1
|
Jia J, Zheng M, Zhang C, Li B, Lu C, Bai Y, Tong Q, Hang X, Ge Y, Zeng L, Zhao M, Song F, Zhang H, Zhang L, Hong K, Bi H. Killing of Staphylococcus aureus persisters by a multitarget natural product chrysomycin A. SCIENCE ADVANCES 2023; 9:eadg5995. [PMID: 37540745 PMCID: PMC10403215 DOI: 10.1126/sciadv.adg5995] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
Staphylococcus aureus poses a severe public health problem as one of the vital causative agents of healthcare- and community-acquired infections. There is a globally urgent need for new drugs with a novel mode of action (MoA) to combat S. aureus biofilms and persisters that tolerate antibiotic treatment. We demonstrate that a benzonaphthopyranone glycoside, chrysomycin A (ChryA), is a rapid bactericide that is highly active against S. aureus persisters, robustly eradicates biofilms in vitro, and shows a sustainable killing efficacy in vivo. ChryA was suggested to target multiple critical cellular processes. A wide range of genetic and biochemical approaches showed that ChryA directly binds to GlmU and DapD, involved in the biosynthetic pathways for the cell wall peptidoglycan and lysine precursors, respectively, and inhibits the acetyltransferase activities by competition with their mutual substrate acetyl-CoA. Our study provides an effective antimicrobial strategy combining multiple MoAs onto a single small molecule for treatments of S. aureus persistent infections.
Collapse
Affiliation(s)
- Jia Jia
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Mingxin Zheng
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Chongwen Zhang
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Binglei Li
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Cai Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuefan Bai
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Qian Tong
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Xudong Hang
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Yixin Ge
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Liping Zeng
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Ming Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fuhang Song
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hongkai Bi
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
2
|
Muduli S, Karmakar S, Mishra S. The coordinated action of the enzymes in the L-lysine biosynthetic pathway and how to inhibit it for antibiotic targets. Biochim Biophys Acta Gen Subj 2023; 1867:130320. [PMID: 36813209 DOI: 10.1016/j.bbagen.2023.130320] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Antimicrobial resistance is a global health issue that requires immediate attention in terms of new antibiotics and new antibiotic targets. The l-lysine biosynthesis pathway (LBP) is a promising avenue for drug discovery as it is essential for bacterial growth and survival and is not required by human beings. SCOPE OF REVIEW The LBP involves a coordinated action of fourteen different enzymes distributed over four distinct sub-pathways. The enzymes involved in this pathway belong to different classes, such as aspartokinase, dehydrogenase, aminotransferase, epimerase, etc. This review provides a comprehensive account of the secondary and tertiary structure, conformational dynamics, active site architecture, mechanism of catalytic action, and inhibitors of all enzymes involved in LBP of different bacterial species. MAJOR CONCLUSIONS LBP offers a wide scope for novel antibiotic targets. The enzymology of a majority of the LBP enzymes is well understood, although these enzymes are less widely studied in the critical pathogens (according to the 2017 WHO report) that require immediate attention. In particular, the enzymes in the acetylase pathway, DapAT, DapDH, and Aspartokinase in critical pathogens have received little attention. High throughput screening for inhibitor design against the enzymes of lysine biosynthetic pathway is rather limited, both in number and in the extent of success. GENERAL SIGNIFICANCE This review can serve as a guide for the enzymology of LBP and help in identifying new drug targets and designing potential inhibitors.
