1
|
Recoulat Angelini AA, Roman EA, González Flecha FL. The Structural Stability of Membrane Proteins Revisited: Combined Thermodynamic and Spectral Phasor Analysis of SDS-induced Denaturation of a Thermophilic Cu(I)-transport ATPase. J Mol Biol 2024; 436:168689. [PMID: 38936696 DOI: 10.1016/j.jmb.2024.168689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Assessing membrane protein stability is among the major challenges in protein science due to their inherent complexity, which complicates the application of conventional biophysical tools. In this work, sodium dodecyl sulfate-induced denaturation of AfCopA, a Cu(I)-transport ATPase from Archaeoglobus fulgidus, was explored using a combined model-free spectral phasor analysis and a model-dependent thermodynamic analysis. Decrease in tryptophan and 1-anilino-naphthalene-8-sulfonate fluorescence intensity, displacements in the spectral phasor space, and the loss of ATPase activity were reversibly induced by this detergent. Refolding from the SDS-induced denatured state yields an active enzyme that is functionally and spectroscopically indistinguishable from the native state of the protein. Phasor analysis of Trp spectra allowed us to identify two intermediate states in the SDS-induced denaturation of AfCopA, a result further supported by principal component analysis. In contrast, traditional thermodynamic analysis detected only one intermediate state, and including the second one led to overparameterization. Additionally, ANS fluorescence spectral analysis detected one more intermediate and a gradual change at the level of the hydrophobic transmembrane surface of the protein. Based on this evidence, a model for acquiring the native structure of AfCopA in a membrane-like environment is proposed.
Collapse
Affiliation(s)
- Alvaro A Recoulat Angelini
- Universidad de Buenos Aires - CONICET, Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Junín 956, Buenos Aires, Argentina
| | - Ernesto A Roman
- Universidad de Buenos Aires - CONICET, Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Junín 956, Buenos Aires, Argentina
| | - F Luis González Flecha
- Universidad de Buenos Aires - CONICET, Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Junín 956, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Idrovo-Hidalgo T, Pignataro MF, Bredeston LM, Elias F, Herrera MG, Pavan MF, Foscaldi S, Suireszcz M, Fernández NB, Wetzler DE, Paván CH, Craig PO, Roman EA, Ruberto LAM, Noseda DG, Ibañez LI, Czibener C, Ugalde JE, Nadra AD, Santos J, D'Alessio C. Deglycosylated RBD produced in Pichia pastoris as a low-cost sera COVID-19 diagnosis tool and a vaccine candidate. Glycobiology 2024; 34:cwad089. [PMID: 37944064 DOI: 10.1093/glycob/cwad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
During the COVID-19 outbreak, numerous tools including protein-based vaccines have been developed. The methylotrophic yeast Pichia pastoris (synonymous to Komagataella phaffii) is an eukaryotic cost-effective and scalable system for recombinant protein production, with the advantages of an efficient secretion system and the protein folding assistance of the secretory pathway of eukaryotic cells. In a previous work, we compared the expression of SARS-CoV-2 Spike Receptor Binding Domain in P. pastoris with that in human cells. Although the size and glycosylation pattern was different between them, their protein structural and conformational features were indistinguishable. Nevertheless, since high mannose glycan extensions in proteins expressed by yeast may be the cause of a nonspecific immune recognition, we deglycosylated RBD in native conditions. This resulted in a highly pure, homogenous, properly folded and monomeric stable protein. This was confirmed by circular dichroism and tryptophan fluorescence spectra and by SEC-HPLC, which were similar to those of RBD proteins produced in yeast or human cells. Deglycosylated RBD was obtained at high yields in a single step, and it was efficient in distinguishing between SARS-CoV-2-negative and positive sera from patients. Moreover, when the deglycosylated variant was used as an immunogen, it elicited a humoral immune response ten times greater than the glycosylated form, producing antibodies with enhanced neutralizing power and eliciting a more robust cellular response. The proposed approach may be used to produce at a low cost, many antigens that require glycosylation to fold and express, but do not require glycans for recognition purposes.
