1
|
Ballandras-Colas A, Chivukula V, Gruszka DT, Shan Z, Singh PK, Pye VE, McLean RK, Bedwell GJ, Li W, Nans A, Cook NJ, Fadel HJ, Poeschla EM, Griffiths DJ, Vargas J, Taylor IA, Lyumkis D, Yardimci H, Engelman AN, Cherepanov P. Multivalent interactions essential for lentiviral integrase function. Nat Commun 2022; 13:2416. [PMID: 35504909 PMCID: PMC9065133 DOI: 10.1038/s41467-022-29928-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
Abstract
A multimer of retroviral integrase (IN) synapses viral DNA ends within a stable intasome nucleoprotein complex for integration into a host cell genome. Reconstitution of the intasome from the maedi-visna virus (MVV), an ovine lentivirus, revealed a large assembly containing sixteen IN subunits1. Herein, we report cryo-EM structures of the lentiviral intasome prior to engagement of target DNA and following strand transfer, refined at 3.4 and 3.5 Å resolution, respectively. The structures elucidate details of the protein-protein and protein-DNA interfaces involved in lentiviral intasome formation. We show that the homomeric interfaces involved in IN hexadecamer formation and the α-helical configuration of the linker connecting the C-terminal and catalytic core domains are critical for MVV IN strand transfer activity in vitro and for virus infectivity. Single-molecule microscopy in conjunction with photobleaching reveals that the MVV intasome can bind a variable number, up to sixteen molecules, of the lentivirus-specific host factor LEDGF/p75. Concordantly, ablation of endogenous LEDGF/p75 results in gross redistribution of MVV integration sites in human and ovine cells. Our data confirm the importance of the expanded architecture observed in cryo-EM studies of lentiviral intasomes and suggest that this organization underlies multivalent interactions with chromatin for integration targeting to active genes.
Collapse
Affiliation(s)
- Allison Ballandras-Colas
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
- Institut de Biologie Structurale (IBS) CNRS, CEA, University Grenoble, Grenoble, France
| | - Vidya Chivukula
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Dominika T Gruszka
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London, UK
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Zelin Shan
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Parmit K Singh
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Valerie E Pye
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Rebecca K McLean
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Gregory J Bedwell
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Wen Li
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Nicola J Cook
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Hind J Fadel
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA
| | - Eric M Poeschla
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David J Griffiths
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK
| | - Javier Vargas
- Departmento de Óptica, Universidad Complutense de Madrid, Madrid, Spain
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, UK
| | - Dmitry Lyumkis
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Hasan Yardimci
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London, UK.
| | - Alan N Engelman
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK.
- Department of Infectious Disease, St-Mary's Campus, Imperial College London, London, UK.
| |
Collapse
|
2
|
Passos DO, Li M, Craigie R, Lyumkis D. Retroviral integrase: Structure, mechanism, and inhibition. Enzymes 2021; 50:249-300. [PMID: 34861940 DOI: 10.1016/bs.enz.2021.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The retroviral protein Integrase (IN) catalyzes concerted integration of viral DNA into host chromatin to establish a permanent infection in the target cell. We learned a great deal about the mechanism of catalytic integration through structure/function studies over the previous four decades of IN research. As one of three essential retroviral enzymes, IN has also been targeted by antiretroviral drugs to treat HIV-infected individuals. Inhibitors blocking the catalytic integration reaction are now state-of-the-art drugs within the antiretroviral therapy toolkit. HIV-1 IN also performs intriguing non-catalytic functions that are relevant to the late stages of the viral replication cycle, yet this aspect remains poorly understood. There are also novel allosteric inhibitors targeting non-enzymatic functions of IN that induce a block in the late stages of the viral replication cycle. In this chapter, we will discuss the function, structure, and inhibition of retroviral IN proteins, highlighting remaining challenges and outstanding questions.
Collapse
Affiliation(s)
| | - Min Li
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Robert Craigie
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Dmitry Lyumkis
- The Salk Institute for Biological Studies, La Jolla, CA, United States; The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
3
|
Kim J, Lee GE, Shin CG. Foamy Virus Integrase in Development of Viral Vector for Gene Therapy. J Microbiol Biotechnol 2020; 30:1273-1281. [PMID: 32699199 PMCID: PMC9728412 DOI: 10.4014/jmb.2003.03046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Due to the broad host suitability of viral vectors and their high gene delivery capacity, many researchers are focusing on viral vector-mediated gene therapy. Among the retroviruses, foamy viruses have been considered potential gene therapy vectors because of their non-pathogenicity. To date, the prototype foamy virus is the only retrovirus that has a high-resolution structure of intasomes, nucleoprotein complexes formed by integrase, and viral DNA. The integration of viral DNA into the host chromosome is an essential step for viral vector development. This process is mediated by virally encoded integrase, which catalyzes unique chemical reactions. Additionally, recent studies on foamy virus integrase elucidated the catalytic functions of its three distinct domains and their effect on viral pathogenicity. This review focuses on recent advancements in biochemical, structural, and functional studies of foamy virus integrase for gene therapy vector research.
Collapse
Affiliation(s)
- Jinsun Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Ga-Eun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Cha-Gyun Shin
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea,Corresponding author Phone: +82-31-670-3067 Fax: +82-31-675-3108 E-mail:
| |
Collapse
|
4
|
Bera S, Pandey KK, Aihara H, Grandgenett DP. Differential assembly of Rous sarcoma virus tetrameric and octameric intasomes is regulated by the C-terminal domain and tail region of integrase. J Biol Chem 2018; 293:16440-16452. [PMID: 30185621 DOI: 10.1074/jbc.ra118.004768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/28/2018] [Indexed: 01/07/2023] Open
Abstract
Retrovirus integrase (IN) catalyzes the concerted integration of linear viral DNA ends into chromosomes. The atomic structures of five different retrovirus IN-DNA complexes, termed intasomes, have revealed varying IN subunit compositions ranging from tetramers to octamers, dodecamers, and hexadecamers. Intasomes containing two IN-associated viral DNA ends capable of concerted integration are termed stable synaptic complexes (SSC), and those formed with a viral/target DNA substrate representing the product of strand-transfer reactions are strand-transfer complexes (STC). Here, we investigated the mechanisms associated with the assembly of the Rous sarcoma virus SSC and STC. C-terminal truncations of WT IN (286 residues) indicated a role of the last 18 residues ("tail" region) in assembly of the tetrameric and octameric SSC, physically stabilized by HIV-1 IN strand-transfer inhibitors. Fine mapping through C-terminal truncations and site-directed mutagenesis suggested that at least three residues (Asp-268-Thr-270) past the last β-strand in the C-terminal domain (CTD) are necessary for assembly of the octameric SSC. In contrast, the assembly of the octameric STC was independent of the last 18 residues of IN. Single-site substitutions in the CTD affected the assembly of the SSC, but not necessarily of the STC, suggesting that STC assembly may depend less on specific interactions of the CTD with viral DNA. Additionally, we demonstrate that trans-communication between IN dimer-DNA complexes facilitates the association of native long-terminal repeat (LTR) ends with partially defective LTR ends to produce a hybrid octameric SSC. The differential assembly of the tetrameric and octameric SSC improves our understanding of intasomes.