Collapse
Affiliation(s)
- Sunita Muduli
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Soumyajit Karmakar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
3
|
Khan K, Jalal K, Alam Y, Alotaibi G, Al Mouslem A, Uddin R, Hassan SS, Basharat Z. An integrated computational approach to infer therapeutic targets from Campylobacter concisus and peptidomimetic based inhibition of its pyrimidine metabolism pathway. J Biomol Struct Dyn 2023; 41:13127-13137. [PMID: 37000926 DOI: 10.1080/07391102.2023.2191148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/13/2023] [Indexed: 04/03/2023]
Abstract
Campylobacter concisus is a commensal of the human oral flora that has been allied with persistent diarrhea and inflammatory bowel disease (IBD). In children under the age of two, Campylobacter infections are common in the developing countries and have frequently been associated with mortality. They are becoming a prevalent cause of bacterial diarrhea in early adulthood in developed countries as well. The need for identifying new therapeutic targets and drugs is crucial for curbing such infections. Therefore, we identified 18 cytoplasmic potential therapeutic candidates against the type strain of C. concisus and deoxycytidine triphosphate deaminase (dCTP deaminase), involved in pyrimidine synthesis was selected for screening of peptidomimetic inhibitors (n > 30,000 peptidomimetics) against it. To the best of our knowledge, this target has not been studied for Campylobacter spp. Three potent inhibitors of this enzyme were prioritized i.e. peptidomimetic 27, 64, and 150. Dynamics simulation of 100 ns was carried out to validate findings for top-scored inhibitors along with physiology-based pharmacokinetics to estimate behavior in human body and predict dosing parameters. This verification demonstrates a first-in-human pharmacokinetic simulation for these peptidomimetics and can help enhance confidence in these peptide-like structures. Moiety 27 (IUPAC name: 5-[(3,5-dimethyl-1H-pyrazol-1-yl)methyl]-N-{[2-(2-methoxyethyl)-1-oxo-1H,2H,3H,4H-pyrrolo[1,2-a]pyrazin-3-yl]methyl}furan-2-carboxamide), 64 (IUPAC name: 3-(2-methylpropyl)-1-{3-[5-(5-oxo-1-phenylpyrrolidin-3-yl)-1,2,4-oxadiazol-3-yl]phenyl}urea), and 150 (IUPAC name: N-(3-methoxypropyl)-1-[6-(4-methylphenyl)-4H,6H,7H-[1,2,3]triazolo[4,3-c][1,4]oxazine-3-carbonyl]piperidine-4-carboxamide) were identified as potent inhibitors of C. concisus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Science, University of Karachi, Karachi, Pakistan
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry International Center for Chemical and Biological Science, University of Karachi, Karachi, Pakistan
| | - Yasir Alam
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Northwest Normal University, Anning Lanzhou, China
| | - Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Al-Dawadmi Campus, Shaqra University, Shaqra, Saudi Arabia
| | - Abdulaziz Al Mouslem
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Ahsa, Saudi Arabia
| | - Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Science, University of Karachi, Karachi, Pakistan
| | - Syed Shah Hassan
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
4
|
Basharat Z, Akhtar U, Khan K, Alotaibi G, Jalal K, Abbas MN, Hayat A, Ahmad D, Hassan SS. Differential analysis of Orientia tsutsugamushi genomes for therapeutic target identification and possible intervention through natural product inhibitor screening. Comput Biol Med 2022; 141:105165. [PMID: 34973586 DOI: 10.1016/j.compbiomed.2021.105165] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022]
Abstract
Orientia tsutsugamushi (Ott) is a causative agent of scrub typhus, and one of the emerging pathogens that could affect a large human population. It is one of the misdiagnosed and under-reported, febrile illnesses that infects various body organs (skin, heart, lung, kidney, and brain). The control of this infection is hampered due to the lack of drugs or vaccine against it. This study was undertaken to identify potential drug targets from the core genome of Ott and investigate novel natural product inhibitors against them. Hence, the available genomes for 22 strains of Ott were downloaded from the PATRIC database, and pan-genomic analysis was performed. Only 202 genes were present in the core region. Among these, 94 were identified as essential, 32 non-homologous to humans, nine non-homologous to useful gut flora and a single gene dapD as a drug target. Product of this gene (2,3,4,5-tetrahydropyridine-2-carboxylate N-succinyltransferase) was modeled and docked against traditional Indian (Ayurvedic) and Chinese phytochemical libraries, with best hits selected for docking, based on multiple target-drug/s interactions and minimum energy scores. ADMET profiling and molecular dynamics simulation was performed for top three compounds from each library to assess the toxicity and stability, respectively. We presume that these compounds (ZINC8214635, ZINC32793028, ZINC08101133, ZINC85625167, ZINC06018678, and ZINC13377938) could be successful inhibitors of Ott. However, in-depth experimental and clinical research is needed for further validation.