Collapse
Affiliation(s)
- Tommy Idrovo-Hidalgo
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - María F Pignataro
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Universidad de Buenos Aires, Junín 965 C1113AAD. Buenos Aires, Argentina
| | - Luis M Bredeston
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Universidad de Buenos Aires, Junín 965 C1113AAD. Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas, (IQUIFIB), CONICET-Universidad de Buenos Aires, Junín 956 C1113AAD, Buenos Aires, Argentina
| | - Fernanda Elias
- Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación Pablo Cassará, Instituto de Ciencia y Tecnología Dr. César Milstein, Saladillo 2468 C1440FFX, Buenos Aires, Argentina
| | - María G Herrera
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - María F Pavan
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
| | - Sabrina Foscaldi
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Mayra Suireszcz
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Natalia B Fernández
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Diana E Wetzler
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Carlos H Paván
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, LANAIS-PROEM, Instituto de Química y Fisicoquímica Biológicas, (IQUIFIB), CONICET-Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Patricio O Craig
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Ernesto A Roman
- Instituto de Química y Fisicoquímica Biológicas, (IQUIFIB), CONICET-Universidad de Buenos Aires, Junín 956 C1113AAD, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Lucas A M Ruberto
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 965, C1113AAD, Buenos Aires, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín 965, C1113AAD, Buenos Aires, Argentina
- Instituto Antártico Argentino, Ministerio de Relaciones Exteriores y Culto, Av. 25 de Mayo 1147, B1650HMP, San Martín, Prov. de Buenos Aires, Argentina
| | - Diego G Noseda
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín-CONICET, Av. 25 de Mayo y Francia S/N, B1650HMP, San Martín, Prov. de Buenos Aires, Argentina
| | - Lorena I Ibañez
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
| | - Cecilia Czibener
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín-CONICET, Av. 25 de Mayo y Francia S/N, B1650HMP, San Martín, Prov. de Buenos Aires, Argentina
| | - Juan E Ugalde
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín-CONICET, Av. 25 de Mayo y Francia S/N, B1650HMP, San Martín, Prov. de Buenos Aires, Argentina
| | - Alejandro D Nadra
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
| | - Javier Santos
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Cecilia D'Alessio
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| |
Collapse
|
3
|
Recoulat Angelini AA, Incicco JJ, Melian NA, González-Flecha FL. Susceptibility of Cu(I) transport ATPases to sodium dodecyl sulfate. Relevance of the composition of the micellar phase. Arch Biochem Biophys 2023; 745:109704. [PMID: 37527700 DOI: 10.1016/j.abb.2023.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
Sodium dodecyl sulfate (SDS) is a well-known protein denaturing agent. A less known property of this detergent is that it can activate or inactivate some enzymes at sub-denaturing concentrations. In this work we explore the effect of SDS on the ATPase activity of a hyper-thermophilic and a mesophilic Cu(I) ATPases reconstituted in mixed micelles of phospholipids and a non-denaturing detergent. An iterative procedure was used to evaluate the partition of SDS between the aqueous and the micellar phases, allowing to determine the composition of micelles prepared from phospholipid/detergent mixtures. The incubation of enzymes with SDS in the presence of different amounts of phospholipids reveals that higher SDS concentrations are required to obtain the same degree of inactivation when the initial concentration of phospholipids is increased. Remarkably, we found that, if represented as a function of the mole fraction of SDS in the micelle, the degree of inactivation obtained at different amounts of amphiphiles converges to a single inactivation curve. To interpret this result, we propose a simple model involving active and inactive enzyme molecules in equilibrium. This model allowed us to estimate the Gibbs free energy change for the inactivation process and its derivative with respect to the mole fraction of SDS in the micellar phase, the latter being a measure of the susceptibility of the enzyme to SDS. Our results showed that the inactivation free energy changes are similar for both proteins. Conversely, susceptibility to SDS is significantly lower for the hyperthermophilic ATPase, suggesting an inverse relation between thermophilicity and susceptibility to SDS.
Collapse
Affiliation(s)
- Alvaro A Recoulat Angelini
- Universidad de Buenos Aires - CONICET, Laboratorio de Biofísica Molecular. Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina
| | - J Jeremías Incicco
- Universidad de Buenos Aires - CONICET, Laboratorio de Biofísica Molecular. Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina
| | - Noelia A Melian
- Universidad de Buenos Aires - CONICET, Laboratorio de Biofísica Molecular. Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina
| | - F Luis González-Flecha
- Universidad de Buenos Aires - CONICET, Laboratorio de Biofísica Molecular. Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Recoulat Angelini AA, Martínez Gache SA, Sabeckis ML, Melian NA, González Flecha FL. On the role of citrate in 12-molybdophosphoric-acid methods for quantification of phosphate in the presence of ATP. NEW J CHEM 2022. [DOI: 10.1039/d2nj00943a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Citrate is a useful additive for measuring ATPase activities avoiding the interference of phosphate release after catalysis. In this work we explore this effect, and optimize the malachite green procedure for determination of phosphate.
