1
|
Bender J, Kundlacz T, Rudden LSP, Frick M, Bieber J, Degiacomi MT, Schmidt C. Ca 2+-dependent lipid preferences shape synaptotagmin-1 C2A and C2B dynamics: Insights from experiments and simulations. Structure 2024; 32:1691-1704.e5. [PMID: 39173623 DOI: 10.1016/j.str.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/04/2024] [Accepted: 07/28/2024] [Indexed: 08/24/2024]
Abstract
Signal transmission between neurons requires exocytosis of neurotransmitters from the lumen of synaptic vesicles into the synaptic cleft. Following an influx of Ca2+, this process is facilitated by the Ca2+ sensor synaptotagmin-1. The underlying mechanisms involve electrostatic and hydrophobic interactions tuning the lipid preferences of the two C2 domains of synaptotagmin-1; however, the details are still controversially discussed. We, therefore, follow a multidisciplinary approach and characterize lipid and membrane binding of the isolated C2A and C2B domains. We first target interactions with individual lipid species, and then study interactions with model membranes of liposomes. Finally, we perform molecular dynamics simulations to unravel differences in membrane binding. We found that both C2 domains, as a response to Ca2+, insert into the lipid membrane; however, C2A adopts a more perpendicular orientation while C2B remains parallel. These findings allow us to propose a mechanism for synaptotagmin-1 during membrane fusion.
Collapse
Affiliation(s)
- Julian Bender
- Interdisciplinary Research Center HALOmem, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120 Halle, Germany
| | - Til Kundlacz
- Interdisciplinary Research Center HALOmem, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120 Halle, Germany; Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Lucas S P Rudden
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
| | - Melissa Frick
- Interdisciplinary Research Center HALOmem, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120 Halle, Germany
| | - Julia Bieber
- Department of Chemistry - Biochemistry, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Matteo T Degiacomi
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120 Halle, Germany; Department of Chemistry - Biochemistry, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany.
| |
Collapse
|
2
|
Hasanbasri Z, Tessmer MH, Stoll S, Saxena S. Modeling of Cu(II)-based protein spin labels using rotamer libraries. Phys Chem Chem Phys 2024; 26:6806-6816. [PMID: 38324256 PMCID: PMC10883468 DOI: 10.1039/d3cp05951k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
The bifunctional spin label double-histidine copper-(II) capped with nitrilotriacetate [dHis-Cu(II)-NTA], used in conjunction with electron paramagnetic resonance (EPR) methods can provide high-resolution distance data for investigating protein structure and backbone conformational diversity. Quantitative utilization of this data is limited due to a lack of rapid and accurate dHis-Cu(II)-NTA modeling methods that can be used to translate experimental data into modeling restraints. Here, we develop two dHis-Cu(II)-NTA rotamer libraries using a set of recently published molecular dynamics simulations and a semi-empirical meta-dynamics-based conformational ensemble sampling tool for use with the recently developed chiLife bifunctional spin label modeling method. The accuracy of both the libraries and the modeling method are tested by comparing model predictions to experimentally determined distance distributions. We show that this method is accurate with absolute deviation between the predicted and experimental modes between 0.0-1.2 Å with an average of 0.6 Å over the test data used. In doing so, we also validate the generality of the chiLife bifunctional label modeling method. Taken together, the increased structural resolution and modeling accuracy of dHis-Cu(II)-NTA over other spin labels promise improvements in the accuracy and resolution of protein models by EPR.
Collapse
Affiliation(s)
- Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, PA, 15260, USA.
| | - Maxx H Tessmer
- Department of Chemistry, University of Washington, WA, 98195, USA.
| | - Stefan Stoll
- Department of Chemistry, University of Washington, WA, 98195, USA.
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, PA, 15260, USA.
| |
Collapse
|
3
|
Geddes JW, Bondada V, Croall DE, Rodgers DW, Gal J. Impaired activity and membrane association of most calpain-5 mutants causal for neovascular inflammatory vitreoretinopathy. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166747. [PMID: 37207905 PMCID: PMC10332796 DOI: 10.1016/j.bbadis.2023.166747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
Neovascular inflammatory vitreoretinopathy (NIV) is a rare eye disease that ultimately leads to complete blindness and is caused by mutations in the gene encoding calpain-5 (CAPN5), with six pathogenic mutations identified. In transfected SH-SY5Y cells, five of the mutations resulted in decreased membrane association, diminished S-acylation, and reduced calcium-induced autoproteolysis of CAPN5. CAPN5 proteolysis of the autoimmune regulator AIRE was impacted by several NIV mutations. R243, L244, K250 and the adjacent V249 are on β-strands in the protease core 2 domain. Conformational changes induced by Ca2+binding result in these β-strands forming a β-sheet and a hydrophobic pocket which docks W286 side chain away from the catalytic cleft, enabling calpain activation based on comparison with the Ca2+-bound CAPN1 protease core. The pathologic variants R243L, L244P, K250N, and R289W are predicted to disrupt the β-strands, β-sheet, and hydrophobic pocket, impairing calpain activation. The mechanism by which these variants impair membrane association is unclear. G376S impacts a conserved residue in the CBSW domain and is predicted to disrupt a loop containing acidic residues which may contribute to membrane binding. G267S did not impair membrane association and resulted in a slight but significant increase in autoproteolytic and proteolytic activity. However, G267S is also identified in individuals without NIV. Combined with the autosomal dominant pattern of NIV inheritance and evidence that CAPN5 may dimerize, the results are consistent with a dominant negative mechanism for the five pathogenic variants which resulted in impaired CAPN5 activity and membrane association and a gain-of-function for the G267S variant.
Collapse
Affiliation(s)
- James W Geddes
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA.
| | - Vimala Bondada
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA
| | - Dorothy E Croall
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA.
| | - David W Rodgers
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA.
| | - Jozsef Gal
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
4
|
Bykhovskaia M. Molecular Dynamics Simulations of the Proteins Regulating Synaptic Vesicle Fusion. MEMBRANES 2023; 13:307. [PMID: 36984694 PMCID: PMC10058449 DOI: 10.3390/membranes13030307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/11/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Neuronal transmitters are packaged in synaptic vesicles (SVs) and released by the fusion of SVs with the presynaptic membrane (PM). An inflow of Ca2+ into the nerve terminal triggers fusion, and the SV-associated protein Synaptotagmin 1 (Syt1) serves as a Ca2+ sensor. In preparation for fusion, SVs become attached to the PM by the SNARE protein complex, a coiled-coil bundle that exerts the force overcoming SV-PM repulsion. A cytosolic protein Complexin (Cpx) attaches to the SNARE complex and differentially regulates the evoked and spontaneous release components. It is still debated how the dynamic interactions of Syt1, SNARE proteins and Cpx lead to fusion. This problem is confounded by heterogeneity in the conformational states of the prefusion protein-lipid complex and by the lack of tools to experimentally monitor the rapid conformational transitions of the complex, which occur at a sub-millisecond scale. However, these complications can be overcome employing molecular dynamics (MDs), a computational approach that enables simulating interactions and conformational transitions of proteins and lipids. This review discusses the use of molecular dynamics for the investigation of the pre-fusion protein-lipid complex. We discuss the dynamics of the SNARE complex between lipid bilayers, as well as the interactions of Syt1 with lipids and SNARE proteins, and Cpx regulating the assembly of the SNARE complex.
Collapse
Affiliation(s)
- Maria Bykhovskaia
- Neurology Department, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
5
|
Nyenhuis SB, Karandikar N, Kiessling V, Kreutzberger AJB, Thapa A, Liang B, Tamm LK, Cafiso DS. Conserved arginine residues in synaptotagmin 1 regulate fusion pore expansion through membrane contact. Nat Commun 2021; 12:761. [PMID: 33536412 PMCID: PMC7859215 DOI: 10.1038/s41467-021-21090-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/12/2021] [Indexed: 11/09/2022] Open
Abstract
Synaptotagmin 1 is a vesicle-anchored membrane protein that functions as the Ca2+ sensor for synchronous neurotransmitter release. In this work, an arginine containing region in the second C2 domain of synaptotagmin 1 (C2B) is shown to control the expansion of the fusion pore and thereby the concentration of neurotransmitter released. This arginine apex, which is opposite the Ca2+ binding sites, interacts with membranes or membrane reconstituted SNAREs; however, only the membrane interactions occur under the conditions in which fusion takes place. Other regions of C2B influence the fusion probability and kinetics but do not control the expansion of the fusion pore. These data indicate that the C2B domain has at least two distinct molecular roles in the fusion event, and the data are consistent with a model where the arginine apex of C2B positions the domain at the curved membrane surface of the expanding fusion pore.
Collapse
Affiliation(s)
- Sarah B Nyenhuis
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.,Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Nakul Karandikar
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.,Center for Membrane Biology, University of Virginia, Charlottesville, VA, USA
| | - Alex J B Kreutzberger
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.,Center for Membrane Biology, University of Virginia, Charlottesville, VA, USA.,Department of Cell Biology, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Anusa Thapa
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Binyong Liang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.,Center for Membrane Biology, University of Virginia, Charlottesville, VA, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.,Center for Membrane Biology, University of Virginia, Charlottesville, VA, USA
| | - David S Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA. .,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA. .,Center for Membrane Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
6
|
Bykhovskaia M. SNARE complex alters the interactions of the Ca 2+ sensor synaptotagmin 1 with lipid bilayers. Biophys J 2021; 120:642-661. [PMID: 33453271 DOI: 10.1016/j.bpj.2020.12.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/19/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022] Open
Abstract
Release of neuronal transmitters from nerve terminals is triggered by the molecular Ca2+ sensor synaptotagmin 1 (Syt1). Syt1 is a transmembrane protein attached to the synaptic vesicle (SV), and its cytosolic region comprises two domains, C2A and C2B, which are thought to penetrate into lipid bilayers upon Ca2+ binding. Before fusion, SVs become attached to the presynaptic membrane (PM) by the four-helical SNARE complex, which is thought to bind the C2B domain in vivo. To understand how the interactions of Syt1 with lipid bilayers and the SNARE complex trigger fusion, we performed molecular dynamics (MD) simulations at a microsecond scale. We investigated how the isolated C2 modules and the C2AB tandem of Syt1 interact with membranes mimicking either SV or PM. The simulations showed that the C2AB tandem can either bridge SV and PM or insert into PM with its Ca2+-bound tips and that the latter configuration is more favorable. Surprisingly, C2 domains did not cooperate in penetrating into PM but instead mutually hindered their insertion into the bilayer. To test whether the interaction of Syt1 with lipid bilayers could be affected by the C2B-SNARE attachment, we performed systematic conformational analysis of the C2AB-SNARE complex. Notably, we found that the C2B-SNARE interface precludes the coupling of C2 domains and promotes their insertion into PM. We performed the MD simulations of the prefusion protein complex positioned between the lipid bilayers mimicking PM and SV, and our results demonstrated in silico that the presence of the Ca2+ bound C2AB tandem promotes lipid merging. Altogether, our MD simulations elucidated the role of the Syt1-SNARE interactions in the fusion process and produced the dynamic all-atom model of the prefusion protein-lipid complex.
