1
|
Vasudevan S, Park PSH. A Y178C rhodopsin mutation causes aggregation and comparatively severe retinal degeneration. Cell Death Discov 2025; 11:32. [PMID: 39875362 PMCID: PMC11775123 DOI: 10.1038/s41420-025-02311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/02/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
Rhodopsin is the light-activated G protein-coupled receptor that initiates vision in photoreceptor cells of the retina. Numerous mutations in rhodopsin promote receptor misfolding and aggregation, causing autosomal dominant retinitis pigmentosa, a progressive retinal degenerative disease. The mechanism by which these mutations cause photoreceptor cell death, and the role aggregation plays in this process is still unclear. We recently demonstrated with the P23H and G188R rhodopsin mutants that the severity of aggregation observed in vitro is also reflected in vivo and impacts the rate of retinal degeneration. A Y178C rhodopsin mutant was investigated here to determine if this relationship applies broadly among mutations that cause misfolding and aggregation of the receptor. In vitro characterization indicated the Y178C rhodopsin mutant exhibits similar properties to the more severely aggregating G188R rhodopsin mutant, where the mutant is mislocalized to the endoplasmic reticulum in HEK293 cells and form aggregates that cannot be rescued by treatment with the retinoid 9-cis retinal. Despite these similarities in vitro, the Y178C rhodopsin mutant promoted a more severe retinal degeneration compared to the G188R mutant in vivo in mice. Aggregates of the Y178C rhodopsin mutant labeled by the dye PROTEOSTAT were morphologically similar to those formed by both the P23H and G188R rhodopsin mutants. There was, however, significantly greater photoreceptor cell death occurring independently of PROTEOSTAT-labeled aggregates in mice expressing the Y178C rhodopsin mutant compared to those expressing either the P23H or G188R rhodopsin mutants. Here, we demonstrate that PROTEOSTAT-labeled aggregates are not the sole cause of photoreceptor cell death promoted by the Y178C rhodopsin mutation in vivo, and there may be alternate aggregate forms contributing to cell death in these mice.
Collapse
Affiliation(s)
- Sreelakshmi Vasudevan
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
2
|
Trastulli G, Megalizzi D, Calvino G, Andreucci S, Zampatti S, Strafella C, Caltagirone C, Giardina E, Cascella R. RHO Variants and Autosomal Dominant Retinitis Pigmentosa: Insights from the Italian Genetic Landscape. Genes (Basel) 2024; 15:1158. [PMID: 39336749 PMCID: PMC11431160 DOI: 10.3390/genes15091158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Autosomal dominant retinitis pigmentosa (AD-RP) is caused by several genes, among which RHO is one of the most investigated. This article will be focused on RHO and its role in explaining AD-RP cases in the Italian population, taking advantage of the experience of the Genomic Medicine Laboratory UILDM at the Santa Lucia Foundation IRCCS. The retrospective evaluation of the distribution of RHO variants in the Italian patients with a clinical suspicion of RP pointed out eight variants. Of them, four variants (c.632A>T, c.1040C>T, c.1030C>T, c.383_392del) were pathogenic and made it possible to confirm the diagnosis of AD-RP in nine affected patients, highlighting a lower frequency (17%) of RHO variants compared to previous studies (30-40%). In addition, this study identified four variants classified as Variants of Uncertain Significance (VUS). In conclusion, the experience of the Genomic Medicine Laboratory provides an overview of the distribution of RHO variants in the Italian population, highlighting a slightly lower frequency of these variants in our cases series compared to previous reports. However, further studies on RHO variants are essential to characterize peculiar RP phenotypes and extend the spectrum of disease associated with this gene.
Collapse
Affiliation(s)
- Giulia Trastulli
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Domenica Megalizzi
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Giulia Calvino
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Sarah Andreucci
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Stefania Zampatti
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Raffaella Cascella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Catholic University Our Lady of Good Counsel, 1010 Tirana, Albania
| |
Collapse
|
3
|
Cao B, Dahlen JV, Sen M, Beyer T, Leonhard T, Kilger E, Arango-Gonzalez B, Ueffing M. Mutant dominant-negative rhodopsin∆I256 causes protein aggregates degraded via ERAD and prevents normal rhodopsin from proper membrane trafficking. Front Mol Biosci 2024; 11:1369000. [PMID: 38828393 PMCID: PMC11140085 DOI: 10.3389/fmolb.2024.1369000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/23/2024] [Indexed: 06/05/2024] Open
Abstract
Dominant mutations in the rhodopsin gene (Rho) contribute to 25% of autosomal dominant retinitis pigmentosa (adRP), characterized by photoreceptor loss and progressive blindness. One such mutation, Rho ∆I256 , carries a 3-bp deletion, resulting in the loss of one of two isoleucines at codons 255 and 256. Our investigation, using recombinant expression in HEK293 and COS-7 cells, revealed that Rho ∆I256, akin to the known adRP mutation Rho P23H, induces the formation of rhodopsin protein (RHO) aggregates at the perinuclear region. Co-expression of Rho ∆I256 or Rho P23H with wild-type Rho WT, mimicking the heterozygous genotype of adRP patients, demonstrated the dominant-negative effect, as all isoforms were retained in perinuclear aggregates, impeding membrane trafficking. In retinal explants from WT mice, mislocalization of labeled adRP isoforms at the outer nuclear layer was observed. Further analysis revealed that RHO∆I256 aggregates are retained at the endoplasmic reticulum (ER), undergo ER-associated degradation (ERAD), and colocalize with the AAA-ATPase escort chaperone valosin-containing protein (VCP). These aggregates are polyubiquitinated and partially colocalized with the 20S proteasome subunit beta-5 (PSMB5). Pharmacological inhibition of proteasome- or VCP activity increased RHO∆I256 aggregate size. In summary, RHO∆I256 exhibits dominant pathogenicity by sequestering normal RHOWT in ER aggregates, preventing its membrane trafficking and following the ERAD degradation.
Collapse
Affiliation(s)
- Bowen Cao
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tuebingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tuebingen, Germany
| | - Johanna Valentina Dahlen
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tuebingen, Germany
| | - Merve Sen
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tuebingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tuebingen, Germany
| | - Tina Beyer
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tuebingen, Germany
| | - Tobias Leonhard
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tuebingen, Germany
| | - Ellen Kilger
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tuebingen, Germany
| | - Blanca Arango-Gonzalez
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tuebingen, Germany
| | - Marius Ueffing
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tuebingen, Germany
| |
Collapse
|
4
|
Vasudevan S, Senapati S, Pendergast M, Park PSH. Aggregation of rhodopsin mutants in mouse models of autosomal dominant retinitis pigmentosa. Nat Commun 2024; 15:1451. [PMID: 38365903 PMCID: PMC10873427 DOI: 10.1038/s41467-024-45748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
Mutations in rhodopsin can cause it to misfold and lead to retinal degeneration. A distinguishing feature of these mutants in vitro is that they mislocalize and aggregate. It is unclear whether or not these features contribute to retinal degeneration observed in vivo. The effect of P23H and G188R misfolding mutations were examined in a heterologous expression system and knockin mouse models, including a mouse model generated here expressing the G188R rhodopsin mutant. In vitro characterizations demonstrate that both mutants aggregate, with the G188R mutant exhibiting a more severe aggregation profile compared to the P23H mutant. The potential for rhodopsin mutants to aggregate in vivo was assessed by PROTEOSTAT, a dye that labels aggregated proteins. Both mutants mislocalize in photoreceptor cells and PROTEOSTAT staining was detected surrounding the nuclei of photoreceptor cells. The G188R mutant promotes a more severe retinal degeneration phenotype and greater PROTEOSTAT staining compared to that promoted by the P23H mutant. Here, we show that the level of PROTEOSTAT positive cells mirrors the progression and level of photoreceptor cell death, which suggests a potential role for rhodopsin aggregation in retinal degeneration.
Collapse
Affiliation(s)
- Sreelakshmi Vasudevan
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Subhadip Senapati
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
- Prayoga Institute of Education Research, Bengaluru, KA, 560116, India
| | - Maryanne Pendergast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
5
|
Bighinati A, Adani E, Stanzani A, D’Alessandro S, Marigo V. Molecular mechanisms underlying inherited photoreceptor degeneration as targets for therapeutic intervention. Front Cell Neurosci 2024; 18:1343544. [PMID: 38370034 PMCID: PMC10869517 DOI: 10.3389/fncel.2024.1343544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Retinitis pigmentosa (RP) is a form of retinal degeneration characterized by primary degeneration of rod photoreceptors followed by a secondary cone loss that leads to vision impairment and finally blindness. This is a rare disease with mutations in several genes and high genetic heterogeneity. A challenging effort has been the characterization of the molecular mechanisms underlying photoreceptor cell death during the progression of the disease. Some of the cell death pathways have been identified and comprise stress events found in several neurodegenerative diseases such as oxidative stress, inflammation, calcium imbalance and endoplasmic reticulum stress. Other cell death mechanisms appear more relevant to photoreceptor cells, such as high levels of cGMP and metabolic changes. Here we review some of the cell death pathways characterized in the RP mutant retina and discuss preclinical studies of therapeutic approaches targeting the molecular outcomes that lead to photoreceptor cell demise.
Collapse
Affiliation(s)
- Andrea Bighinati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Adani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Agnese Stanzani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara D’Alessandro
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Neuroscience and Neurotechnology, Modena, Italy
| |
Collapse
|
6
|
Scott BM, Chen SK, Van Nynatten A, Liu J, Schott RK, Heon E, Peisajovich SG, Chang BSW. Scaling up Functional Analyses of the G Protein-Coupled Receptor Rhodopsin. J Mol Evol 2024; 92:61-71. [PMID: 38324225 DOI: 10.1007/s00239-024-10154-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/22/2023] [Indexed: 02/08/2024]
Abstract
Eukaryotic cells use G protein-coupled receptors (GPCRs) to convert external stimuli into internal signals to elicit cellular responses. However, how mutations in GPCR-coding genes affect GPCR activation and downstream signaling pathways remain poorly understood. Approaches such as deep mutational scanning show promise in investigations of GPCRs, but a high-throughput method to measure rhodopsin activation has yet to be achieved. Here, we scale up a fluorescent reporter assay in budding yeast that we engineered to study rhodopsin's light-activated signal transduction. Using this approach, we measured the mutational effects of over 1200 individual human rhodopsin mutants, generated by low-frequency random mutagenesis of the GPCR rhodopsin (RHO) gene. Analysis of the data in the context of rhodopsin's three-dimensional structure reveals that transmembrane helices are generally less tolerant to mutations compared to flanking helices that face the lipid bilayer, which suggest that mutational tolerance is contingent on both the local environment surrounding specific residues and the specific position of these residues in the protein structure. Comparison of functional scores from our screen to clinically identified rhodopsin disease variants found many pathogenic mutants to be loss of function. Lastly, functional scores from our assay were consistent with a complex counterion mechanism involved in ligand-binding and rhodopsin activation. Our results demonstrate that deep mutational scanning is possible for rhodopsin activation and can be an effective method for revealing properties of mutational tolerance that may be generalizable to other transmembrane proteins.