Collapse
Affiliation(s)
- Alvaro A. Recoulat Angelini
- Universidad de Buenos Aires-CONICET, Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina
| | - Santiago A. Martínez Gache
- Universidad de Buenos Aires-CONICET, Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina
| | - M. Lurdes Sabeckis
- Universidad de Buenos Aires-CONICET, Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina
| | - Noelia A. Melian
- Universidad de Buenos Aires-CONICET, Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina
| | - F. Luis González Flecha
- Universidad de Buenos Aires-CONICET, Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina
| |
Collapse
|
5
|
Tan YL, Mitchell J, Klein-Seetharaman J, Nietlispach D. Characterization of Denatured States and Reversible Unfolding of Sensory Rhodopsin II. J Mol Biol 2018; 430:4068-4086. [PMID: 30098339 DOI: 10.1016/j.jmb.2018.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/16/2018] [Accepted: 07/23/2018] [Indexed: 12/27/2022]
Abstract
Our understanding on the folding of membrane proteins lags behind that of soluble proteins due to challenges posed by the exposure of hydrophobic regions during in vitro chemical denaturation and refolding experiments. While different folding models are accepted for soluble proteins, only the two-stage model and the long-range interactions model have been proposed so far for helical membrane proteins. To address our knowledge gap on how different membrane proteins traverse their folding pathways, we have systematically investigated the structural features of SDS-denatured states and the kinetics for reversible unfolding of sensory rhodopsin II (pSRII), a retinal-binding photophobic receptor from Natronomonas pharaonis. pSRII is difficult to denature, and only SDS can dislodge the retinal chromophore without rapid aggregation. Even in 30% SDS (0.998 ΧSDS), pSRII retains the equivalent of six out of seven transmembrane helices, while the retinal-binding pocket is disrupted, with transmembrane residues becoming more solvent exposed. Folding of pSRII from an SDS-denatured state harboring a covalently bound retinal chromophore shows deviations from an apparent two-state behavior. SDS denaturation to form the sensory opsin apo-protein is reversible. We report pSRII as a new model protein which is suitable for membrane protein folding studies and has a unique folding mechanism that differs from those of bacteriorhodopsin and bovine rhodopsin.
Collapse
Affiliation(s)
- Yi Lei Tan
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA, United Kingdom
| | - James Mitchell
- Biomedical Sciences Division, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Judith Klein-Seetharaman
- Biomedical Sciences Division, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Daniel Nietlispach
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA, United Kingdom.
| |
Collapse
|
6
|
González Flecha FL. Kinetic stability of membrane proteins. Biophys Rev 2017; 9:563-572. [PMID: 28921106 DOI: 10.1007/s12551-017-0324-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/29/2017] [Indexed: 12/25/2022] Open
Abstract
Although membrane proteins constitute an important class of biomolecules involved in key cellular processes, study of the thermodynamic and kinetic stability of their structures is far behind that of soluble proteins. It is known that many membrane proteins become unstable when removed by detergent extraction from the lipid environment. In addition, most of them undergo irreversible denaturation, even under mild experimental conditions. This process was found to be associated with partial unfolding of the polypeptide chain exposing hydrophobic regions to water, and it was proposed that the formation of kinetically trapped conformations could be involved. In this review, we will describe some of the efforts toward understanding the irreversible inactivation of membrane proteins. Furthermore, its modulation by phospholipids, ligands, and temperature will be herein discussed.