Collapse
|
7
|
Ahammad T, Drew DL, Sahu ID, Khan RH, Butcher BJ, Serafin RA, Galende AP, McCarrick RM, Lorigan GA. Conformational Differences Are Observed for the Active and Inactive Forms of Pinholin S 21 Using DEER Spectroscopy. J Phys Chem B 2020; 124:11396-11405. [PMID: 33289567 DOI: 10.1021/acs.jpcb.0c09081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacteriophages have evolved with an efficient host cell lysis mechanism to terminate the infection cycle and release the new progeny virions at the optimum time, allowing adaptation with the changing host and environment. Among the lytic proteins, holin controls the first and rate-limiting step of host cell lysis by permeabilizing the inner membrane at an allele-specific time known as "holin triggering". Pinholin S21 is a prototype holin of phage Φ21 which makes many nanoscale holes and destroys the proton motive force, which in turn activates the signal anchor release (SAR) endolysin system to degrade the peptidoglycan layer of the host cell and destruction of the outer membrane by the spanin complex. Like many others, phage Φ21 has two holin proteins: active pinholin and antipinholin. The antipinholin form differs only by three extra amino acids at the N-terminus; however, it has a different structural topology and conformation with respect to the membrane. Predefined combinations of active pinholin and antipinholin fine-tune the lysis timing through structural dynamics and conformational changes. Previously, the dynamics and topology of active pinholin and antipinholin were investigated (Ahammad et al. JPCB 2019, 2020) using continuous wave electron paramagnetic resonance (CW-EPR) spectroscopy. However, detailed structural studies and direct comparison of these two forms of pinholin S21 are absent in the literature. In this study, the structural topology and conformations of active pinholin (S2168) and inactive antipinholin (S2168IRS) in DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) proteoliposomes were investigated using the four-pulse double electron-electron resonance (DEER) EPR spectroscopic technique to measure distances between transmembrane domains 1 and 2 (TMD1 and TMD2). Five sets of interlabel distances were measured via DEER spectroscopy for both the active and inactive forms of pinholin S21. Structural models of the active pinholin and inactive antipinholin forms in DMPC proteoliposomes were obtained using the experimental DEER distances coupled with the simulated annealing software package Xplor-NIH. TMD2 of S2168 remains in the lipid bilayer, and TMD1 is partially externalized from the bilayer with some residues located on the surface. However, both TMDs remain incorporated in the lipid bilayer for the inactive S2168IRS form. This study demonstrates, for the first time, clear structural topology and conformational differences between the two forms of pinholin S21. This work will pave the way for further studies of other holin systems using the DEER spectroscopic technique and will give structural insight into these biological clocks in molecular detail.
Collapse
Affiliation(s)
- Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Daniel L Drew
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States.,Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States
| | - Rasal H Khan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Brandon J Butcher
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Rachel A Serafin
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Alberto P Galende
- Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
8
|
Prasad R, Zhou HX. Membrane Association and Functional Mechanism of Synaptotagmin-1 in Triggering Vesicle Fusion. Biophys J 2020; 119:1255-1265. [PMID: 32882186 DOI: 10.1016/j.bpj.2020.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/23/2020] [Accepted: 08/10/2020] [Indexed: 12/23/2022] Open
Abstract
Upon Ca2+ influx, synaptic vesicles fuse with the presynaptic plasma membrane (PM) to release neurotransmitters. Membrane fusion is triggered by synaptotagmin-1, a transmembrane protein in the vesicle membrane (VM), but the mechanism is under debate. Synaptotagmin-1 contains a single transmembrane helix (TM) and two tandem C2 domains (C2A and C2B). This study aimed to use molecular dynamics simulations to elucidate how Ca2+-bound synaptotagmin-1, by simultaneously associating with VM and PM, brings them together for fusion. Although C2A stably associates with VM via two Ca2+-binding loops, C2B has a propensity to partially dissociate. Importantly, an acidic motif in the TM-C2A linker competes with VM for interacting with C2B, thereby flipping its orientation to face PM. Subsequently, C2B readily associates with PM via a polybasic cluster and a Ca2+-binding loop. The resulting mechanistic model for the triggering of membrane fusion by synaptotagmin-1 reconciles many experimental observations.
Collapse
Affiliation(s)
- Ramesh Prasad
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois; Department of Physics, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
9
|
Bowers MR, Reist NE. Synaptotagmin: Mechanisms of an electrostatic switch. Neurosci Lett 2020; 722:134834. [DOI: 10.1016/j.neulet.2020.134834] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 02/09/2023]
|
10
|
Katti S, Igumenova TI. Interference of pH buffer with Pb 2+-peripheral domain interactions: obstacle or opportunity? Metallomics 2020; 12:164-172. [PMID: 32051983 DOI: 10.1039/d0mt00002g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pb2+ is a xenobiotic metal ion that competes for Ca2+-binding sites in proteins. Using the peripheral Ca2+-sensing domains of Syt1, we show that the chelating pH buffer Bis-Tris enables identification and functional characterization of high-affinity Pb2+ sites that are likely to be targeted by bioavailable Pb2+.
Collapse
Affiliation(s)
- Sachin Katti
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA.
| | | |
Collapse
|
11
|
Nyenhuis SB, Thapa A, Cafiso DS. Phosphatidylinositol 4,5 Bisphosphate Controls the cis and trans Interactions of Synaptotagmin 1. Biophys J 2019; 117:247-257. [PMID: 31301806 DOI: 10.1016/j.bpj.2019.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/20/2019] [Accepted: 06/18/2019] [Indexed: 11/28/2022] Open
Abstract
Synaptotagmin 1 acts as the Ca2+ sensor for synchronous neurotransmitter release; however, the mechanism by which it functions is not understood and is presently a topic of considerable interest. Here, we describe measurements on full-length membrane-reconstituted synaptotagmin 1 using site-directed spin labeling in which we characterize the linker region as well as the cis (vesicle membrane) and trans (cytoplasmic membrane) binding of its two C2 domains. In the full-length protein, the C2A domain does not undergo membrane insertion in the absence of Ca2+; however, the C2B domain will bind to and penetrate in trans to a membrane containing phosphatidylinositol 4,5 bisphosphate, even if phosphatidylserine (PS) is present in the cis membrane. In the presence of Ca2+, the Ca2+ binding loops of C2A and C2B both insert into the membrane interface; moreover, C2A preferentially inserts into PS-containing bilayers and will bind in a cis configuration to membranes containing PS even if a phosphatidylinositol 4,5 bisphosphate membrane is presented in trans. The data are consistent with a bridging activity for synaptotagmin 1 in which the two domains bind to opposing vesicle and plasma membranes. The failure of C2A to bind membranes in the absence of Ca2+ and the long unstructured segment linking C2A to the vesicle membrane indicates that synaptotagmin 1 could act to significantly shorten the vesicle-plasma membrane distance with increasing levels of Ca2+.
Collapse
Affiliation(s)
- Sarah B Nyenhuis
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - Anusa Thapa
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - David S Cafiso
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
12
|
Tran HT, Anderson LH, Knight JD. Membrane-Binding Cooperativity and Coinsertion by C2AB Tandem Domains of Synaptotagmins 1 and 7. Biophys J 2019; 116:1025-1036. [PMID: 30795874 DOI: 10.1016/j.bpj.2019.01.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/21/2018] [Accepted: 01/30/2019] [Indexed: 02/04/2023] Open
Abstract
Synaptotagmin-1 (Syt-1) and synaptotagmin-7 (Syt-7) contain analogous tandem C2 domains, C2A and C2B, which together sense Ca2+ to bind membranes and promote the stabilization of exocytotic fusion pores. Syt-1 triggers fast release of neurotransmitters, whereas Syt-7 functions in processes that involve lower Ca2+ concentrations such as hormone secretion. Syt-1 C2 domains are reported to bind membranes cooperatively, based on the observation that they penetrate farther into membranes as the C2AB tandem than as individual C2 domains. In contrast, we previously suggested that the two C2 domains of Syt-7 bind membranes independently, based in part on measurements of their liposome dissociation kinetics. Here, we investigated C2A-C2B interdomain cooperativity with Syt-1 and Syt-7 using directly comparable measurements. Equilibrium Ca2+ titrations demonstrate that the Syt-7 C2AB tandem binds liposomes lacking phosphatidylinositol-4,5-bisphosphate (PIP2) with greater Ca2+ sensitivity than either of its individual domains and binds to membranes containing PIP2 even in the absence of Ca2+. Stopped-flow kinetic measurements show differences in cooperativity between Syt-1 and Syt-7: Syt-1 C2AB dissociates from PIP2-free liposomes much more slowly than either of its individual C2 domains, indicating cooperativity, whereas the major population of Syt-7 C2AB has a dissociation rate comparable to its C2A domain, suggesting a lack of cooperativity. A minor subpopulation of Syt-7 C2AB dissociates at a slower rate, which could be due to a small cooperative component and/or liposome clustering. Measurements using an environment-sensitive fluorescent probe indicate that the Syt-7 C2B domain inserts deeply into membranes as part of the C2AB tandem, similar to the coinsertion previously reported for Syt-1. Overall, coinsertion of C2A and C2B domains is coupled to cooperative energetic effects in Syt-1 to a much greater extent than in Syt-7. The difference can be understood in terms of the relative contributions of C2A and C2B domains toward membrane binding in the two proteins.
