1
|
Sridhara S. Multiple structural flavors of RNase P in precursor tRNA processing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1835. [PMID: 38479802 DOI: 10.1002/wrna.1835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 06/06/2024]
Abstract
The precursor transfer RNAs (pre-tRNAs) require extensive processing to generate mature tRNAs possessing proper fold, structural stability, and functionality required to sustain cellular viability. The road to tRNA maturation follows an ordered process: 5'-processing, 3'-processing, modifications at specific sites, if any, and 3'-CCA addition before aminoacylation and recruitment to the cellular protein synthesis machinery. Ribonuclease P (RNase P) is a universally conserved endonuclease in all domains of life, performing the hydrolysis of pre-tRNA sequences at the 5' end by the removal of phosphodiester linkages between nucleotides at position -1 and +1. Except for an archaeal species: Nanoarchaeum equitans where tRNAs are transcribed from leaderless-position +1, RNase P is indispensable for life and displays fundamental variations in terms of enzyme subunit composition, mechanism of substrate recognition and active site architecture, utilizing in all cases a two metal ion-mediated conserved catalytic reaction. While the canonical RNA-based ribonucleoprotein RNase P has been well-known to occur in bacteria, archaea, and eukaryotes, the occurrence of RNA-free protein-only RNase P in eukaryotes and RNA-free homologs of Aquifex RNase P in prokaryotes has been discovered more recently. This review aims to provide a comprehensive overview of structural diversity displayed by various RNA-based and RNA-free RNase P holoenzymes towards harnessing critical RNA-protein and protein-protein interactions in achieving conserved pre-tRNA processing functionality. Furthermore, alternate roles and functional interchangeability of RNase P are discussed in the context of its employability in several clinical and biotechnological applications. This article is categorized under: RNA Processing > tRNA Processing RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Sagar Sridhara
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Wu J, Yu S, Wang Y, Zhu J, Zhang Z. New insights into the role of ribonuclease P protein subunit p30 from tumor to internal reference. Front Oncol 2022; 12:1018279. [PMID: 36313673 PMCID: PMC9606464 DOI: 10.3389/fonc.2022.1018279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Ribonuclease P protein subunit p30 (RPP30) is a highly conserved housekeeping gene that exists in many species and tissues throughout the three life kingdoms (archaea, bacteria, and eukaryotes). RPP30 is closely related to a few types of tumors in human diseases but has a very stable transcription level in most cases. Based on this feature, increasing number of studies have used RPP30 as an internal reference gene. Here, the structure and basic functions of RPP30 are summarized and the likely relationship between RPP30 and various diseases in plants and human is outlined. Finally, the current application of RPP30 as an internal reference gene and its advantages over traditional internal reference genes are reviewed. RPP30 characteristics suggest that it has a good prospect of being selected as an internal reference; more work is needed to develop this research avenue.
Collapse
Affiliation(s)
- Junchao Wu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China,Department of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Sijie Yu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China,Department of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yalan Wang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China,Department of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Jie Zhu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Zhenhua Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China,*Correspondence: Zhenhua Zhang,
| |
Collapse
|
3
|
Phan HD, Norris AS, Du C, Stachowski K, Khairunisa B, Sidharthan V, Mukhopadhyay B, Foster M, Wysocki V, Gopalan V. Elucidation of structure-function relationships in Methanocaldococcus jannaschii RNase P, a multi-subunit catalytic ribonucleoprotein. Nucleic Acids Res 2022; 50:8154-8167. [PMID: 35848927 PMCID: PMC9371926 DOI: 10.1093/nar/gkac595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/27/2022] [Indexed: 11/12/2022] Open
Abstract
RNase P is a ribonucleoprotein (RNP) that catalyzes removal of the 5' leader from precursor tRNAs in all domains of life. A recent cryo-EM study of Methanocaldococcus jannaschii (Mja) RNase P produced a model at 4.6-Å resolution in a dimeric configuration, with each holoenzyme monomer containing one RNase P RNA (RPR) and one copy each of five RNase P proteins (RPPs; POP5, RPP30, RPP21, RPP29, L7Ae). Here, we used native mass spectrometry (MS), mass photometry (MP), and biochemical experiments that (i) validate the oligomeric state of the Mja RNase P holoenzyme in vitro, (ii) find a different stoichiometry for each holoenzyme monomer with up to two copies of L7Ae, and (iii) assess whether both L7Ae copies are necessary for optimal cleavage activity. By mutating all kink-turns in the RPR, we made the discovery that abolishing the canonical L7Ae-RPR interactions was not detrimental for RNase P assembly and function due to the redundancy provided by protein-protein interactions between L7Ae and other RPPs. Our results provide new insights into the architecture and evolution of RNase P, and highlight the utility of native MS and MP in integrated structural biology approaches that seek to augment the information obtained from low/medium-resolution cryo-EM models.
Collapse
Affiliation(s)
- Hong-Duc Phan
- Department of Chemistry and Biochemistry, Columbus, OH 43210, USA
- The Ohio State Biochemistry Program, Columbus, OH 43210, USA
- Center for RNA Biology, Columbus, OH 43210, USA
| | - Andrew S Norris
- Department of Chemistry and Biochemistry, Columbus, OH 43210, USA
- Center for RNA Biology, Columbus, OH 43210, USA
- Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Chen Du
- Department of Chemistry and Biochemistry, Columbus, OH 43210, USA
- Center for RNA Biology, Columbus, OH 43210, USA
- Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Kye Stachowski
- Department of Chemistry and Biochemistry, Columbus, OH 43210, USA
- Center for RNA Biology, Columbus, OH 43210, USA
| | - Bela H Khairunisa
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Genetics, Bioinformatics, and Computational Biology Program, Virginia Tech, Blacksburg, VA 24061, USA
| | - Vaishnavi Sidharthan
- Department of Chemistry and Biochemistry, Columbus, OH 43210, USA
- The Ohio State Biochemistry Program, Columbus, OH 43210, USA
- Center for RNA Biology, Columbus, OH 43210, USA
| | | | - Mark P Foster
- Department of Chemistry and Biochemistry, Columbus, OH 43210, USA
- The Ohio State Biochemistry Program, Columbus, OH 43210, USA
- Center for RNA Biology, Columbus, OH 43210, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, Columbus, OH 43210, USA
- The Ohio State Biochemistry Program, Columbus, OH 43210, USA
- Center for RNA Biology, Columbus, OH 43210, USA
- Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, Columbus, OH 43210, USA
- The Ohio State Biochemistry Program, Columbus, OH 43210, USA
- Center for RNA Biology, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Phan HD, Lai LB, Zahurancik WJ, Gopalan V. The many faces of RNA-based RNase P, an RNA-world relic. Trends Biochem Sci 2021; 46:976-991. [PMID: 34511335 DOI: 10.1016/j.tibs.2021.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/11/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022]
Abstract
RNase P is an essential enzyme that catalyzes removal of the 5' leader from precursor transfer RNAs. The ribonucleoprotein (RNP) form of RNase P is present in all domains of life and comprises a single catalytic RNA (ribozyme) and a variable number of protein cofactors. Recent cryo-electron microscopy structures of representative archaeal and eukaryotic (nuclear) RNase P holoenzymes bound to tRNA substrate/product provide high-resolution detail on subunit organization, topology, and substrate recognition in these large, multisubunit catalytic RNPs. These structures point to the challenges in understanding how proteins modulate the RNA functional repertoire and how the structure of an ancient RNA-based catalyst was reshaped during evolution by new macromolecular associations that were likely necessitated by functional/regulatory coupling.