Collapse
Affiliation(s)
- Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Umaima Akhtar
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Science, University of Karachi, Karachi, 75270, Pakistan
| | - Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Al-Dawadmi Campus, Shaqra University, Shaqra, 15571, Saudi Arabia
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry International Center for Chemical and Biological Science University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Naseer Abbas
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Pakistan
| | - Ajmal Hayat
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Khyber Pakhtunkhwa, Pakistan
| | - Diyar Ahmad
- HEJ Research Institute of Chemistry International Center for Chemical and Biological Science University of Karachi, Karachi, 75270, Pakistan
| | - Syed Shah Hassan
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
5
|
Prabha A, Balaji PV. Characterization of left-handed beta helix-domains, and identification and functional annotation of proteins containing such domains. Proteins 2020; 89:6-20. [PMID: 32748987 DOI: 10.1002/prot.25990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/12/2020] [Accepted: 07/26/2020] [Indexed: 11/12/2022]
Abstract
Only about 0.3% of the entries in UniProt database have manually curated annotation. Annotation at the molecular level often relies on low-throughput one-protein-at-a-time approach. Computational methods bridge this gap by assigning function based on sequence and/or fold similarity. Left-handed beta helix (LbH) consists of three repeating six-stranded beta-strands forming an 18-mer turn of the helix. Analysis of LbH-domains showed that variations are found in the number of residues in a beta-strand (5-7, 6 being the most common), number of turns (4-10) of the helix, insertions of one or more loops of variable length (0-36 residues), and the location of loop insertion. An 18-mer HMM profile was created which identifies LbH-domain containing proteins using sequence as the only input; the number of false positives is zero when proteins tested were those with known 3D structures. 136 474 entries of TrEMBL database were found to contain LbH-domain. Rules developed by analyzing LbH-domain containing acyltransferases, gamma-class carbonic anhydrases, and nucleotidyltransferases have led to the annotation of 17 389 TrEMBL entries which currently have no functional tag.
Collapse
Affiliation(s)
- Anu Prabha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Petety V Balaji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
6
|
Sharma D, Sharma A, Singh B, Verma SK. Bioinformatic Exploration of Metal-Binding Proteome of Zoonotic Pathogen Orientia tsutsugamushi. Front Genet 2019; 10:797. [PMID: 31608099 PMCID: PMC6769048 DOI: 10.3389/fgene.2019.00797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
Metal ions are involved in many essential biological processes and are crucial for the survival of all organisms. Identification of metal-binding proteins (MBPs) of human affecting pathogens may provide the blueprint for understanding biological metal usage and their putative roles in pathogenesis. This study is focused on the analysis of MBPs from Orientia tsutsugamushi (Ott), a causal agent of scrub typhus in humans. A total of 321 proteins were predicted as putative MBPs, based on sequence search and three-dimensional structure analysis. Majority of proteins could bind with magnesium, and the order of metal binding was Mg > Ca > Zn > Mn > Fe > Cd > Ni > Co > Cu, respectively. The predicted MBPs were functionally classified into nine broad classes. Among them, gene expression and regulation, metabolism, cell signaling, and transport classes were dominant. It was noted that the putative MBPs were localized in all subcellular compartments of Ott, but majorly found in the cytoplasm. Additionally, it was revealed that out of 321 predicted MBPs 245 proteins were putative bacterial toxins and among them, 98 proteins were nonhomologous to human proteome. Sixty putative MBPs showed the ability to interact with drug or drug-like molecules, which indicate that they may be used as broad-spectrum drug targets. These predicted MBPs from Ott could play vital role(s) in various cellular activities and virulence, hence may serve as plausible therapeutic targets to design metal-based drugs to curtail its infection.
Collapse
Affiliation(s)
- Dixit Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Ankita Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Shailender Kumar Verma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| |
Collapse
|
7
|
Craggs PD, Mouilleron S, Rejzek M, de Chiara C, Young RJ, Field RA, Argyrou A, de Carvalho LPS. The Mechanism of Acetyl Transfer Catalyzed by Mycobacterium tuberculosis GlmU. Biochemistry 2018; 57:3387-3401. [PMID: 29684272 PMCID: PMC6011181 DOI: 10.1021/acs.biochem.8b00121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The biosynthetic pathway of peptidoglycan is essential for Mycobacterium tuberculosis. We report here the acetyltransferase substrate specificity and catalytic mechanism of the bifunctional N-acetyltransferase/uridylyltransferase from M. tuberculosis (GlmU). This enzyme is responsible for the final two steps of the synthesis of UDP- N-acetylglucosamine, which is an essential precursor of peptidoglycan, from glucosamine 1-phosphate, acetyl-coenzyme A, and uridine 5'-triphosphate. GlmU utilizes ternary complex formation to transfer an acetyl from acetyl-coenzyme A to glucosamine 1-phosphate to form N-acetylglucosamine 1-phosphate. Steady-state kinetic studies and equilibrium binding experiments indicate that GlmU follows a steady-state ordered kinetic mechanism, with acetyl-coenzyme A binding first, which triggers a conformational change in GlmU, followed by glucosamine 1-phosphate binding. Coenzyme A is the last product to dissociate. Chemistry is partially rate-limiting as indicated by pH-rate studies and solvent kinetic isotope effects. A novel crystal structure of a mimic of the Michaelis complex, with glucose 1-phosphate and acetyl-coenzyme A, helps us to propose the residues involved in deprotonation of glucosamine 1-phosphate and the loop movement that likely generates the active site required for glucosamine 1-phosphate to bind. Together, these results pave the way for the rational discovery of improved inhibitors against M. tuberculosis GlmU, some of which might become candidates for antibiotic discovery programs.