Collapse
Affiliation(s)
- Hai T Tran
- Department of Chemistry, University of Colorado Denver, Denver, Colorado
| | - Lauren H Anderson
- Department of Chemistry, University of Colorado Denver, Denver, Colorado
| | - Jefferson D Knight
- Department of Chemistry, University of Colorado Denver, Denver, Colorado.
| |
Collapse
|
13
|
Park Y, Ryu JK. Models of synaptotagmin-1 to trigger Ca 2+ -dependent vesicle fusion. FEBS Lett 2018; 592:3480-3492. [PMID: 30004579 DOI: 10.1002/1873-3468.13193] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 11/08/2022]
Abstract
Vesicles in neurons and neuroendocrine cells store neurotransmitters and peptide hormones, which are released by vesicle fusion in response to Ca2+ -evoking stimuli. Synaptotagmin-1 (Syt1), a Ca2+ sensor, mediates ultrafast exocytosis in neurons and neuroendocrine cells. After vesicle docking, Syt1 has two main groups of binding partners: anionic phospholipids and the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) complex. The molecular mechanisms by which Syt1 triggers vesicle fusion remain controversial. This Review introduces and summarizes six molecular models of Syt1: (a) Syt1 triggers SNARE unclamping by displacing complexin, (b) Syt1 clamps SNARE zippering, (c) Syt1 causes membrane curvature, (d) membrane bridging by Syt1, (e) Syt1 is a vesicle-plasma membrane distance regulator, and (f) Syt1 undergoes circular oligomerization. We discuss important conditions to test Syt1 activity in vitro and attempt to illustrate the possible roles of Syt1.
Collapse
Affiliation(s)
- Yongsoo Park
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Je-Kyung Ryu
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, The Netherlands
| |
Collapse
|
14
|
MacDougall DD, Lin Z, Chon NL, Jackman SL, Lin H, Knight JD, Anantharam A. The high-affinity calcium sensor synaptotagmin-7 serves multiple roles in regulated exocytosis. J Gen Physiol 2018; 150:783-807. [PMID: 29794152 PMCID: PMC5987875 DOI: 10.1085/jgp.201711944] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/07/2018] [Indexed: 12/19/2022] Open
Abstract
MacDougall et al. review the structure and function of the calcium sensor synaptotagmin-7 in exocytosis. Synaptotagmin (Syt) proteins comprise a 17-member family, many of which trigger exocytosis in response to calcium. Historically, most studies have focused on the isoform Syt-1, which serves as the primary calcium sensor in synchronous neurotransmitter release. Recently, Syt-7 has become a topic of broad interest because of its extreme calcium sensitivity and diversity of roles in a wide range of cell types. Here, we review the known and emerging roles of Syt-7 in various contexts and stress the importance of its actions. Unique functions of Syt-7 are discussed in light of recent imaging, electrophysiological, and computational studies. Particular emphasis is placed on Syt-7–dependent regulation of synaptic transmission and neuroendocrine cell secretion. Finally, based on biochemical and structural data, we propose a mechanism to link Syt-7’s role in membrane fusion with its role in subsequent fusion pore expansion via strong calcium-dependent phospholipid binding.
Collapse
Affiliation(s)
| | - Zesen Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Nara L Chon
- Department of Chemistry, University of Colorado, Denver, CO
| | - Skyler L Jackman
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Hai Lin
- Department of Chemistry, University of Colorado, Denver, CO
| | | | - Arun Anantharam
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
15
|
Nyenhuis SB, Cafiso DS. Choice of reconstitution protocol modulates the aggregation state of full-length membrane-reconstituted synaptotagmin-1. Protein Sci 2018; 27:1008-1012. [PMID: 29500903 DOI: 10.1002/pro.3398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/12/2022]
Abstract
Synaptotagmin-1 (Syt1) functions as the Ca2+ sensor in neuronal exocytosis, and it is routinely incorporated into lipid bilayers along with other components of the fusion machinery in order to reconstruct the in vivo fusion process. Here, we demonstrate that the detergent used to reconstitute full-length Syt1 has a significant effect on the state of the protein in bilayers. When octyl-β-d-glucopyranoside is used to reconstitute the protein, Syt1 is present in an aggregated state that is mediated by the long juxta-membrane linker. EPR spectra from spin labels in the two C2 domains of Syt1 no longer resemble those obtained from a soluble construct containing these domains, and the C2B domain no longer exhibits a Ca2+ -dependent membrane insertion. In contrast, when reconstituted using 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate, Syt1 is largely monomeric and the EPR spectra from C2A and C2B resemble those of the soluble construct. This result demonstrates that the choice of detergent used to reconstitute Syt1 can modulate the state of the neuronal Ca2+ -sensor.
Collapse
Affiliation(s)
- Sarah B Nyenhuis
- Department of Chemistry and the Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - David S Cafiso
- Department of Chemistry and the Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
16
|
Zdanowicz R, Kreutzberger A, Liang B, Kiessling V, Tamm LK, Cafiso DS. Complexin Binding to Membranes and Acceptor t-SNAREs Explains Its Clamping Effect on Fusion. Biophys J 2017; 113:1235-1250. [PMID: 28456331 DOI: 10.1016/j.bpj.2017.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 02/07/2023] Open
Abstract
Complexin-1 is a SNARE effector protein that decreases spontaneous neurotransmitter release and enhances evoked release. Complexin binds to the fully assembled four-helical neuronal SNARE core complex as revealed in competing molecular models derived from x-ray crystallography. Presently, it is unclear how complexin binding to the postfusion complex accounts for its effects upon spontaneous and evoked release in vivo. Using a combination of spectroscopic and imaging methods, we characterize in molecular detail how complexin binds to the 1:1 plasma membrane t-SNARE complex of syntaxin-1a and SNAP-25 while simultaneously binding the lipid bilayer at both its N- and C-terminal ends. These interactions are cooperative, and binding to the prefusion acceptor t-SNARE complex is stronger than to the postfusion core complex. This complexin interaction reduces the affinity of synaptobrevin-2 for the 1:1 complex, thereby retarding SNARE assembly and vesicle docking in vitro. The results provide the basis for molecular models that account for the observed clamping effect of complexin beginning with the acceptor t-SNARE complex and the subsequent activation of the clamped complex by Ca2+ and synaptotagmin.
Collapse
Affiliation(s)
- Rafal Zdanowicz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia; Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia
| | - Alex Kreutzberger
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Binyong Liang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Volker Kiessling
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Lukas K Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia.
| | - David S Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, Virginia; Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
17
|
Vermaas JV, Tajkhorshid E. Differential Membrane Binding Mechanics of Synaptotagmin Isoforms Observed in Atomic Detail. Biochemistry 2016; 56:281-293. [PMID: 27997124 DOI: 10.1021/acs.biochem.6b00468] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Synaptotagmin (Syt) is a membrane-associated protein involved in vesicle fusion through the SNARE complex that is found throughout the human body in 17 different isoforms. These isoforms have two membrane-binding C2 domains, which sense Ca2+ and thereby promote anionic membrane binding and lead to vesicle fusion. Through molecular dynamics simulations using the highly mobile membrane mimetic acclerated bilayer model, we have investigated how small protein sequence changes in the Ca2+-binding loops of the C2 domains may give rise to the experimentally determined difference in binding kinetics between Syt-1 and Syt-7 isoforms. Syt-7 C2 domains are found to form more close contacts with anionic phospholipid headgroups, particularly in loop 1, where an additional positive charge in Syt-7 draws the loop closer to the membrane and causes the anchoring residue F167 to insert deeper into the bilayer than the corresponding methionine in Syt-1 (M173). By performing additional replica exchange umbrella sampling calculations, we demonstrate that these additional contacts increase the energetic cost of unbinding the Syt-7 C2 domains from the bilayer, causing them to unbind more slowly than their counterparts in Syt-1.