Collapse
Affiliation(s)
- Hong-Duc Phan
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Lien B Lai
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Walter J Zahurancik
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Venkat Gopalan
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
5
|
Perederina A, Berezin I, Krasilnikov AS. In vitro reconstitution and analysis of eukaryotic RNase P RNPs. Nucleic Acids Res 2019; 46:6857-6868. [PMID: 29722866 PMCID: PMC6061874 DOI: 10.1093/nar/gky333] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/22/2018] [Indexed: 12/23/2022] Open
Abstract
RNase P is a ubiquitous site-specific endoribonuclease primarily responsible for the maturation of tRNA. Throughout the three domains of life, the canonical form of RNase P is a ribonucleoprotein (RNP) built around a catalytic RNA. The core RNA is well conserved from bacteria to eukaryotes, whereas the protein parts vary significantly. The most complex and the least understood form of RNase P is found in eukaryotes, where multiple essential proteins playing largely unknown roles constitute the bulk of the enzyme. Eukaryotic RNase P was considered intractable to in vitro reconstitution, mostly due to insolubility of its protein components, which hindered its studies. We have developed a robust approach to the in vitro reconstitution of Saccharomyces cerevisiae RNase P RNPs and used it to analyze the interplay and roles of RNase P components. The results eliminate the major obstacle to biochemical and structural studies of eukaryotic RNase P, identify components required for the activation of the catalytic RNA, reveal roles of proteins in the enzyme stability, localize proteins on RNase P RNA, and demonstrate the interdependence of the binding of RNase P protein modules to the core RNA.
Collapse
Affiliation(s)
- Anna Perederina
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Igor Berezin
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Andrey S Krasilnikov
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.,Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
6
|
Clouet-d'Orval B, Batista M, Bouvier M, Quentin Y, Fichant G, Marchfelder A, Maier LK. Insights into RNA-processing pathways and associated RNA-degrading enzymes in Archaea. FEMS Microbiol Rev 2018; 42:579-613. [PMID: 29684129 DOI: 10.1093/femsre/fuy016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
RNA-processing pathways are at the centre of regulation of gene expression. All RNA transcripts undergo multiple maturation steps in addition to covalent chemical modifications to become functional in the cell. This includes destroying unnecessary or defective cellular RNAs. In Archaea, information on mechanisms by which RNA species reach their mature forms and associated RNA-modifying enzymes are still fragmentary. To date, most archaeal actors and pathways have been proposed in light of information gathered from Bacteria and Eukarya. In this context, this review provides a state of the art overview of archaeal endoribonucleases and exoribonucleases that cleave and trim RNA species and also of the key small archaeal proteins that bind RNAs. Furthermore, synthetic up-to-date views of processing and biogenesis pathways of archaeal transfer and ribosomal RNAs as well as of maturation of stable small non-coding RNAs such as CRISPR RNAs, small C/D and H/ACA box guide RNAs, and other emerging classes of small RNAs are described. Finally, prospective post-transcriptional mechanisms to control archaeal messenger RNA quality and quantity are discussed.
Collapse
Affiliation(s)
- Béatrice Clouet-d'Orval
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Manon Batista
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Marie Bouvier
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Yves Quentin
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Gwennaele Fichant
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | | | | |
Collapse
|
7
|
Gopalan V, Jarrous N, Krasilnikov AS. Chance and necessity in the evolution of RNase P. RNA (NEW YORK, N.Y.) 2018; 24:1-5. [PMID: 28971852 PMCID: PMC5733564 DOI: 10.1261/rna.063107.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 09/22/2017] [Indexed: 05/20/2023]
Abstract
RNase P catalyzes 5'-maturation of tRNAs in all three domains of life. This primary function is accomplished by either a ribozyme-centered ribonucleoprotein (RNP) or a protein-only variant (with one to three polypeptides). The large, multicomponent archaeal and eukaryotic RNase P RNPs appear disproportionate to the simplicity of their role in tRNA 5'-maturation, prompting the question of why the seemingly gratuitously complex RNP forms of RNase P were not replaced with simpler protein counterparts. Here, motivated by growing evidence, we consider the hypothesis that the large RNase P RNP was retained as a direct consequence of multiple roles played by its components in processes that are not related to the canonical RNase P function.
Collapse
Affiliation(s)
- Venkat Gopalan
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Nayef Jarrous
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Andrey S Krasilnikov
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
8
|
Lai LB, Tanimoto A, Lai SM, Chen WY, Marathe IA, Westhof E, Wysocki VH, Gopalan V. A novel double kink-turn module in euryarchaeal RNase P RNAs. Nucleic Acids Res 2017; 45:7432-7440. [PMID: 28525600 PMCID: PMC5499556 DOI: 10.1093/nar/gkx388] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/25/2017] [Indexed: 01/18/2023] Open
Abstract
RNase P is primarily responsible for the 5΄ maturation of transfer RNAs (tRNAs) in all domains of life. Archaeal RNase P is a ribonucleoprotein made up of one catalytic RNA and five protein cofactors including L7Ae, which is known to bind the kink-turn (K-turn), an RNA structural element that causes axial bending. However, the number and location of K-turns in archaeal RNase P RNAs (RPRs) are unclear. As part of an integrated approach, we used native mass spectrometry to assess the number of L7Ae copies that bound the RPR and site-specific hydroxyl radical-mediated footprinting to localize the K-turns. Mutagenesis of each of the putative K-turns singly or in combination decreased the number of bound L7Ae copies, and either eliminated or changed the L7Ae footprint on the mutant RPRs. In addition, our results support an unprecedented ‘double K-turn’ module in type A and type M archaeal RPR variants.
