization and preliminary X-ray crystallographic study of a 3.8-MDa respiratory supermolecule hemocyanin. J Struct Biol 2015; 190:379-82. [DOI: 10.1016/j.jsb.2015.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 10/23/2022]
|
36
|
Zhuang J, Coates CJ, Zhu H, Zhu P, Wu Z, Xie L. Identification of candidate antimicrobial peptides derived from abalone hemocyanin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:96-102. [PMID: 25445903 DOI: 10.1016/j.dci.2014.11.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/06/2014] [Accepted: 11/08/2014] [Indexed: 06/04/2023]
Abstract
Hemocyanins present in invertebrate hemolymph are multifunctional proteins, responsible for oxygen transport and contributing to innate immunity through phenoloxidase-like activity. In arthropods, hemocyanin has been identified as a source of broad-spectrum antimicrobial peptides during infection. Conversely, no hemocyanin-derived antimicrobial peptides have been reported for molluscs. The present study describes a putative antimicrobial region, termed haliotisin, located within the linking sequence between the α-helical domain and β-sheet domain of abalone (Haliotis tuberculata) hemocyanin functional unit E. A series of synthetic peptides based on overlapping fragments of the haliotisin region were tested for their bactericidal potential. Incubating Gram-positive and Gram-negative bacteria in the presence of certain haliotisin peptides, notably peptides 3-4-5 (DTFDYKKFGYRYDSLELEGRSISRIDELIQQRQEKDRTFAGFLLKGFGTSAS) led to reductions in microbial growth. Furthermore, transmission electron micrographs of haliotisin-treated bacteria revealed damages to the microbial cell wall. Data discussed here provides the first evidence to suggest that molluscan hemocyanin may act as a source of anti-infective peptides.
Collapse
Affiliation(s)
- Jun Zhuang
- Fujian Provincial key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China
| | - Christopher J Coates
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling, Scotland FK9 4LA, United Kingdom.
| | - Hongtao Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Ping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Zujian Wu
- Fujian Provincial key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China.
| | - Lianhui Xie
- Fujian Provincial key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China.
| |
Collapse
|
37
|
Cabra V, Samsó M. Do's and don'ts of cryo-electron microscopy: a primer on sample preparation and high quality data collection for macromolecular 3D reconstruction. J Vis Exp 2015:52311. [PMID: 25651412 PMCID: PMC4354528 DOI: 10.3791/52311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cryo-electron microscopy (cryoEM) entails flash-freezing a thin layer of sample on a support, and then visualizing the sample in its frozen hydrated state by transmission electron microscopy (TEM). This can be achieved with very low quantity of protein and in the buffer of choice, without the use of any stain, which is very useful to determine structure-function correlations of macromolecules. When combined with single-particle image processing, the technique has found widespread usefulness for 3D structural determination of purified macromolecules. The protocol presented here explains how to perform cryoEM and examines the causes of most commonly encountered problems for rational troubleshooting; following all these steps should lead to acquisition of high quality cryoEM images. The technique requires access to the electron microscope instrument and to a vitrification device. Knowledge of the 3D reconstruction concepts and software is also needed for computerized image processing. Importantly, high quality results depend on finding the right purification conditions leading to a uniform population of structurally intact macromolecules. The ability of cryoEM to visualize macromolecules combined with the versatility of single particle image processing has proven very successful for structural determination of large proteins and macromolecular machines in their near-native state, identification of their multiple components by 3D difference mapping, and creation of pseudo-atomic structures by docking of x-ray structures. The relentless development of cryoEM instrumentation and image processing techniques for the last 30 years has resulted in the possibility to generate de novo 3D reconstructions at atomic resolution level.
Collapse
Affiliation(s)
- Vanessa Cabra
- Department of Physiology and Biophysics, Virginia Commonwealth University
| | - Montserrat Samsó
- Department of Physiology and Biophysics, Virginia Commonwealth University;
| |
Collapse
|
38
|
Garcia Seisdedos H, Steinberg A, Levy ED. Symmetry breaking in homo-oligomers: the curious case of mega-hemocyanin. Structure 2015; 23:3-5. [PMID: 25565100 DOI: 10.1016/j.str.2014.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Mega-hemocyanin is a 13.5 MDa oxygen transporter found in snails. It is built from three stacked rings involving ten subunits each. The cryo-EM structure of the complex presented by Gatsogiannis and colleagues in this issue of Structure revealed an unexpected breaking of 5-fold symmetry in the central ring and a nonequivalent packing of the subunits.