Collapse
Affiliation(s)
- Josh V Vermaas
- Center for Biophysics and Quantitative Biology, Department of Biochemistry, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology, Department of Biochemistry, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
18
|
Pérez-Lara Á, Thapa A, Nyenhuis SB, Nyenhuis DA, Halder P, Tietzel M, Tittmann K, Cafiso DS, Jahn R. PtdInsP 2 and PtdSer cooperate to trap synaptotagmin-1 to the plasma membrane in the presence of calcium. eLife 2016; 5. [PMID: 27791979 PMCID: PMC5123861 DOI: 10.7554/elife.15886] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022] Open
Abstract
The Ca2+-sensor synaptotagmin-1 that triggers neuronal exocytosis binds to negatively charged membrane lipids (mainly phosphatidylserine (PtdSer) and phosphoinositides (PtdIns)) but the molecular details of this process are not fully understood. Using quantitative thermodynamic, kinetic and structural methods, we show that synaptotagmin-1 (from Rattus norvegicus and expressed in Escherichia coli) binds to PtdIns(4,5)P2 via a polybasic lysine patch in the C2B domain, which may promote the priming or docking of synaptic vesicles. Ca2+ neutralizes the negative charges of the Ca2+-binding sites, resulting in the penetration of synaptotagmin-1 into the membrane, via binding of PtdSer, and an increase in the affinity of the polybasic lysine patch to phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2). These Ca2+-induced events decrease the dissociation rate of synaptotagmin-1 membrane binding while the association rate remains unchanged. We conclude that both membrane penetration and the increased residence time of synaptotagmin-1 at the plasma membrane are crucial for triggering exocytotic membrane fusion. DOI:http://dx.doi.org/10.7554/eLife.15886.001 The human nervous system contains billions of neurons that communicate with each other across junctions called synapses. When a neuron is activated, the levels of calcium ions inside the cell rise. This causes molecules called neurotransmitters to be released from the neuron at a synapse to make contact with the second neuron. The neurotransmitters are stored inside cells within compartments known as synaptic vesicles and are released when these vesicles fuse with the membrane surrounding the cell. Proteins called SNAREs regulate the membrane fusion process. These proteins assemble into bundles that help to drive vesicle and cell membranes together. Another protein called synaptotagmin-1 sticks out from the vesicle membrane and senses the levels of calcium ions in the cell to trigger membrane fusion at the right time. Synaptotagmin-1 has two regions that can bind to calcium ions, known as the C2 domains. When calcium ion levels rise, these domains insert into the cell membrane by binding to two fat molecules in the membrane called phosphatidylserine (PtdSer) and phosphatidylinositol 4,5-bisphosphate (PtdInsP2). Synaptotagmin-1 also interacts with the SNARE proteins, but it is not known whether synaptotagmin-1 triggers fusion by binding directly to SNAREs, or by the way it inserts into the cell membrane. Pérez-Lara et al. used several biophysical methods to investigate how synaptotagmin-1 binds to PtdSer and PtdInsP2. The experiments show that these molecules bind to different regions of synaptotagmin-1 and work together to attach the protein to the cell membrane and insert the C2 domains. Calcium ions increase the affinity of synaptotagmin-1 binding to the cell membrane by making it harder for synaptotagmin-1 to separate from the membrane, rather than by increasing its ability to bind to it. Further experiments show that synaptotagmin-1 prefers to bind to membranes that contain PtdInsP2 over binding to the SNARE proteins. Together, the findings of Pérez-Lara et al. suggest that calcium ions may trigger the release of neurotransmitters by trapping synaptotagmin-1 at the cell membrane rather than by directly affecting how it interacts with SNARE proteins. Further work will be needed to establish exactly how the SNARE proteins, PtdInsP2 and synaptotagmin-1 interact. DOI:http://dx.doi.org/10.7554/eLife.15886.002
Collapse
Affiliation(s)
- Ángel Pérez-Lara
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Anusa Thapa
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, United States
| | - Sarah B Nyenhuis
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, United States
| | - David A Nyenhuis
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, United States
| | - Partho Halder
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Michael Tietzel
- Department of Molecular Enzymology, Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Göttingen, Germany
| | - Kai Tittmann
- Department of Molecular Enzymology, Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Göttingen, Germany
| | - David S Cafiso
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, United States
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
19
|
Calcium binding promotes conformational flexibility of the neuronal Ca(2+) sensor synaptotagmin. Biophys J 2016; 108:2507-2520. [PMID: 25992729 DOI: 10.1016/j.bpj.2015.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 01/12/2023] Open
Abstract
Synaptotagmin 1 (Syt1) is a synaptic vesicle protein that serves as a calcium sensor of neuronal secretion. It is established that calcium binding to Syt1 triggers vesicle fusion and release of neuronal transmitters, however, the dynamics of this process is not fully understood. To investigate how Ca(2+) binding affects Syt1 conformational dynamics, we performed prolonged molecular dynamics (MD) simulations of Ca(2+)-unbound and Ca(2+)-bound forms of Syt1. MD simulations were performed at a microsecond scale and combined with Monte Carlo sampling. We found that in the absence of Ca(2+) Syt1 structure in the solution is represented by an ensemble of conformational states with tightly coupled domains. To investigate the effect of Ca(2+) binding, we used two different strategies to generate a molecular model of a Ca(2+)-bound form of Syt1. First, we employed subsequent replacements of monovalent cations transiently captured within Syt1 Ca(2+)-binding pockets by Ca(2+) ions. Second, we performed MD simulations of Syt1 at elevated Ca(2+) levels. All the simulations produced Syt1 structures bound to four Ca(2+) ions, two ions chelated at the binding pocket of each domain. MD simulations of the Ca(2+)-bound form of Syt1 revealed that Syt1 conformational flexibility drastically increased upon Ca(2+) binding. In the presence of Ca(2+), the separation between domains increased, and interdomain rotations became more frequent. These findings suggest that Ca(2+) binding to Syt1 may induce major changes in the Syt1 conformational state, which in turn may initiate the fusion process.
Collapse
|
20
|
Abstract
Extensive research has yielded crucial insights into the mechanism of neurotransmitter release, and working models for the functions of key proteins involved in release. The SNAREs Syntaxin-1, Synaptobrevin, and SNAP-25 play a central role in membrane fusion, forming SNARE complexes that bridge the vesicle and plasma membranes and that are disassembled by NSF-SNAPs. Exocytosis likely starts with Syntaxin-1 folded into a self-inhibited closed conformation that binds to Munc18-1. Munc13s open Syntaxin-1, orchestrating SNARE complex assembly in an NSF-SNAP-resistant manner together with Munc18-1. In the resulting primed state, with partially assembled SNARE complexes, fusion is inhibited by Synaptotagmin-1 and Complexins, which also perform active functions in release. Upon influx of Ca(2+), Synaptotagmin-1 activates fast release, likely by relieving the inhibition caused by Complexins and cooperating with the SNAREs in bringing the membranes together. Although alternative models exist and fundamental questions remain unanswered, a definitive description of the basic release mechanism may be available soon.
Collapse
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry, and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | | |
Collapse
|
21
|
Chon NL, Osterberg JR, Henderson J, Khan HM, Reuter N, Knight JD, Lin H. Membrane Docking of the Synaptotagmin 7 C2A Domain: Computation Reveals Interplay between Electrostatic and Hydrophobic Contributions. Biochemistry 2015; 54:5696-711. [DOI: 10.1021/acs.biochem.5b00422] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Nara Lee Chon
- Department
of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| | - J. Ryan Osterberg
- Department
of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| | - Jack Henderson
- Department
of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| | - Hanif M. Khan
- Department
of Molecular Biology, University of Bergen, 5008 Bergen, Norway
- Computational
Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
| | - Nathalie Reuter
- Department
of Molecular Biology, University of Bergen, 5008 Bergen, Norway
- Computational
Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
| | - Jefferson D. Knight
- Department
of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| | - Hai Lin
- Department
of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| |
Collapse
|
22
|
Osterberg JR, Chon NL, Boo A, Maynard FA, Lin H, Knight JD. Membrane Docking of the Synaptotagmin 7 C2A Domain: Electron Paramagnetic Resonance Measurements Show Contributions from Two Membrane Binding Loops. Biochemistry 2015; 54:5684-95. [PMID: 26322740 DOI: 10.1021/acs.biochem.5b00421] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The synaptotagmin (Syt) family of proteins plays an important role in vesicle docking and fusion during Ca(2+)-induced exocytosis in a wide variety of cell types. Its role as a Ca(2+) sensor derives primarily from its two C2 domains, C2A and C2B, which insert into anionic lipid membranes upon binding Ca(2+). Syt isoforms 1 and 7 differ significantly in their Ca(2+) sensitivity; the C2A domain from Syt7 binds Ca(2+) and membranes much more tightly than the C2A domain from Syt1, at least in part because of greater contributions from the hydrophobic effect. While the structure and membrane activity of Syt1 have been extensively studied, the structural origins of differences between Syt1 and Syt7 are unknown. This study used site-directed spin labeling and electron paramagnetic resonance spectroscopy to determine depth parameters for the Syt7 C2A domain, for comparison to analogous previous measurements with the Syt1 C2A domain. In a novel approach, the membrane docking geometry of both Syt1 and Syt7 C2A was modeled by mapping depth parameters onto multiple molecular dynamics-simulated structures of the Ca(2+)-bound protein. The models reveal membrane penetration of Ca(2+) binding loops 1 (CBL1) and 3 (CBL3), and membrane binding is more sensitive to mutations in CBL3. On average, Syt7 C2A inserts more deeply into the membrane than Syt1 C2A, although depths vary among the different structural models. This observation provides a partial structural explanation for the hydrophobically driven membrane docking of Syt7 C2A.
Collapse
Affiliation(s)
- J Ryan Osterberg
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80217, United States
| | - Nara Lee Chon
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80217, United States
| | - Arthur Boo
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80217, United States
| | - Favinn A Maynard
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80217, United States
| | - Hai Lin
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80217, United States
| | - Jefferson D Knight
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80217, United States
| |
Collapse
|
23
|
Kiessling V, Liang B, Tamm LK. Reconstituting SNARE-mediated membrane fusion at the single liposome level. Methods Cell Biol 2015; 128:339-63. [PMID: 25997356 DOI: 10.1016/bs.mcb.2015.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Successful reconstitutions of SNARE-mediated intracellular membrane fusion have been achieved in bulk fusion assays since 1998 and in single liposome fusion assays since 2004. Especially in neuronal presynaptic SNARE-mediated exocytosis, fusion is controlled by numerous accessory proteins, of which some functions have also been reconstituted in vitro. The development of and results obtained with two fundamentally different single liposome fusion assays, namely liposome-to-supported membrane and liposome-to-liposome, are reviewed. Both assays distinguish between liposome docking and fusion steps of the overall fusion reaction and both assays are capable of resolving hemi-and full-fusion intermediates and end states. They have opened new windows for elucidating the mechanisms of these fundamentally important cellular reactions with unprecedented time and molecular resolution. Although many of the molecular actors in this process have been discovered, we have only scratched the surface of looking at their fascinating plays, interactions, and choreographies that lead to vesicle traffic as well as neurotransmitter and hormone release in the cell.