Collapse
Affiliation(s)
- Lien B Lai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Akiko Tanimoto
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Stella M Lai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Wen-Yi Chen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ila A Marathe
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Eric Westhof
- Université de Strasbourg, Centre National de la Recherche Scientifique, Architecture et Réactivité de l'ARN, UPR9002, F-67084, Strasbourg, France
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Gao X, Oshima K, Ueda T, Nakashima T, Kimura M. A three-dimensional model of RNase P in the hyperthermophilic archaeon Pyrococcus horikoshii OT3. Biochem Biophys Res Commun 2017; 493:1063-1068. [PMID: 28935369 DOI: 10.1016/j.bbrc.2017.09.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 08/31/2017] [Accepted: 09/15/2017] [Indexed: 02/02/2023]
Abstract
Ribonuclease P (RNase P) is an endoribonuclease involved in maturation of the 5'-end of tRNA. We found previously that RNase P in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 consists of a catalytic RNase P RNA (PhopRNA) and five protein cofactors designated PhoPop5, PhoRpp21, PhoRpp29, PhoRpp30, and PhoRpp38. The crystal structures of the five proteins have been determined, a three-dimensional (3-D) model of PhopRNA has been constructed, and biochemical data, including protein-RNA interaction sites, have become available. Here, this information was combined to orient the crystallographic structures of the proteins relative to their RNA binding sites in the PhopRNA model. Some alterations were made to the PhopRNA model to improve the fit. In the resulting structure, a heterotetramer composed of PhoPop5 and PhoRpp30 bridges helices P3 and P16 in the PhopRNA C-domain, thereby probably stabilizing a double-stranded RNA structure (helix P4) containing catalytic Mg2+ ions, while a heterodimer of PhoRpp21 and PhoRpp29 locates on a single-stranded loop connecting helices P11 and P12 in the specificity domain (S-domain) in PhopRNA, probably forming an appropriate conformation of the precursor tRNA (pre-tRNA) binding site. The fifth protein PhoRpp38 binds each kink-turn (K-turn) motif in helices P12.1, P12.2, and P16 in PhopRNA. Comparison of the structure of the resulting 3-D model with that of bacterial RNase P suggests transition from RNA-RNA interactions in bacterial RNase P to protein-RNA interactions in archaeal RNase P. The proposed 3-D model of P. horikoshii RNase P will serve as a framework for further structural and functional studies on archaeal, as well as eukaryotic, RNase Ps.
Collapse
Affiliation(s)
- Xuzhu Gao
- Laboratory of Structural Biology, Graduate School of Systems Life Sciences, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan
| | - Kosuke Oshima
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan
| | - Toshifumi Ueda
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan
| | - Takashi Nakashima
- Laboratory of Structural Biology, Graduate School of Systems Life Sciences, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan; Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan
| | - Makoto Kimura
- Laboratory of Structural Biology, Graduate School of Systems Life Sciences, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan; Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan.
| |
Collapse
|
10
|
Jiang D, Izumi K, Ueda T, Oshima K, Nakashima T, Kimura M. Functional characterization of archaeal homologs of human nuclear RNase P proteins Rpp21 and Rpp29 provides insights into the molecular basis of their cooperativity in catalysis. Biochem Biophys Res Commun 2017; 482:68-74. [DOI: 10.1016/j.bbrc.2016.10.142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 10/29/2016] [Indexed: 10/20/2022]
|
11
|
Klemm BP, Wu N, Chen Y, Liu X, Kaitany KJ, Howard MJ, Fierke CA. The Diversity of Ribonuclease P: Protein and RNA Catalysts with Analogous Biological Functions. Biomolecules 2016; 6:biom6020027. [PMID: 27187488 PMCID: PMC4919922 DOI: 10.3390/biom6020027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022] Open
Abstract
Ribonuclease P (RNase P) is an essential endonuclease responsible for catalyzing 5' end maturation in precursor transfer RNAs. Since its discovery in the 1970s, RNase P enzymes have been identified and studied throughout the three domains of life. Interestingly, RNase P is either RNA-based, with a catalytic RNA subunit, or a protein-only (PRORP) enzyme with differential evolutionary distribution. The available structural data, including the active site data, provides insight into catalysis and substrate recognition. The hydrolytic and kinetic mechanisms of the two forms of RNase P enzymes are similar, yet features unique to the RNA-based and PRORP enzymes are consistent with different evolutionary origins. The various RNase P enzymes, in addition to their primary role in tRNA 5' maturation, catalyze cleavage of a variety of alternative substrates, indicating a diversification of RNase P function in vivo. The review concludes with a discussion of recent advances and interesting research directions in the field.
Collapse
Affiliation(s)
- Bradley P Klemm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Nancy Wu
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yu Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Kipchumba J Kaitany
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Michael J Howard
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| |
Collapse
|
12
|
Samanta MP, Lai SM, Daniels CJ, Gopalan V. Sequence Analysis and Comparative Study of the Protein Subunits of Archaeal RNase P. Biomolecules 2016; 6:biom6020022. [PMID: 27104580 PMCID: PMC4919917 DOI: 10.3390/biom6020022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 12/21/2022] Open
Abstract
RNase P, a ribozyme-based ribonucleoprotein (RNP) complex that catalyzes tRNA 5′-maturation, is ubiquitous in all domains of life, but the evolution of its protein components (RNase P proteins, RPPs) is not well understood. Archaeal RPPs may provide clues on how the complex evolved from an ancient ribozyme to an RNP with multiple archaeal and eukaryotic (homologous) RPPs, which are unrelated to the single bacterial RPP. Here, we analyzed the sequence and structure of archaeal RPPs from over 600 available genomes. All five RPPs are found in eight archaeal phyla, suggesting that these RPPs arose early in archaeal evolutionary history. The putative ancestral genomic loci of archaeal RPPs include genes encoding several members of ribosome, exosome, and proteasome complexes, which may indicate coevolution/coordinate regulation of RNase P with other core cellular machineries. Despite being ancient, RPPs generally lack sequence conservation compared to other universal proteins. By analyzing the relative frequency of residues at every position in the context of the high-resolution structures of each of the RPPs (either alone or as functional binary complexes), we suggest residues for mutational analysis that may help uncover structure-function relationships in RPPs.