Collapse
Affiliation(s)
- Peter D Craggs
- Platform Technology and Science , GlaxoSmithKline , Stevenage , U.K
| | | | | | | | - Robert J Young
- Platform Technology and Science , GlaxoSmithKline , Stevenage , U.K
| | | | | | | |
Collapse
|
8
|
Manning ME, Danson EJ, Calderone CT. Functional chararacterization of the enzymes TabB and TabD involved in tabtoxin biosynthesis by Pseudomonas syringae. Biochem Biophys Res Commun 2018; 496:212-217. [PMID: 29307827 DOI: 10.1016/j.bbrc.2018.01.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
Abstract
Pseudomonas syringae pv. tabaci ATCC 11528 produces tabtoxin, a β-lactam-containing dipeptide phytotoxin. Tabtoxinine-β-lactam (TβL), one of tabtoxin's constituent amino acids, structurally mimics lysine, and many of the proteins encoded by the tabtoxin biosynthetic gene cluster are homologs of lysine biosynthetic enzymes, suggesting that the tabtoxin and lysine biosynthetic routes parallel one another. We cloned and expressed TabB and TabD, predicted homologs of tetrahydrodipicolinate (THDPA)-N-acyltransferase and N-acyl-THDPA aminotransferase, respectively, to determine their activities in vitro. We confirmed that TabB succinylates THDPA and that TabD is a PLP-dependent aminotransferase that utilizes glutamate as an amine donor. Surprisingly, we also found that though TabD could utilize the TabB product N-succinyl-THDPA as a substrate, THDPA itself was also recognized. These observations reveal that TabB functionally duplicates DapD, the THDPA-N-succinyltransferase involved in lysine biosynthesis, and reinforce the close relationship between the metabolic logics underpinning the respective biosynthetic pathways.
Collapse
Affiliation(s)
- Margot E Manning
- Department of Chemistry, Carleton College, 1 North College Street, Northfield, MN 55057, United States
| | - Eli J Danson
- Department of Chemistry, Carleton College, 1 North College Street, Northfield, MN 55057, United States
| | - Christopher T Calderone
- Department of Chemistry, Carleton College, 1 North College Street, Northfield, MN 55057, United States.
| |
Collapse
|
9
|
Reconstruction of diaminopimelic acid biosynthesis allows characterisation of Mycobacterium tuberculosis N-succinyl-L,L-diaminopimelic acid desuccinylase. Sci Rep 2016; 6:23191. [PMID: 26976706 PMCID: PMC4791643 DOI: 10.1038/srep23191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/26/2016] [Indexed: 11/22/2022] Open
Abstract
With the increased incidence of tuberculosis (TB) caused by Mycobacterium tuberculosis there is an urgent need for new and better anti-tubercular drugs. N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) is a key enzyme in the succinylase pathway for the biosynthesis of meso-diaminopimelic acid (meso-DAP) and L-lysine. DapE is a zinc containing metallohydrolase which hydrolyses N-succinyl L,L diaminopimelic acid (L,L-NSDAP) to L,L-diaminopimelic acid (L,L-DAP) and succinate. M. tuberculosis DapE (MtDapE) was cloned, over-expressed and purified as an N-terminal hexahistidine ((His)6) tagged fusion containing one zinc ion per DapE monomer. We redesigned the DAP synthetic pathway to generate L,L-NSDAP and other L,L-NSDAP derivatives and have characterised MtDapE with these substrates. In contrast to its other Gram negative homologues, the MtDapE was insensitive to inhibition by L-captopril which we show is consistent with novel mycobacterial alterations in the binding site of this drug.