Collapse
Affiliation(s)
- Volker Kiessling
- Center for Membrane Biology and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Binyong Liang
- Center for Membrane Biology and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Lukas K Tamm
- Center for Membrane Biology and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
24
|
Lin CC, Seikowski J, Pérez-Lara A, Jahn R, Höbartner C, Walla PJ. Control of membrane gaps by synaptotagmin-Ca2+ measured with a novel membrane distance ruler. Nat Commun 2014; 5:5859. [PMID: 25500905 PMCID: PMC4275583 DOI: 10.1038/ncomms6859] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/14/2014] [Indexed: 11/09/2022] Open
Abstract
Fast synchronous neurotransmitter release is triggered by calcium that activates synaptotagmin-1 (syt-1), resulting in fusion of synaptic vesicles with the presynaptic membrane. Syt-1 possesses two Ca(2+)-binding C2 domains that tether membranes via interactions with anionic phospholipids. It is capable of crosslinking membranes and has recently been speculated to trigger fusion by decreasing the gap between them. As quantitative information on membrane gaps is key to understanding general cellular mechanisms, including the role of syt-1, we developed a fluorescence-lifetime based inter-membrane distance ruler using membrane-anchored DNAs of various lengths as calibration standards. Wild-type and mutant data provide evidence that full-length syt-1 indeed regulates membrane gaps: without Ca(2+), syt-1 maintains membranes at distances of ~7-8 nm. Activation with 100 μM Ca(2+) decreases the distance to ~5 nm by binding the C2 domains to opposing membranes, respectively. These values reveal that activated syt-1 adjusts membrane distances to the level that promotes SNARE complex assembly.
Collapse
Affiliation(s)
- Chao-Chen Lin
- Research Group Biomolecular Spectroscopy and Single-Molecule Detection, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Jan Seikowski
- Research Group Nucleic Acid Chemistry, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Angel Pérez-Lara
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Claudia Höbartner
- 1] Research Group Nucleic Acid Chemistry, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany [2] Institute for Organic and Biomolecular Chemistry, Georg August University Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Peter Jomo Walla
- 1] Research Group Biomolecular Spectroscopy and Single-Molecule Detection, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany [2] Department of Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, University of Braunschweig, Hans-Sommer-Straße 10, 38106 Braunschweig, Germany
| |
Collapse
|
25
|
Vasquez JK, Chantranuvatana K, Giardina DT, Coffman MD, Knight JD. Lateral diffusion of proteins on supported lipid bilayers: additive friction of synaptotagmin 7 C2A-C2B tandem domains. Biochemistry 2014; 53:7904-13. [PMID: 25437758 PMCID: PMC4278679 DOI: 10.1021/bi5012223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
The
synaptotagmin (Syt) family of proteins contains tandem C2 domains,
C2A and C2B, which bind membranes in the presence of Ca2+ to trigger vesicle fusion during exocytosis. Despite recent progress,
the role and extent of interdomain interactions between C2A and C2B
in membrane binding remain unclear. To test whether the two domains
interact on a planar lipid bilayer (i.e., experience thermodynamic
interdomain contacts), diffusion of fluorescent-tagged C2A, C2B, and
C2AB domains from human Syt7 was measured using total internal reflection
fluorescence microscopy with single-particle tracking. The C2AB tandem
exhibits a lateral diffusion constant approximately half the value
of the isolated single domains and does not change when additional
residues are engineered into the C2A–C2B linker. This is the
expected result if C2A and C2B are separated when membrane-bound;
theory predicts that C2AB diffusion would be faster if the two domains
were close enough together to have interdomain contact. Stopped-flow
measurements of membrane dissociation kinetics further support an
absence of interdomain interactions, as dissociation kinetics of the
C2AB tandem remain unchanged when rigid or flexible linker extensions
are included. Together, the results suggest that the two C2 domains
of Syt7 bind independently to planar membranes, in contrast to reported
interdomain cooperativity in Syt1.
Collapse
Affiliation(s)
- Joseph K Vasquez
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80217, United States
| | | | | | | | | |
Collapse
|
26
|
Sahu ID, Kroncke BM, Zhang R, Dunagan MM, Smith HJ, Craig A, McCarrick RM, Sanders CR, Lorigan GA. Structural investigation of the transmembrane domain of KCNE1 in proteoliposomes. Biochemistry 2014; 53:6392-401. [PMID: 25234231 PMCID: PMC4196734 DOI: 10.1021/bi500943p] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
KCNE1 is a single-transmembrane protein
of the KCNE family that modulates the function of voltage-gated potassium
channels, including KCNQ1. Hereditary mutations in KCNE1 have been
linked to diseases such as long QT syndrome (LQTS), atrial fibrillation,
sudden infant death syndrome, and deafness. The transmembrane domain
(TMD) of KCNE1 plays a key role in mediating the physical association
with KCNQ1 and in subsequent modulation of channel gating kinetics
and conductance. However, the mechanisms associated with these roles
for the TMD remain poorly understood, highlighting a need for experimental
structural studies. A previous solution NMR study of KCNE1 in LMPG
micelles revealed a curved transmembrane domain, a structural feature
proposed to be critical to KCNE1 function. However, this curvature
potentially reflects an artifact of working in detergent micelles.
Double electron electron resonance (DEER) measurements were conducted
on KCNE1 in LMPG micelles, POPC/POPG proteoliposomes, and POPC/POPG
lipodisq nanoparticles to directly compare the structure of the TMD
in a variety of different membrane environments. Experimentally derived
DEER distances coupled with simulated annealing molecular dynamic
simulations were used to probe the bilayer structure of the TMD of
KCNE1. The results indicate that the structure is helical in proteoliposomes
and is slightly curved, which is consistent with the previously determined
solution NMR structure in micelles. The evident resilience of the
curvature in the KCNE1 TMD leads us to hypothesize that the curvature
is likely to be maintained upon binding of the protein to the KCNQ1
channel.
Collapse
Affiliation(s)
- Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lu B, Kiessling V, Tamm LK, Cafiso DS. The juxtamembrane linker of full-length synaptotagmin 1 controls oligomerization and calcium-dependent membrane binding. J Biol Chem 2014; 289:22161-71. [PMID: 24973220 DOI: 10.1074/jbc.m114.569327] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Synaptotagmin 1 (Syt1) is the calcium sensor for synchronous neurotransmitter release. The two C2 domains of Syt1, which may mediate fusion by bridging the vesicle and plasma membranes, are connected to the vesicle membrane by a 60-residue linker. Here, we use site-directed spin labeling and a novel total internal reflection fluorescence vesicle binding assay to characterize the juxtamembrane linker and to test the ability of reconstituted full-length Syt1 to interact with opposing membrane surfaces. EPR spectroscopy demonstrates that the majority of the linker interacts with the membrane interface, thereby limiting the extension of the C2A and C2B domains into the cytoplasm. Pulse dipolar EPR spectroscopy provides evidence that purified full-length Syt1 is oligomerized in the membrane, and mutagenesis indicates that a glycine zipper/GXXXG motif within the linker helps mediate oligomerization. The total internal reflection fluorescence-based vesicle binding assay demonstrates that full-length Syt1 that is reconstituted into supported lipid bilayers will capture vesicles containing negatively charged lipid in a Ca(2+)-dependent manner. Moreover, the rate of vesicle capture increases with Syt1 density, and mutations in the GXXXG motif that inhibit oligomerization of Syt1 reduce the rate of vesicle capture. This work demonstrates that modifications within the 60-residue linker modulate both the oligomerization of Syt1 and its ability to interact with opposing bilayers. In addition to controlling its activity, the oligomerization of Syt1 may play a role in organizing proteins within the active zone of membrane fusion.
Collapse
Affiliation(s)
- Bin Lu
- From the Departments of Chemistry and the Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Volker Kiessling
- the Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22904 Molecular Physiology and Biological Physics and
| | - Lukas K Tamm
- the Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22904 Molecular Physiology and Biological Physics and
| | - David S Cafiso
- From the Departments of Chemistry and the Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22904
| |
Collapse
|
28
|
Xu J, Bacaj T, Zhou A, Tomchick DR, Südhof TC, Rizo J. Structure and Ca²⁺-binding properties of the tandem C₂ domains of E-Syt2. Structure 2013; 22:269-80. [PMID: 24373768 DOI: 10.1016/j.str.2013.11.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 12/30/2022]
Abstract
Contacts between the endoplasmic reticulum and the plasma membrane involve extended synaptotagmins (E-Syts) in mammals or tricalbins in yeast, proteins with multiple C₂ domains. One of the tandem C₂ domains of E-Syt2 is predicted to bind Ca²⁺, but no Ca²⁺-dependent function has been attributed to this protein. We have determined the crystal structures of the tandem C₂ domains of E-Syt2 in the absence and presence of Ca²⁺ and analyzed their Ca²⁺-binding properties by nuclear magnetic resonance spectroscopy. Our data reveal an unexpected V-shaped structure with a rigid orientation between the two C₂ domains that is not substantially altered by Ca²⁺. The E-Syt2 C2A domain binds up to four Ca²⁺ ions, whereas the C₂B domain does not bind Ca²⁺. These results suggest that E-Syt2 performs an as yet unidentified Ca²⁺-dependent function through its C₂A domain and uncover fundamental differences between the properties of the tandem C₂ domains of E-Syts and synaptotagmins.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Taulant Bacaj
- Department of Molecular and Cellular Physiology, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305, USA
| | - Amy Zhou
- Department of Biophysics, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Diana R Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305, USA
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
29
|
Dawidowski D, Cafiso DS. Allosteric control of syntaxin 1a by Munc18-1: characterization of the open and closed conformations of syntaxin. Biophys J 2013; 104:1585-94. [PMID: 23561535 DOI: 10.1016/j.bpj.2013.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/15/2013] [Accepted: 02/08/2013] [Indexed: 11/18/2022] Open
Abstract
Syntaxin 1a is a plasma membrane soluble N-ethylmaleimide-sensitive factor attachment receptor protein (SNARE) that contains an H3 domain (SNARE motif) and a regulatory Habc domain. These regions associate to produce a closed state, which is generally thought to suppress assembly of syntaxin into the SNARE complex. However, the molecular nature of the closed and open states of syntaxin is not well defined. Here, we use electron paramagnetic resonance spectroscopy to characterize conformational exchange in syntaxin. The data indicate that the H3 segment is in equilibrium between ordered and disordered states that have significant populations. In solution, the central region of the H3 segment is positioned close to the Habc domain and the configuration of syntaxin 1a is dominated by a closed state. However, an open state is enhanced in full-length membrane reconstituted syntaxin. Munc18-1 binding alters the equilibrium along H3 to favor the ordered, folded state. Munc18 also suppresses the minor open population and narrows the distance distributions between H3 and Habc. The allosteric control exhibited by Munc18 on the H3 segment and the suppression of the minor open component may both play a role in regulating membrane fusion by controlling the assembly of syntaxin into the SNARE complex.