Collapse
Affiliation(s)
| | - Stella M Lai
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Charles J Daniels
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | - Venkat Gopalan
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
13
|
Lai SM, Lai LB, Foster MP, Gopalan V. The L7Ae protein binds to two kink-turns in the Pyrococcus furiosus RNase P RNA. Nucleic Acids Res 2014; 42:13328-38. [PMID: 25361963 PMCID: PMC4245976 DOI: 10.1093/nar/gku994] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The RNA-binding protein L7Ae, known for its role in translation (as part of ribosomes) and RNA modification (as part of sn/oRNPs), has also been identified as a subunit of archaeal RNase P, a ribonucleoprotein complex that employs an RNA catalyst for the Mg2+-dependent 5′ maturation of tRNAs. To better understand the assembly and catalysis of archaeal RNase P, we used a site-specific hydroxyl radical-mediated footprinting strategy to pinpoint the binding sites of Pyrococcus furiosus (Pfu) L7Ae on its cognate RNase P RNA (RPR). L7Ae derivatives with single-Cys substitutions at residues in the predicted RNA-binding interface (K42C/C71V, R46C/C71V, V95C/C71V) were modified with an iron complex of EDTA-2-aminoethyl 2-pyridyl disulfide. Upon addition of hydrogen peroxide and ascorbate, these L7Ae-tethered nucleases were expected to cleave the RPR at nucleotides proximal to the EDTA-Fe–modified residues. Indeed, footprinting experiments with an enzyme assembled with the Pfu RPR and five protein cofactors (POP5, RPP21, RPP29, RPP30 and L7Ae–EDTA-Fe) revealed specific RNA cleavages, localizing the binding sites of L7Ae to the RPR's catalytic and specificity domains. These results support the presence of two kink-turns, the structural motifs recognized by L7Ae, in distinct functional domains of the RPR and suggest testable mechanisms by which L7Ae contributes to RNase P catalysis.
Collapse
Affiliation(s)
- Stella M Lai
- Department of Chemistry & Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Lien B Lai
- Department of Chemistry & Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Mark P Foster
- Department of Chemistry & Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Venkat Gopalan
- Department of Chemistry & Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
14
|
Ma X, Lai LB, Lai SM, Tanimoto A, Foster MP, Wysocki VH, Gopalan V. Uncovering the Stoichiometry of Pyrococcus furiosusRNase P, a Multi-Subunit Catalytic Ribonucleoprotein Complex, by Surface-Induced Dissociation and Ion Mobility Mass Spectrometry. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Ma X, Lai LB, Lai SM, Tanimoto A, Foster MP, Wysocki VH, Gopalan V. Uncovering the stoichiometry of Pyrococcus furiosus RNase P, a multi-subunit catalytic ribonucleoprotein complex, by surface-induced dissociation and ion mobility mass spectrometry. Angew Chem Int Ed Engl 2014; 53:11483-7. [PMID: 25195671 DOI: 10.1002/anie.201405362] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/16/2014] [Indexed: 01/02/2023]
Abstract
We demonstrate that surface-induced dissociation (SID) coupled with ion mobility mass spectrometry (IM-MS) is a powerful tool for determining the stoichiometry of a multi-subunit ribonucleoprotein (RNP) complex assembled in a solution containing Mg(2+). We investigated Pyrococcus furiosus (Pfu) RNase P, an archaeal RNP that catalyzes tRNA 5' maturation. Previous step-wise, Mg(2+)-dependent reconstitutions of Pfu RNase P with its catalytic RNA subunit and two interacting protein cofactor pairs (RPP21⋅RPP29 and POP5⋅RPP30) revealed functional RNP intermediates en route to the RNase P enzyme, but provided no information on subunit stoichiometry. Our native MS studies with the proteins showed RPP21⋅RPP29 and (POP5⋅RPP30)2 complexes, but indicated a 1:1 composition for all subunits when either one or both protein complexes bind the cognate RNA. These results highlight the utility of SID and IM-MS in resolving conformational heterogeneity and yielding insights on RNP assembly.
Collapse
Affiliation(s)
- Xin Ma
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210 (USA)
| | | | | | | | | | | | | |
Collapse
|
16
|
Ueda T, Yamaguchi H, Miyanoshita M, Nakashima T, Kakuta Y, Kimura M. Characterization of the peripheral structures of archaeal RNase P RNA from Pyrococcus horikoshii OT3. J Biochem 2013; 155:25-33. [PMID: 24143022 DOI: 10.1093/jb/mvt092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Toshifumi Ueda
- Laboratory of Structural Biology, Graduate School of Sytems Life Sciences, Hakozaki 6-10-1, Fukuoka 812-8581, Japan; and Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Ribonuclease P (RNase P) is one of the first ribozymes discovered and it is found in all phylogenetic groups. It is responsible for processing the 5' end of pre-tRNAs as well as other RNA molecules. RNase P is formed by an RNA molecule responsible for catalysis and one or more proteins. Structural studies of the proteins from different organisms, the bacterial RNA component, and a bacterial RNase P holoenzyme/tRNA complex provide insights into the mechanism of this universal ribozyme. Together with the existing wealth of biochemical information, these studies provide atomic-level information on the mechanism of RNase P and continue to expand our understanding of the structure and architecture of large RNA molecules and ribonucleoprotein complexes, the nature of catalysis by ribozymes, the structural basis of recognition of RNA by RNA molecules, and the evolution of enzymes from the prebiotic, RNA-based world to the modern world.