Collapse
Affiliation(s)
- Benjamin M Scott
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Steven K Chen
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | - Jing Liu
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- Department of Biology and Centre for Vision Research, York University, Toronto, ON, Canada
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Elise Heon
- Department of Ophthalmology, Hospital for Sick Children, Toronto, ON, Canada
| | - Sergio G Peisajovich
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Belinda S W Chang
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Parmann R, Tsang SH, Sparrow JR. Primary versus Secondary Elevations in Fundus Autofluorescence. Int J Mol Sci 2023; 24:12327. [PMID: 37569703 PMCID: PMC10419315 DOI: 10.3390/ijms241512327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The method of quantitative fundus autofluorescence (qAF) can be used to assess the levels of bisretinoids in retinal pigment epithelium (RPE) cells so as to aid the interpretation and management of a variety of retinal conditions. In this review, we focused on seven retinal diseases to highlight the possible pathways to increased fundus autofluorescence. ABCA4- and RDH12-associated diseases benefit from known mechanisms whereby gene malfunctioning leads to elevated bisretinoid levels in RPE cells. On the other hand, peripherin2/RDS-associated disease (PRPH2/RDS), retinitis pigmentosa (RP), central serous chorioretinopathy (CSC), acute zonal occult outer retinopathy (AZOOR), and ceramide kinase like (CERKL)-associated retinal degeneration all express abnormally high fundus autofluorescence levels without a demonstrated pathophysiological pathway for bisretinoid elevation. We suggest that, while a known link from gene mutation to increased production of bisretinoids (as in ABCA4- and RDH12-associated diseases) causes primary elevation in fundus autofluorescence, a secondary autofluorescence elevation also exists, where an impairment and degeneration of photoreceptor cells by various causes leads to an increase in bisretinoid levels in RPE cells.
Collapse
Affiliation(s)
- Rait Parmann
- Departments of Ophthalmology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
| | - Stephen H. Tsang
- Departments of Ophthalmology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
- Departments of Pathology and Cell Biology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
| | - Janet R. Sparrow
- Departments of Ophthalmology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
- Departments of Pathology and Cell Biology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
| |
Collapse
|
8
|
Zhen F, Zou T, Wang T, Zhou Y, Dong S, Zhang H. Rhodopsin-associated retinal dystrophy: Disease mechanisms and therapeutic strategies. Front Neurosci 2023; 17:1132179. [PMID: 37077319 PMCID: PMC10106759 DOI: 10.3389/fnins.2023.1132179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
Rhodopsin is a light-sensitive G protein-coupled receptor that initiates the phototransduction cascade in rod photoreceptors. Mutations in the rhodopsin-encoding gene RHO are the leading cause of autosomal dominant retinitis pigmentosa (ADRP). To date, more than 200 mutations have been identified in RHO. The high allelic heterogeneity of RHO mutations suggests complicated pathogenic mechanisms. Here, we discuss representative RHO mutations as examples to briefly summarize the mechanisms underlying rhodopsin-related retinal dystrophy, which include but are not limited to endoplasmic reticulum stress and calcium ion dysregulation resulting from protein misfolding, mistrafficking, and malfunction. Based on recent advances in our understanding of disease mechanisms, various treatment methods, including adaptation, whole-eye electrical stimulation, and small molecular compounds, have been developed. Additionally, innovative therapeutic treatment strategies, such as antisense oligonucleotide therapy, gene therapy, optogenetic therapy, and stem cell therapy, have achieved promising outcomes in preclinical disease models of rhodopsin mutations. Successful translation of these treatment strategies may effectively ameliorate, prevent or rescue vision loss related to rhodopsin mutations.
Collapse
Affiliation(s)
- Fangyuan Zhen
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital, Zhengzhou, China
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Tongdan Zou
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ting Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yongwei Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital, Zhengzhou, China
| | - Shuqian Dong
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital, Zhengzhou, China
- *Correspondence: Shuqian Dong, ; Houbin Zhang,
| | - Houbin Zhang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
- *Correspondence: Shuqian Dong, ; Houbin Zhang,
| |
Collapse
|
9
|
Sakai D, Hiraoka M, Matsuzaki M, Yokota S, Hirami Y, Onishi A, Nakamura M, Takahashi M, Kurimoto Y, Maeda A. Genotype and phenotype characteristics of RHO-associated retinitis pigmentosa in the Japanese population. Jpn J Ophthalmol 2023; 67:138-148. [PMID: 36648560 DOI: 10.1007/s10384-023-00975-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/19/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE To identify the genotypic and phenotypic characteristics of rhodopsin (RHO)-associated retinitis pigmentosa (RP) in the Japanese population. STUDY DESIGN Cross-sectional, single-center study METHODS: The medical records of 1336 patients with RP who underwent genetic testing at our clinic between November 2008 and September 2021 were reviewed, and patients with RHO variants were included. The patients were divided into class A and class B to assess genotype-phenotype correlations based on previous reports. The clinical findings, including best-corrected visual acuity (BCVA), OCT parameters (ellipsoid zone [EZ] width and central retinal thickness [CRT]), and presence of macular degeneration, of the 2 groups were compared. RESULTS The study included 28 patients diagnosed with RHO-associated RP (class A, 19; class B, 9). The BCVA was significantly worse in class A patients than in class B patients (P = 0.045). Superior EZ width was significantly shorter in class A than in class B patients (P = 0.016). Class A patients tended to have thinner CRT and shorter inferior EZ width than those of class B patients, although this difference was not significant. Macular degeneration was observed in 61.5% of class A and 12.5% of class B patients, demonstrating that macular degeneration can be a common complication in class A variants. CONCLUSION Patients with class A variants presented with a severer form of RP than that of patients with class B variants in the Japanese population. These results suggest that the phenotype of RHO-associated RP is linked to the location of the variants and that such a genotype-phenotype correlation is less affected by ethnicities with different genetic backgrounds.
Collapse
Affiliation(s)
- Daiki Sakai
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan. .,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan. .,Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Masakazu Hiraoka
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Mitsuhiro Matsuzaki
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Satoshi Yokota
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Yasuhiko Hirami
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Akishi Onishi
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Vision Care Inc., Kobe, Japan
| | - Makoto Nakamura
- Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masayo Takahashi
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Vision Care Inc., Kobe, Japan
| | - Yasuo Kurimoto
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Akiko Maeda
- Department of Ophthalmology, Kobe City Eye Hospital, 2-1-8 Minatojima Minamimachi, Chuo-ku, Kobe-shi, Hyogo, 650-0047, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| |
Collapse
|
10
|
Molecular Basis for Variations in the Sensitivity of Pathogenic Rhodopsin Variants to 9-cis-Retinal. J Biol Chem 2022; 298:102266. [PMID: 35850308 PMCID: PMC9399271 DOI: 10.1016/j.jbc.2022.102266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
Over 100 mutations in the rhodopsin gene have been linked to a spectrum of retinopathies that include retinitis pigmentosa and congenital stationary night blindness. Though most of these variants exhibit a loss of function, the molecular defects caused by these underlying mutations vary considerably. In this work, we utilize deep mutational scanning to quantitatively compare the plasma membrane expression of 123 known pathogenic rhodopsin variants in the presence and absence of the stabilizing cofactor 9-cis-retinal. We identify 69 retinopathy variants, including 20 previously uncharacterized variants, that exhibit diminished plasma membrane expression in HEK293T cells. Of these apparent class II variants, 67 exhibit a measurable increase in expression in the presence of 9-cis-retinal. However, the magnitude of the response to this molecule varies considerably across this spectrum of mutations. Evaluation of the observed shifts relative to thermodynamic estimates for the coupling between binding and folding suggests underlying differences in stability constrains the magnitude of their response to retinal. Nevertheless, estimates from computational modeling suggest that many of the least sensitive variants also directly compromise binding. Finally, we evaluate the functional properties of three previous uncharacterized, retinal-sensitive variants (ΔN73, S131P, and R135G) and show that two of these retain residual function in vitro. Together, our results provide a comprehensive experimental characterization of the proteostatic properties of retinopathy variants and their response to retinal.
Collapse
|
11
|
New insights into the molecular mechanism of rhodopsin retinitis pigmentosa from the biochemical and functional characterization of G90V, Y102H and I307N mutations. Cell Mol Life Sci 2022; 79:58. [PMID: 34997336 PMCID: PMC8741697 DOI: 10.1007/s00018-021-04086-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022]
Abstract
Mutations in the photoreceptor protein rhodopsin are known as one of the leading causes of retinal degeneration in humans. Two rhodopsin mutations, Y102H and I307N, obtained in chemically mutagenized mice, are currently the subject of increased interest as relevant models for studying the process of retinal degeneration in humans. Here, we report on the biochemical and functional characterization of the structural and functional alterations of these two rhodopsin mutants and we compare them with the G90V mutant previously analyzed, as a basis for a better understanding of in vivo studies. This mechanistic knowledge is fundamental to use it for developing novel therapeutic approaches for the treatment of inherited retinal degeneration in retinitis pigmentosa. We find that Y102H and I307N mutations affect the inactive–active equilibrium of the receptor. In this regard, the mutations reduce the stability of the inactive conformation but increase the stability of the active conformation. Furthermore, the initial rate of the functional activation of transducin, by the I307N mutant is reduced, but its kinetic profile shows an unusual increase with time suggesting a profound effect on the signal transduction process. This latter effect can be associated with a change in the flexibility of helix 7 and an indirect effect of the mutation on helix 8 and the C-terminal tail of rhodopsin, whose potential role in the functional activation of the receptor has been usually underestimated. In the case of the Y102H mutant, the observed changes can be associated with conformational alterations affecting the folding of the rhodopsin intradiscal domain, and its presumed involvement in the retinal binding process by the receptor.