Collapse
Affiliation(s)
- Damian Dawidowski
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | | |
Collapse
|
30
|
Giladi M, Michaeli L, Almagor L, Bar-On D, Buki T, Ashery U, Khananshvili D, Hirsch JA. The C2B domain is the primary Ca2+ sensor in DOC2B: a structural and functional analysis. J Mol Biol 2013; 425:4629-41. [PMID: 23994332 DOI: 10.1016/j.jmb.2013.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/12/2013] [Accepted: 08/21/2013] [Indexed: 12/21/2022]
Abstract
DOC2B (double-C2 domain) protein is thought to be a high-affinity Ca(2+) sensor for spontaneous and asynchronous neurotransmitter release. To elucidate the molecular features underlying its physiological role, we determined the crystal structures of its isolated C2A and C2B domains and examined their Ca(2+)-binding properties. We further characterized the solution structure of the tandem domains (C2AB) using small-angle X-ray scattering. In parallel, we tested structure-function correlates with live cell imaging tools. We found that, despite striking structural similarity, C2B binds Ca(2+) with considerably higher affinity than C2A. The C2AB solution structure is best modeled as two domains with a highly flexible orientation and no difference in the presence or absence of Ca(2+). In addition, kinetic studies of C2AB demonstrate that, in the presence of unilamellar vesicles, Ca(2+) binding is stabilized, as reflected by the ~10-fold slower rate of Ca(2+) dissociation than in the absence of vesicles. In cells, isolated C2B translocates to the plasma membrane (PM) with an EC50 of 400 nM while the C2A does not translocate at submicromolar Ca(2+) concentrations, supporting the biochemical observations. Nevertheless, C2AB translocates to the PM with an ~2-fold lower EC50 and to a greater extent than C2B. Our results, together with previous studies, reveal that the C2B is the primary Ca(2+) sensing unit in DOC2B, whereas C2A enhances the interaction of C2AB with the PM.
Collapse
Affiliation(s)
- Moshe Giladi
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Israel
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Synaptotagmin-1 functions as a Ca(2+) sensor in neurotransmitter release through its two C2 domains (the C2A and C2B domain). The ability of synaptotagmin-1 to bridge two membranes is likely crucial for its function, enabling cooperation with the soluble N-ethylmaleimide sensitive factor adaptor protein receptors (SNAREs) in membrane fusion, but two bridging mechanisms have been proposed. A highly soluble synaptotagmin-1 fragment containing both domains (C2AB) was shown to bind simultaneously to two membranes via the Ca(2+)-binding loops at the top of both domains and basic residues at the bottom of the C2B domain (direct bridging mechanism). In contrast, a longer fragment including a linker sequence (lnC2AB) was found to aggregate in solution and was proposed to bridge membranes through trans interactions between lnC2AB oligomers bound to each membrane via the Ca(2+)-binding loops, with no contact of the bottom of the C2B domain with the membranes. We now show that lnC2AB containing impurities indeed aggregates in solution, but properly purified lnC2AB is highly soluble. Moreover, cryo-EM images reveal that a majority of lnC2AB molecules bridge membranes directly. Fluorescence spectroscopy indicates that the bottom of the C2B domain contacts the membrane in a sizeable population of molecules of both membrane-bound C2AB and membrane-bound lnC2AB. NMR data on nanodiscs show that a fraction of C2AB molecules bind to membranes with antiparallel orientations of the C2 domains. Together with previous studies, these results show that direct bridging constitutes the prevalent mechanism of membrane bridging by both C2AB and lnC2AB, suggesting that this mechanism underlies the function of synaptotagmin-1 in neurotransmitter release.
Collapse
|
32
|
Brandt DS, Coffman MD, Falke JJ, Knight JD. Hydrophobic contributions to the membrane docking of synaptotagmin 7 C2A domain: mechanistic contrast between isoforms 1 and 7. Biochemistry 2012; 51:7654-64. [PMID: 22966849 DOI: 10.1021/bi3007115] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Synaptotagmin (Syt) triggers Ca(2+)-dependent membrane fusion via its tandem C2 domains, C2A and C2B. The 17 known human isoforms are active in different secretory cell types, including neurons (Syt1 and others) and pancreatic β cells (Syt7 and others). Here, quantitative fluorescence measurements reveal notable differences in the membrane docking mechanisms of Syt1 C2A and Syt7 C2A to vesicles comprised of physiological lipid mixtures. In agreement with previous studies, the Ca(2+) sensitivity of membrane binding is much higher for Syt7 C2A. We report here for the first time that this increased sensitivity is due to the slower target membrane dissociation of Syt7 C2A. Association and dissociation rate constants for Syt7 C2A are found to be ~2-fold and ~60-fold slower than Syt1 C2A, respectively. Furthermore, the membrane dissociation of Syt7 C2A but not Syt1 C2A is slowed by Na(2)SO(4) and trehalose, solutes that enhance the hydrophobic effect. Overall, the simplest model consistent with these findings proposes that Syt7 C2A first docks electrostatically to the target membrane surface and then inserts into the bilayer via a slow hydrophobic mechanism. In contrast, the membrane docking of Syt1 C2A is known to be predominantly electrostatic. Thus, these two highly homologous domains exhibit distinct mechanisms of membrane binding correlated with their known differences in function.
Collapse
Affiliation(s)
- Devin S Brandt
- Molecular Biophysics Program and Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | | | | | | |
Collapse
|
33
|
Mokdad A, Herrick DZ, Kahn AK, Andrews E, Kim M, Cafiso DS. Ligand-induced structural changes in the Escherichia coli ferric citrate transporter reveal modes for regulating protein-protein interactions. J Mol Biol 2012; 423:818-30. [PMID: 22982293 DOI: 10.1016/j.jmb.2012.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/30/2012] [Accepted: 09/03/2012] [Indexed: 11/28/2022]
Abstract
Outer-membrane TonB-dependent transporters, such as the Escherichia coli ferric citrate transporter FecA, interact with the inner-membrane protein TonB through an energy-coupling segment termed the Ton box. In FecA, which regulates its own transcription, the Ton box is preceded by an N-terminal extension that interacts with the inner-membrane protein FecR. Here, site-directed spin labeling was used to examine the structural basis for transcriptional signaling and Ton box regulation in FecA. EPR spectroscopy indicates that regions of the N-terminal domain are in conformational exchange, consistent with its role as a protein binding element; however, the local fold and dynamics of the domain are not altered by substrate or TonB. Distance restraints derived from pulse EPR were used to generate models for the position of the extension in the apo, substrate-, and TonB-bound states. In the apo state, this domain is positioned at the periplasmic surface of FecA, where it interacts with the Ton box and blocks access of the Ton box to the periplasm. Substrate addition rotates the transcriptional domain and exposes the Ton box, leading to a disorder transition in the Ton box that may facilitate interactions with TonB. When a soluble fragment of TonB is bound to FecA, the transcriptional domain is displaced to one edge of the barrel, consistent with a proposed β-strand exchange mechanism. However, neither substrate nor TonB displaces the N-terminus further into the periplasm. This result suggests that the intact TonB system mediates both signaling and transport by unfolding portions of the transporter.
Collapse
Affiliation(s)
- Audrey Mokdad
- Department of Chemistry and the Center for Membrane Biology, University of Virginia, Charlottesville, VA 22904-4319, USA
| | | | | | | | | | | |
Collapse
|
34
|
Gerelsaikhan T, Vasa PK, Chander A. Annexin A7 and SNAP23 interactions in alveolar type II cells and in vitro: a role for Ca(2+) and PKC. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1796-806. [PMID: 22713544 DOI: 10.1016/j.bbamcr.2012.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 06/07/2012] [Accepted: 06/11/2012] [Indexed: 10/28/2022]
Abstract
Lung surfactant secretion involves lamellar body docking and fusion with the plasma membrane in alveolar type II cells. Annexin A7 (A7) is postulated to play a role in membrane fusion during exocytosis. Our recent studies demonstrated increased co-localization of A7 with ABCA3 in lamellar bodies in type II cells stimulated with established secretagogues of lung surfactant. In this study, we investigated in vivo and in vitro interactions of A7 with the t-SNARE protein, SNAP23. Immuno-fluorescence studies showed time-dependent increases in co-localization of A7 with SNAP23 in PMA- and in A23187-stimulated cells. PMA and A23187 also caused a time-dependent increase in co-localization of ABCA3 with SNAP23. The relocation of A7 to SNAP23 domains was inhibited in the presence of PKC inhibitor, similar to that previously reported for co-localization of A7 with ABCA3. The interaction of A7 and SNAP23 was confirmed by affinity binding and by in vitro interaction of recombinant A7 and SNAP23 proteins. The in vitro binding of recombinant A7 (rA7) to GST-SNAP23 fusion protein was calcium-dependent. Phosphorylation of rA7 with PKC increased its in vitro binding to SNAP23 suggesting that a similar mechanism may operate during A7 relocation to t-SNARE domains. Thus, our studies demonstrate that annexin A7 may function in co-ordination with SNARE proteins and that protein kinase activation may be required for annexin A7 trafficking to the interacting membranes (lamellar bodies and plasma membrane) to facilitate membrane fusion during surfactant secretion.