Collapse
Affiliation(s)
- Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
18
|
Khanova E, Esakova O, Perederina A, Berezin I, Krasilnikov AS. Structural organizations of yeast RNase P and RNase MRP holoenzymes as revealed by UV-crosslinking studies of RNA-protein interactions. RNA (NEW YORK, N.Y.) 2012; 18:720-8. [PMID: 22332141 PMCID: PMC3312559 DOI: 10.1261/rna.030874.111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Eukaryotic ribonuclease (RNase) P and RNase MRP are closely related ribonucleoprotein complexes involved in the metabolism of various RNA molecules including tRNA, rRNA, and some mRNAs. While evolutionarily related to bacterial RNase P, eukaryotic enzymes of the RNase P/MRP family are much more complex. Saccharomyces cerevisiae RNase P consists of a catalytic RNA component and nine essential proteins; yeast RNase MRP has an RNA component resembling that in RNase P and 10 essential proteins, most of which are shared with RNase P. The structural organizations of eukaryotic RNases P/MRP are not clear. Here we present the results of RNA-protein UV crosslinking studies performed on RNase P and RNase MRP holoenzymes isolated from yeast. The results indicate locations of specific protein-binding sites in the RNA components of RNase P and RNase MRP and shed light on the structural organizations of these large ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Elena Khanova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Olga Esakova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Anna Perederina
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Igor Berezin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Andrey S. Krasilnikov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Corresponding author.E-mail .
| |
Collapse
|
19
|
Chen WY, Singh D, Lai LB, Stiffler MA, Lai HD, Foster MP, Gopalan V. Fidelity of tRNA 5'-maturation: a possible basis for the functional dependence of archaeal and eukaryal RNase P on multiple protein cofactors. Nucleic Acids Res 2012; 40:4666-80. [PMID: 22298511 PMCID: PMC3378863 DOI: 10.1093/nar/gks013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RNase P, which catalyzes tRNA 5′-maturation, typically comprises a catalytic RNase P RNA (RPR) and a varying number of RNase P proteins (RPPs): 1 in bacteria, at least 4 in archaea and 9 in eukarya. The four archaeal RPPs have eukaryotic homologs and function as heterodimers (POP5•RPP30 and RPP21•RPP29). By studying the archaeal Methanocaldococcus jannaschii RPR's cis cleavage of precursor tRNAGln (pre-tRNAGln), which lacks certain consensus structures/sequences needed for substrate recognition, we demonstrate that RPP21•RPP29 and POP5•RPP30 can rescue the RPR's mis-cleavage tendency independently by 4-fold and together by 25-fold, suggesting that they operate by distinct mechanisms. This synergistic and preferential shift toward correct cleavage results from the ability of archaeal RPPs to selectively increase the RPR's apparent rate of correct cleavage by 11 140-fold, compared to only 480-fold for mis-cleavage. Moreover, POP5•RPP30, like the bacterial RPP, helps normalize the RPR's rates of cleavage of non-consensus and consensus pre-tRNAs. We also show that archaeal and eukaryal RNase P, compared to their bacterial relatives, exhibit higher fidelity of 5′-maturation of pre-tRNAGln and some of its mutant derivatives. Our results suggest that protein-rich RNase P variants might have evolved to support flexibility in substrate recognition while catalyzing efficient, high-fidelity 5′-processing.
Collapse
Affiliation(s)
- Wen-Yi Chen
- Department of Biochemistry, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Xu Y, Oruganti SV, Gopalan V, Foster MP. Thermodynamics of coupled folding in the interaction of archaeal RNase P proteins RPP21 and RPP29. Biochemistry 2012; 51:926-35. [PMID: 22243443 DOI: 10.1021/bi201674d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We have used isothermal titration calorimetry (ITC) to identify and describe binding-coupled equilibria in the interaction between two protein subunits of archaeal ribonuclease P (RNase P). In all three domains of life, RNase P is a ribonucleoprotein complex that is primarily responsible for catalyzing the Mg²⁺-dependent cleavage of the 5' leader sequence of precursor tRNAs during tRNA maturation. In archaea, RNase P has been shown to be composed of one catalytic RNA and up to five proteins, four of which associate in the absence of RNA as two functional heterodimers, POP5-RPP30 and RPP21-RPP29. Nuclear magnetic resonance studies of the Pyrococcus furiosus RPP21 and RPP29 proteins in their free and complexed states provided evidence of significant protein folding upon binding. ITC experiments were performed over a range of temperatures, ionic strengths, and pH values, in buffers with varying ionization potentials, and with a folding-deficient RPP21 point mutant. These experiments revealed a negative heat capacity change (ΔC(p)), nearly twice that predicted from surface accessibility calculations, a strong salt dependence for the interaction, and proton release at neutral pH, but a small net contribution from these to the excess ΔC(p). We considered potential contributions from protein folding and burial of interfacial water molecules based on structural and spectroscopic data. We conclude that binding-coupled protein folding is likely responsible for a significant portion of the excess ΔC(p). These findings provide novel structural and thermodynamic insights into coupled equilibria that allow specificity in macromolecular assemblies.
Collapse
Affiliation(s)
- Yiren Xu
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | | | | | | |
Collapse
|
21
|
Hipp K, Galani K, Batisse C, Prinz S, Böttcher B. Modular architecture of eukaryotic RNase P and RNase MRP revealed by electron microscopy. Nucleic Acids Res 2011; 40:3275-88. [PMID: 22167472 PMCID: PMC3326328 DOI: 10.1093/nar/gkr1217] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ribonuclease P (RNase P) and RNase MRP are closely related ribonucleoprotein enzymes, which process RNA substrates including tRNA precursors for RNase P and 5.8 S rRNA precursors, as well as some mRNAs, for RNase MRP. The structures of RNase P and RNase MRP have not yet been solved, so it is unclear how the proteins contribute to the structure of the complexes and how substrate specificity is determined. Using electron microscopy and image processing we show that eukaryotic RNase P and RNase MRP have a modular architecture, where proteins stabilize the RNA fold and contribute to cavities, channels and chambers between the modules. Such features are located at strategic positions for substrate recognition by shape and coordination of the cleaved-off sequence. These are also the sites of greatest difference between RNase P and RNase MRP, highlighting the importance of the adaptation of this region to the different substrates.