Collapse
Affiliation(s)
- F Luis González Flecha
- Universidad de Buenos Aires, CONICET, Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Panigrahi R, Arutyunova E, Panwar P, Gimpl K, Keller S, Lemieux MJ. Reversible Unfolding of Rhomboid Intramembrane Proteases. Biophys J 2016; 110:1379-90. [PMID: 27028647 DOI: 10.1016/j.bpj.2016.01.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 12/20/2022] Open
Abstract
Denaturant-induced unfolding of helical membrane proteins provides insights into their mechanism of folding and domain organization, which take place in the chemically heterogeneous, anisotropic environment of a lipid membrane. Rhomboid proteases are intramembrane proteases that play key roles in various diseases. Crystal structures have revealed a compact helical bundle with a buried active site, which requires conformational changes for the cleavage of transmembrane substrates. A dimeric form of the rhomboid protease has been shown to be important for activity. In this study, we examine the mechanism of refolding for two distinct rhomboids to gain insight into their secondary structure-activity relationships. Although helicity is largely abolished in the unfolded states of both proteins, unfolding is completely reversible for HiGlpG but only partially reversible for PsAarA. Refolding of both proteins results in reassociation of the dimer, with a 90% regain of catalytic activity for HiGlpG but only a 70% regain for PsAarA. For both proteins, a broad, gradual transition from the native, folded state to the denatured, partly unfolded state was revealed with the aid of circular dichroism spectroscopy as a function of denaturant concentration, thus arguing against a classical two-state model as found for many globular soluble proteins. Thermal denaturation has irreversible destabilizing effects on both proteins, yet reveals important functional details regarding substrate accessibility to the buried active site. This concerted biophysical and functional analysis demonstrates that HiGlpG, with a simple six-transmembrane-segment organization, is more robust than PsAarA, which has seven predicted transmembrane segments, thus rendering HiGlpG amenable to in vitro studies of membrane-protein folding.
Collapse
Affiliation(s)
- Rashmi Panigrahi
- Department of Biochemistry, Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Elena Arutyunova
- Department of Biochemistry, Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Pankaj Panwar
- Department of Biochemistry, Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Katharina Gimpl
- Molecular Biophysics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Sandro Keller
- Molecular Biophysics, University of Kaiserslautern, Kaiserslautern, Germany
| | - M Joanne Lemieux
- Department of Biochemistry, Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
8
|
Sett R, Ganguly A, Guchhait N. Effect of the binding interaction of an emissive niacin derivative on the conformation and activity of a model plasma protein: A spectroscopic and simulation-based approach. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 164:141-150. [DOI: 10.1016/j.jphotobiol.2016.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 02/04/2023]
|
9
|
Bredeston LM, González Flecha FL. The promiscuous phosphomonoestearase activity of Archaeoglobus fulgidus CopA, a thermophilic Cu+ transport ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1471-8. [PMID: 27086711 DOI: 10.1016/j.bbamem.2016.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/01/2016] [Accepted: 04/13/2016] [Indexed: 11/19/2022]
Abstract
Membrane transport P-type ATPases display two characteristic enzymatic activities: a principal ATPase activity provides the driving force for ion transport across biological membranes, whereas a promiscuous secondary activity catalyzes the hydrolysis of phosphate monoesters. This last activity is usually denoted as the phosphatase activity of P-ATPases. In the present study, we characterize the phosphatase activity of the Cu(+)-transport ATPase from Archaeglobus fulgidus (Af-CopA) and compare it with the principal ATPase activity. Our results show that the phosphatase turnover number was 20 times higher than that corresponding to the ATPase activity, but it is compensated by a high value of Km, producing a less efficient catalysis for pNPP. This secondary activity is enhanced by Mg(2+) (essential activator) and phospholipids (non-essential activator), and inhibited by salts and Cu(+). Transition state analysis of the catalyzed and noncatalyzed hydrolysis of pNPP indicates that Af-CopA enhances the reaction rates by a factor of 10(5) (ΔΔG(‡)=38 kJ/mol) mainly by reducing the enthalpy of activation (ΔΔH(‡)=30 kJ/mol), whereas the entropy of activation is less negative on the enzyme than in solution. For the ATPase activity, the decrease in the enthalpic component of the barrier is higher (ΔΔH(‡)=39 kJ/mol) and the entropic component is small on both the enzyme and in solution. These results suggest that different mechanisms are involved in the transference of the phosphoryl group of p-nitrophenyl phosphate and ATP.