Collapse
Affiliation(s)
- Sibes Bera
- From the Department of Molecular Microbiology and Immunology, Institute for Molecular Virology, Saint Louis University Health Sciences Center, Saint Louis, Missouri 63104 and
| | - Krishan K Pandey
- From the Department of Molecular Microbiology and Immunology, Institute for Molecular Virology, Saint Louis University Health Sciences Center, Saint Louis, Missouri 63104 and
| | - Hideki Aihara
- the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Duane P Grandgenett
- From the Department of Molecular Microbiology and Immunology, Institute for Molecular Virology, Saint Louis University Health Sciences Center, Saint Louis, Missouri 63104 and
| |
Collapse
|
5
|
Abstract
Integration of the reverse-transcribed viral cDNA into the host's genome is a critical step in the lifecycle of all retroviruses. Retrovirus integration is carried out by integrase (IN), a virus-encoded enzyme that forms an oligomeric 'intasome' complex with both ends of the linear viral DNA to catalyze their concerted insertions into the backbones of the host's DNA. IN also forms a complex with host proteins, which guides the intasome to the host's chromosome. Recent structural studies have revealed remarkable diversity as well as conserved features among the architectures of the intasome assembly from different genera of retroviruses. This chapter will review how IN oligomerizes to achieve its function, with particular focus on alpharetrovirus including the avian retrovirus Rous sarcoma virus. Another chapter (Craigie) will focus on the structure and function of IN from HIV-1.
Collapse
Affiliation(s)
- Duane P Grandgenett
- Saint Louis University Health Sciences Center, Department of Microbiology and Immunology, Institute for Molecular Virology, Doisy Research Center, St. Louis, MO, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Engelman AN, Cherepanov P. Retroviral intasomes arising. Curr Opin Struct Biol 2017; 47:23-29. [PMID: 28458055 PMCID: PMC5660667 DOI: 10.1016/j.sbi.2017.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 01/26/2023]
Abstract
Retroviral DNA integration takes place in the context of the intasome nucleoprotein complex. X-ray crystal structures of functional spumaviral intasomes were previously revealed to harbor a homotetramer of integrase, and it was generally believed that integrase tetramers catalyzed the integration of other retroviruses. The elucidation of new structures from four different retroviruses over the past year has however revealed this is not the case. The number of integrase molecules required to construct the conserved intasome core structure differs between viral species. While four subunits suffice for spumaviruses, α- and β-retroviruses require eight and the lentiviruses use up to sixteen. Herein we described these alternative architectures, highlighting both evolutionary and structural constraints that result in the different integrase-DNA stoichiometries across Retroviridae.
Collapse
Affiliation(s)
- Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA, The Francis Crick Institute, London NW1 1AT, UK; Department of Medicine, Imperial College London, St-Mary's Campus, Norfolk Place, London W2 1PG, UK.
| |
Collapse
|
7
|
Passos DO, Li M, Yang R, Rebensburg SV, Ghirlando R, Jeon Y, Shkriabai N, Kvaratskhelia M, Craigie R, Lyumkis D. Cryo-EM structures and atomic model of the HIV-1 strand transfer complex intasome. Science 2017; 355:89-92. [PMID: 28059769 DOI: 10.1126/science.aah5163] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/02/2016] [Indexed: 12/25/2022]
Abstract
Like all retroviruses, HIV-1 irreversibly inserts a viral DNA (vDNA) copy of its RNA genome into host target DNA (tDNA). The intasome, a higher-order nucleoprotein complex composed of viral integrase (IN) and the ends of linear vDNA, mediates integration. Productive integration into host chromatin results in the formation of the strand transfer complex (STC) containing catalytically joined vDNA and tDNA. HIV-1 intasomes have been refractory to high-resolution structural studies. We used a soluble IN fusion protein to facilitate structural studies, through which we present a high-resolution cryo-electron microscopy (cryo-EM) structure of the core tetrameric HIV-1 STC and a higher-order form that adopts carboxyl-terminal domain rearrangements. The distinct STC structures highlight how HIV-1 can use the common retroviral intasome core architecture to accommodate different IN domain modules for assembly.
Collapse
Affiliation(s)
- Dario Oliveira Passos
- Laboratory of Genetics and Helmsley Center for Genomic Medicine, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Min Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Renbin Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephanie V Rebensburg
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Youngmin Jeon
- Laboratory of Genetics and Helmsley Center for Genomic Medicine, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nikoloz Shkriabai
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Mamuka Kvaratskhelia
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Robert Craigie
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dmitry Lyumkis
- Laboratory of Genetics and Helmsley Center for Genomic Medicine, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
8
|
Pandey KK, Bera S, Shi K, Aihara H, Grandgenett DP. A C-terminal "Tail" Region in the Rous Sarcoma Virus Integrase Provides High Plasticity of Functional Integrase Oligomerization during Intasome Assembly. J Biol Chem 2017; 292:5018-5030. [PMID: 28184005 PMCID: PMC5377814 DOI: 10.1074/jbc.m116.773382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/07/2017] [Indexed: 01/14/2023] Open
Abstract
The retrovirus integrase (IN) inserts the viral cDNA into the host DNA genome. Atomic structures of five different retrovirus INs complexed with their respective viral DNA or branched viral/target DNA substrates have indicated these intasomes are composed of IN subunits ranging from tetramers, to octamers, or to hexadecamers. IN precursors are monomers, dimers, or tetramers in solution. But how intasome assembly is controlled remains unclear. Therefore, we sought to unravel the functional mechanisms in different intasomes. We produced kinetically stabilized Rous sarcoma virus (RSV) intasomes with human immunodeficiency virus type 1 strand transfer inhibitors that interact simultaneously with IN and viral DNA within intasomes. We examined the ability of RSV IN dimers to assemble two viral DNA molecules into intasomes containing IN tetramers in contrast to one possessing IN octamers. We observed that the last 18 residues of the C terminus ("tail" region) of IN (residues 1-286) determined whether an IN tetramer or octamer assembled with viral DNA. A series of truncations of the tail region indicated that these 18 residues are critical for the assembly of an intasome containing IN octamers but not for an intasome containing IN tetramers. The C-terminally truncated IN (residues 1-269) produced an intasome that contained tetramers but failed to produce an intasome with octamers. Both intasomes have similar catalytic activities. The results suggest a high degree of plasticity for functional multimerization and reveal a critical role of the C-terminal tail region of IN in higher order oligomerization of intasomes, potentially informing future strategies to prevent retroviral integration.
Collapse
Affiliation(s)
- Krishan K Pandey
- From the Department of Microbiology and Immunology, Institute for Molecular Virology, Saint Louis University, St. Louis, Missouri 63104 and
| | - Sibes Bera
- From the Department of Microbiology and Immunology, Institute for Molecular Virology, Saint Louis University, St. Louis, Missouri 63104 and
| | - Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Duane P Grandgenett
- From the Department of Microbiology and Immunology, Institute for Molecular Virology, Saint Louis University, St. Louis, Missouri 63104 and
| |
Collapse
|
9
|
Grawenhoff J, Engelman AN. Retroviral integrase protein and intasome nucleoprotein complex structures. World J Biol Chem 2017; 8:32-44. [PMID: 28289517 PMCID: PMC5329712 DOI: 10.4331/wjbc.v8.i1.32] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/24/2016] [Accepted: 01/14/2017] [Indexed: 02/05/2023] Open
Abstract
Retroviral replication proceeds through the integration of a DNA copy of the viral RNA genome into the host cellular genome, a process that is mediated by the viral integrase (IN) protein. IN catalyzes two distinct chemical reactions: 3’-processing, whereby the viral DNA is recessed by a di- or trinucleotide at its 3’-ends, and strand transfer, in which the processed viral DNA ends are inserted into host chromosomal DNA. Although IN has been studied as a recombinant protein since the 1980s, detailed structural understanding of its catalytic functions awaited high resolution structures of functional IN-DNA complexes or intasomes, initially obtained in 2010 for the spumavirus prototype foamy virus (PFV). Since then, two additional retroviral intasome structures, from the α-retrovirus Rous sarcoma virus (RSV) and β-retrovirus mouse mammary tumor virus (MMTV), have emerged. Here, we briefly review the history of IN structural biology prior to the intasome era, and then compare the intasome structures of PFV, MMTV and RSV in detail. Whereas the PFV intasome is characterized by a tetrameric assembly of IN around the viral DNA ends, the newer structures harbor octameric IN assemblies. Although the higher order architectures of MMTV and RSV intasomes differ from that of the PFV intasome, they possess remarkably similar intasomal core structures. Thus, retroviral integration machineries have adapted evolutionarily to utilize disparate IN elements to construct convergent intasome core structures for catalytic function.