Collapse
Affiliation(s)
- Katharina Hipp
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | | | | | | | | |
Collapse
|
22
|
Assembly of the complex between archaeal RNase P proteins RPP30 and Pop5. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2011; 2011:891531. [PMID: 22162665 PMCID: PMC3227427 DOI: 10.1155/2011/891531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 08/10/2011] [Accepted: 08/17/2011] [Indexed: 01/27/2023]
Abstract
RNase P is a highly conserved ribonucleoprotein enzyme that represents a model complex for understanding macromolecular RNA-protein interactions. Archaeal RNase P consists of one RNA and up to five proteins (Pop5, RPP30, RPP21, RPP29, and RPP38/L7Ae). Four of these proteins function in pairs (Pop5-RPP30 and RPP21–RPP29). We have used nuclear magnetic resonance (NMR) spectroscopy and isothermal titration calorimetry (ITC) to characterize the interaction between Pop5 and RPP30 from the hyperthermophilic archaeon Pyrococcus furiosus (Pfu). NMR backbone resonance assignments of free RPP30 (25 kDa) indicate that the protein is well structured in solution, with a secondary structure matching that observed in a closely related crystal structure. Chemical shift perturbations upon the addition of Pop5 (14 kDa) reveal its binding surface on RPP30. ITC experiments confirm a net 1 : 1 stoichiometry for this tight protein-protein interaction and exhibit complex isotherms, indicative of higher-order binding. Indeed, light scattering and size exclusion chromatography data reveal the complex to exist as a 78 kDa heterotetramer with two copies each of Pop5 and RPP30. These results will inform future efforts to elucidate the functional role of the Pop5-RPP30 complex in RNase P assembly and catalysis.
Collapse
|
23
|
Perederina A, Khanova E, Quan C, Berezin I, Esakova O, Krasilnikov AS. Interactions of a Pop5/Rpp1 heterodimer with the catalytic domain of RNase MRP. RNA (NEW YORK, N.Y.) 2011; 17:1922-31. [PMID: 21878546 PMCID: PMC3185923 DOI: 10.1261/rna.2855511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/27/2011] [Indexed: 05/22/2023]
Abstract
Ribonuclease (RNase) MRP is a multicomponent ribonucleoprotein complex closely related to RNase P. RNase MRP and eukaryotic RNase P share most of their protein components, as well as multiple features of their catalytic RNA moieties, but have distinct substrate specificities. While RNase P is practically universally found in all three domains of life, RNase MRP is essential in eukaryotes. The structural organizations of eukaryotic RNase P and RNase MRP are poorly understood. Here, we show that Pop5 and Rpp1, protein components found in both RNase P and RNase MRP, form a heterodimer that binds directly to the conserved area of the putative catalytic domain of RNase MRP RNA. The Pop5/Rpp1 binding site corresponds to the protein binding site in bacterial RNase P RNA. Structural and evolutionary roles of the Pop5/Rpp1 heterodimer in RNases P and MRP are discussed.
Collapse
Affiliation(s)
- Anna Perederina
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Elena Khanova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Chao Quan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Igor Berezin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Olga Esakova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Andrey S. Krasilnikov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Corresponding author.E-mail .
| |
Collapse
|
24
|
Chen WY, Xu Y, Cho IM, Oruganti SV, Foster MP, Gopalan V. Cooperative RNP assembly: complementary rescue of structural defects by protein and RNA subunits of archaeal RNase P. J Mol Biol 2011; 411:368-83. [PMID: 21683084 DOI: 10.1016/j.jmb.2011.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/09/2011] [Indexed: 12/31/2022]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein complex that utilizes a Mg(2+)-dependent RNA catalyst to cleave the 5' leader of precursor tRNAs (pre-tRNAs) and generate mature tRNAs. The bacterial RNase P protein (RPP) aids RNase P RNA (RPR) catalysis by promoting substrate binding, Mg(2+) coordination and product release. Archaeal RNase P comprises an RPR and at least four RPPs, which have eukaryal homologs and function as two binary complexes (POP5·RPP30 and RPP21·RPP29). Here, we employed a previously characterized substrate-enzyme conjugate [pre-tRNA(Tyr)-Methanocaldococcus jannaschii (Mja) RPR] to investigate the functional role of a universally conserved uridine in a bulge-helix structure in archaeal RPRs. Deletion of this bulged uridine resulted in an 80-fold decrease in the self-cleavage rate of pre-tRNA(Tyr)-MjaΔU RPR compared to the wild type, and this defect was partially ameliorated upon addition of either RPP pair. The catalytic defect in the archaeal mutant RPR mirrors that reported in a bacterial RPR and highlights a parallel in their active sites. Furthermore, an N-terminal deletion mutant of Pyrococcus furiosus (Pfu) RPP29 that is defective in assembling with its binary partner RPP21, as assessed by isothermal titration calorimetry and NMR spectroscopy, is functional when reconstituted with the cognate Pfu RPR. Collectively, these results indicate that archaeal RPPs are able to compensate for structural defects in their cognate RPR and vice-versa, and provide striking examples of the cooperative subunit interactions critical for driving archaeal RNase P toward its functional conformation.
Collapse
Affiliation(s)
- Wen-Yi Chen
- Department of Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
25
|
Reiner R, Alfiya-Mor N, Berrebi-Demma M, Wesolowski D, Altman S, Jarrous N. RNA binding properties of conserved protein subunits of human RNase P. Nucleic Acids Res 2011; 39:5704-14. [PMID: 21450806 PMCID: PMC3141246 DOI: 10.1093/nar/gkr126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human nuclear RNase P is required for transcription and processing of tRNA. This catalytic RNP has an H1 RNA moiety associated with ten distinct protein subunits. Five (Rpp20, Rpp21, Rpp25, Rpp29 and Pop5) out of eight of these protein subunits, prepared in refolded recombinant forms, bind to H1 RNA in vitro. Rpp20 and Rpp25 bind jointly to H1 RNA, even though each protein can interact independently with this transcript. Nuclease footprinting analysis reveals that Rpp20 and Rpp25 recognize overlapping regions in the P2 and P3 domains of H1 RNA. Rpp21 and Rpp29, which are sufficient for reconstitution of the endonucleolytic activity, bind to separate regions in the catalytic domain of H1 RNA. Common themes and discrepancies in the RNA-protein interactions between human nuclear RNase P and its related yeast and archaeal counterparts provide a rationale for the assembly of the fully active form of this enzyme.