Collapse
Affiliation(s)
- Luis M Bredeston
- Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
| | - F Luis González Flecha
- Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Zeida A, Reyes AM, Lichtig P, Hugo M, Vazquez DS, Santos J, González Flecha FL, Radi R, Estrin DA, Trujillo M. Molecular Basis of Hydroperoxide Specificity in Peroxiredoxins: The Case of AhpE from Mycobacterium tuberculosis. Biochemistry 2015; 54:7237-47. [DOI: 10.1021/acs.biochem.5b00758] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Aníbal M. Reyes
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | | | - Martín Hugo
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | | | | | | | - Rafael Radi
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | | | - Madia Trujillo
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
11
|
Dutta A, Altenbach C, Mangahas S, Yanamala N, Gardner E, Hubbell WL, Klein-Seetharaman J. Differential dynamics of extracellular and cytoplasmic domains in denatured States of rhodopsin. Biochemistry 2014; 53:7160-9. [PMID: 25268658 PMCID: PMC4245987 DOI: 10.1021/bi401557e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Rhodopsin
is a model system for understanding membrane protein
folding. Recently, conditions that allow maximally denaturing rhodopsin
without causing aggregation have been determined, opening the door
to the first structural characterization of denatured states of rhodopsin
by nuclear magnetic resonance (NMR) and electron paramagnetic resonance
(EPR) spectroscopy. One-dimensional 1H NMR spectra confirm
a progressive increase in flexibility of resonances in rhodopsin with
increasing denaturant concentrations. Two-dimensional 1H–15N HSQC spectra of [15N]-α-lysine-labeled
rhodopsin in which signals arise primarily from residues in the cytoplasmic
(CP) domain and of [15N]-α,ε-tryptophan-labeled
rhodopsin in which signals arise only from transmembrane (TM) and
extracellular (EC) residues indicate qualitatively that EC and CP
domains may be differentially affected by denaturation. To obtain
residue-specific information, particular residues in EC and CP domains
were investigated by site-directed spin labeling. EPR spectra of the
spin-labeled samples indicate that the EC residues retain more rigidity
in the denatured states than the CP residues. These results support
the notion of residual structure in denatured states of rhodopsin.
Collapse
Affiliation(s)
- Arpana Dutta
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | | | | | | | | | | | | |
Collapse
|
12
|
Paul BK, Ghosh N, Mukherjee S. Binding interaction of a prospective chemotherapeutic antibacterial drug with β-lactoglobulin: results and challenges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:5921-9. [PMID: 24807302 DOI: 10.1021/la501252x] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This Article reports a detailed characterization of the binding interaction of a potential chemotherapeutic antibacterial drug, norfloxacin (NOF), with the mammalian milk protein β-lactoglobulin (βLG). The thermodynamic parameters, ΔH, ΔS, and ΔG, for the binding phenomenon as-evaluated on the basis of van't Hoff relationship reveal the predominance of electrostatic/ionic interactions underlying the binding process. However, the drug-induced quenching of the intrinsic tryptophanyl fluorescence of the protein exhibits intriguing characteristics on Stern-Volmer analysis (displays an upward curvature instead of conforming to a linear regression). Thus, an extensive time-resolved fluorescence spectroscopic characterization of the quenching process has been undertaken in conjugation with temperature-dependent fluorescence quenching studies to unveil the actual quenching mechanism. The invariance of the fluorescence decay behavior of βLG as a function of the quencher (here NOF) concentration coupled with the commensurate dependence of the drug-protein binding constant (K) on temperature, the drug-induced fluorescence quenching of βLG is argued to proceed through static mechanism. This postulate is aided further support from absorption, fluorescence, and circular dichroism (CD) spectral studies. The present study also throws light on the important issue of drug-induced modification in the native protein conformation on the lexicon of CD, excitation-emission matrix spectroscopic techniques. Concurrently, the drug-protein interaction kinetics and the energy of activation of the process are also explored from stopped-flow fluorescence technique. The probable binding locus of NOF in βLG is investigated from AutoDock-based blind docking simulation.