Collapse
|
10
|
Abstract
The integration of a DNA copy of the viral RNA genome into host chromatin is the defining step of retroviral replication. This enzymatic process is catalyzed by the virus-encoded integrase protein, which is conserved among retroviruses and LTR-retrotransposons. Retroviral integration proceeds via two integrase activities: 3'-processing of the viral DNA ends, followed by the strand transfer of the processed ends into host cell chromosomal DNA. Herein we review the molecular mechanism of retroviral DNA integration, with an emphasis on reaction chemistries and architectures of the nucleoprotein complexes involved. We additionally discuss the latest advances on anti-integrase drug development for the treatment of AIDS and the utility of integrating retroviral vectors in gene therapy applications.
Collapse
Affiliation(s)
- Paul Lesbats
- Clare Hall Laboratories, The Francis Crick Institute , Blanche Lane, South Mimms, EN6 3LD, U.K
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School , 450 Brookline Avenue, Boston, Massachusetts 02215 United States
| | - Peter Cherepanov
- Clare Hall Laboratories, The Francis Crick Institute , Blanche Lane, South Mimms, EN6 3LD, U.K.,Imperial College London , St-Mary's Campus, Norfolk Place, London, W2 1PG, U.K
| |
Collapse
|
11
|
Cryo-EM reveals a novel octameric integrase structure for betaretroviral intasome function. Nature 2016; 530:358-61. [PMID: 26887496 PMCID: PMC4908968 DOI: 10.1038/nature16955] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/30/2015] [Indexed: 12/26/2022]
Abstract
Retroviral integrase catalyses the integration of viral DNA into host target DNA, which is an essential step in the life cycle of all retroviruses. Previous structural characterization of integrase-viral DNA complexes, or intasomes, from the spumavirus prototype foamy virus revealed a functional integrase tetramer, and it is generally believed that intasomes derived from other retroviral genera use tetrameric integrase. However, the intasomes of orthoretroviruses, which include all known pathogenic species, have not been characterized structurally. Here, using single-particle cryo-electron microscopy and X-ray crystallography, we determine an unexpected octameric integrase architecture for the intasome of the betaretrovirus mouse mammary tumour virus. The structure is composed of two core integrase dimers, which interact with the viral DNA ends and structurally mimic the integrase tetramer of prototype foamy virus, and two flanking integrase dimers that engage the core structure via their integrase carboxy-terminal domains. Contrary to the belief that tetrameric integrase components are sufficient to catalyse integration, the flanking integrase dimers were necessary for mouse mammary tumour virus integrase activity. The integrase octamer solves a conundrum for betaretroviruses as well as alpharetroviruses by providing critical carboxy-terminal domains to the intasome core that cannot be provided in cis because of evolutionarily restrictive catalytic core domain-carboxy-terminal domain linker regions. The octameric architecture of the intasome of mouse mammary tumour virus provides new insight into the structural basis of retroviral DNA integration.
Collapse
|
12
|
Serrao E, Engelman AN. Sites of retroviral DNA integration: From basic research to clinical applications. Crit Rev Biochem Mol Biol 2015; 51:26-42. [PMID: 26508664 DOI: 10.3109/10409238.2015.1102859] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One of the most crucial steps in the life cycle of a retrovirus is the integration of the viral DNA (vDNA) copy of the RNA genome into the genome of an infected host cell. Integration provides for efficient viral gene expression as well as for the segregation of viral genomes to daughter cells upon cell division. Some integrated viruses are not well expressed, and cells latently infected with human immunodeficiency virus type 1 (HIV-1) can resist the action of potent antiretroviral drugs and remain dormant for decades. Intensive research has been dedicated to understanding the catalytic mechanism of integration, as well as the viral and cellular determinants that influence integration site distribution throughout the host genome. In this review, we summarize the evolution of techniques that have been used to recover and map retroviral integration sites, from the early days that first indicated that integration could occur in multiple cellular DNA locations, to current technologies that map upwards of millions of unique integration sites from single in vitro integration reactions or cell culture infections. We further review important insights gained from the use of such mapping techniques, including the monitoring of cell clonal expansion in patients treated with retrovirus-based gene therapy vectors, or patients with acquired immune deficiency syndrome (AIDS) on suppressive antiretroviral therapy (ART). These insights span from integrase (IN) enzyme sequence preferences within target DNA (tDNA) at the sites of integration, to the roles of host cellular proteins in mediating global integration distribution, to the potential relationship between genomic location of vDNA integration site and retroviral latency.
Collapse
Affiliation(s)
- Erik Serrao
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Alan N Engelman
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA
| |
Collapse
|
13
|
Interaction between Reverse Transcriptase and Integrase Is Required for Reverse Transcription during HIV-1 Replication. J Virol 2015; 89:12058-69. [PMID: 26401032 DOI: 10.1128/jvi.01471-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/10/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Human immunodeficiency virus type 1 (HIV-1) replication requires reverse transcription of its RNA genome into a double-stranded cDNA copy, which is then integrated into the host cell chromosome. The essential steps of reverse transcription and integration are catalyzed by the viral enzymes reverse transcriptase (RT) and integrase (IN), respectively. In vitro, HIV-1 RT can bind with IN, and the C-terminal domain (CTD) of IN is necessary and sufficient for this binding. To better define the RT-IN interaction, we performed nuclear magnetic resonance (NMR) spectroscopy experiments to map a binding surface on the IN CTD in the presence of RT prebound to a duplex DNA construct that mimics the primer-binding site in the HIV-1 genome. To determine the biological significance of the RT-IN interaction during viral replication, we used the NMR chemical shift mapping information as a guide to introduce single amino acid substitutions of nine different residues on the putative RT-binding surface in the IN CTD. We found that six viral clones bearing such IN substitutions (R231E, W243E, G247E, A248E, V250E, and I251E) were noninfectious. Further analyses of the replication-defective IN mutants indicated that the block in replication took place specifically during early reverse transcription. The recombinant INs purified from these mutants, though retaining enzymatic activities, had diminished ability to bind RT in a cosedimentation assay. The results indicate that the RT-IN interaction is functionally relevant during the reverse transcription step of the HIV-1 life cycle. IMPORTANCE To establish a productive infection, human immunodeficiency virus type 1 (HIV-1) needs to reverse transcribe its RNA genome to create a double-stranded DNA copy and then integrate this viral DNA genome into the chromosome of the host cell. These two essential steps are catalyzed by the HIV-1 enzymes reverse transcriptase (RT) and integrase (IN), respectively. We have shown previously that IN physically interacts with RT, but the importance of this interaction during HIV-1 replication has not been fully characterized. In this study, we have established the biological significance of the HIV-1 RT-IN interaction during the viral life cycle by demonstrating that altering the RT-binding surface on IN disrupts both reverse transcription and viral replication. These findings contribute to our understanding of the RT-IN binding mechanism, as well as indicate that the RT-IN interaction can be exploited as a new antiviral drug target.