Collapse
Affiliation(s)
- Robert Reiner
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
RNase P RNA is an ancient, nearly universal feature of life. As part of the ribonucleoprotein RNase P complex, the RNA component catalyzes essential removal of 5' leaders in pre-tRNAs. In 2004, Li and Altman computationally identified the RNase P RNA gene in all but three sequenced microbes: Nanoarchaeum equitans, Pyrobaculum aerophilum, and Aquifex aeolicus (all hyperthermophiles) [Li Y, Altman S (2004) RNA 10:1533-1540]. A recent study concluded that N. equitans does not have or require RNase P activity because it lacks 5' tRNA leaders. The "missing" RNase P RNAs in the other two species is perplexing given evidence or predictions that tRNAs are trimmed in both, prompting speculation that they may have developed novel alternatives to 5' pre-tRNA processing. Using comparative genomics and improved computational methods, we have now identified a radically minimized form of the RNase P RNA in five Pyrobaculum species and the related crenarchaea Caldivirga maquilingensis and Vulcanisaeta distributa, all retaining a conventional catalytic domain, but lacking a recognizable specificity domain. We confirmed 5' tRNA processing activity by high-throughput RNA sequencing and in vitro biochemical assays. The Pyrobaculum and Caldivirga RNase P RNAs are the smallest naturally occurring form yet discovered to function as trans-acting precursor tRNA-processing ribozymes. Loss of the specificity domain in these RNAs suggests altered substrate specificity and could be a useful model for finding other potential roles of RNase P. This study illustrates an effective combination of next-generation RNA sequencing, computational genomics, and biochemistry to identify a divergent, formerly undetectable variant of an essential noncoding RNA gene.
Collapse
|
27
|
Stamatopoulou V, Toumpeki C, Tzakos A, Vourekas A, Drainas D. Domain Architecture of the DRpp29 Protein and Its Interaction with the RNA Subunit of Dictyostelium discoideum RNase P. Biochemistry 2010; 49:10714-27. [DOI: 10.1021/bi101297z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Chrisavgi Toumpeki
- Department of Biochemistry, School of Medicine, University of Patras, 26500 Patras, Greece
| | - Andreas Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Anastassios Vourekas
- Department of Biochemistry, School of Medicine, University of Patras, 26500 Patras, Greece
| | - Denis Drainas
- Department of Biochemistry, School of Medicine, University of Patras, 26500 Patras, Greece
| |
Collapse
|
28
|
Sinapah S, Wu S, Chen Y, Pettersson BMF, Gopalan V, Kirsebom LA. Cleavage of model substrates by archaeal RNase P: role of protein cofactors in cleavage-site selection. Nucleic Acids Res 2010; 39:1105-16. [PMID: 20935047 PMCID: PMC3035440 DOI: 10.1093/nar/gkq732] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
RNase P is a catalytic ribonucleoprotein primarily involved in tRNA biogenesis. Archaeal RNase P comprises a catalytic RNase P RNA (RPR) and at least four protein cofactors (RPPs), which function as two binary complexes (POP5•RPP30 and RPP21• RPP29). Exploiting the ability to assemble a functional Pyrococcus furiosus (Pfu) RNase P in vitro, we examined the role of RPPs in influencing substrate recognition by the RPR. We first demonstrate that Pfu RPR, like its bacterial and eukaryal counterparts, cleaves model hairpin loop substrates albeit at rates 90- to 200-fold lower when compared with cleavage by bacterial RPR, highlighting the functionally comparable catalytic cores in bacterial and archaeal RPRs. By investigating cleavage-site selection exhibited by Pfu RPR (±RPPs) with various model substrates missing consensus-recognition elements, we determined substrate features whose recognition is facilitated by either POP5•RPP30 or RPP21•RPP29 (directly or indirectly via the RPR). Our results also revealed that Pfu RPR + RPP21•RPP29 displays substrate-recognition properties coinciding with those of the bacterial RPR-alone reaction rather than the Pfu RPR, and that this behaviour is attributable to structural differences in the substrate-specificity domains of bacterial and archaeal RPRs. Moreover, our data reveal a hierarchy in recognition elements that dictates cleavage-site selection by archaeal RNase P.
Collapse
Affiliation(s)
- Sylvie Sinapah
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University SE-751 24, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Nuclear ribonuclease (RNase) P is a ubiquitous essential ribonucleoprotein complex, one of only two known RNA-based enzymes found in all three domains of life. The RNA component is the catalytic moiety of RNases P across all phylogenetic domains; it contains a well-conserved core, whereas peripheral structural elements are diverse. RNA components of eukaryotic RNases P tend to be less complex than their bacterial counterparts, a simplification that is accompanied by a dramatic reduction of their catalytic ability in the absence of protein. The size and complexity of the protein moieties increase dramatically from bacterial to archaeal to eukaryotic enzymes, apparently reflecting the delegation of some structural functions from RNA to proteins and, perhaps, in response to the increased complexity of the cellular environment in the more evolutionarily advanced organisms; the reasons for the increased dependence on proteins are not clear. We review current information on RNase P and the closely related universal eukaryotic enzyme RNase MRP, focusing on their functions and structural organization.
Collapse
Affiliation(s)
- Olga Esakova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
30
|
Jarrous N, Gopalan V. Archaeal/eukaryal RNase P: subunits, functions and RNA diversification. Nucleic Acids Res 2010; 38:7885-94. [PMID: 20716516 PMCID: PMC3001073 DOI: 10.1093/nar/gkq701] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNase P, a catalytic ribonucleoprotein (RNP), is best known for its role in precursor tRNA processing. Recent discoveries have revealed that eukaryal RNase P is also required for transcription and processing of select non-coding RNAs, thus enmeshing RNase P in an intricate network of machineries required for gene expression. Moreover, the RNase P RNA seems to have been subject to gene duplication, selection and divergence to generate two new catalytic RNPs, RNase MRP and MRP-TERT, which perform novel functions encompassing cell cycle control and stem cell biology. We present new evidence and perspectives on the functional diversification of the RNase P RNA to highlight it as a paradigm for the evolutionary plasticity that underlies the extant broad repertoire of catalytic and unexpected regulatory roles played by RNA-driven RNPs.