Collapse
Affiliation(s)
- Bijan K Paul
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal , Indore By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | | | | |
Collapse
|
13
|
Roman EA, González Flecha FL. Kinetics and thermodynamics of membrane protein folding. Biomolecules 2014; 4:354-73. [PMID: 24970219 PMCID: PMC4030980 DOI: 10.3390/biom4010354] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/19/2014] [Accepted: 02/23/2014] [Indexed: 02/06/2023] Open
Abstract
Understanding protein folding has been one of the great challenges in biochemistry and molecular biophysics. Over the past 50 years, many thermodynamic and kinetic studies have been performed addressing the stability of globular proteins. In comparison, advances in the membrane protein folding field lag far behind. Although membrane proteins constitute about a third of the proteins encoded in known genomes, stability studies on membrane proteins have been impaired due to experimental limitations. Furthermore, no systematic experimental strategies are available for folding these biomolecules in vitro. Common denaturing agents such as chaotropes usually do not work on helical membrane proteins, and ionic detergents have been successful denaturants only in few cases. Refolding a membrane protein seems to be a craftsman work, which is relatively straightforward for transmembrane β-barrel proteins but challenging for α-helical membrane proteins. Additional complexities emerge in multidomain membrane proteins, data interpretation being one of the most critical. In this review, we will describe some recent efforts in understanding the folding mechanism of membrane proteins that have been reversibly refolded allowing both thermodynamic and kinetic analysis. This information will be discussed in the context of current paradigms in the protein folding field.
Collapse
Affiliation(s)
- Ernesto A Roman
- Laboratory of Molecular Biophysics, Institute of Biochemistry and Biophysical Chemistry, University of Buenos Aires-CONICET, Buenos Aires 1113, Argentina.
| | - F Luis González Flecha
- Laboratory of Molecular Biophysics, Institute of Biochemistry and Biophysical Chemistry, University of Buenos Aires-CONICET, Buenos Aires 1113, Argentina.
| |
Collapse
|
14
|
Harris NJ, Findlay HE, Simms J, Liu X, Booth PJ. Relative domain folding and stability of a membrane transport protein. J Mol Biol 2014; 426:1812-25. [PMID: 24530957 DOI: 10.1016/j.jmb.2014.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
Abstract
There is a limited understanding of the folding of multidomain membrane proteins. Lactose permease (LacY) of Escherichia coli is an archetypal member of the major facilitator superfamily of membrane transport proteins, which contain two domains of six transmembrane helices each. We exploit chemical denaturation to determine the unfolding free energy of LacY and employ Trp residues as site-specific thermodynamic probes. Single Trp LacY mutants are created with the individual Trps situated at mirror image positions on the two LacY domains. The changes in Trp fluorescence induced by urea denaturation are used to construct denaturation curves from which unfolding free energies can be determined. The majority of the single Trp tracers report the same stability and an unfolding free energy of approximately +2 kcal mol(-1). There is one exception; the fluorescence of W33 at the cytoplasmic end of helix I on the N domain is unaffected by urea. In contrast, the equivalent position on the first helix, VII, of the C-terminal domain exhibits wild-type stability, with the single Trp tracer at position 243 on helix VII reporting an unfolding free energy of +2 kcal mol(-1). This indicates that the region of the N domain of LacY at position 33 on helix I has enhanced stability to urea, when compared the corresponding location at the start of the C domain. We also find evidence for a potential network of stabilising interactions across the domain interface, which reduces accessibility to the hydrophilic substrate binding pocket between the two domains.
Collapse
Affiliation(s)
- Nicola J Harris
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | - John Simms
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Xia Liu
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Paula J Booth
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
15
|
Tastan O, Dutta A, Booth P, Klein-Seetharaman J. Retinal proteins as model systems for membrane protein folding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:656-63. [PMID: 24333783 DOI: 10.1016/j.bbabio.2013.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/19/2013] [Accepted: 11/28/2013] [Indexed: 11/30/2022]
Abstract
Experimental folding studies of membrane proteins are more challenging than water-soluble proteins because of the higher hydrophobicity content of membrane embedded sequences and the need to provide a hydrophobic milieu for the transmembrane regions. The first challenge is their denaturation: due to the thermodynamic instability of polar groups in the membrane, secondary structures in membrane proteins are more difficult to disrupt than in soluble proteins. The second challenge is to refold from the denatured states. Successful refolding of membrane proteins has almost always been from very subtly denatured states. Therefore, it can be useful to analyze membrane protein folding using computational methods, and we will provide results obtained with simulated unfolding of membrane protein structures using the Floppy Inclusions and Rigid Substructure Topography (FIRST) method. Computational methods have the advantage that they allow a direct comparison between diverse membrane proteins. We will review here both, experimental and FIRST studies of the retinal binding proteins bacteriorhodopsin and mammalian rhodopsin, and discuss the extension of the findings to deriving hypotheses on the mechanisms of folding of membrane proteins in general. This article is part of a Special Issue entitled: Retinal Proteins-You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Oznur Tastan
- Department of Computer Engineering, Bilkent University, Ankara, Turkey
| | - Arpana Dutta
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, USA
| | - Paula Booth
- School of Biochemistry, University of Bristol, UK
| | - Judith Klein-Seetharaman
- Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, UK.