Collapse
|
14
|
Engelman A, Cherepanov P. Retroviral Integrase Structure and DNA Recombination Mechanism. Microbiol Spectr 2015; 2:1-22. [PMID: 25705574 PMCID: PMC4334468 DOI: 10.1128/microbiolspec.mdna3-0024-2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Indexed: 12/13/2022] Open
Abstract
Due to the importance of human immunodeficiency virus type 1 (HIV-1) integrase as a drug target, the biochemistry and structural aspects of retroviral DNA integration have been the focus of intensive research during the past three decades. The retroviral integrase enzyme acts on the linear double-stranded viral DNA product of reverse transcription. Integrase cleaves specific phosphodiester bonds near the viral DNA ends during the 3' processing reaction. The enzyme then uses the resulting viral DNA 3'-OH groups during strand transfer to cut chromosomal target DNA, which simultaneously joins both viral DNA ends to target DNA 5'-phosphates. Both reactions proceed via direct transesterification of scissile phosphodiester bonds by attacking nucleophiles: a water molecule for 3' processing, and the viral DNA 3'-OH for strand transfer. X-ray crystal structures of prototype foamy virus integrase-DNA complexes revealed the architectures of the key nucleoprotein complexes that form sequentially during the integration process and explained the roles of active site metal ions in catalysis. X-ray crystallography furthermore elucidated the mechanism of action of HIV-1 integrase strand transfer inhibitors, which are currently used to treat AIDS patients, and provided valuable insights into the mechanisms of viral drug resistance.
Collapse
Affiliation(s)
- Alan Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline, Avenue, CLS-1010, Boston, MA 02215
| | - Peter Cherepanov
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, Potters Bar, EN6 3LD, United Kingdom
| |
Collapse
|
15
|
Feng L, Larue RC, Slaughter A, Kessl JJ, Kvaratskhelia M. HIV-1 integrase multimerization as a therapeutic target. Curr Top Microbiol Immunol 2015; 389:93-119. [PMID: 25778682 PMCID: PMC4791179 DOI: 10.1007/82_2015_439] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multimeric HIV-1 integrase (IN) plays an essential, multifunctional role in virus replication and serves as an important therapeutic target. Structural and biochemical studies have revealed the importance of the ordered interplay between IN molecules for its function. In the presence of viral DNA ends, individual IN subunits assemble into a tetramer and form a stable synaptic complex (SSC), which mediates integration of the reverse transcribed HIV-1 genome into chromatin. Cellular chromatin-associated protein LEDGF/p75 engages the IN tetramer in the SSC and directs HIV-1 integration into active genes. A mechanism to deregulate the productive interplay between IN subunits with small molecule inhibitors has recently received considerable attention. Most notably, allosteric IN inhibitors (ALLINIs) have been shown to bind to the IN dimer interface at the LEDGF/p75 binding pocket, stabilize interacting IN subunits, and promote aberrant, higher order IN multimerization. Consequently, these compounds impair formation of the SSC and associated LEDGF/p75-independent IN catalytic activities as well as inhibit LEDGF/p75 binding to the SSC in vitro. However, in infected cells, ALLINIs more potently impaired correct maturation of virus particles than the integration step. ALLINI treatments induced aberrant, higher order IN multimerization in virions and resulted in eccentric, non-infectious virus particles. These studies have suggested that the correctly ordered IN structure is important for virus particle morphogenesis and highlighted IN multimerization as a plausible therapeutic target for developing new inhibitors to enhance treatment options for HIV-1-infected patients.
Collapse
Affiliation(s)
- Lei Feng
- The Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Ross C. Larue
- The Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Alison Slaughter
- The Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Jacques J. Kessl
- The Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Mamuka Kvaratskhelia
- The Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Li M, Jurado KA, Lin S, Engelman A, Craigie R. Engineered hyperactive integrase for concerted HIV-1 DNA integration. PLoS One 2014; 9:e105078. [PMID: 25119883 PMCID: PMC4132020 DOI: 10.1371/journal.pone.0105078] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/18/2014] [Indexed: 01/01/2023] Open
Abstract
The DNA cutting and joining reactions of HIV-1 integration are catalyzed by integrase (IN), a viral protein that functions as a tetramer bridging the two viral DNA ends (intasome). Two major obstacles for biochemical and structural studies of HIV-1 intasomes are 1) the low efficiency of assembly with oligonucleotide DNA substrates, and 2) the non-specific aggregation of both intasomes and free IN in the reaction mixture. By fusing IN with a small non-specific DNA binding protein, Sulfolobus solfataricus chromosomal protein Sso7d (PDB: 1BNZ), we have engineered a highly soluble and hyperactive IN. Unlike wild-type IN, it efficiently catalyzes intasome assembly and concerted integration with oligonucleotide DNA substrates. The fusion IN protein also functions to integrate viral reverse transcripts during HIV-infection. The hyperactive HIV-1 IN may assist in facilitating future biochemical and structural studies of HIV-1 intasomes. Understanding the mechanistic basis of the Sso7d-IN fusion protein could provide insight into the factors that have hindered biophysical studies of wild-type HIV-1 IN and intasomes.
Collapse
Affiliation(s)
- Min Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kellie A. Jurado
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shiqiang Lin
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alan Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert Craigie
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Pandey KK, Bera S, Korolev S, Campbell M, Yin Z, Aihara H, Grandgenett DP. Rous sarcoma virus synaptic complex capable of concerted integration is kinetically trapped by human immunodeficiency virus integrase strand transfer inhibitors. J Biol Chem 2014; 289:19648-58. [PMID: 24872410 DOI: 10.1074/jbc.m114.573311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We determined conditions to produce milligram quantities of the soluble Rous sarcoma virus (RSV) synaptic complex that is kinetically trapped by HIV strand transfer inhibitors (STIs). Concerted integration catalyzed by RSV integrase (IN) is effectively inhibited by HIV STIs. Optimized assembly of the RSV synaptic complex required IN, a gain-of-function 3'-OH-recessed U3 oligonucleotide, and an STI under specific conditions to maintain solubility of the trapped synaptic complex at 4 °C. A C-terminal truncated IN (1-269 residues) produced a homogeneous population of trapped synaptic complex that eluted at ∼ 151,000 Da upon Superdex 200 size-exclusion chromatography (SEC). Approximately 90% of input IN and DNA are incorporated into the trapped synaptic complex using either the C-terminally truncated IN or wild type IN (1-286 residues). No STI is present in the SEC running buffer suggesting the STI-trapped synaptic complex is kinetically stabilized. The yield of the trapped synaptic complex correlates with the dissociative half-life of the STI observed with HIV IN-DNA complexes. Dolutegravir, MK-2048, and MK-0536 are equally effective, whereas raltegravir is ∼ 70% as effective. Without an STI present in the assembly mixture, no trapped synaptic complex was observed. Fluorescence and mass spectroscopy analyses demonstrated that the STI remains associated with the trapped complex. SEC-multiangle light scattering analyses demonstrated that wild type IN and the C-terminal IN truncation are dimers that acted as precursors to the tetramer. The purified STI-trapped synaptic complex contained a tetramer as shown by cross-linking studies. Structural studies of this three-domain RSV IN in complex with viral DNA may be feasible.