Collapse
|
10
|
Deller MC, Kong L, Rupp B. Protein stability: a crystallographer's perspective. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2016; 72:72-95. [PMID: 26841758 PMCID: PMC4741188 DOI: 10.1107/s2053230x15024619] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 12/21/2015] [Indexed: 12/18/2022]
Abstract
Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration for academic researchers studying proteins. An understanding of protein stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhat practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein compositional stability will be discussed, along with a brief introduction to key methods useful for analyzing protein stability. Finally, tactics for addressing protein-stability issues during protein expression, purification and crystallization will be discussed.
Collapse
Affiliation(s)
- Marc C Deller
- Stanford ChEM-H, Macromolecular Structure Knowledge Center, Stanford University, Shriram Center, 443 Via Ortega, Room 097, MC5082, Stanford, CA 94305-4125, USA
| | - Leopold Kong
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Building 8, Room 1A03, 8 Center Drive, Bethesda, MD 20814, USA
| | - Bernhard Rupp
- Department of Forensic Crystallography, k.-k. Hofkristallamt, 91 Audrey Place, Vista, CA 92084, USA
| |
Collapse
|
11
|
Sagong HY, Kim KJ. Crystal Structure and Biochemical Characterization of Tetrahydrodipicolinate N-Succinyltransferase from Corynebacterium glutamicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10641-10646. [PMID: 26602189 DOI: 10.1021/acs.jafc.5b04785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tetrahydrodipicolinate N-succinyltransferase (DapD) is an enzyme involved in the biosynthesis of l-lysine by converting tetrahydrodipicolinate into N-succinyl-l-2-amino-6-oxopimelate, using succinyl-CoA as a cofactor. We determined the crystal structure of DapD from Corynebacterium glutamicum (CgDapD). CgDapD functions as a trimer, and each monomer consists of three domains: an N-terminal helical domain (NTD), a left-handed β-helix (LβH) domain, and a β C-terminal domain (CTD). The mode of cofactor binding to CgDapD, elucidated by determining the structure in complex with succinyl-CoA, reveals that the position of the CTD changes slightly as the cofactor binds to the enzyme. The superposition of this structure with that of Mycobacterium tuberculosis shows differences in residues that make up cofactor-binding sites. Moreover, we determined the structure of CgDapD in complex with the substrate analogue 2-aminopimelate and revealed that the analogue was stabilized by conserved residues. The catalytic and substrate binding sites of CgDapD were confirmed by site-directed mutagenesis experiments.
Collapse
Affiliation(s)
- Hye-Young Sagong
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University , Daehak-ro 80, Buk-ku, Daegu 702-701, Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University , Daehak-ro 80, Buk-ku, Daegu 702-701, Korea
| |
Collapse
|
12
|
Al-Maleki AR, Mariappan V, Vellasamy KM, Tay ST, Vadivelu J. Altered Proteome of Burkholderia pseudomallei Colony Variants Induced by Exposure to Human Lung Epithelial Cells. PLoS One 2015; 10:e0127398. [PMID: 25996927 PMCID: PMC4440636 DOI: 10.1371/journal.pone.0127398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 04/14/2015] [Indexed: 12/19/2022] Open
Abstract
Burkholderia pseudomallei primary diagnostic cultures demonstrate colony morphology variation associated with expression of virulence and adaptation proteins. This study aims to examine the ability of B. pseudomallei colony variants (wild type [WT] and small colony variant [SCV]) to survive and replicate intracellularly in A549 cells and to identify the alterations in the protein expression of these variants, post-exposure to the A549 cells. Intracellular survival and cytotoxicity assays were performed followed by proteomics analysis using two-dimensional gel electrophoresis. B. pseudomallei SCV survive longer than the WT. During post-exposure, among 259 and 260 protein spots of SCV and WT, respectively, 19 were differentially expressed. Among SCV post-exposure up-regulated proteins, glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase (CbbA) and betaine aldehyde dehydrogenase were associated with adhesion and virulence. Among the down-regulated proteins, enolase (Eno) is implicated in adhesion and virulence. Additionally, post-exposure expression profiles of both variants were compared with pre-exposure. In WT pre- vs post-exposure, 36 proteins were differentially expressed. Of the up-regulated proteins, translocator protein, Eno, nucleoside diphosphate kinase (Ndk), ferritin Dps-family DNA binding protein and peptidyl-prolyl cis-trans isomerase B were implicated in invasion and virulence. In SCV pre- vs post-exposure, 27 proteins were differentially expressed. Among the up-regulated proteins, flagellin, Eno, CbbA, Ndk and phenylacetate-coenzyme A ligase have similarly been implicated in adhesion, invasion. Protein profiles differences post-exposure provide insights into association between morphotypic and phenotypic characteristics of colony variants, strengthening the role of B. pseudomallei morphotypes in pathogenesis of melioidosis.