Collapse
Affiliation(s)
| | - Avital Steinberg
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Emmanuel D Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
39
|
Chen JW, Wu QH, Rowley DC, Al-Kareef AMQ, Wang H. Anticancer agent-based marine natural products and related compounds. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2015; 17:199-216. [PMID: 25559315 DOI: 10.1080/10286020.2014.996140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/03/2014] [Indexed: 06/04/2023]
Abstract
Marine natural products constitute a huge reservoir of anticancer agents. Consequently during the past decades, several marine anticancer compounds have been isolated, identified, and approved for anticancer treatment or are under trials. In this article the sources, structure, bioactivities, mode of actions, and analogs of some promising marine and derived anticancer compounds have been discussed.
Collapse
Affiliation(s)
- Jian-Wei Chen
- a College of Pharmaceutical Science, Zhejiang University of Technology , Hangzhou 310014 , P.R. China
| | | | | | | | | |
Collapse
|
40
|
Abstract
Validation is a necessity to trust the structures solved by electron microscopy by single particle techniques. The impressive achievements in single particle reconstruction fuel its expansion beyond a small community of image processing experts. This poses the risk of inappropriate data processing with dubious results. Nowhere is it more clearly illustrated than in the recovery of a reference density map from pure noise aligned to that map—a phantom in the noise. Appropriate use of existing validating methods such as resolution-limited alignment and the processing of independent data sets (“gold standard”) avoid this pitfall. However, these methods can be undermined by biases introduced in various subtle ways. How can we test that a map is a coherent structure present in the images selected from the micrographs? In stead of viewing the phantom emerging from noise as a cautionary tale, it should be used as a defining baseline. Any map is always recoverable from noise images, provided a sufficient number of images are aligned and used in reconstruction. However, with smaller numbers of images, the expected coherence in the real particle images should yield better reconstructions than equivalent numbers of noise or background images, even without masking or imposing resolution limits as potential biases. The validation test proposed is therefore a simple alignment of a limited number of micrograph and noise images against the final reconstruction as reference, demonstrating that the micrograph images yield a better reconstruction. I examine synthetic cases to relate the resolution of a reconstruction to the alignment error as a function of the signal-to-noise ratio. I also administered the test to real cases of publicly available data. Adopting such a test can aid the microscopist in assessing the usefulness of the micrographs taken before committing to lengthy processing with questionable outcomes.
Collapse
Affiliation(s)
- J Bernard Heymann
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892, USA
| |
Collapse
|
41
|
Gatsogiannis C, Hofnagel O, Markl J, Raunser S. Structure of mega-hemocyanin reveals protein origami in snails. Structure 2014; 23:93-103. [PMID: 25482543 DOI: 10.1016/j.str.2014.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/22/2014] [Accepted: 10/07/2014] [Indexed: 12/26/2022]
Abstract
Mega-hemocyanin is a 13.5 MDa oxygen transporter found in the hemolymph of some snails. Similar to typical gastropod hemocyanins, it is composed of 400 kDa building blocks but has additional 550 kDa subunits. Together, they form a large, completely filled cylinder. The structural basis for this highly complex protein packing is not known so far. Here, we report the electron cryomicroscopy (cryo-EM) structure of mega-hemocyanin complexes from two different snail species. The structures reveal that mega-hemocyanin is composed of flexible building blocks that differ in their conformation, but not in their primary structure. Like a protein origami, these flexible blocks are optimally packed, implementing different local symmetries and pseudosymmetries. A comparison between the two structures suggests a surprisingly simple evolutionary mechanism leading to these large oxygen transporters.