Collapse
Affiliation(s)
| | - Sibes Bera
- From the Institute for Molecular Virology
| | | | - Mary Campbell
- Center for World Health and Medicine, Saint Louis University Health Sciences Center, Saint Louis, Missouri 63104 and
| | - Zhiqi Yin
- the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Hideki Aihara
- the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | | |
Collapse
|
18
|
Cruz GMQ, Metcalfe CJ, de Setta N, Cruz EAO, Vieira AP, Medina R, Van Sluys MA. Virus-like attachment sites and plastic CpG islands:landmarks of diversity in plant Del retrotransposons. PLoS One 2014; 9:e97099. [PMID: 24849372 PMCID: PMC4029996 DOI: 10.1371/journal.pone.0097099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 04/14/2014] [Indexed: 11/18/2022] Open
Abstract
Full-length Del elements from ten angiosperm genomes, 5 monocot and 5 dicot, were retrieved and putative attachment (att) sites were identified. In the 2432 Del elements, two types of U5 att sites and a single conserved type of U3 att site were identified. Retroviral att sites confer specificity to the integration process, different att sites types therefore implies lineage specificity. While some features are common to all Del elements, CpG island patterns within the LTRs were particular to lineage specific clusters. All eudicot copies grouped into one single clade while the monocots harbour a more diverse collection of elements. Furthermore, full-length Del elements and truncated copies were unevenly distributed amongst chromosomes. Elements of Del lineage are organized in plants into three clusters and each cluster is composed of elements with distinct LTR features. Our results suggest that the Del lineage efficiently amplified in the monocots and that one branch is probably a newly emerging sub-lineage. Finally, sequences in all groups are under purifying selection. These results show the LTR region is dynamic and important in the evolution of LTR-retrotransposons, we speculate that it is a trigger for retrotransposon diversification.
Collapse
Affiliation(s)
- Guilherme M. Q. Cruz
- Departamento de Botânica, Instituto de Biociências (IB), Universidade de São Paulo (USP), São Paulo, São Paulo, Brasil
| | - Cushla J. Metcalfe
- Departamento de Botânica, Instituto de Biociências (IB), Universidade de São Paulo (USP), São Paulo, São Paulo, Brasil
| | | | - Edgar A. O. Cruz
- Departamento de Botânica, Instituto de Biociências (IB), Universidade de São Paulo (USP), São Paulo, São Paulo, Brasil
| | - Andréia Prata Vieira
- Departamento de Botânica, Instituto de Biociências (IB), Universidade de São Paulo (USP), São Paulo, São Paulo, Brasil
| | - Rosario Medina
- Departamento de Botânica, Instituto de Biociências (IB), Universidade de São Paulo (USP), São Paulo, São Paulo, Brasil
| | - Marie-Anne Van Sluys
- Departamento de Botânica, Instituto de Biociências (IB), Universidade de São Paulo (USP), São Paulo, São Paulo, Brasil
- * E-mail:
| |
Collapse
|
19
|
Kumar A, Abbas W, Herbein G. HIV-1 latency in monocytes/macrophages. Viruses 2014; 6:1837-60. [PMID: 24759213 PMCID: PMC4014723 DOI: 10.3390/v6041837] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/11/2014] [Accepted: 03/28/2014] [Indexed: 12/24/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) targets CD4+ T cells and cells of the monocyte/macrophage lineage. HIV pathogenesis is characterized by the depletion of T lymphocytes and by the presence of a population of cells in which latency has been established called the HIV-1 reservoir. Highly active antiretroviral therapy (HAART) has significantly improved the life of HIV-1 infected patients. However, complete eradication of HIV-1 from infected individuals is not possible without targeting latent sources of infection. HIV-1 establishes latent infection in resting CD4+ T cells and findings indicate that latency can also be established in the cells of monocyte/macrophage lineage. Monocyte/macrophage lineage includes among others, monocytes, macrophages and brain resident macrophages. These cells are relatively more resistant to apoptosis induced by HIV-1, thus are important stable hideouts of the virus. Much effort has been made in the direction of eliminating HIV-1 resting CD4+ T-cell reservoirs. However, it is impossible to achieve a cure for HIV-1 without considering these neglected latent reservoirs, the cells of monocyte/macrophage lineage. In this review we will describe our current understanding of the mechanism of latency in monocyte/macrophage lineage and how such cells can be specifically eliminated from the infected host.
Collapse
Affiliation(s)
- Amit Kumar
- UPRES EA4266, SFR FED 4234, Pathogens and Inflammation Laboratory, Department of Virology, CHRU Besançon, University of Franche-Comte, F-25030 Besançon, France.
| | - Wasim Abbas
- UPRES EA4266, SFR FED 4234, Pathogens and Inflammation Laboratory, Department of Virology, CHRU Besançon, University of Franche-Comte, F-25030 Besançon, France.
| | - Georges Herbein
- UPRES EA4266, SFR FED 4234, Pathogens and Inflammation Laboratory, Department of Virology, CHRU Besançon, University of Franche-Comte, F-25030 Besançon, France.
| |
Collapse
|
20
|
Abstract
Integrase (IN) is required for lentivirus replication and is a proven drug target for the prevention of AIDS in HIV-1-infected patients. While clinical strand transfer inhibitors disarm the IN active site, allosteric inhibition of enzyme activity through the disruption of IN-IN protein interfaces holds great therapeutic potential. A promising class of allosteric IN inhibitors (ALLINIs), 2-(quinolin-3-yl) acetic acid derivatives, engage the IN catalytic core domain dimerisation interface at the binding site for the host integration co-factor LEDGF/p75. ALLINIs promote IN multimerisation and, independent of LEDGF/p75 protein, block the formation of the active IN-DNA complex, as well as inhibit the IN-LEDGF/p75 interaction in vitro. Yet, rather unexpectedly, the full inhibitory effect of these compounds is exerted during the late phase of HIV-1 replication. ALLINIs impair particle core maturation as well as reverse transcription and integration during the subsequent round of virus infection. Recapitulating the pleiotropic phenotypes observed with numerous IN mutant viruses, ALLINIs provide insight into underlying aspects of IN biology that extend beyond its catalytic activity. Therefore, in addition to the potential to expand our repertoire of HIV-1 antiretrovirals, ALLINIs afford important structural probes to dissect the multifaceted nature of the IN protein throughout the course of HIV-1 replication.
Collapse
|
21
|
Krishnan L, Engelman A. Retroviral integrase proteins and HIV-1 DNA integration. J Biol Chem 2012; 287:40858-66. [PMID: 23043109 DOI: 10.1074/jbc.r112.397760] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Retroviral integrases catalyze two reactions, 3'-processing of viral DNA ends, followed by integration of the processed ends into chromosomal DNA. X-ray crystal structures of integrase-DNA complexes from prototype foamy virus, a member of the Spumavirus genus of Retroviridae, have revealed the structural basis of integration and how clinically relevant integrase strand transfer inhibitors work. Underscoring the translational potential of targeting virus-host interactions, small molecules that bind at the host factor lens epithelium-derived growth factor/p75-binding site on HIV-1 integrase promote dimerization and inhibit integrase-viral DNA assembly and catalysis. Here, we review recent advances in our knowledge of HIV-1 DNA integration, as well as future research directions.