Collapse
|
35
|
Zhang X, Tung CS, Sowa GZ, Hatmal MM, Haworth IS, Qin PZ. Global structure of a three-way junction in a phi29 packaging RNA dimer determined using site-directed spin labeling. J Am Chem Soc 2012; 134:2644-52. [PMID: 22229766 DOI: 10.1021/ja2093647] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The condensation of bacteriophage phi29 genomic DNA into its preformed procapsid requires the DNA packaging motor, which is the strongest known biological motor. The packaging motor is an intricate ring-shaped protein/RNA complex, and its function requires an RNA component called packaging RNA (pRNA). Current structural information on pRNA is limited, which hinders studies of motor function. Here, we used site-directed spin labeling to map the conformation of a pRNA three-way junction that bridges binding sites for the motor ATPase and the procapsid. The studies were carried out on a pRNA dimer, which is the simplest ring-shaped pRNA complex and serves as a functional intermediate during motor assembly. Using a nucleotide-independent labeling scheme, stable nitroxide radicals were attached to eight specific pRNA sites without perturbing RNA folding and dimer formation, and a total of 17 internitroxide distances spanning the three-way junction were measured using Double Electron-Electron Resonance spectroscopy. The measured distances, together with steric chemical constraints, were used to select 3662 viable three-way junction models from a pool of 65 billion. The results reveal a similar conformation among the viable models, with two of the helices (H(T) and H(L)) adopting an acute bend. This is in contrast to a recently reported pRNA tetramer crystal structure, in which H(T) and H(L) stack onto each other linearly. The studies establish a new method for mapping global structures of complex RNA molecules, and provide information on pRNA conformation that aids investigations of phi29 packaging motor and developments of pRNA-based nanomedicine and nanomaterial.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | |
Collapse
|
36
|
Ellena JF, Lackowicz P, Mongomery H, Cafiso DS. Membrane thickness varies around the circumference of the transmembrane protein BtuB. Biophys J 2011; 100:1280-7. [PMID: 21354401 DOI: 10.1016/j.bpj.2011.01.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 01/07/2011] [Accepted: 01/26/2011] [Indexed: 10/18/2022] Open
Abstract
BtuB is a large outer-membrane β-barrel protein that belongs to a class of active transport proteins that are TonB-dependent. These TonB-dependent transporters are based upon a 22-stranded antiparallel β-barrel, which is notably asymmetric in its length. Here, site-directed spin labeling and simulated annealing were used to locate the membrane lipid interface surrounding BtuB when reconstituted into phosphatidylcholine bilayers. Positions on the outer facing surface of the β-barrel and the periplasmic turns were spin-labeled and distances from the label to the membrane interface estimated by progressive power saturation of the electron paramagnetic resonance spectra. These distances were then used as atom-to-plane distance restraints in a simulated annealing routine, to dock the protein to two independent planes and produce a model representing the average position of the lipid phosphorus atoms at each interface. The model is in good agreement with the experimental data; however, BtuB is mismatched to the bilayer thickness and the resulting planes representing the bilayer interface are not parallel. In the model, the membrane thickness varies by 11 Å around the circumference of the protein, indicating that BtuB distorts the bilayer interface so that it is thinnest on the short side of the protein β-barrel.
Collapse
Affiliation(s)
- Jeffrey F Ellena
- Department of Chemistry and Center for Membrane Biology at the University of Virginia, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|
37
|
Lai AL, Tamm LK, Ellena JF, Cafiso DS. Synaptotagmin 1 modulates lipid acyl chain order in lipid bilayers by demixing phosphatidylserine. J Biol Chem 2011; 286:25291-300. [PMID: 21610074 DOI: 10.1074/jbc.m111.258848] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptotagmin 1 (syt1) functions as the Ca(2+) sensor in neuronal exocytosis, and it has been proposed to act by modulating lipid bilayer curvature. Here we examine the effect of the two C2 domains (C2A and C2B) of syt1 on membrane lipid order and lateral organization. In mixtures of phosphatidylcholine and phosphatidylserine (PS), attenuated total internal reflection Fourier transform infrared spectroscopy indicates that a fragment containing both domains (C2AB) or C2B alone disorders the lipid acyl chains, whereas the C2A domain has little effect upon chain order. Two observations suggest that these changes reflect a demixing of PS. First, the changes in acyl chain order are reversed at higher protein concentration; second, selective lipid deuteration demonstrates that the changes in lipid order are associated only with the PS component of the bilayer. Independent evidence for lipid demixing is obtained from fluorescence self-quenching of labeled lipid and from natural abundance (13)C NMR, where heteronuclear single quantum correlation spectra reveal Ca(2+)-dependent chemical shift changes for PS, but not for phosphatidylcholine, in the presence of the syt1 C2 domains. The ability of syt1 to demix PS is observed in a range of lipid mixtures that includes cholesterol, phosphatidylethanolamine, and varied PS content. These data suggest that syt1 might facilitate SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors)-mediated membrane fusion by phase separating PS, a process that is expected to locally buckle bilayers and disorder lipids due to the curvature tendencies of PS.
Collapse
Affiliation(s)
- Alex L Lai
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | | | | | | |
Collapse
|
38
|
Kim S, Brandon S, Zhou Z, Cobb CE, Edwards SJ, Moth CW, Parry CS, Smith JA, Lybrand TP, Hustedt EJ, Beth AH. Determination of structural models of the complex between the cytoplasmic domain of erythrocyte band 3 and ankyrin-R repeats 13-24. J Biol Chem 2011; 286:20746-57. [PMID: 21493712 DOI: 10.1074/jbc.m111.230326] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adaptor protein ankyrin-R interacts via its membrane binding domain with the cytoplasmic domain of the anion exchange protein (AE1) and via its spectrin binding domain with the spectrin-based membrane skeleton in human erythrocytes. This set of interactions provides a bridge between the lipid bilayer and the membrane skeleton, thereby stabilizing the membrane. Crystal structures for the dimeric cytoplasmic domain of AE1 (cdb3) and for a 12-ankyrin repeat segment (repeats 13-24) from the membrane binding domain of ankyrin-R (AnkD34) have been reported. However, structural data on how these proteins assemble to form a stable complex have not been reported. In the current studies, site-directed spin labeling, in combination with electron paramagnetic resonance (EPR) and double electron-electron resonance, has been utilized to map the binding interfaces of the two proteins in the complex and to obtain inter-protein distance constraints. These data have been utilized to construct a family of structural models that are consistent with the full range of experimental data. These models indicate that an extensive area on the peripheral domain of cdb3 binds to ankyrin repeats 18-20 on the top loop surface of AnkD34 primarily through hydrophobic interactions. This is a previously uncharacterized surface for binding of cdb3 to AnkD34. Because a second dimer of cdb3 is known to bind to ankyrin repeats 7-12 of the membrane binding domain of ankyrin-R, the current models have significant implications regarding the structural nature of a tetrameric form of AE1 that is hypothesized to be involved in binding to full-length ankyrin-R in the erythrocyte membrane.
Collapse
Affiliation(s)
- Sunghoon Kim
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232-0615, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kuo W, Herrick DZ, Cafiso DS. Phosphatidylinositol 4,5-bisphosphate alters synaptotagmin 1 membrane docking and drives opposing bilayers closer together. Biochemistry 2011; 50:2633-41. [PMID: 21344950 DOI: 10.1021/bi200049c] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Synaptotagmin 1 (syt1) is a synaptic vesicle-anchored membrane protein that acts as the calcium sensor for the synchronous component of neuronal exocytosis. Using site-directed spin labeling, the position and membrane interactions of a fragment of syt1 containing its two C2 domains (syt1C2AB) were assessed in bilayers containing phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylinositol 4,5-bisphosphate (PIP(2)). Addition of 1 mol % PIP(2) to a lipid mixture of PC and PS results in a deeper membrane penetration of the C2A domain and alters the orientation of the C2B domain so that the polybasic face of C2B comes into the proximity of the bilayer interface. The C2B domain is found to contact the membrane interface in two regions, the Ca(2+)-binding loops and a region opposite the Ca(2+)-binding loops. This suggests that syt1C2AB is configured to bridge two bilayers and is consistent with a model generated previously for syt1C2AB bound to membranes of PC and PS. Point-to-plane depth restraints, obtained by progressive power saturation, and interdomain distance restraints, obtained by double electron-electron resonance, were obtained in the presence of PIP(2) and used in a simulated annealing routine to dock syt1C2AB to two membrane interfaces. The results yield an average structure different from what is found in the absence of PIP(2) and indicate that bilayer-bilayer spacing is decreased in the presence of PIP(2). The results indicate that PIP(2), which is necessary for bilayer fusion, alters C2 domain orientation, enhances syt1-membrane electrostatic interactions, and acts to drive vesicle and cytoplasmic membrane surfaces closer together.