Collapse
Affiliation(s)
- Christos Gatsogiannis
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany.
| | - Oliver Hofnagel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Jürgen Markl
- Institute of Zoology, Johannes Gutenberg University, Johannes-von-Müller-Weg 6, 55128 Mainz, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany.
| |
Collapse
|
42
|
Sivakamavalli J, Vaseeharan B. Enzymatic elucidation of haemocyanin from Kuruma shrimpMarsupenaeus japonicusand its molecular recognition mechanism towards pathogens. J Biomol Struct Dyn 2014; 33:1302-14. [DOI: 10.1080/07391102.2014.945485] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Kokkinopoulou M, Güler MA, Lieb B, Barbeck M, Ghanaati S, Markl J. 3D-ultrastructure, functions and stress responses of gastropod (Biomphalaria glabrata) rhogocytes. PLoS One 2014; 9:e101078. [PMID: 24971744 PMCID: PMC4074132 DOI: 10.1371/journal.pone.0101078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/03/2014] [Indexed: 11/18/2022] Open
Abstract
Rhogocytes are pore cells scattered among the connective tissue of different body parts of gastropods and other molluscs, with great variation in their number, shape and size. They are enveloped by a lamina of extracellular matrix. Their most characteristic feature is the "slit apparatus", local invaginations of the plasma membrane bridged by cytoplasmic bars, forming slits of ca. 20 nm width. A slit diaphragm creates a molecular sieve with permeation holes of 20×20 nm. In blue-blooded gastropods, rhogocytes synthesize and secrete the respiratory protein hemocyanin, and it has been proposed-though not proven-that in the rare red-blooded snail species they might synthesize and secrete the hemoglobin. However, the cellular secretion pathway for respiratory proteins, and the functional role(s) of the enigmatic rhogocyte slit apparatus are still unclear. Additional functions for rhogocytes have been proposed, notably a role in protein uptake and degradation, and in heavy metal detoxification. Here we provide new structural and functional information on the rhogocytes of the red-blooded freshwater snail Biomphalaria glabrata. By in situ hybridization of mantle tissues, we prove that rhogocytes indeed synthesize hemoglobin. By electron tomography, the first three dimensional (3D) reconstructions of the slit apparatus are provided, showing detail of highly dense material in the cytoplasmic bars close to the slits. By immunogold labelling, we collected evidence that a major component of this material is actin. By genome databank mining, the complete sequence of a B. glabrata nephrin was obtained, and localized to the rhogocytes by immunofluorescence microscopy. The presence of both proteins fit the ultrastructure-based hypothesis that rhogocytes are related to mammalian podocytes and insect nephrocytes. Reactions of the rhogocytes to deprivation of food and cadmium toxification are also documented, and a possible secretion pathway of newly synthesized respiratory proteins through the slit apparatus is discussed.
Collapse
Affiliation(s)
| | | | - Bernhard Lieb
- Institute of Zoology, Johannes Gutenberg University, Mainz, Germany
| | - Mike Barbeck
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shahram Ghanaati
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jürgen Markl
- Institute of Zoology, Johannes Gutenberg University, Mainz, Germany
- * E-mail:
| |
Collapse
|
44
|
Zhu H, Zhuang J, Feng H, Liang R, Wang J, Xie L, Zhu P. Cryo-EM structure of isomeric molluscan hemocyanin triggered by viral infection. PLoS One 2014; 9:e98766. [PMID: 24887432 PMCID: PMC4041863 DOI: 10.1371/journal.pone.0098766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/07/2014] [Indexed: 11/18/2022] Open
Abstract
Hemocyanins (Hcs) of arthropods and mollusks function not only as oxygen transporters, but also as phenoloxidases (POs). In invertebrates, PO is an important component in the innate immune cascade, where it functions as the initiator of melanin synthesis, a pigment involved in encapsulating and killing of pathogenic microbes. Although structures of Hc from several species of invertebrates have been reported, the structural basis for how PO activity is triggered by structural changes of Hc in vivo remains poorly understood. Here, we report a 6.8 Å cryo-electron microscopy (cryo-EM) structure of the isomeric form of hemocyanin, which was isolated from Abalone Shriveling syndrome-associated Virus (AbSV) infected abalone (Halitotis diversicolor), and build a pseudoatomic model of isomeric H. diversicolor hemocyanin 1 (HdH1). Our results show that, compared with native form of HdH1, the architecture of isomeric HdH1 turns into a more relaxed form. The interactions between certain functional units (FUs) present in the native form of Hc either decreased or were totally abolished in the isomeric form of Hc. As a result of that, native state Hc switches to its isomeric form, enabling it to play its role in innate immune responses against invading pathogens.