Collapse
Affiliation(s)
- Lavanya Krishnan
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
22
|
Gupta K, Curtis JE, Krueger S, Hwang Y, Cherepanov P, Bushman FD, Van Duyne GD. Solution conformations of prototype foamy virus integrase and its stable synaptic complex with U5 viral DNA. Structure 2012; 20:1918-28. [PMID: 23000384 DOI: 10.1016/j.str.2012.08.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 08/20/2012] [Accepted: 08/20/2012] [Indexed: 12/30/2022]
Abstract
Using small-angle X-ray and neutron scattering (SAXS/SANS), in combination with analytical centrifugation and light scattering, we have determined the solution properties of PFV IN alone and its synaptic complex with processed U5 viral DNA and related these properties to models derived from available crystal structures. PFV IN is a monomer in solution, and SAXS analysis indicates an ensemble of conformations that differ from that observed in the crystallographic DNA-bound state. Scattering data indicate that the PFV intasome adopts a shape in solution that is consistent with the tetrameric assembly inferred from crystallographic symmetry, and these properties are largely preserved in the presence of divalent ions and clinical strand transfer inhibitors. Using contrast variation methods, we have reconstructed the solution structure of the PFV intasome complex and have located the distal domains of IN that were unresolved by crystallography. These results provide important insights into the architecture of the retroviral intasome.
Collapse
Affiliation(s)
- Kushol Gupta
- Department of Biochemistry and Biophysics, Perelman School of Medicine and Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
The future of integrase inhibitors of HIV-1. Curr Opin Virol 2012; 2:580-7. [PMID: 22980926 DOI: 10.1016/j.coviro.2012.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 11/21/2022]
Abstract
Integration of the HIV-1 DNA is required and essential to maintain the viral DNA in the infected cell. Integration process occurs in several events, mainly endonucleolytic processing of the 3' ends of the viral DNA and strand transfer or joining of the viral and cellular DNA. The design and discovery of integrase inhibitors were first focused at targeting the catalytic site of IN with a specific effect on strand transfer. Several integrase inhibitors were developed clinically, two first generation inhibitors, raltegravir and elvitegravir and then two second-generation inhibitors, dolutegravir and MK-2058. Recently, allosteric integrase inhibitors intended to interfere with the integrase-LEDGF/p75 interaction have been designed. These new inhibitors called LEDGINs have an effect on 3' processing and strand transfer. Thus, integrase inhibitors present a real added value in combined treatment for naive and experienced HIV infected patients. Combination experiments of LEDGINs and raltegravir suggest that these inhibitors could act additively despite sharing the same viral target. Future therapy could involve combinations of inhibitors of IN function acting though different binding pockets within IN. The place of this class on HIV inhibitors and their future role in perspective of novel therapies to eliminate latent HIV reservoirs and infection for cure should also be explored.
Collapse
|
24
|
Abstract
Commentary on Hare, S.; Gupta, S.S.; Valkov, E.; Engelman, A.; Cherepanov, P. Retroviral intasome assembly and inhibition of DNA strand transfer. Nature2010, 464, 232-236.
Collapse
|
25
|
Li M, Ivanov V, Mizuuchi M, Mizuuchi K, Craigie R. DNA requirements for assembly and stability of HIV-1 intasomes. Protein Sci 2012; 21:249-57. [PMID: 22124978 DOI: 10.1002/pro.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Integration of viral DNA into the host genome is an essential step in retroviral replication that is mediated by a stable nucleoprotein complex comprising a tetramer of integrase bridging the two ends of the viral DNA in a stable synaptic complex (SSC) or intasome. Assembly of HIV-1 intasomes requires several hundred base pairs of nonspecific internal DNA in addition to the terminal viral DNA sequence that is protected in footprinting experiments. We find that only one of the viral DNA ends in the intasome requires long-nonspecific internal DNA for intasome assembly. Although intasomes are unstable in solution when the nonspecific internal DNA is cut off after assembly, they are stable in agarose gels. These complexes are indistinguishable from SSCs with nonspecific internal DNA in Förster resonance energy transfer (FRET) experiments suggesting the interactions with the viral DNA and integrase tetramer are the same regardless of the presence of nonspecific internal DNA. We discuss models of how the internal DNA contributes to intasome assembly and stability. FRET is exquisitely sensitive to the distance between the fluorophores and given certain assumptions can be translated to distance measurements. We anticipated that a set of such distance constraints would provide a map of the DNA path within the intasome. In reality, the constraints we could impose from the FRET data were quite weak allowing a wide envelope for the possible path. We discuss the difficulties of converting the FRET signal to absolute distance within nucleoprotein complexes.
Collapse
Affiliation(s)
- Min Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
26
|
Correlation of recombinant integrase activity and functional preintegration complex formation during acute infection by replication-defective integrase mutant human immunodeficiency virus. J Virol 2012; 86:3861-79. [PMID: 22278243 DOI: 10.1128/jvi.06386-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previous studies characterized two types of replication-defective human immunodeficiency virus type 1 (HIV-1) integrase mutants: class I, which are specifically blocked at the integration step, and class II, which harbor additional virion production and/or reverse transcription defects. Class I mutant enzymes supported little if any metal ion-dependent 3'-processing and DNA strand transfer activities in vitro, whereas class II enzymes displayed partial or full catalytic function in studies with simplified assay designs, suggesting that defective interaction(s) with heterologous integrase binding proteins might underlie the class II mutant viral phenotype. To address this hypothesis, class I and II mutant enzymes were interrogated under expanded sets of in vitro conditions. The majority failed to catalyze the concerted integration of two viral DNA ends into target DNA, highlighting defective integrase function as the root cause of most class II in addition to all class I mutant virus infection defects. One mutant protein, K264E, in contrast, could support the wild-type level of concerted integration activity. After accounting for its inherent reverse transcription defect, HIV-1(K264E) moreover formed preintegration complexes that supported the efficient integration of endogenous viral DNA in vitro and normal levels and sequences of 2-long terminal repeat-containing circle junctions during acute infection. K264E integrase furthermore efficiently interacted in vitro with two heterologous binding partners, LEDGF/p75 and reverse transcriptase. Our results underscore the physiological relevance of concerted integration assays for tests of integrase mutant function and suggest that the K264E mutation disrupts an interaction with an intranuclear integrase binding partner that is important for HIV-1 integration.
Collapse
|
27
|
Abstract
Upon cell infection, some viruses integrate their genome into the host chromosome, either as part of their life cycle (such as retroviruses), or incidentally. While possibly promoting long-term persistence of the virus into the cell, viral genome integration may also lead to drastic consequences for the host cell, including gene disruption, insertional mutagenesis and cell death, as well as contributing to species evolution. This review summarizes the current knowledge on viruses integrating their genome into the host genome and the consequences for the host cell.