Collapse
|
12
|
Liu X, Jia R, Meng X, Li Y, Yang L. Retinal degeneration in humanized mice expressing mutant rhodopsin under the control of the endogenous murine promoter. Exp Eye Res 2021; 215:108893. [PMID: 34919893 DOI: 10.1016/j.exer.2021.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/31/2021] [Accepted: 12/08/2021] [Indexed: 11/04/2022]
Abstract
RHO is one of the most common genetic causes of autosomal dominant retinitis Pigmentosa (adRP) and there is no effective therapy for this disease. While rapidly developed CRISPR/Cas9 gene editing technology presents a promising therapeutic strategy to treat adRP. A large number of studies for treating adRP using CRISPR/Cas9 have been performed based on transgenic mouse models which are affected with adRP caused by mutant mouse rhodopsin allele, the counterpart of human rhodopsin. Recently, some RHO humanized mouse models like T17M, P23H are generated, which permit testing of the therapeutic effect of CRISPR/Cas9 in preclinical in vivo systems, without putting humans at risk. While available humanized mouse models are few compared to the number of known RHO mutations, but it is time-consuming and costly to build humanized mice for each mutation. We wonder whether a humanized mouse model having several mutations simultaneously can be developed, although which rarely occurs in patients, to investigate the therapeutic effect of CRISPR/Cas9 for RHO-mediated adRP in preclinical in vivo systems. Homology directed repair strategy combing with CRISPR/Cas9 was employed to introduce human RHO genomic fragment containing the replacement of mouse exon1(mE1) after the start codon to mE5 before the stop codon and all introns by the human counterparts. The human rhodopsin could express under the control of the endogenous murine promoter both transcriptionally and translationally in vivo. Human rhodopsin in humanized mouse lines (without mutation) could replace murine rhodopsin morphologically and functionally. While human rhodopsin containing T17M, G51D, G114R, R135W and P171R mutations simultaneously in mutant humanized (Mut-Rhowt/hum and Mut-Rhohum/hum) mouse lines caused retinal degeneration. Mut-Rhohum/hum mice suffered from severe retinal degeneration with defective formation of rod outer segment, leaving nonrecordable electroretinogram (ERG) at 3 months. Mut- Rhowt/hum mice had a slower rate of photoreceptors loss. In 7-month-old Mut- Rhowt/hum mice, statistically reduced scotopic ERG responses were visible compared with age-matched WT mice, but the shortened outer segment and thinner outer nuclear layer could be observed from 3 months. From 7 months to 9 months, significantly abnormal scotopic ERG responses were visible and photoreceptors loss were also obvious in 9-month-old Mut-Rhowt/hum mice. In 12-month-old Mut- Rhowt/hum mice, statistically reduced scotopic and photopic ERG responses and retinal degeneration throughout the retina were visible. Because scotopic responses were more affected than photopic responses in mutant humanized mice, demonstrating that rods dysfunction was more severe than cones dysfunction and deteriorated earlier, the pattern of retinal degeneration caused by mutant human rhodopsin was a typical rod-cone decay. Immunocytochemistry in cells indicated human rhodopsin proteins with 5 mutations aggregated in the cytoplasm and were also retained in the endoplasmic reticulum. The mutant human rhodopsin also accumulated in rod inner segments and cellular bodies in vivo. In conclusion, our humanized models provide excellent opportunities to study the human rhodopsin expression patterns. Our mutant humanized heterozygotes can provide opportunities to explore gene editing therapies via CRISPR/Cas9 for these five mutations in preclinical studies, it is time-saving and cost-effective.
Collapse
Affiliation(s)
- Xiaozhen Liu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China
| | - Ruixuan Jia
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China
| | - Xiang Meng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China
| | - Ying Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China
| | - Liping Yang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
13
|
Felline A, Schiroli D, Comitato A, Marigo V, Fanelli F. Structure network-based landscape of rhodopsin misfolding by mutations and algorithmic prediction of small chaperone action. Comput Struct Biotechnol J 2021; 19:6020-6038. [PMID: 34849206 PMCID: PMC8605067 DOI: 10.1016/j.csbj.2021.10.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/09/2021] [Accepted: 10/31/2021] [Indexed: 11/28/2022] Open
Abstract
Failure of a protein to achieve its functional structural state and normal cellular location contributes to the etiology and pathology of heritable human conformational diseases. The autosomal dominant form of retinitis pigmentosa (adRP) is an incurable blindness largely linked to mutations of the membrane protein rod opsin. While the mechanisms underlying the noxious effects of the mutated protein are not completely understood, a common feature is the functional protein conformational loss. Here, the wild type and 39 adRP rod opsin mutants were subjected to mechanical unfolding simulations coupled to the graph theory-based protein structure network analysis. A robust computational model was inferred and in vitro validated in its ability to predict endoplasmic reticulum retention of adRP mutants, a feature linked to the mutation-caused misfolding. The structure-based approach could also infer the structural determinants of small chaperone action on misfolded protein mutants with therapeutic implications. The approach is exportable to conformational diseases linked to missense mutations in any membrane protein.
Collapse
Affiliation(s)
- Angelo Felline
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Davide Schiroli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125 Modena, Italy
| | - Antonella Comitato
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125 Modena, Italy
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125 Modena, Italy.,Center for Neuroscience and Neurotechnology, Italy
| | - Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy.,Center for Neuroscience and Neurotechnology, Italy
| |
Collapse
|
14
|
Ulloa-Aguirre A, Zariñán T, Jardón-Valadez E. Misfolded G Protein-Coupled Receptors and Endocrine Disease. Molecular Mechanisms and Therapeutic Prospects. Int J Mol Sci 2021; 22:ijms222212329. [PMID: 34830210 PMCID: PMC8622668 DOI: 10.3390/ijms222212329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022] Open
Abstract
Misfolding of G protein-coupled receptors (GPCRs) caused by mutations frequently leads to disease due to intracellular trapping of the conformationally abnormal receptor. Several endocrine diseases due to inactivating mutations in GPCRs have been described, including X-linked nephrogenic diabetes insipidus, thyroid disorders, familial hypocalciuric hypercalcemia, obesity, familial glucocorticoid deficiency [melanocortin-2 receptor, MC2R (also known as adrenocorticotropin receptor, ACTHR), and reproductive disorders. In these mutant receptors, misfolding leads to endoplasmic reticulum retention, increased intracellular degradation, and deficient trafficking of the abnormal receptor to the cell surface plasma membrane, causing inability of the receptor to interact with agonists and trigger intracellular signaling. In this review, we discuss the mechanisms whereby mutations in GPCRs involved in endocrine function in humans lead to misfolding, decreased plasma membrane expression of the receptor protein, and loss-of-function diseases, and also describe several experimental approaches employed to rescue trafficking and function of the misfolded receptors. Special attention is given to misfolded GPCRs that regulate reproductive function, given the key role played by these particular membrane receptors in sexual development and fertility, and recent reports on promising therapeutic interventions targeting trafficking of these defective proteins to rescue completely or partially their normal function.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico;
- Correspondence:
| | - Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico;
| | - Eduardo Jardón-Valadez
- Departamento de Recursos de la Tierra, Universidad Autónoma Metropolitana-Lerma, Lerma de Villada 52005, Estado de México, Mexico;
| |
Collapse
|
15
|
Pharmacological Inhibition of the VCP/Proteasome Axis Rescues Photoreceptor Degeneration in RHO P23H Rat Retinal Explants. Biomolecules 2021; 11:biom11101528. [PMID: 34680161 PMCID: PMC8534135 DOI: 10.3390/biom11101528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/02/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Rhodopsin (RHO) misfolding mutations are a common cause of the blinding disease autosomal dominant retinitis pigmentosa (adRP). The most prevalent mutation, RHOP23H, results in its misfolding and retention in the endoplasmic reticulum (ER). Under homeostatic conditions, misfolded proteins are selectively identified, retained at the ER, and cleared via ER-associated degradation (ERAD). Overload of these degradation processes for a prolonged period leads to imbalanced proteostasis and may eventually result in cell death. ERAD of misfolded proteins, such as RHOP23H, includes the subsequent steps of protein recognition, targeting for ERAD, retrotranslocation, and proteasomal degradation. In the present study, we investigated and compared pharmacological modulation of ERAD at these four different major steps. We show that inhibition of the VCP/proteasome activity favors cell survival and suppresses P23H-mediated retinal degeneration in RHOP23H rat retinal explants. We suggest targeting this activity as a therapeutic approach for patients with currently untreatable adRP.
Collapse
|
16
|
Fanelli F, Felline A, Marigo V. Structural aspects of rod opsin and their implication in genetic diseases. Pflugers Arch 2021; 473:1339-1359. [PMID: 33728518 DOI: 10.1007/s00424-021-02546-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023]
Abstract
Vision in dim-light conditions is triggered by photoactivation of rhodopsin, the visual pigment of rod photoreceptor cells. Rhodopsin is made of a protein, the G protein coupled receptor (GPCR) opsin, and the chromophore 11-cis-retinal. Vertebrate rod opsin is the GPCR best characterized at the atomic level of detail. Since the release of the first crystal structure 20 years ago, a huge number of structures have been released that, in combination with valuable spectroscopic determinations, unveiled most aspects of the photobleaching process. A number of spontaneous mutations of rod opsin have been found linked to vision-impairing diseases like autosomal dominant or autosomal recessive retinitis pigmentosa (adRP or arRP, respectively) and autosomal congenital stationary night blindness (adCSNB). While adCSNB is mainly caused by constitutive activation of rod opsin, RP shows more variegate determinants affecting different aspects of rod opsin function. The vast majority of missense rod opsin mutations affects folding and trafficking and is linked to adRP, an incurable disease that awaits light on its molecular structure determinants. This review article summarizes all major structural information available on vertebrate rod opsin conformational states and the insights gained so far into the structural determinants of adCSNB and adRP linked to rod opsin mutations. Strategies to design small chaperones with therapeutic potential for selected adRP rod opsin mutants will be discussed as well.
Collapse
Affiliation(s)
- Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy. .,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via Campi 287, Modena, 41125, Italy.
| | - Angelo Felline
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Valeria Marigo
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via Campi 287, Modena, 41125, Italy.,Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125, Modena, Italy
| |
Collapse
|
17
|
Vasudevan S, Park PSH. Differential Aggregation Properties of Mutant Human and Bovine Rhodopsin. Biochemistry 2020; 60:6-18. [PMID: 33356167 DOI: 10.1021/acs.biochem.0c00733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhodopsin is the light receptor required for the function and health of photoreceptor cells. Mutations in rhodopsin can cause misfolding and aggregation of the receptor, which leads to retinal degeneration. Bovine rhodopsin is often used as a model to understand the effect of pathogenic mutations in rhodopsin due to the abundance of structural information on the bovine form of the receptor. It is unclear whether or not the bovine rhodopsin template is adequate in predicting the effect of these mutations occurring in human retinal disease or in predicting the efficacy of therapeutic strategies. To better understand the extent to which bovine rhodopsin can serve as a model, human and bovine P23H rhodopsin mutants expressed heterologously in cells were examined. The aggregation properties and cellular localization of the mutant receptors were determined by Förster resonance energy transfer and confocal microscopy. The potential therapeutic effects of the pharmacological compounds 9-cis retinal and metformin were also examined. Human and bovine P23H rhodopsin mutants exhibited different aggregation properties and responses to the pharmacological compounds tested. These observations would lead to different predictions on the severity of the phenotype and divergent predictions on the benefit of the therapeutic compounds tested. The bovine rhodopsin template does not appear to adequately model the effects of the P23H mutation in the human form of the receptor.