Collapse
Affiliation(s)
- Anis Rageh Al-Maleki
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vanitha Mariappan
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kumutha Malar Vellasamy
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sun Tee Tay
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Reinhard L, Mayerhofer H, Geerlof A, Mueller-Dieckmann J, Weiss MS. Optimization of protein buffer cocktails using Thermofluor. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:209-14. [PMID: 23385769 PMCID: PMC3564630 DOI: 10.1107/s1744309112051858] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/25/2012] [Indexed: 11/10/2022]
Abstract
The stability and homogeneity of a protein sample is strongly influenced by the composition of the buffer that the protein is in. A quick and easy approach to identify a buffer composition which increases the stability and possibly the conformational homogeneity of a protein sample is the fluorescence-based thermal-shift assay (Thermofluor). Here, a novel 96-condition screen for Thermofluor experiments is presented which consists of buffer and additive parts. The buffer screen comprises 23 different buffers and the additive screen includes small-molecule additives such as salts and nucleotide analogues. The utilization of small-molecule components which increase the thermal stability of a protein sample frequently results in a protein preparation of higher quality and quantity and ultimately also increases the chances of the protein crystallizing.
Collapse
Affiliation(s)
- Linda Reinhard
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | | | | | | | | |
Collapse
|
14
|
Reinhard L, Mueller-Dieckmann J, Weiss MS. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of succinyl-diaminopimelate desuccinylase (Rv1202, DapE) from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1089-93. [PMID: 22949202 PMCID: PMC3433205 DOI: 10.1107/s174430911203062x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 07/04/2012] [Indexed: 11/10/2022]
Abstract
Succinyl-diaminopimelate desuccinylase from Mycobacterium tuberculosis (DapE, Rv1202) has been cloned, heterologously expressed in Escherichia coli and purified using standard chromatographic techniques. Diffraction-quality crystals were obtained at acidic pH from ammonium sulfate and PEG and diffraction data were collected from two crystals to resolutions of 2.40 and 2.58 Å, respectively. The crystals belonged to the monoclinic space group P2(1), with unit-cell parameters a = 79.7, b = 76.0, c = 82.9 Å, β = 119°. The most probable content of the asymmetric unit was two molecules of DapE, which would correspond to a solvent content of 56%. Both examined crystals turned out to be pseudo-merohedrally twinned, with twin operator -h, -k, h + l and twin fractions of approximately 0.46 and 0.16, respectively.
Collapse
Affiliation(s)
- Linda Reinhard
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany.
| | | | | |
Collapse
|
15
|
Usha V, Lloyd AJ, Lovering AL, Besra GS. Structure and function of Mycobacterium tuberculosis meso-diaminopimelic acid (DAP) biosynthetic enzymes. FEMS Microbiol Lett 2012; 330:10-6. [PMID: 22339732 DOI: 10.1111/j.1574-6968.2012.02527.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/10/2012] [Accepted: 02/11/2012] [Indexed: 11/28/2022] Open
Abstract
Because of an increased emergence of resistance to current antitubercular drugs, there is a need for new antitubercular agents directed against novel targets. Diaminopimelic acid (DAP) biosynthetic enzymes are unique to bacteria and are absent in mammals and provide a rich source of essential targets for antitubercular chemotherapy. Herein, we review the structure and function of the mycobacterial DAP biosynthetic enzymes.