Collapse
Affiliation(s)
- Günther Witzany
- Telos - Philosophische Praxis, Vogelsangstr. 18c, Bürmoos, 5111 Austria
| |
Collapse
|
28
|
Pandey KK. Raltegravir in HIV-1 infection: Safety and Efficacy in Treatment-naïve Patients. ACTA ACUST UNITED AC 2011; 2012:13-30. [PMID: 22389581 DOI: 10.4137/cmrt.s5022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The hunt for a compound which inhibits the HIV-1 integrase had been painstakingly difficult. Integrase is essential for viral replication as it mediates the integration of the viral DNA genome into the host DNA resulting in the establishment of the permanent provirus. Persistent efforts have resulted in the discovery of Raltegravir (Isentress, MK-0518), the first integrase inhibitor approved by US Food and Drug Administration for the treatment in HIV-1 infected patients. Numerous clinical studies with raltegravir have found it to be safe and effective in treatment naïve as well as treatment experienced patients. Adverse events associated with raltegravir based therapy are milder compared to previously available regimens. Raltegravir is metabolized primarily via glucuronidation mediated by uridine diphosphate glucuronosyltransferase and has a favorable pharmacokinetics independent of age, gender, race, food, and drug-drug interactions. Within a short period of time of its introduction, raltegravir has been included as one of DHHS recommended preferred regimen for the treatment of HIV-1 infection in treatment naïve patients.
Collapse
Affiliation(s)
- Krishan K Pandey
- 1100 South Grand Boulevard, E. A. Doisy Research Center, Institute for Molecular Virology Saint Louis University Health Sciences Center, Saint Louis, MO 63104 USA
| |
Collapse
|
29
|
Pandey KK, Bera S, Grandgenett DP. The HIV-1 integrase monomer induces a specific interaction with LTR DNA for concerted integration. Biochemistry 2011; 50:9788-96. [PMID: 21992419 DOI: 10.1021/bi201247f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The assembly mechanism for the human immunodeficiency virus type 1 (HIV) synaptic complex (SC) capable of concerted integration is unknown. Molecular and structural studies have established that the HIV SC and prototype foamy virus (PFV) intasome contain a tetramer of integrase (IN) that catalyzes concerted integration. HIV IN purified in the presence of 1 mM EDTA and 10 mM MgSO(4) was predominately a monomer. IN efficiently promoted concerted integration of micromolar concentrations of 3'-OH recessed and blunt-ended U5 long terminal repeat (LTR) oligonucleotide (ODN) substrates (19-42 bp) into circular target DNA. Varying HIV IN to U5 DNA showed that an IN dimer:DNA end molar ratio of 1 was optimal for concerted integration. Integration activities decreased with an increasing length of the ODN, starting from the recessed 18/20 or 19/21 bp set to the 31/33 and 40/42 bp set. Under these conditions, the average fidelity for the HIV 5 bp host site duplication with recessed and blunt-ended substrates was 56%. Modifications of U5 LTR sequences beyond 21 bp from the terminus on longer DNA (1.6 kb) did not alter the ~32 bp DNaseI protective footprint, suggesting viral sequences beyond 21 bp were not essential for IN binding. The results suggest IN binds differentially to an 18/20 bp than to a 40/42 bp ODN substrate for concerted integration. The HIV IN monomer may be a suitable candidate for attempting crystallization of an IN-DNA complex in the absence or presence of strand transfer inhibitors.
Collapse
Affiliation(s)
- Krishan K Pandey
- Institute for Molecular Virology, Saint Louis University Health Sciences Center, Saint Louis, Missouri 63104, United States
| | | | | |
Collapse
|
30
|
Al-Mawsawi LQ, Neamati N. Allosteric inhibitor development targeting HIV-1 integrase. ChemMedChem 2011; 6:228-41. [PMID: 21275045 PMCID: PMC3115487 DOI: 10.1002/cmdc.201000443] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/06/2010] [Indexed: 12/16/2022]
Abstract
HIV-1 integrase (IN) is one of three essential enzymes for viral replication, and is a focus of ardent antiretroviral drug discovery and development efforts. Diligent research has led to the development of the strand-transfer-specific chemical class of IN inhibitors, with two compounds from this group, raltegravir and elvitegravir, advancing the farthest in the US Food and Drug Administration (FDA) approval process for any IN inhibitor discovered thus far. Raltegravir, developed by Merck & Co., has been approved by the FDA for HIV-1 therapy, whereas elvitegravir, developed by Gilead Sciences and Japan Tobacco, has reached phase III clinical trials. Although this is an undoubted success for the HIV-1 IN drug discovery field, the emergence of HIV-1 IN strand-transfer-specific drug-resistant viral strains upon clinical use of these compounds is expected. Furthermore, the problem of strand-transfer-specific IN drug resistance will be exacerbated by the development of cross-resistant viral strains due to an overlapping binding orientation at the IN active site and an equivalent inhibitory mechanism for the two compounds. This inevitability will result in no available IN-targeted therapeutic options for HIV-1 treatment-experienced patients. The development of allosterically targeted IN inhibitors presents an extremely advantageous approach for the discovery of compounds effective against IN strand-transfer drug-resistant viral strains, and would likely show synergy with all available FDA-approved antiretroviral HIV-1 therapeutics, including the IN strand-transfer-specific compounds. Herein we review the concept of allosteric IN inhibition, and the small molecules that have been investigated to bind non-active-site regions to inhibit IN function.
Collapse
Affiliation(s)
- Laith Q. Al-Mawsawi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089
| | - Nouri Neamati
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089
| |
Collapse
|
31
|
Bera S, Pandey KK, Vora AC, Grandgenett DP. HIV-1 integrase strand transfer inhibitors stabilize an integrase-single blunt-ended DNA complex. J Mol Biol 2011; 410:831-46. [PMID: 21295584 DOI: 10.1016/j.jmb.2011.01.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/21/2011] [Accepted: 01/23/2011] [Indexed: 02/06/2023]
Abstract
Integration of human immunodeficiency virus cDNA ends by integrase (IN) into host chromosomes involves a concerted integration mechanism. IN juxtaposes two DNA blunt ends to form the synaptic complex, which is the intermediate in the concerted integration pathway. The synaptic complex is inactivated by strand transfer inhibitors (STI) with IC(50) values of ∼20 nM for inhibition of concerted integration. We detected a new nucleoprotein complex on a native agarose gel that was produced in the presence of >200 nM STI, termed the IN-single DNA (ISD) complex. Two IN dimers appear to bind in a parallel fashion at the DNA terminus, producing an ∼32-bp DNase I protective footprint. In the presence of raltegravir (RAL), MK-2048, and L-841,411, IN incorporated ∼20-25% of the input blunt-ended DNA substrate into the stabilized ISD complex. Seven other STI also produced the ISD complex (≤5% of input DNA). The formation of the ISD complex was not dependent on 3'OH processing, and the DNA was predominantly blunt ended in the complex. The RAL-resistant IN mutant N155H weakly forms the ISD complex in the presence of RAL at ∼25% level of wild-type IN. In contrast, MK-2048 and L-841,411 produced ∼3-fold to 5-fold more ISD than RAL with N155H IN, which is susceptible to these two inhibitors. The results suggest that STI are slow-binding inhibitors and that the potency to form and stabilize the ISD complex is not always related to inhibition of concerted integration. Rather, the apparent binding and dissociation properties of each STI influenced the production of the ISD complex.