Collapse
Affiliation(s)
- Sreelakshmi Vasudevan
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
18
|
Newton F, Megaw R. Mechanisms of Photoreceptor Death in Retinitis Pigmentosa. Genes (Basel) 2020; 11:genes11101120. [PMID: 32987769 PMCID: PMC7598671 DOI: 10.3390/genes11101120] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023] Open
Abstract
Retinitis pigmentosa (RP) is the most common cause of inherited blindness and is characterised by the progressive loss of retinal photoreceptors. However, RP is a highly heterogeneous disease and, while much progress has been made in developing gene replacement and gene editing treatments for RP, it is also necessary to develop treatments that are applicable to all causative mutations. Further understanding of the mechanisms leading to photoreceptor death is essential for the development of these treatments. Recent work has therefore focused on the role of apoptotic and non-apoptotic cell death pathways in RP and the various mechanisms that trigger these pathways in degenerating photoreceptors. In particular, several recent studies have begun to elucidate the role of microglia and innate immune response in the progression of RP. Here, we discuss some of the recent progress in understanding mechanisms of rod and cone photoreceptor death in RP and summarise recent clinical trials targeting these pathways.
Collapse
Affiliation(s)
- Fay Newton
- MRC Human Genetics Unit, University of Edinburgh, South Bridge, Edinburgh EH8 9YL, UK;
- Correspondence:
| | - Roly Megaw
- MRC Human Genetics Unit, University of Edinburgh, South Bridge, Edinburgh EH8 9YL, UK;
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh EH3 9HA, UK
| |
Collapse
|
19
|
Liu X, Feng B, Vats A, Tang H, Seibel W, Swaroop M, Tawa G, Zheng W, Byrne L, Schurdak M, Chen Y. Pharmacological clearance of misfolded rhodopsin for the treatment of RHO-associated retinitis pigmentosa. FASEB J 2020; 34:10146-10167. [PMID: 32536017 DOI: 10.1096/fj.202000282r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 01/20/2023]
Abstract
Rhodopsin mutation and misfolding is a common cause of autosomal dominant retinitis pigmentosa (RP). Using a luciferase reporter assay, we undertook a small-molecule high-throughput screening (HTS) of 68, 979 compounds and identified nine compounds that selectively reduced the misfolded P23H rhodopsin without an effect on the wild type (WT) rhodopsin protein. Further, we found five of these compounds, including methotrexate (MTX), promoted P23H rhodopsin degradation that also cleared out other misfolded rhodopsin mutant proteins. We showed MTX increased P23H rhodopsin degradation via the lysosomal but not the proteasomal pathway. Importantly, one intravitreal injection (IVI) of 25 pmol MTX increased electroretinogram (ERG) response and rhodopsin level in the retinae of RhoP23H/+ knock-in mice at 1 month of age. Additionally, four weekly IVIs increased the photoreceptor cell number in the retinae of RhoP23H/+ mice compared to vehicle control. Our study indicates a therapeutic potential of repurposing MTX for the treatment of rhodopsin-associated RP.
Collapse
Affiliation(s)
- Xujie Liu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bing Feng
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abhishek Vats
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hong Tang
- Drug Discovery Center, University of Cincinnati, Cincinnati, OH, USA
| | - William Seibel
- Drug Discovery Center, University of Cincinnati, Cincinnati, OH, USA.,Oncology Department, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Manju Swaroop
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Gregory Tawa
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Leah Byrne
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark Schurdak
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuanyuan Chen
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Ahmed CM, Dwyer BT, Romashko A, Van Adestine S, Park EH, Lou Z, Welty D, Josiah S, Savinainen A, Zhang B, Lewin AS. SRD005825 Acts as a Pharmacologic Chaperone of Opsin and Promotes Survival of Photoreceptors in an Animal Model of Autosomal Dominant Retinitis Pigmentosa. Transl Vis Sci Technol 2019; 8:30. [PMID: 31857914 PMCID: PMC6910612 DOI: 10.1167/tvst.8.6.30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/11/2019] [Indexed: 01/17/2023] Open
Abstract
Purpose Mutations in RHO, the gene for a rhodopsin, are a leading cause of autosomal dominant retinitis pigmentosa. The objective of this study was to determine if a synthetic retinal analogue (SRD005825) serves as a pharmacologic chaperone to promote appropriate membrane trafficking of a mutant version of human rhodopsin. Methods A tetracycline-inducible cell line was used to produce human wild-type and T17M opsin. A cell-free assay was used to study the impact of SRD005825 on binding of 9-cis-retinal to wild-type opsin. A cell-based assay was used to measure the effect of SRD005825 on the generation of rhodopsin by spectroscopy and Western blot and the transport of rhodopsin to the cell membrane by confocal microscopy. Mice bearing T17M RHO were treated with daily oral doses of SRD005825, and retinal degeneration was measured by spectral-domain optical coherence tomography and, at the conclusion of the experiment, by electroretinography and morphometry. Results SRD005825 competed with 9-cis-retinal for binding to wild-type opsin but promoted the formation of rhodopsin in HEK293 cells and the trafficking of T17M rhodopsin to the plasma membrane of these cells. T17M transgenic mice exhibited rapid retinal degeneration, but thinning of the outer nuclear layer representative of photoreceptor cell bodies was delayed by treatment with SRD005825. Electroretinography a-wave and b-wave amplitudes were significantly improved by drug treatment. Conclusions SRD005825 promoted the reconstitution of mutant rhodopsin and its membrane localization. Because it delayed retinal degeneration in the mouse model, it has potential as a therapeutic for autosomal dominant retinitis pigmentosa. Translational Relevance SRD005825 may be useful as a treatment to delay retinal degeneration in retinitis pigmentosa patients with rhodopsin mutations causing misfolding of the protein.
Collapse
Affiliation(s)
- Chulbul M Ahmed
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Brian T Dwyer
- Shire HGT Inc., a member of the Takeda group of companies, Cambridge, MA, USA
| | - All Romashko
- Shire HGT Inc., a member of the Takeda group of companies, Cambridge, MA, USA
| | | | - Eun-He Park
- Shire HGT Inc., a member of the Takeda group of companies, Cambridge, MA, USA
| | - Zhe Lou
- Shire HGT Inc., a member of the Takeda group of companies, Cambridge, MA, USA
| | - Devi Welty
- Shire HGT Inc., a member of the Takeda group of companies, Cambridge, MA, USA
| | - Seren Josiah
- Shire HGT Inc., a member of the Takeda group of companies, Cambridge, MA, USA
| | - Annel Savinainen
- Shire HGT Inc., a member of the Takeda group of companies, Cambridge, MA, USA
| | - Bohon Zhang
- Shire HGT Inc., a member of the Takeda group of companies, Cambridge, MA, USA
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
21
|
Comitato A, Schiroli D, Montanari M, Marigo V. Calpain Activation Is the Major Cause of Cell Death in Photoreceptors Expressing a Rhodopsin Misfolding Mutation. Mol Neurobiol 2019; 57:589-599. [PMID: 31401765 DOI: 10.1007/s12035-019-01723-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
Abstract
The majority of mutations in rhodopsin (RHO) cause misfolding of the protein and has been linked to degeneration of photoreceptor cells in the retina. A lot of attention has been set on targeting ER stress for the development of new therapies for inherited retinal degeneration caused by mutations in the RHO gene. Nevertheless, the cell death pathway activated by RHO misfolded protein is still debated. In this study, we analyzed the retina of the knock-in mouse expressing the P23H misfolded mutant RHO. We found persistent unfolded protein response (UPR) during degeneration. Interestingly, long-term stimulation of the PERK branch of ER stress had a protective effect by phosphorylating nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor, associated with antioxidant responses. Otherwise, we provide evidence that increased intracellular calcium and activation of calpains strongly correlated with rod photoreceptor cell death. By blocking calpain activity, we significantly decreased the activation of caspase-7 and apoptosis-inducing factor (AIF), two cell death effectors, and cell demise, and effectively protected the retina from degeneration caused by the P23H dominant mutation in RHO.
Collapse
Affiliation(s)
- Antonella Comitato
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 287, 41125, Modena, Italy
| | - Davide Schiroli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 287, 41125, Modena, Italy
| | - Monica Montanari
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 287, 41125, Modena, Italy
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 287, 41125, Modena, Italy.
| |
Collapse
|
22
|
Park PSH. Rhodopsin Oligomerization and Aggregation. J Membr Biol 2019; 252:413-423. [PMID: 31286171 DOI: 10.1007/s00232-019-00078-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022]
Abstract
Rhodopsin is the light receptor in photoreceptor cells of the retina and a prototypical G protein-coupled receptor. Two types of quaternary structures can be adopted by rhodopsin. If rhodopsin folds and attains a proper tertiary structure, it can then form oligomers and nanodomains within the photoreceptor cell membrane. In contrast, if rhodopsin misfolds, it cannot progress through the biosynthetic pathway and instead will form aggregates that can cause retinal degenerative disease. In this review, emerging views are highlighted on the supramolecular organization of rhodopsin within the membrane of photoreceptor cells and the aggregation of rhodopsin that can lead to retinal degeneration.
Collapse
Affiliation(s)
- Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
23
|
Wan A, Place E, Pierce EA, Comander J. Characterizing variants of unknown significance in rhodopsin: A functional genomics approach. Hum Mutat 2019; 40:1127-1144. [PMID: 30977563 PMCID: PMC7027811 DOI: 10.1002/humu.23762] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/31/2019] [Accepted: 04/08/2019] [Indexed: 01/19/2023]
Abstract
Characterizing the pathogenicity of DNA sequence variants of unknown significance (VUS) is a major bottleneck in human genetics, and is increasingly important in determining which patients with inherited retinal diseases could benefit from gene therapy. A library of 210 rhodopsin (RHO) variants from literature and in‐house genetic diagnostic testing were created to efficiently detect pathogenic RHO variants that fail to express on the cell surface. This study, while focused on RHO, demonstrates a streamlined, generalizable method for detecting pathogenic VUS. A relatively simple next‐generation sequencing‐based readout was developed so that a flow cytometry‐based assay could be performed simultaneously on all variants in a pooled format, without the need for barcodes or viral transduction. The resulting dataset characterized the surface expression of every RHO library variant with a high degree of reproducibility (r2 = 0.92–0.95), recategorizing 37 variants. For example, three retinitis pigmentosa pedigrees were solved by identifying VUS which showed low expression levels (p.G18D, p.G101V, and p.P180T). Results were validated across multiple assays and correlated with clinical disease severity. This study presents a parallelized, higher‐throughput cell‐based assay for the functional characterization of VUS in RHO, and can be applied more broadly to other inherited retinal disease genes and other disorders.