Collapse
Affiliation(s)
- Hongtao Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jun Zhuang
- Fujian Provincial Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou, China
| | - Hongli Feng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Rongfeng Liang
- Fujian Provincial Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiangyong Wang
- South China Sea Fisheries Research Institute, Chinese Fisheries Academy, Guangzhou, China
| | - Lianhui Xie
- Fujian Provincial Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou, China
- * E-mail: (PZ); (LX)
| | - Ping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (PZ); (LX)
| |
Collapse
|
45
|
Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Copper active sites in biology. Chem Rev 2014; 114:3659-853. [PMID: 24588098 PMCID: PMC4040215 DOI: 10.1021/cr400327t] [Citation(s) in RCA: 1168] [Impact Index Per Article: 116.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - David E. Heppner
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | - Jake W. Ginsbach
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Jordi Cirera
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Munzarin Qayyum
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | | | - Ryan G. Hadt
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Li Tian
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| |
Collapse
|
46
|
A novel immunomodulatory hemocyanin from the limpet Fissurella latimarginata promotes potent anti-tumor activity in melanoma. PLoS One 2014; 9:e87240. [PMID: 24466345 PMCID: PMC3900722 DOI: 10.1371/journal.pone.0087240] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/21/2013] [Indexed: 11/06/2022] Open
Abstract
Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH). This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH) and the Concholepas hemocyanin (CCH). FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4+ lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α) by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer immunotherapy.
Collapse
|
47
|
Zhang Q, Dai X, Cong Y, Zhang J, Chen DH, Dougherty MT, Wang J, Ludtke SJ, Schmid MF, Chiu W. Cryo-EM structure of a molluscan hemocyanin suggests its allosteric mechanism. Structure 2013; 21:604-13. [PMID: 23541894 DOI: 10.1016/j.str.2013.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 10/27/2022]
Abstract
Hemocyanins are responsible for transporting O2 in the arthropod and molluscan hemolymph. Haliotis diversicolor molluscan hemocyanin isoform 1 (HdH1) is an 8 MDa oligomer. Each subunit is made up of eight functional units (FUs). Each FU contains two Cu ions, which can reversibly bind an oxygen molecule. Here, we report a 4.5 A° cryo-EM structure of HdH1. The structure clearly shows ten asymmetric units arranged with D5 symmetry. Each asymmetric unit contains two structurally distinct but chemically identical subunits. The map is sufficiently resolved to trace the entire subunit Ca backbone and to visualize densities corresponding to some large side chains, Cu ion pairs, and interaction networks of adjacent subunits. A FU topology path intertwining between the two subunits of the asymmetric unit is unambiguously determined. Our observations suggest a structural mechanism for the stability of the entire hemocyanin didecamer and 20 ‘‘communication clusters’’ across asymmetric units responsible for its allosteric property upon oxygen binding.
Collapse
Affiliation(s)
- Qinfen Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Positions of the glycans in molluscan hemocyanin, determined by fluorescence spectroscopy. J Fluoresc 2013; 23:753-60. [PMID: 23494164 DOI: 10.1007/s10895-013-1171-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
Abstract
Molluscan hemocyanins are glycoproteins with different quaternary and carbohydrate structures. It was suggested that the carbohydrate chains of some Hcs are involved in their antiviral and antitumor effect, as well in the organization of the quaternary structure of the molecules. Using a well-known complex for saccharide sensing, positions and access to the carbohydrate chains in the native hemocyanins from Rapana venosa (RvH) and Helix lucorum (HlH) and also their structural subunits (RvH1, RvH2 and βcHlH) and functional units (FUs) were analysed by fluorescence spectroscopy and circular dichroism. Almost no effect was observed in the fluorescence emission after titration of the complex with native RvH and HlH due to lack of free hydroxyl groups which are buried in the didecameric form of the molecules. Titration with the structural subunits βcHlH and RvH2, increasing of the emission indicates the presence of free hydroxyl groups compared to the native molecules. Complex titration with the structural subunit βc-HlH of H. lucorum Hcs leads to a 2.5 fold increase in fluorescence intensity. However, the highest emission was measured after titration of the complex with FU βcHlH-g. The result was explained by the structural model of βcHlH-g showing the putative position of the glycans on the surface of the molecule. The results of the fluorescent measurements are in good correlation with those of the circular dichroism data, applied to analyse the effect of titration on the secondary structure of the native molecules and functional units. The results also support our previously made suggestion that the N-linked oligosaccharide trees are involved in the quaternary organization of molluscan Hcs.