Collapse
Affiliation(s)
- Sibes Bera
- Saint Louis University Health Sciences Center, Institute for Molecular Virology, Doisy Research Center, 1100 South Grand Boulevard, St. Louis, MO 63104, USA
| | | | | | | |
Collapse
|
32
|
Li X, Krishnan L, Cherepanov P, Engelman A. Structural biology of retroviral DNA integration. Virology 2011; 411:194-205. [PMID: 21216426 DOI: 10.1016/j.virol.2010.12.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 12/06/2010] [Indexed: 02/06/2023]
Abstract
Three-dimensional macromolecular structures shed critical light on biological mechanism and facilitate development of small molecule inhibitors. Clinical success of raltegravir, a potent inhibitor of HIV-1 integrase, demonstrated the utility of this viral DNA recombinase as an antiviral target. A variety of partial integrase structures reported in the past 16 years have been instrumental and very informative to the field. Nonetheless, because integrase protein fragments are unable to functionally engage the viral DNA substrate critical for strand transfer inhibitor binding, the early structures did little to materially impact drug development efforts. However, recent results based on prototype foamy virus integrase have fully reversed this trend, as a number of X-ray crystal structures of active integrase-DNA complexes revealed key mechanistic details and moreover established the foundation of HIV-1 integrase strand transfer inhibitor action. In this review we discuss the landmarks in the progress of integrase structural biology during the past 17 years.
Collapse
Affiliation(s)
- Xiang Li
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
33
|
A plasmid DNA immunogen expressing fifteen protein antigens and complex virus-like particles (VLP+) mimicking naturally occurring HIV. Vaccine 2011; 29:744-53. [DOI: 10.1016/j.vaccine.2010.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/04/2010] [Accepted: 11/08/2010] [Indexed: 11/17/2022]
|
34
|
Pandey KK, Bera S, Vora AC, Grandgenett DP. Physical trapping of HIV-1 synaptic complex by different structural classes of integrase strand transfer inhibitors. Biochemistry 2010; 49:8376-87. [PMID: 20799722 PMCID: PMC2965028 DOI: 10.1021/bi100514s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Raltegravir is an FDA approved inhibitor directed against human immunodeficiency virus type 1 (HIV-1) integrase (IN). In this study, we investigated the mechanisms associated with multiple strand transfer inhibitors capable of inhibiting concerted integration by HIV-1 IN. The results show raltegravir, elvitegravir, MK-2048, RDS 1997, and RDS 2197 all appear to encompass a common inhibitory mechanism by modifying IN-viral DNA interactions. These structurally different inhibitors bind to and inactivate the synaptic complex, an intermediate in the concerted integration pathway in vitro. The inhibitors physically trap the synaptic complex, thereby preventing target DNA binding and thus concerted integration. The efficiency of a particular inhibitor to trap the synaptic complex observed on native agarose gels correlated with its potency for inhibiting the concerted integration reaction, defined by IC(50) values for each inhibitor. At low nanomolar concentrations (<50 nM), raltegravir displayed a time-dependent inhibition of concerted integration, a property associated with slow-binding inhibitors. Studies of raltegravir-resistant IN mutants N155H and Q148H without inhibitors demonstrated that their capacity to assemble the synaptic complex and promote concerted integration was similar to their reported virus replication capacities. The concerted integration activity of Q148H showed a higher cross-resistance to raltegravir than observed with N155H, providing evidence as to why the Q148H pathway with secondary mutations is the predominant pathway upon prolonged treatment. Notably, MK-2048 is equally potent against wild-type IN and raltegravir-resistant IN mutant N155H, suggesting this inhibitor may bind similarly within their drug-binding pockets.
Collapse
Affiliation(s)
- Krishan K Pandey
- Institute for Molecular Virology, Saint Louis University Health Sciences Center, 1100 South Grand Boulevard, Saint Louis, Missouri 63104, USA.
| | | | | | | |
Collapse
|
35
|
Kotova S, Li M, Dimitriadis EK, Craigie R. Nucleoprotein intermediates in HIV-1 DNA integration visualized by atomic force microscopy. J Mol Biol 2010; 399:491-500. [PMID: 20416324 DOI: 10.1016/j.jmb.2010.04.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/13/2010] [Accepted: 04/15/2010] [Indexed: 12/23/2022]
Abstract
Integration of HIV-1 (human immunodeficiency virus type 1) DNA into the genome of the host cell is an essential step in the viral replication cycle that is mediated by the virally encoded integrase protein. We have used atomic force microscopy to study stable complexes formed between HIV-1 integrase and viral DNA and their interaction with host DNA. A tetramer of integrase stably bridges a pair of viral DNA ends, consistent with previous analysis by gel electrophoresis. The intasome, composed of a tetramer of integrase bridging a pair of viral DNA ends, is highly stable to high ionic strength that would strip more loosely associated integrase from internal regions of the viral DNA. We also observed tetramers of integrase associated with single viral DNA ends; time-course experiments suggest that these may be intermediates in intasome assembly. Strikingly, integrase tetramers are only observed in tight association with viral DNA ends. The self-association properties of intasomes suggest that the integrase tetramer within the intasome is different from the integrase tetramer formed at high concentration in solution in the absence of viral DNA. Finally, the integration product remains tightly bound by the integrase tetramer, but the 3' ends of the target DNA in the complex are not restrained and are free to rotate, resulting in relaxation of initially supercoiled target DNA.
Collapse
Affiliation(s)
- Svetlana Kotova
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
36
|
Gupta K, Diamond T, Hwang Y, Bushman F, Van Duyne GD. Structural properties of HIV integrase. Lens epithelium-derived growth factor oligomers. J Biol Chem 2010; 285:20303-15. [PMID: 20406807 PMCID: PMC2888443 DOI: 10.1074/jbc.m110.114413] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrase (IN) is the catalytic component of the preintegration complex, a large nucleoprotein assembly critical for the integration of the retroviral genome into a host chromosome. Although partial crystal structures of human immunodeficiency virus IN alone and its complex with the integrase binding domain of the host factor PSIP1/lens epithelium-derived growth factor (LEDGF)/p75 are available, many questions remain regarding the properties and structures of LEDGF-bound IN oligomers. Using analytical ultracentrifugation, multiangle light scattering, and small angle x-ray scattering, we have established the oligomeric state, stoichiometry, and molecular shapes of IN.LEDGF complexes in solution. Analyses of intact IN tetramers bound to two different LEDGF truncations allow for placement of the integrase binding domain by difference analysis. Modeling of the small angle x-ray scattering envelopes using existing structural data suggests domain arrangements in the IN oligomers that support and extend existing biochemical data for IN.LEDGF complexes and lend new insights into the quaternary structure of LEDGF-bound IN tetramers. These IN oligomers may be involved in stages of the viral life cycle other than integration, including assembly, budding, and early replication.
Collapse
Affiliation(s)
- Kushol Gupta
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine and Howard Hughes Medical Institute, Philadelphia, Pennsylvania 19105-6059, USA
| | | | | | | | | |
Collapse
|
37
|
Kessl JJ, McKee CJ, Eidahl JO, Shkriabai N, Katz A, Kvaratskhelia M. HIV-1 Integrase-DNA Recognition Mechanisms. Viruses 2009; 1:713-36. [PMID: 21994566 PMCID: PMC3185514 DOI: 10.3390/v1030713] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 01/24/2023] Open
Abstract
Integration of a reverse transcribed DNA copy of the HIV viral genome into the host chromosome is essential for virus replication. This process is catalyzed by the virally encoded protein integrase. The catalytic activities, which involve DNA cutting and joining steps, have been recapitulated in vitro using recombinant integrase and synthetic DNA substrates. Biochemical and biophysical studies of these model reactions have been pivotal in advancing our understanding of mechanistic details for how IN interacts with viral and target DNAs, and are the focus of the present review.
Collapse
Affiliation(s)
- Jacques J Kessl
- Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (J.J.K.); (C.J.M.); (J.O.E.), (N.S.); (A.K.)
| | | | | | | | | | | |
Collapse
|