Collapse
Affiliation(s)
- Aliete Wan
- Department of Ophthalmology, Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Emily Place
- Department of Ophthalmology, Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Eric A Pierce
- Department of Ophthalmology, Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Jason Comander
- Department of Ophthalmology, Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Mitchell J, Balem F, Tirupula K, Man D, Dhiman HK, Yanamala N, Ollesch J, Planas-Iglesias J, Jennings BJ, Gerwert K, Iannaccone A, Klein-Seetharaman J. Comparison of the molecular properties of retinitis pigmentosa P23H and N15S amino acid replacements in rhodopsin. PLoS One 2019; 14:e0214639. [PMID: 31100078 PMCID: PMC6524802 DOI: 10.1371/journal.pone.0214639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/19/2019] [Indexed: 12/16/2022] Open
Abstract
Mutations in the RHO gene encoding for the visual pigment protein, rhodopsin, are among the most common cause of autosomal dominant retinitis pigmentosa (ADRP). Previous studies of ADRP mutations in different domains of rhodopsin have indicated that changes that lead to more instability in rhodopsin structure are responsible for more severe disease in patients. Here, we further test this hypothesis by comparing side-by-side and therefore quantitatively two RHO mutations, N15S and P23H, both located in the N-terminal intradiscal domain. The in vitro biochemical properties of these two rhodopsin proteins, expressed in stably transfected tetracycline-inducible HEK293S cells, their UV-visible absorption, their Fourier transform infrared, circular dichroism and Metarhodopsin II fluorescence spectroscopy properties were characterized. As compared to the severely impaired P23H molecular function, N15S is only slightly defective in structure and stability. We propose that the molecular basis for these structural differences lies in the greater distance of the N15 residue as compared to P23 with respect to the predicted rhodopsin folding core. As described previously for WT rhodopsin, addition of the cytoplasmic allosteric modulator chlorin e6 stabilizes especially the P23H protein, suggesting that chlorin e6 may be generally beneficial in the rescue of those ADRP rhodopsin proteins whose stability is affected by amino acid replacement.
Collapse
Affiliation(s)
- James Mitchell
- Division of Biomedical Sciences, Medical School, University of Warwick, Coventry, United Kingdom
| | - Fernanda Balem
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kalyan Tirupula
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - David Man
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Harpreet Kaur Dhiman
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Naveena Yanamala
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Julian Ollesch
- Department of Biophysics, Ruhr-University Bochum, Bochum, Germany
| | - Joan Planas-Iglesias
- Division of Biomedical Sciences, Medical School, University of Warwick, Coventry, United Kingdom
| | - Barbara J Jennings
- Retinal Degeneration & Ophthalmic Genetics Service & Lions Visual Function Diagnostic Lab, Hamilton Eye Institute, Dept. Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Klaus Gerwert
- Department of Biophysics, Ruhr-University Bochum, Bochum, Germany
| | - Alessandro Iannaccone
- Retinal Degeneration & Ophthalmic Genetics Service & Lions Visual Function Diagnostic Lab, Hamilton Eye Institute, Dept. Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Judith Klein-Seetharaman
- Division of Biomedical Sciences, Medical School, University of Warwick, Coventry, United Kingdom
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
25
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
26
|
Ortega JT, Parmar T, Jastrzebska B. Flavonoids enhance rod opsin stability, folding, and self-association by directly binding to ligand-free opsin and modulating its conformation. J Biol Chem 2019; 294:8101-8122. [PMID: 30944172 DOI: 10.1074/jbc.ra119.007808] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/27/2019] [Indexed: 12/29/2022] Open
Abstract
Rhodopsin (Rho) is a visual G protein-coupled receptor expressed in the rod photoreceptors of the eye, where it mediates transmission of a light signal into a cell and converts this signal into a nerve impulse. More than 100 mutations in Rho are linked to various ocular impairments, including retinitis pigmentosa (RP). Accordingly, much effort has been directed toward developing ligands that target Rho and improve its folding and stability. Natural compounds may provide another viable approach to such drug discovery efforts. The dietary polyphenol compounds, ubiquitously present in fruits and vegetables, have beneficial effects in several eye diseases. However, the underlying mechanism of their activity is not fully understood. In this study, we used a combination of computational methods, biochemical and biophysical approaches, including bioluminescence resonance energy transfer, and mammalian cell expression systems to clarify the effects of four common bioactive flavonoids (quercetin, myricetin, and their mono-glycosylated forms quercetin-3-rhamnoside and myricetrin) on rod opsin stability, function, and membrane organization. We observed that by directly interacting with ligand-free opsin, flavonoids modulate its conformation, thereby causing faster entry of the retinal chromophore into its binding pocket. Moreover, flavonoids significantly increased opsin stability, most likely by introducing structural rigidity and promoting receptor self-association within the biological membranes. Of note, the binding of flavonoids to an RP-linked P23H opsin variant partially restored its normal cellular trafficking. Together, our results suggest that flavonoids could be utilized as lead compounds in the development of effective nonretinoid therapeutics for managing RP-related retinopathies.
Collapse
Affiliation(s)
- Joseph T Ortega
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Tanu Parmar
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Beata Jastrzebska
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
27
|
Modulation of proteostasis and protein trafficking: a therapeutic avenue for misfolded G protein-coupled receptors causing disease in humans. Emerg Top Life Sci 2019; 3:39-52. [PMID: 33523195 DOI: 10.1042/etls20180055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 11/17/2022]
Abstract
Proteostasis refers to the process whereby the cell maintains in equilibrium the protein content of different compartments. This system consists of a highly interconnected network intended to efficiently regulate the synthesis, folding, trafficking, and degradation of newly synthesized proteins. Molecular chaperones are key players of the proteostasis network. These proteins assist in the assembly and folding processes of newly synthesized proteins in a concerted manner to achieve a three-dimensional structure compatible with export from the endoplasmic reticulum to other cell compartments. Pharmacologic interventions intended to modulate the proteostasis network and tackle the devastating effects of conformational diseases caused by protein misfolding are under development. These include small molecules called pharmacoperones, which are highly specific toward the target protein serving as a molecular framework to cause misfolded mutant proteins to fold and adopt a stable conformation suitable for passing the scrutiny of the quality control system and reach its correct location within the cell. Here, we review the main components of the proteostasis network and how pharmacoperones may be employed to correct misfolding of two G protein-coupled receptors, the vasopressin 2 receptor and the gonadotropin-releasing hormone receptor, whose mutations lead to X-linked nephrogenic diabetes insipidus and congenital hypogonadotropic hypogonadism in humans respectively.
Collapse
|
28
|
Feng B, Liu X, Chen Y. A Rhodopsin Transport Assay by High-Content Imaging Analysis. J Vis Exp 2019. [PMID: 30735172 DOI: 10.3791/58703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Rhodopsin misfolding mutations lead to rod photoreceptor death that is manifested as autosomal dominant retinitis pigmentosa (RP), a progressive blinding disease that lacks effective treatment. We hypothesize that the cytotoxicity of the misfolded rhodopsin mutant can be alleviated by pharmacologically stabilizing the mutant rhodopsin protein. The P23H mutation, among the other Class II rhodopsin mutations, encodes a structurally unstable rhodopsin mutant protein that is accumulated in the endoplasmic reticulum (ER), whereas the wild type rhodopsin is transported to the plasma membrane in mammalian cells. We previously performed a luminescence-based high-throughput screen (HTS) and identified a group of pharmacological chaperones that rescued the transport of the P23H rhodopsin from ER to the plasma membrane. Here, using an immunostaining method followed by a high-content imaging analysis, we quantified the mutant rhodopsin protein amount in the whole cell and on the plasma membrane. This method is informative and effective to identify true hits from false positives following HTS. Additionally, the high-content image analysis enabled us to quantify multiple parameters from a single experiment to evaluate the pharmacological properties of each compound. Using this assay, we analyzed the effect of 11 different compounds towards six RP associated rhodopsin mutants, obtaining a 2-D pharmacological profile for a quantitative and qualitative understanding about the structural stability of these rhodopsin mutants and efficacy of different compounds towards these mutants.
Collapse
Affiliation(s)
- Bing Feng
- Department of Ophthalmology, University of Pittsburgh
| | - Xujie Liu
- Department of Ophthalmology, University of Pittsburgh
| | - Yuanyuan Chen
- Department of Ophthalmology, University of Pittsburgh; McGowan Institute for Regenerative Medicine, University of Pittsburgh;
| |
Collapse
|
29
|
Wang W, Guo DY, Tao YX. Therapeutic strategies for diseases caused by loss-of-function mutations in G protein-coupled receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 161:181-210. [DOI: 10.1016/bs.pmbts.2018.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Coupling of Human Rhodopsin to a Yeast Signaling Pathway Enables Characterization of Mutations Associated with Retinal Disease. Genetics 2018; 211:597-615. [PMID: 30514708 DOI: 10.1534/genetics.118.301733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are crucial sensors of extracellular signals in eukaryotes, with multiple GPCR mutations linked to human diseases. With the growing number of sequenced human genomes, determining the pathogenicity of a mutation is challenging, but can be aided by a direct measurement of GPCR-mediated signaling. This is particularly difficult for the visual pigment rhodopsin-a GPCR activated by light-for which hundreds of mutations have been linked to inherited degenerative retinal diseases such as retinitis pigmentosa. In this study, we successfully engineered, for the first time, activation by human rhodopsin of the yeast mating pathway, resulting in signaling via a fluorescent reporter. We combine this novel assay for rhodopsin light-dependent activation with studies of subcellular localization, and the upregulation of the unfolded protein response in response to misfolded rhodopsin protein. We use these assays to characterize a panel of rhodopsin mutations with known molecular phenotypes, finding that rhodopsin maintains a similar molecular phenotype in yeast, with some interesting differences. Furthermore, we compare our assays in yeast with clinical phenotypes from patients with novel disease-linked mutations. We demonstrate that our engineered yeast strain can be useful in rhodopsin mutant classification, and in helping to determine the molecular mechanisms underlying their pathogenicity. This approach may also be applied to better understand the clinical relevance of other human GPCR mutations, furthering the use of yeast as a tool for investigating molecular mechanisms relevant to human disease.