Collapse
Affiliation(s)
- Nayef Jarrous
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | |
Collapse
|
31
|
Chen WY, Pulukkunat DK, Cho IM, Tsai HY, Gopalan V. Dissecting functional cooperation among protein subunits in archaeal RNase P, a catalytic ribonucleoprotein complex. Nucleic Acids Res 2010; 38:8316-27. [PMID: 20705647 PMCID: PMC3001054 DOI: 10.1093/nar/gkq668] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
RNase P catalyzes the Mg2+-dependent 5′-maturation of precursor tRNAs. Biochemical studies on the bacterial holoenzyme, composed of one catalytic RNase P RNA (RPR) and one RNase P protein (RPP), have helped understand the pleiotropic roles (including substrate/Mg2+ binding) by which a protein could facilitate RNA catalysis. As a model for uncovering the functional coordination among multiple proteins that aid an RNA catalyst, we use archaeal RNase P, which comprises one catalytic RPR and at least four RPPs. Exploiting our previous finding that these archaeal RPPs function as two binary RPP complexes (POP5•RPP30 and RPP21•RPP29), we prepared recombinant RPP pairs from three archaea and established interchangeability of subunits through homologous/heterologous assemblies. Our finding that archaeal POP5•RPP30 reconstituted with bacterial and organellar RPRs suggests functional overlap of this binary complex with the bacterial RPP and highlights their shared recognition of a phylogenetically-conserved RPR catalytic core, whose minimal attributes we further defined through deletion mutagenesis. Moreover, single-turnover kinetic studies revealed that while POP5•RPP30 is solely responsible for enhancing the RPR’s rate of precursor tRNA cleavage (by 60-fold), RPP21•RPP29 contributes to increased substrate affinity (by 16-fold). Collectively, these studies provide new perspectives on the functioning and evolution of an ancient, catalytic ribonucleoprotein.
Collapse
Affiliation(s)
- Wen-Yi Chen
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
32
|
Sun FJ, Caetano-Anollés G. The ancient history of the structure of ribonuclease P and the early origins of Archaea. BMC Bioinformatics 2010; 11:153. [PMID: 20334683 PMCID: PMC2858038 DOI: 10.1186/1471-2105-11-153] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/24/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ribonuclease P is an ancient endonuclease that cleaves precursor tRNA and generally consists of a catalytic RNA subunit (RPR) and one or more proteins (RPPs). It represents an important macromolecular complex and model system that is universally distributed in life. Its putative origins have inspired fundamental hypotheses, including the proposal of an ancient RNA world. RESULTS To study the evolution of this complex, we constructed rooted phylogenetic trees of RPR molecules and substructures and estimated RPP age using a cladistic method that embeds structure directly into phylogenetic analysis. The general approach was used previously to study the evolution of tRNA, SINE RNA and 5S rRNA, the origins of metabolism, and the evolution and complexity of the protein world, and revealed here remarkable evolutionary patterns. Trees of molecules uncovered the tripartite nature of life and the early origin of archaeal RPRs. Trees of substructures showed molecules originated in stem P12 and were accessorized with a catalytic P1-P4 core structure before the first substructure was lost in Archaea. This core currently interacts with RPPs and ancient segments of the tRNA molecule. Finally, a census of protein domain structure in hundreds of genomes established RPPs appeared after the rise of metabolic enzymes at the onset of the protein world. CONCLUSIONS The study provides a detailed account of the history and early diversification of a fundamental ribonucleoprotein and offers further evidence in support of the existence of a tripartite organismal world that originated by the segregation of archaeal lineages from an ancient community of primordial organisms.
Collapse
Affiliation(s)
- Feng-Jie Sun
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun 130024, Jilin Province, PR China
- W.M. Keck Center for Comparative and Functional Genomics, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
33
|
Hands-Taylor KLD, Martino L, Tata R, Babon JJ, Bui TT, Drake AF, Beavil RL, Pruijn GJM, Brown PR, Conte MR. Heterodimerization of the human RNase P/MRP subunits Rpp20 and Rpp25 is a prerequisite for interaction with the P3 arm of RNase MRP RNA. Nucleic Acids Res 2010; 38:4052-66. [PMID: 20215441 PMCID: PMC2896528 DOI: 10.1093/nar/gkq141] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Rpp20 and Rpp25 are two key subunits of the human endoribonucleases RNase P and MRP. Formation of an Rpp20–Rpp25 complex is critical for enzyme function and sub-cellular localization. We present the first detailed in vitro analysis of their conformational properties, and a biochemical and biophysical characterization of their mutual interaction and RNA recognition. This study specifically examines the role of the Rpp20/Rpp25 association in the formation of the ribonucleoprotein complex. The interaction of the individual subunits with the P3 arm of the RNase MRP RNA is revealed to be negligible whereas the 1:1 Rpp20:Rpp25 complex binds to the same target with an affinity of the order of nM. These results unambiguously demonstrate that Rpp20 and Rpp25 interact with the P3 RNA as a heterodimer, which is formed prior to RNA binding. This creates a platform for the design of future experiments aimed at a better understanding of the function and organization of RNase P and MRP. Finally, analyses of interactions with deletion mutant proteins constructed with successively shorter N- and C-terminal sequences indicate that the Alba-type core domain of both Rpp20 and Rpp25 contains most of the determinants for mutual association and P3 RNA recognition.
Collapse
Affiliation(s)
- Katherine L. D. Hands-Taylor
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Luigi Martino
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Renée Tata
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Jeffrey J. Babon
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Tam T. Bui
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Alex F. Drake
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Rebecca L. Beavil
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Ger J. M. Pruijn
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Paul R. Brown
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
- *To whom correspondence should be addressed. Tel: +44 20 7848 6194; Fax: +44 20 7848 6435;
| |
Collapse
|
34
|
Lai LB, Vioque A, Kirsebom LA, Gopalan V. Unexpected diversity of RNase P, an ancient tRNA processing enzyme: challenges and prospects. FEBS Lett 2009; 584:287-96. [PMID: 19931535 DOI: 10.1016/j.febslet.2009.11.048] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 11/09/2009] [Accepted: 11/13/2009] [Indexed: 12/16/2022]
Abstract
For an enzyme functioning predominantly in a seemingly housekeeping role of 5' tRNA maturation, RNase P displays a remarkable diversity in subunit make-up across the three domains of life. Despite the protein complexity of this ribonucleoprotein enzyme increasing dramatically from bacteria to eukarya, the catalytic function rests with the RNA subunit during evolution. However, the recent demonstration of a protein-only human mitochondrial RNase P has added further intrigue to the compositional variability of this enzyme. In this review, we discuss some possible reasons underlying the structural diversity of the active sites, and use them as thematic bases for elaborating new directions to understand how functional variations might have contributed to the complex evolution of RNase P.
Collapse
Affiliation(s)
- Lien B Lai
- Department of Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|