Collapse
|
49
|
Markl J. Evolution of molluscan hemocyanin structures. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1840-52. [PMID: 23454609 DOI: 10.1016/j.bbapap.2013.02.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 11/17/2022]
Abstract
Hemocyanin transports oxygen in the hemolymph of many molluscs and arthropods and is therefore a central physiological factor in these animals. Molluscan hemocyanin molecules are oligomers composed of many protein subunits that in turn encompass subsets of distinct functional units. The structure and evolution of molluscan hemocyanin have been studied for decades, but it required the recent progress in DNA sequencing, X-ray crystallography and 3D electron microscopy to produce a detailed view of their structure and evolution. The basic quaternary structure is a cylindrical decamer 35nm in diameter, consisting of wall and collar (typically at one end of the cylinder). Depending on the animal species, decamers, didecamers and multidecamers occur in the hemolymph. Whereas the wall architecture of the decamer seems to be invariant, four different types of collar have been identified in different molluscan taxa. Correspondingly, there exist four subunit types that differ in their collar functional units and range from 350 to 550kDa. Thus, molluscan hemocyanin subunits are among the largest polypeptides in nature. In this report, recent 3D reconstructions are used to explain and visualize the different functional units, subunits and quaternary structures of molluscan hemocyanins. Moreover, on the basis of DNA analyses and structural considerations, their possible evolution is traced. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Jürgen Markl
- Institute of Zoology, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
50
|
Spinozzi F, Mariani P, Mičetić I, Ferrero C, Pontoni D, Beltramini M. Quaternary structure heterogeneity of oligomeric proteins: a SAXS and SANS study of the dissociation products of Octopus vulgaris hemocyanin. PLoS One 2012; 7:e49644. [PMID: 23166737 PMCID: PMC3499515 DOI: 10.1371/journal.pone.0049644] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/12/2012] [Indexed: 11/18/2022] Open
Abstract
Octopus vulgaris hemocyanin shows a particular self-assembling pattern, characterized by a hierarchical organization of monomers. The highest molecular weight aggregate is a decamer, the stability of which in solution depends on several parameters. Different pH values, buffer compositions, H₂O/D₂O ratios and Hofmeister's salts result in modifications of the aggregation state of Octopus vulgaris hemocyanin. The new QUAFIT method, recently applied to derive the structure of the decameric and the monomeric assembly from small-angle scattering data, is used here to model the polydisperse system that results from changing the solution conditions. A dataset of small-angle X-rays and neutron scattering curves is analysed by QUAFIT to derive structure, composition and concentration of different assemblies present in solution. According to the hierarchy of the association/dissociation processes and the possible number of different aggregation products in solution, each sample has been considered as a heterogeneous mixture composed of the entire decamer, the dissociated "loose" monomer and all the intermediate dissociation products. Scattering curves corresponding to given experimental conditions are well fitted by using a linear combination of single particle form factors. QUAFIT has proved to be a method of general validity to describe solutions of proteins that, even after purification processes, result to be intrinsically heterogeneous.
Collapse
Affiliation(s)
- Francesco Spinozzi
- Department of Life and Environmental Sciences, Marche Polytechnic University and CNISM, Ancona, Italy
| | - Paolo Mariani
- Department of Life and Environmental Sciences, Marche Polytechnic University and CNISM, Ancona, Italy
| | - Ivan Mičetić
- Department of Biology, University of Padova, Padova, Italy
| | | | - Diego Pontoni
- European Synchrotron Radiation Facility, Grenoble, France
| | | |
Collapse
|