Collapse
|
31
|
Detection of misfolded rhodopsin aggregates in cells by Förster resonance energy transfer. Methods Cell Biol 2018; 149:87-105. [PMID: 30616829 DOI: 10.1016/bs.mcb.2018.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rhodopsin is the light receptor in rod photoreceptor cells of the retina that plays a central role in phototransduction and rod photoreceptor cell health. Rhodopsin mutations are the leading known cause of autosomal dominant retinitis pigmentosa, a retinal degenerative disease. A majority of rhodopsin mutations cause misfolding and aggregation of the apoprotein opsin. The nature of aggregates formed by misfolded rhodopsin mutants and the associated cell toxicity is poorly understood. Misfolding rhodopsin mutants have been characterized biochemically, and categorized as either partial or complete misfolding mutants. This classification is incomplete and does not provide sufficient information to fully understand rhodopsin aggregation, disease pathogenesis, and evaluate therapeutic strategies. To better understand the aggregation of misfolded rhodopsin mutants, a Förster resonance energy transfer assay has been developed to monitor the aggregation of fluorescently tagged mutant rhodopsins expressed in live cells.
Collapse
|
32
|
Gragg M, Park PSH. Misfolded rhodopsin mutants display variable aggregation properties. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2938-2948. [PMID: 29890221 PMCID: PMC6066411 DOI: 10.1016/j.bbadis.2018.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 11/20/2022]
Abstract
The largest class of rhodopsin mutations causing autosomal dominant retinitis pigmentosa (adRP) is mutations that lead to misfolding and aggregation of the receptor. The misfolding mutants have been characterized biochemically, and categorized as either partial or complete misfolding mutants. This classification is incomplete and does not provide sufficient information to fully understand the disease pathogenesis and evaluate therapeutic strategies. A Förster resonance energy transfer (FRET) method was utilized to directly assess the aggregation properties of misfolding rhodopsin mutants within the cell. Partial (P23H and P267L) and complete (G188R, H211P, and P267R) misfolding mutants were characterized to reveal variability in aggregation properties. The complete misfolding mutants all behaved similarly, forming aggregates when expressed alone, minimally interacting with the wild-type receptor when coexpressed, and were unresponsive to treatment with the pharmacological chaperone 9-cis retinal. In contrast, variability was observed between the partial misfolding mutants. In the opsin form, the P23H mutant behaved similarly as the complete misfolding mutants. In contrast, the opsin form of the P267L mutant existed as both aggregates and oligomers when expressed alone and formed mostly oligomers with the wild-type receptor when coexpressed. The partial misfolding mutants both reacted similarly to the pharmacological chaperone 9-cis retinal, displaying improved folding and oligomerization when expressed alone but aggregating with wild-type receptor when coexpressed. The observed differences in aggregation properties and effect of 9-cis retinal predict different outcomes in disease pathophysiology and suggest that retinoid-based chaperones will be ineffective or even detrimental.
Collapse
Affiliation(s)
- Megan Gragg
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
33
|
Behnen P, Felline A, Comitato A, Di Salvo MT, Raimondi F, Gulati S, Kahremany S, Palczewski K, Marigo V, Fanelli F. A Small Chaperone Improves Folding and Routing of Rhodopsin Mutants Linked to Inherited Blindness. iScience 2018; 4:1-19. [PMID: 30240733 PMCID: PMC6147235 DOI: 10.1016/j.isci.2018.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/06/2018] [Accepted: 04/30/2018] [Indexed: 11/24/2022] Open
Abstract
The autosomal dominant form of retinitis pigmentosa (adRP) is a blindness-causing conformational disease largely linked to mutations of rhodopsin. Molecular simulations coupled to the graph-based protein structure network (PSN) analysis and in vitro experiments were conducted to determine the effects of 33 adRP rhodopsin mutations on the structure and routing of the opsin protein. The integration of atomic and subcellular levels of analysis was accomplished by the linear correlation between indices of mutational impairment in structure network and in routing. The graph-based index of structural perturbation served also to divide the mutants in four clusters, consistent with their differences in subcellular localization and responses to 9-cis retinal. The stability core of opsin inferred from PSN analysis was targeted by virtual screening of over 300,000 anionic compounds leading to the discovery of a reversible orthosteric inhibitor of retinal binding more effective than retinal in improving routing of three adRP mutants. In silico and in vitro analyses of adRP rhodopsin mutants bridged folding and routing Structure network analysis grouped mutants amenable to treatment with small chaperones Virtual compound screening against the stability core of opsin found a small chaperone The pharmacoperone is a reversible orthosteric inhibitor of retinal binding
Collapse
Affiliation(s)
- Petra Behnen
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125 Modena, Italy
| | - Angelo Felline
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Antonella Comitato
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125 Modena, Italy
| | - Maria Teresa Di Salvo
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125 Modena, Italy
| | - Francesco Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Sahil Gulati
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 East 101st Street, Cleveland, OH 44106, USA
| | - Shirin Kahremany
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 East 101st Street, Cleveland, OH 44106, USA
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125 Modena, Italy; Center for Neuroscience and Neurotechnology, via Campi 287, 41125 Modena, Italy.
| | - Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; Center for Neuroscience and Neurotechnology, via Campi 287, 41125 Modena, Italy.
| |
Collapse
|
34
|
Mattle D, Kuhn B, Aebi J, Bedoucha M, Kekilli D, Grozinger N, Alker A, Rudolph MG, Schmid G, Schertler GFX, Hennig M, Standfuss J, Dawson RJP. Ligand channel in pharmacologically stabilized rhodopsin. Proc Natl Acad Sci U S A 2018; 115:3640-3645. [PMID: 29555765 PMCID: PMC5889642 DOI: 10.1073/pnas.1718084115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the degenerative eye disease retinitis pigmentosa (RP), protein misfolding leads to fatal consequences for cell metabolism and rod and cone cell survival. To stop disease progression, a therapeutic approach focuses on stabilizing inherited protein mutants of the G protein-coupled receptor (GPCR) rhodopsin using pharmacological chaperones (PC) that improve receptor folding and trafficking. In this study, we discovered stabilizing nonretinal small molecules by virtual and thermofluor screening and determined the crystal structure of pharmacologically stabilized opsin at 2.4 Å resolution using one of the stabilizing hits (S-RS1). Chemical modification of S-RS1 and further structural analysis revealed the core binding motif of this class of rhodopsin stabilizers bound at the orthosteric binding site. Furthermore, previously unobserved conformational changes are visible at the intradiscal side of the seven-transmembrane helix bundle. A hallmark of this conformation is an open channel connecting the ligand binding site with the membrane and the intradiscal lumen of rod outer segments. Sufficient in size, the passage permits the exchange of hydrophobic ligands such as retinal. The results broaden our understanding of rhodopsin's conformational flexibility and enable therapeutic drug intervention against rhodopsin-related retinitis pigmentosa.
Collapse
Affiliation(s)
- Daniel Mattle
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Bernd Kuhn
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Johannes Aebi
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Marc Bedoucha
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Demet Kekilli
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Nathalie Grozinger
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Andre Alker
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Markus G Rudolph
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Georg Schmid
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Gebhard F X Schertler
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Michael Hennig
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Jörg Standfuss
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland;
| | - Roger J P Dawson
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland;
| |
Collapse
|
35
|
Athanasiou D, Aguila M, Bellingham J, Li W, McCulley C, Reeves PJ, Cheetham ME. The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy. Prog Retin Eye Res 2018; 62:1-23. [PMID: 29042326 PMCID: PMC5779616 DOI: 10.1016/j.preteyeres.2017.10.002] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/03/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022]
Abstract
Inherited mutations in the rod visual pigment, rhodopsin, cause the degenerative blinding condition, retinitis pigmentosa (RP). Over 150 different mutations in rhodopsin have been identified and, collectively, they are the most common cause of autosomal dominant RP (adRP). Mutations in rhodopsin are also associated with dominant congenital stationary night blindness (adCSNB) and, less frequently, recessive RP (arRP). Recessive RP is usually associated with loss of rhodopsin function, whereas the dominant conditions are a consequence of gain of function and/or dominant negative activity. The in-depth characterisation of many rhodopsin mutations has revealed that there are distinct consequences on the protein structure and function associated with different mutations. Here we categorise rhodopsin mutations into seven discrete classes; with defects ranging from misfolding and disruption of proteostasis, through mislocalisation and disrupted intracellular traffic to instability and altered function. Rhodopsin adRP offers a unique paradigm to understand how disturbances in photoreceptor homeostasis can lead to neuronal cell death. Furthermore, a wide range of therapies have been tested in rhodopsin RP, from gene therapy and gene editing to pharmacological interventions. The understanding of the disease mechanisms associated with rhodopsin RP and the development of targeted therapies offer the potential of treatment for this currently untreatable neurodegeneration.
Collapse
Affiliation(s)
| | - Monica Aguila
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - James Bellingham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Wenwen Li
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Caroline McCulley
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Philip J Reeves
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK.
| | | |
Collapse
|
36
|
Fanelli F, Felline A. Uncovering GPCR and G Protein Function by Protein Structure Network Analysis. COMPUTATIONAL TOOLS FOR CHEMICAL BIOLOGY 2017. [DOI: 10.1039/9781788010139-00198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Protein structure network (PSN) analysis is one of the graph theory-based approaches currently used for investigating structural communication in biomolecular systems. Information on the system's dynamics can be provided by atomistic molecular dynamics (MD) simulations or coarse grained elastic network models paired with normal mode analysis (ENM-NMA). This chapter reports on selected applications of PSN analysis to uncover the structural communication in G protein coupled receptors (GPCRs) and G proteins. Strategies to highlight changes in structural communication caused by mutations, ligand and protein binding are described. Conserved amino acids, sites of misfolding mutations, or ligands acting as functional switches tend to behave as hubs in the native structure networks. Densely linked regions in the protein structure graphs could be identified as playing central roles in protein stability and function. Changes in the communication pathway fingerprints depending on the bound ligand or following amino acid mutation could be highlighted as well. A bridge between misfolding and misrouting could be established in rhodopsin mutants linked to inherited blindness. The analysis of native network perturbations by misfolding mutations served to infer key structural elements of protein responsiveness to small chaperones with implications for drug discovery.