Collapse
|
16
|
Schnell R, Oehlmann W, Sandalova T, Braun Y, Huck C, Maringer M, Singh M, Schneider G. Tetrahydrodipicolinate N-succinyltransferase and dihydrodipicolinate synthase from Pseudomonas aeruginosa: structure analysis and gene deletion. PLoS One 2012; 7:e31133. [PMID: 22359568 PMCID: PMC3281039 DOI: 10.1371/journal.pone.0031133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/03/2012] [Indexed: 11/19/2022] Open
Abstract
The diaminopimelic acid pathway of lysine biosynthesis has been suggested to provide attractive targets for the development of novel antibacterial drugs. Here we report the characterization of two enzymes from this pathway in the human pathogen Pseudomonas aeruginosa, utilizing structural biology, biochemistry and genetics. We show that tetrahydrodipicolinate N-succinyltransferase (DapD) from P. aeruginosa is specific for the L-stereoisomer of the amino substrate L-2-aminopimelate, and its D-enantiomer acts as a weak inhibitor. The crystal structures of this enzyme with L-2-aminopimelate and D-2-aminopimelate, respectively, reveal that both compounds bind at the same site of the enzyme. Comparison of the binding interactions of these ligands in the enzyme active site suggests misalignment of the amino group of D-2-aminopimelate for nucleophilic attack on the succinate moiety of the co-substrate succinyl-CoA as the structural basis of specificity and inhibition. P. aeruginosa mutants where the dapA gene had been deleted were viable and able to grow in a mouse lung infection model, suggesting that DapA is not an optimal target for drug development against this organism. Structure-based sequence alignments, based on the DapA crystal structure determined to 1.6 Å resolution revealed the presence of two homologues, PA0223 and PA4188, in P. aeruginosa that could substitute for DapA in the P. aeruginosa PAO1ΔdapA mutant. In vitro experiments using recombinant PA0223 protein could however not detect any DapA activity.
Collapse
Affiliation(s)
- Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Wulf Oehlmann
- LIONEX Diagnostics and Therapeutics, Braunschweig, Germany
| | - Tatyana Sandalova
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yvonne Braun
- LIONEX Diagnostics and Therapeutics, Braunschweig, Germany
| | | | | | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics, Braunschweig, Germany
- * E-mail: (MS); (GS)
| | - Gunter Schneider
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (MS); (GS)
| |
Collapse
|
17
|
Schuldt L, Suchowersky R, Veith K, Mueller-Dieckmann J, Weiss MS. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of the regulatory domain of aspartokinase (Rv3709c) from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:380-5. [PMID: 21393848 PMCID: PMC3053168 DOI: 10.1107/s1744309111000030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 01/03/2011] [Indexed: 03/04/2023]
Abstract
The regulatory domain of Mycobacterium tuberculosis aspartokinase (Mtb-AK, Mtb-Ask, Rv3709c) has been cloned, heterologously expressed in Escherichia coli and purified using standard chromatographic techniques. Screening for initial crystallization conditions using the regulatory domain (AK-β) in the presence of the potential feedback inhibitor threonine identified four conditions which yielded crystals suitable for X-ray diffraction analysis. From these four conditions five different crystal forms of Mtb-AK-β resulted, three of which belonged to the orthorhombic system, one to the tetragonal system and one to the monoclinic system. The highest resolution (1.6 Å) was observed for a crystal form belonging to space group P2(1)2(1)2(1), with unit-cell parameters a=53.70, b=63.43, c=108.85 Å and two molecules per asymmetric unit.
Collapse
Affiliation(s)
- Linda Schuldt
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
18
|
The three-dimensional structure of diaminopimelate decarboxylase from Mycobacterium tuberculosis reveals a tetrameric enzyme organisation. ACTA ACUST UNITED AC 2009; 10:209-17. [PMID: 19543810 DOI: 10.1007/s10969-009-9065-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 05/16/2009] [Indexed: 10/20/2022]
Abstract
The three-dimensional structure of the enzyme diaminopimelate decarboxylase from Mycobacterium tuberculosis has been determined in a new crystal form and refined to a resolution of 2.33 A. The monoclinic crystals contain one tetramer exhibiting D(2)-symmetry in the asymmetric unit. The tetramer exhibits a donut-like structure with a hollow interior. All four active sites are accessible only from the interior of the tetrameric assembly. Small-angle X-ray scattering indicates that in solution the predominant oligomeric species of the protein is a dimer, but also that higher oligomers exist at higher protein concentrations. The observed scattering data are best explained by assuming a dimer-tetramer equilibrium with about 7% tetramers present in solution. Consequently, at the elevated protein concentrations in the crowded environment inside the cell the observed tetramer may constitute the biologically relevant functional unit of the enzyme.
Collapse
|