Collapse
Affiliation(s)
- Weiwei Kuo
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| | | | | |
Collapse
|
40
|
Affiliation(s)
- Sascha Martens
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | |
Collapse
|
41
|
Lai AL, Huang H, Herrick DZ, Epp N, Cafiso DS. Synaptotagmin 1 and SNAREs form a complex that is structurally heterogeneous. J Mol Biol 2010; 405:696-706. [PMID: 21087613 DOI: 10.1016/j.jmb.2010.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 10/14/2010] [Accepted: 11/05/2010] [Indexed: 01/08/2023]
Abstract
Synaptotagmin 1 (syt1) functions as a Ca(2+)-sensor for neuronal exocytosis. Here, site-directed spin labeling was used to examine the complex formed between a soluble fragment of syt1, which contains its two C2 domains, and the neuronal core soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. Changes in electron paramagnetic resonance lineshape and accessibility for spin-labeled syt1 mutants indicate that in solution, the assembled core SNARE complex contacts syt1 in several regions. For the C2B domain, contact occurs in the polybasic face and sites opposite the Ca(2+)-binding loops. For the C2A domain, contact is seen with the SNARE complex in a region near loop 2. Double electron-electron resonance was used to estimate distances between the two C2 domains of syt1. These distances have broad distributions in solution, which do not significantly change when syt1 is fully associated with the core SNARE complex. The broad distance distributions indicate that syt1 is structurally heterogeneous when bound to the SNAREs and does not assume a well-defined structure. Simulated annealing using electron paramagnetic resonance-derived distance restraints produces a family of syt1 structures where the Ca(2+)-binding regions of each domain face in roughly opposite directions. The results suggest that when associated with the SNAREs, syt1 is configured to bind opposing bilayers, but that the syt1/SNARE complex samples multiple conformational states.
Collapse
Affiliation(s)
- Alex L Lai
- Department of Chemistry, Biophysics Program and Center for Membrane Biology at the University of Virginia, Charlottesville, VA 22904-4319, USA
| | | | | | | | | |
Collapse
|
42
|
Giladi M, Boyman L, Mikhasenko H, Hiller R, Khananshvili D. Essential role of the CBD1-CBD2 linker in slow dissociation of Ca2+ from the regulatory two-domain tandem of NCX1. J Biol Chem 2010; 285:28117-25. [PMID: 20587421 PMCID: PMC2934676 DOI: 10.1074/jbc.m110.127001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/28/2010] [Indexed: 11/06/2022] Open
Abstract
In NCX proteins CBD1 and CBD2 domains are connected through a short linker (3 or 4 amino acids) forming a regulatory tandem (CBD12). Only three of the six CBD12 Ca(2+)-binding sites contribute to NCX regulation. Two of them are located on CBD1 (K(d) = approximately 0.2 microM), and one is on CBD2 (K(d) = approximately 5 microM). Here we analyze how the intrinsic properties of individual regulatory sites are affected by linker-dependent interactions in CBD12 (AD splice variant). The three sites of CBD12 and CBD1 + CBD2 have comparable K(d) values but differ dramatically in their Ca(2+) dissociation kinetics. CBD12 exhibits multiphasic kinetics for the dissociation of three Ca(2+) ions (k(r) = 280 s(-1), k(f) = 7 s(-1), and k(s) = 0.4 s(-1)), whereas the dissociation of two Ca(2+) ions from CBD1 (k(f) = 16 s(-1)) and one Ca(2+) ion from CBD2 (k(r) = 125 s(-1)) is monophasic. Insertion of seven alanines into the linker (CBD12-7Ala) abolishes slow dissociation of Ca(2+), whereas the kinetic and equilibrium properties of three Ca(2+) sites of CBD12-7Ala and CBD1 + CBD2 are similar. Therefore, the linker-dependent interactions in CBD12 decelerate the Ca(2+) on/off kinetics at a specific CBD1 site by 50-80-fold, thereby representing Ca(2+) "occlusion" at CBD12. Notably, the kinetic and equilibrium properties of the remaining two sites of CBD12 are "linker-independent," so their intrinsic properties are preserved in CBD12. In conclusion, the dynamic properties of three sites are specifically modified, conserved, diversified, and integrated by the linker in CBD12, thereby generating a wide range dynamic sensor.
Collapse
Affiliation(s)
- Moshe Giladi
- From the Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Israel
| | - Liron Boyman
- From the Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Israel
| | - Helen Mikhasenko
- From the Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Israel
| | - Reuben Hiller
- From the Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Israel
| | - Daniel Khananshvili
- From the Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Israel
| |
Collapse
|
43
|
Lek A, Lek M, North KN, Cooper ST. Phylogenetic analysis of ferlin genes reveals ancient eukaryotic origins. BMC Evol Biol 2010; 10:231. [PMID: 20667140 PMCID: PMC2923515 DOI: 10.1186/1471-2148-10-231] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 07/29/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ferlin gene family possesses a rare and identifying feature consisting of multiple tandem C2 domains and a C-terminal transmembrane domain. Much currently remains unknown about the fundamental function of this gene family, however, mutations in its two most well-characterised members, dysferlin and otoferlin, have been implicated in human disease. The availability of genome sequences from a wide range of species makes it possible to explore the evolution of the ferlin family, providing contextual insight into characteristic features that define the ferlin gene family in its present form in humans. RESULTS Ferlin genes were detected from all species of representative phyla, with two ferlin subgroups partitioned within the ferlin phylogenetic tree based on the presence or absence of a DysF domain. Invertebrates generally possessed two ferlin genes (one with DysF and one without), with six ferlin genes in most vertebrates (three DysF, three non-DysF). Expansion of the ferlin gene family is evident between the divergence of lamprey (jawless vertebrates) and shark (cartilaginous fish). Common to almost all ferlins is an N-terminal C2-FerI-C2 sandwich, a FerB motif, and two C-terminal C2 domains (C2E and C2F) adjacent to the transmembrane domain. Preservation of these structural elements throughout eukaryotic evolution suggests a fundamental role of these motifs for ferlin function. In contrast, DysF, C2DE, and FerA are optional, giving rise to subtle differences in domain topologies of ferlin genes. Despite conservation of multiple C2 domains in all ferlins, the C-terminal C2 domains (C2E and C2F) displayed higher sequence conservation and greater conservation of putative calcium binding residues across paralogs and orthologs. Interestingly, the two most studied non-mammalian ferlins (Fer-1 and Misfire) in model organisms C. elegans and D. melanogaster, present as outgroups in the phylogenetic analysis, with results suggesting reproduction-related divergence and specialization of species-specific functions within their genus. CONCLUSIONS Our phylogenetic studies provide evolutionary insight into the ferlin gene family. We highlight the existence of ferlin-like proteins throughout eukaryotic evolution, from unicellular phytoplankton and apicomplexan parasites, through to humans. We characterise the preservation of ferlin structural motifs, not only of C2 domains, but also the more poorly characterised ferlin-specific motifs representing the DysF, FerA and FerB domains. Our data suggest an ancient role of ferlin proteins, with lessons from vertebrate biology and human disease suggesting a role relating to vesicle fusion and plasma membrane specialization.
Collapse
Affiliation(s)
- Angela Lek
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Locked Bag 4001, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
44
|
Castillo Bennett J, Roggero CM, Mancifesta FE, Mayorga LS. Calcineurin-mediated dephosphorylation of synaptotagmin VI is necessary for acrosomal exocytosis. J Biol Chem 2010; 285:26269-78. [PMID: 20551332 DOI: 10.1074/jbc.m109.095752] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Regulated secretion is a fundamental process underlying the function of many cell types. In particular, acrosomal exocytosis in mammalian sperm is essential for egg fertilization. In general, exocytosis is initiated by a cytosolic calcium increase. In this report we show that calcium affects several factors during human sperm acrosomal exocytosis. By using an antibody that specifically recognizes synaptotagmin VI phosphorylated at the polybasic region of the C2B domain, we showed that a calcium-dependent dephosphorylation of this protein occurred at early stages of the acrosomal exocytosis in streptolysin O-permeabilized sperm. We identified the phosphatase as calcineurin and showed that the activity of this enzyme is absolutely required during the early steps of the secretory process. When added to sperm, an inhibitor-insensitive, catalytically active domain of calcineurin was able to rescue the effect of the specific calcineurin inhibitor cyclosporin A. This same domain dephosphorylated recombinant synaptotagmin VI C2B domain, validating this protein as a new substrate for calcineurin. When sperm were treated with catalytically active calcineurin before stimulation, exocytosis was inhibited, an effect that was rescued by the phosphomimetic synaptotagmin VI C2B-T418E,T419E mutant domain. These observations indicate that synaptotagmin must be dephosphorylated at a specific window of time and suggest that phosphorylated synaptotagmin has an active role at early stages of the acrosomal exocytosis.
Collapse
Affiliation(s)
- Jimena Castillo Bennett
- Instituto de Histología y Embriología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | | | | | | |
Collapse
|
45
|
Yang Z, Kise D, Saxena S. An Approach towards the Measurement of Nanometer Range Distances Based on Cu2+ Ions and ESR. J Phys Chem B 2010; 114:6165-74. [DOI: 10.1021/jp911637s] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhongyu Yang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Drew Kise
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
46
|
|
47
|
Choi UB, Strop P, Vrljic M, Chu S, Brunger AT, Weninger KR. Single-molecule FRET-derived model of the synaptotagmin 1-SNARE fusion complex. Nat Struct Mol Biol 2010; 17:318-24. [PMID: 20173763 PMCID: PMC2922927 DOI: 10.1038/nsmb.1763] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 12/11/2009] [Indexed: 12/11/2022]
Abstract
Synchronous neurotransmission is triggered when Ca(2+) binds to synaptotagmin 1 (Syt1), a synaptic-vesicle protein that interacts with SNAREs and membranes. We used single-molecule fluorescence resonance energy transfer (FRET) between synaptotagmin's two C2 domains to determine that their conformation consists of multiple states with occasional transitions, consistent with domains in random relative motion. SNARE binding results in narrower intrasynaptotagmin FRET distributions and less frequent transitions between states. We obtained an experimentally determined model of the elusive Syt1-SNARE complex using a multibody docking approach with 34 FRET-derived distances as restraints. The Ca(2+)-binding loops point away from the SNARE complex, so they may interact with the same membrane. The loop arrangement is similar to that of the crystal structure of SNARE-induced Ca(2+)-bound Syt3, suggesting a common mechanism by which the interaction between synaptotagmins and SNAREs aids in Ca(2+)-triggered fusion.
Collapse
Affiliation(s)
- Ucheor B Choi
- Department of Physics, North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Jakob B. Sørensen
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark;
| |
Collapse
|