Collapse
Affiliation(s)
- Francesca Fanelli
- Department of Life Sciences University of Modena and Reggio Emilia Italy
- Center for Neuroscience and Neurotechnology University of Modena and Reggio Emilia Italy
| | - Angelo Felline
- Department of Life Sciences University of Modena and Reggio Emilia Italy
| |
Collapse
|
37
|
Flavonoid allosteric modulation of mutated visual rhodopsin associated with retinitis pigmentosa. Sci Rep 2017; 7:11167. [PMID: 28894166 PMCID: PMC5593859 DOI: 10.1038/s41598-017-11391-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/22/2017] [Indexed: 11/08/2022] Open
Abstract
Dietary flavonoids exhibit many biologically-relevant functions and can potentially have beneficial effects in the treatment of pathological conditions. In spite of its well known antioxidant properties, scarce structural information is available on the interaction of flavonoids with membrane receptors. Advances in the structural biology of a specific class of membrane receptors, the G protein-coupled receptors, have significantly increased our understanding of drug action and paved the way for developing improved therapeutic approaches. We have analyzed the effect of the flavonoid quercetin on the conformation, stability and function of the G protein-coupled receptor rhodopsin, and the G90V mutant associated with the retinal degenerative disease retinitis pigmentosa. By using a combination of experimental and computational methods, we suggest that quercetin can act as an allosteric modulator of opsin regenerated with 9-cis-retinal and more importantly, that this binding has a positive effect on the stability and conformational properties of the G90V mutant associated with retinitis pigmentosa. These results open new possibilities to use quercetin and other flavonoids, in combination with specific retinoids like 9-cis-retinal, for the treatment of retinal degeneration associated with retinitis pigmentosa. Moreover, the use of flavonoids as allosteric modulators may also be applicable to other members of the G protein-coupled receptors superfamily.
Collapse
|
38
|
Krebs MP, Collin GB, Hicks WL, Yu M, Charette JR, Shi LY, Wang J, Naggert JK, Peachey NS, Nishina PM. Mouse models of human ocular disease for translational research. PLoS One 2017; 12:e0183837. [PMID: 28859131 PMCID: PMC5578669 DOI: 10.1371/journal.pone.0183837] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/12/2017] [Indexed: 01/24/2023] Open
Abstract
Mouse models provide a valuable tool for exploring pathogenic mechanisms underlying inherited human disease. Here, we describe seven mouse models identified through the Translational Vision Research Models (TVRM) program, each carrying a new allele of a gene previously linked to retinal developmental and/or degenerative disease. The mutations include four alleles of three genes linked to human nonsyndromic ocular diseases (Aipl1tvrm119, Aipl1tvrm127, Rpgrip1tvrm111, RhoTvrm334) and three alleles of genes associated with human syndromic diseases that exhibit ocular phentoypes (Alms1tvrm102, Clcn2nmf289, Fkrptvrm53). Phenotypic characterization of each model is provided in the context of existing literature, in some cases refining our current understanding of specific disease attributes. These murine models, on fixed genetic backgrounds, are available for distribution upon request and may be useful for understanding the function of the gene in the retina, the pathological mechanisms induced by its disruption, and for testing experimental approaches to treat the corresponding human ocular diseases.
Collapse
Affiliation(s)
- Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Wanda L. Hicks
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
| | | | - Lan Ying Shi
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Jieping Wang
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Neal S. Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, United States of America
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| |
Collapse
|
39
|
Xiong S, Yu Y, Zhou X, Xia X, Jiang H. Rhodopsin T17M Mutant Inhibits Complement C3 Secretion in Retinal Pigment Epithelium via ROS Induced Downregulation of TWIST1. J Cell Biochem 2017; 118:4914-4920. [PMID: 28569420 DOI: 10.1002/jcb.26177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/31/2017] [Indexed: 11/07/2022]
Abstract
Rhodopsin mutations cause autosomal dominant form of retinitis pigmentosa (RP). T17M rhodopsin predisposes cells to endoplasmic reticulum stress induced apoptosis. However, the pathogenic role of T17M rhodopsin in RP is not completely understood. Complement C3 has a protective role in RP pathogenesis. This study aimed to investigate whether T17M rhodopsin regulates C3 secretion in retinal pigment epithelium. The human retinal pigment epithelial cell line (ARPE-19) was engineered to overexpress wide-type (WT) and T17M rhodopsin. Gene expression was detected by RT-PCR and Western blot analysis. C3 secretion was detected by ELISA. The overexpression of T17M rhodopsin significantly induced ROS and reduced C3 secretion and transcription in ARPE-19 cells, but ROS scavengers could partially rescue reduced C3 secretion and transcription. Mechanistically, we found that ROS suppressed transcription factor TWIST1 which is responsible for activated transcription of C3. In conclusion, our data provide the first evidence that T17M rhodopsin mutant disrupts C3 secretion via the induction of ROS and the suppression of TWIST1. These findings reveal novel insight into the pathogenic role of mutant rhodopsin in RP. J. Cell. Biochem. 118: 4914-4920, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Siqi Xiong
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Yixin Yu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Xiaoyun Zhou
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Haibo Jiang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410078, China
| |
Collapse
|
40
|
Stroobants K, Kumita JR, Harris NJ, Chirgadze DY, Dobson CM, Booth PJ, Vendruscolo M. Amyloid-like Fibrils from an α-Helical Transmembrane Protein. Biochemistry 2017; 56:3225-3233. [PMID: 28493669 PMCID: PMC5489960 DOI: 10.1021/acs.biochem.7b00157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The propensity to
misfold and self-assemble into stable aggregates
is increasingly being recognized as a common feature of protein molecules.
Our understanding of this phenomenon and of its links with human disease
has improved substantially over the past two decades. Studies thus
far, however, have been almost exclusively focused on cytosolic proteins,
resulting in a lack of detailed information about the misfolding and
aggregation of membrane proteins. As a consequence, although such
proteins make up approximately 30% of the human proteome and have
high propensities to aggregate, relatively little is known about the
biophysical nature of their assemblies. To shed light on this issue,
we have studied as a model system an archetypical representative of
the ubiquitous major facilitator superfamily, the Escherichia
coli lactose permease (LacY). By using a combination of established
indicators of cross-β structure and morphology, including the
amyloid diagnostic dye thioflavin-T, circular dichroism spectroscopy,
Fourier transform infrared spectroscopy, X-ray fiber diffraction,
and transmission electron microscopy, we show that LacY can form amyloid-like
fibrils under destabilizing conditions. These results indicate that
transmembrane α-helical proteins, similarly to cytosolic proteins,
have the ability to adopt this generic state.
Collapse
Affiliation(s)
- Karen Stroobants
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, U.K
| | - Janet R Kumita
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, U.K
| | - Nicola J Harris
- Department of Chemistry, King's College London , London SE1 1DB, U.K
| | - Dimitri Y Chirgadze
- Department of Biochemistry, University of Cambridge , Cambridge CB2 1GA, U.K
| | | | - Paula J Booth
- Department of Chemistry, King's College London , London SE1 1DB, U.K
| | | |
Collapse
|
41
|
Guo Y, Hendrickson HP, Videla PE, Chen YN, Ho J, Sekharan S, Batista VS, Tully JC, Yan ECY. Probing the remarkable thermal kinetics of visual rhodopsin with E181Q and S186A mutants. J Chem Phys 2017; 146:215104. [DOI: 10.1063/1.4984818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ying Guo
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - Heidi P. Hendrickson
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - Pablo E. Videla
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - Ya-Na Chen
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - Junming Ho
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - Sivakumar Sekharan
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - Victor S. Batista
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - John C. Tully
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - Elsa C. Y. Yan
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| |
Collapse
|
42
|
Dong X, Herrera-Hernández MG, Ramon E, Garriga P. Docosahexaenoic acid phospholipid differentially modulates the conformation of G90V and N55K rhodopsin mutants associated with retinitis pigmentosa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:975-981. [PMID: 28212859 DOI: 10.1016/j.bbamem.2017.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/09/2017] [Accepted: 02/11/2017] [Indexed: 11/26/2022]
Abstract
Rhodopsin is the visual photoreceptor of the retinal rod cells that mediates dim light vision and a prototypical member of the G protein-coupled receptor superfamily. The structural stability and functional performance of rhodopsin are modulated by membrane lipids. Docosahexaenoic acid has been shown to interact with native rhodopsin but no direct evidence has been established on the effect of such lipid on the stability and regeneration of rhodopsin mutants associated with retinal diseases. The stability and regeneration of two thermosensitive mutants G90V and N55K, associated with the retinal degenerative disease retinitis pigmentosa, have been analyzed in docosohexaenoic phospholipid (1,2-didocosa-hexaenoyl-sn-glycero-3-phosphocholine; DDHA-PC) liposomes. G90V mutant reconstituted in DDHA-PC liposomes significantly increased its thermal stability, but N55K mutant showed similar thermal sensitivity both in dodecyl maltoside detergent solution and in DDHA-PC liposomes. The retinal release process, measured by fluorescence spectroscopy, became faster in the lipid system for the two mutants. The opsin conformation was stabilized for the G90V mutant allowing improved retinal uptake whereas no chromophore binding could be detected for N55K opsin after photoactivation. The results emphasize the distinct role of DHA on different phenotypic rhodopsin mutations associated with classical (G90V) and sector (N55K) retinitis pigmentosa.
Collapse
Affiliation(s)
- Xiaoyun Dong
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| | - María Guadalupe Herrera-Hernández
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| | - Eva Ramon
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| | - Pere Garriga
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain.
| |
Collapse
|
43
|
Athanasiou D, Aguila M, Opefi CA, South K, Bellingham J, Bevilacqua D, Munro PM, Kanuga N, Mackenzie FE, Dubis AM, Georgiadis A, Graca AB, Pearson RA, Ali RR, Sakami S, Palczewski K, Sherman MY, Reeves PJ, Cheetham ME. Rescue of mutant rhodopsin traffic by metformin-induced AMPK activation accelerates photoreceptor degeneration. Hum Mol Genet 2017; 26:305-319. [PMID: 28065882 PMCID: PMC5351934 DOI: 10.1093/hmg/ddw387] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 01/29/2023] Open
Abstract
Protein misfolding caused by inherited mutations leads to loss of protein function and potentially toxic 'gain of function', such as the dominant P23H rhodopsin mutation that causes retinitis pigmentosa (RP). Here, we tested whether the AMPK activator metformin could affect the P23H rhodopsin synthesis and folding. In cell models, metformin treatment improved P23H rhodopsin folding and traffic. In animal models of P23H RP, metformin treatment successfully enhanced P23H traffic to the rod outer segment, but this led to reduced photoreceptor function and increased photoreceptor cell death. The metformin-rescued P23H rhodopsin was still intrinsically unstable and led to increased structural instability of the rod outer segments. These data suggest that improving the traffic of misfolding rhodopsin mutants is unlikely to be a practical therapy, because of their intrinsic instability and long half-life in the outer segment, but also highlights the potential of altering translation through AMPK to improve protein function in other protein misfolding diseases.
Collapse
Affiliation(s)
| | - Monica Aguila
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | - Chikwado A. Opefi
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex, UK
| | - Kieron South
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex, UK
| | | | | | - Peter M. Munro
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | - Naheed Kanuga
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | | | - Adam M. Dubis
- Moorfields Eye Hospital NHS Trust, 162 City Road, London, UK
| | | | - Anna B. Graca
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | | | - Robin R. Ali
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | - Sanae Sakami
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, USA
| | - Michael Y. Sherman
- Department of Biochemistry, Boston University Medical School, Boston, Massachusetts, MA, USA
| | - Philip J. Reeves
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex, UK
| | | |
Collapse
|
44
|
In vivo Editing of the Human Mutant Rhodopsin Gene by Electroporation of Plasmid-based CRISPR/Cas9 in the Mouse Retina. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e389. [PMID: 27874856 PMCID: PMC5155324 DOI: 10.1038/mtna.2016.92] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/01/2016] [Indexed: 12/22/2022]
Abstract
The bacterial CRISPR/Cas system has proven to be an efficient tool for genetic manipulation in various organisms. Here we show the application of CRISPR-Cas9 technology to edit the human Rhodopsin (RHO) gene in a mouse model for autosomal dominant Retinitis Pigmentosa. We designed single or double sgRNAs to knock-down mutant RHO expression by targeting exon 1 of the RHO gene carrying the P23H dominant mutation. By delivering Cas9 and sgRNAs in a single plasmid we induced an efficient gene editing in vitro, in HeLa cells engineered to constitutively express the P23H mutant RHO allele. Similarly, after subretinal electroporation of the CRISPR/Cas9 plasmid expressing two sgRNAs into P23H RHO transgenic mice, we scored specific gene editing as well as significant reduction of the mutant RHO protein. Successful in vivo application of the CRISPR/Cas9 system confirms its efficacy as a genetic engineering tool in photoreceptor cells.
Collapse
|
45
|
Chen Y, Brooks MJ, Gieser L, Swaroop A, Palczewski K. Transcriptome profiling of NIH3T3 cell lines expressing opsin and the P23H opsin mutant identifies candidate drugs for the treatment of retinitis pigmentosa. Pharmacol Res 2016; 115:1-13. [PMID: 27838510 DOI: 10.1016/j.phrs.2016.10.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/18/2016] [Accepted: 10/26/2016] [Indexed: 01/01/2023]
Abstract
Mammalian cells are commonly employed in screening assays to identify active compounds that could potentially affect the progression of different human diseases including retinitis pigmentosa (RP), a class of inherited diseases causing retinal degeneration with compromised vision. Using transcriptome analysis, we compared NIH3T3 cells expressing wildtype (WT) rod opsin with a retinal disease-causing single P23H mutation. Surprisingly, heterologous expression of WT opsin in NIH3T3 cells caused more than a 2-fold change in 783 out of 16,888 protein coding transcripts. The perturbed genes encoded extracellular matrix proteins, growth factors, cytoskeleton proteins, glycoproteins and metalloproteases involved in cell adhesion, morphology and migration. A different set of 347 transcripts was either up- or down-regulated when the P23H mutant opsin was expressed suggesting an altered molecular perturbation compared to WT opsin. Transcriptome perturbations elicited by drug candidates aimed at mitigating the effects of the mutant protein revealed that different drugs targeted distinct molecular pathways that resulted in a similar phenotype selected by a cell-based high-throughput screen. Thus, transcriptome profiling can provide essential information about the therapeutic potential of a candidate drug to restore normal gene expression in pathological conditions.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Matthew J Brooks
- Neurobiology-Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Linn Gieser
- Neurobiology-Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
46
|
Limited ATF4 Expression in Degenerating Retinas with Ongoing ER Stress Promotes Photoreceptor Survival in a Mouse Model of Autosomal Dominant Retinitis Pigmentosa. PLoS One 2016; 11:e0154779. [PMID: 27144303 PMCID: PMC4856272 DOI: 10.1371/journal.pone.0154779] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/19/2016] [Indexed: 02/07/2023] Open
Abstract
T17M rhodopsin expression in rod photoreceptors leads to severe retinal degeneration and is associated with the activation of ER stress related Unfolded Protein Response (UPR) signaling. Here, we show a novel role of a UPR transcription factor, ATF4, in photoreceptor cellular pathology. We demonstrated a pro-death role for ATF4 overexpression during autosomal dominant retinitis pigmentosa (ADRP). Based on our results in ATF4 knockout mice and adeno-associated viral (AAV) delivery of ATF4 to the retina, we validated a novel therapeutic approach targeting ATF4 over the course of retinal degeneration. In T17M rhodopsin retinas, we observed ATF4 overexpression concomitantly with reduction of p62 and elevation of p53 levels. These molecular alterations, together with increased CHOP and caspase-3/7 activity, possibly contributed to the mechanism of photoreceptor cell loss. Conversely, ATF4 knockdown retarded retinal degeneration in 1-month-old T17M Rhodopsin mice and promoted photoreceptor survival, as measured by scotopic and photopic ERGs and photoreceptor nuclei row counts. Similarly, ATF4 knockdown also markedly delayed retinal degeneration in 3-month-old ADRP animals. This delay was accompanied by a dramatic decrease in UPR signaling, the launching of anti-oxidant defense, initiation of autophagy, and improvement of rhodopsin biosynthesis which together perhaps combat the cellular stress associated with T17M rhodopsin. Our data indicate that augmented ATF4 signals during retinal degeneration plays a cytotoxic role by triggering photoreceptor cell death. Future ADRP therapy regulating ATF4 expression can be developed to treat retinal degenerative disorders associated with activated UPR.
Collapse
|
47
|
Gragg M, Kim TG, Howell S, Park PSH. Wild-type opsin does not aggregate with a misfolded opsin mutant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1850-9. [PMID: 27117643 DOI: 10.1016/j.bbamem.2016.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/06/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Megan Gragg
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tae Gyun Kim
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Scott Howell
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - P S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
48
|
Parfitt DA, Cheetham ME. Targeting the Proteostasis Network in Rhodopsin Retinitis Pigmentosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:479-84. [PMID: 26427449 DOI: 10.1007/978-3-319-17121-0_64] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mutations in rhodopsin are one of the most common causes of retinitis pigmentosa (RP). Misfolding of rhodopsin can result in disruptions in cellular protein homeostasis, or proteostasis. There is currently no available treatment for RP. In this review, we discuss the different approaches currently being investigated for treatment of rhodopsin RP, focusing on the potential of manipulation of the proteostasis network as a therapeutic approach to combat retinal degeneration.
Collapse
Affiliation(s)
- David A Parfitt
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL, London, UK.
| | - Michael E Cheetham
- Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL, London, UK.
| |
Collapse
|
49
|
Emerling CA, Springer MS. Genomic evidence for rod monochromacy in sloths and armadillos suggests early subterranean history for Xenarthra. Proc Biol Sci 2016; 282:20142192. [PMID: 25540280 DOI: 10.1098/rspb.2014.2192] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Rod monochromacy is a rare condition in vertebrates characterized by the absence of cone photoreceptor cells. The resulting phenotype is colourblindness and low acuity vision in dim-light and blindness in bright-light conditions. Early reports of xenarthrans (armadillos, sloths and anteaters) suggest that they are rod monochromats, but this has not been tested with genomic data. We searched the genomes of Dasypus novemcinctus (nine-banded armadillo), Choloepus hoffmanni (Hoffmann's two-toed sloth) and Mylodon darwinii (extinct ground sloth) for retinal photoreceptor genes and examined them for inactivating mutations. We performed PCR and Sanger sequencing on cone phototransduction genes of 10 additional xenarthrans to test for shared inactivating mutations and estimated the timing of inactivation for photoreceptor pseudogenes. We concluded that a stem xenarthran became an long-wavelength sensitive-cone monochromat following a missense mutation at a critical residue in SWS1, and a stem cingulate (armadillos, glyptodonts and pampatheres) and stem pilosan (sloths and anteaters) independently acquired rod monochromacy early in their evolutionary history following the inactivation of LWS and PDE6C, respectively. We hypothesize that rod monochromacy in armadillos and pilosans evolved as an adaptation to a subterranean habitat in the early history of Xenarthra. The presence of rod monochromacy has major implications for understanding xenarthran behavioural ecology and evolution.
Collapse
Affiliation(s)
- Christopher A Emerling
- Department of Biology, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Mark S Springer
- Department of Biology, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
50
|
Fernández-Sampedro MA, Invergo BM, Ramon E, Bertranpetit J, Garriga P. Functional role of positively selected amino acid substitutions in mammalian rhodopsin evolution. Sci Rep 2016; 6:21570. [PMID: 26865329 PMCID: PMC4749998 DOI: 10.1038/srep21570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/27/2016] [Indexed: 12/22/2022] Open
Abstract
Visual rhodopsins are membrane proteins that function as light photoreceptors in the vertebrate retina. Specific amino acids have been positively selected in visual pigments during mammal evolution, which, as products of adaptive selection, would be at the base of important functional innovations. We have analyzed the top candidates for positive selection at the specific amino acids and the corresponding reverse changes (F13M, Q225R and A346S) in order to unravel the structural and functional consequences of these important sites in rhodopsin evolution. We have constructed, expressed and immunopurified the corresponding mutated pigments and analyzed their molecular phenotypes. We find that position 13 is very important for the folding of the receptor and also for proper protein glycosylation. Position 225 appears to be important for the function of the protein affecting the G-protein activation process, and position 346 would also regulate functionality of the receptor by enhancing G-protein activation and presumably affecting protein phosphorylation by rhodopsin kinase. Our results represent a link between the evolutionary analysis, which pinpoints the specific amino acid positions in the adaptive process, and the structural and functional analysis, closer to the phenotype, making biochemical sense of specific selected genetic sequences in rhodopsin evolution.
Collapse
Affiliation(s)
- Miguel A Fernández-Sampedro
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| | - Brandon M Invergo
- IBE - Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), CEXS-UPF-PRBB, Barcelona, Catalonia, Spain
| | - Eva Ramon
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| | - Jaume Bertranpetit
- IBE - Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), CEXS-UPF-PRBB, Barcelona, Catalonia, Spain
| | - Pere Garriga
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| |
Collapse
|