| |
Collapse
|
16
|
Paul BK, Ray D, Guchhait N. Unraveling the binding interaction and kinetics of a prospective anti-HIV drug with a model transport protein: results and challenges. Phys Chem Chem Phys 2013; 15:1275-87. [DOI: 10.1039/c2cp42539d] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Dodes Traian MM, Cattoni DI, Levi V, González Flecha FL. A two-stage model for lipid modulation of the activity of integral membrane proteins. PLoS One 2012; 7:e39255. [PMID: 22723977 PMCID: PMC3378530 DOI: 10.1371/journal.pone.0039255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/22/2012] [Indexed: 01/23/2023] Open
Abstract
Lipid-protein interactions play an essential role in the regulation of biological function of integral membrane proteins; however, the underlying molecular mechanisms are not fully understood. Here we explore the modulation by phospholipids of the enzymatic activity of the plasma membrane calcium pump reconstituted in detergent-phospholipid mixed micelles of variable composition. The presence of increasing quantities of phospholipids in the micelles produced a cooperative increase in the ATPase activity of the enzyme. This activation effect was reversible and depended on the phospholipid/detergent ratio and not on the total lipid concentration. Enzyme activation was accompanied by a small structural change at the transmembrane domain reported by 1-aniline-8-naphtalenesulfonate fluorescence. In addition, the composition of the amphipilic environment sensed by the protein was evaluated by measuring the relative affinity of the assayed phospholipid for the transmembrane surface of the protein. The obtained results allow us to postulate a two-stage mechanistic model explaining the modulation of protein activity based on the exchange among non-structural amphiphiles at the hydrophobic transmembrane surface, and a lipid-induced conformational change. The model allowed to obtain a cooperativity coefficient reporting on the efficiency of the transduction step between lipid adsorption and catalytic site activation. This model can be easily applied to other phospholipid/detergent mixtures as well to other membrane proteins. The systematic quantitative evaluation of these systems could contribute to gain insight into the structure-activity relationships between proteins and lipids in biological membranes.
Collapse
Affiliation(s)
- Martín M Dodes Traian
- Laboratorio de Biofísica Molecular - Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
18
|
Paul BK, Ray D, Guchhait N. Spectral deciphering of the interaction between an intramolecular hydrogen bonded ESIPT drug, 3,5-dichlorosalicylic acid, and a model transport protein. Phys Chem Chem Phys 2012; 14:8892-902. [DOI: 10.1039/c2cp23496c] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
19
|
Penzkofer A, Stierl M, Hegemann P, Kateriya S. Thermal protein unfolding in photo-activated adenylate cyclase nano-clusters from the amoeboflagellate Naegleria gruberi NEG-M strain. J Photochem Photobiol A Chem 2011. [DOI: 10.1016/j.jphotochem.2011.09.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Harris NJ, Booth PJ. Folding and stability of membrane transport proteins in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1055-66. [PMID: 22100867 DOI: 10.1016/j.bbamem.2011.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/26/2011] [Accepted: 11/03/2011] [Indexed: 10/15/2022]
Abstract
Transmembrane transporters are responsible for maintaining a correct internal cellular environment. The inherent flexibility of transporters together with their hydrophobic environment means that they are challenging to study in vitro, but recently significant progress been made. This review will focus on in vitro stability and folding studies of transmembrane alpha helical transporters, including reversible folding systems and thermal denaturation. The successful re-assembly of a small number of ATP binding cassette transporters is also described as this is a significant step forward in terms of understanding the folding and assembly of these more complex, multi-subunit proteins. The studies on transporters discussed here represent substantial advances for membrane protein studies as well as for research into protein folding. The work demonstrates that large flexible hydrophobic proteins are within reach of in vitro folding studies, thus holding promise for furthering knowledge on the structure, function and biogenesis of ubiquitous membrane transporter families. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
|
21
|
Cao Z, Schlebach JP, Park C, Bowie JU. Thermodynamic stability of bacteriorhodopsin mutants measured relative to the bacterioopsin unfolded state. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1049-54. [PMID: 21880269 DOI: 10.1016/j.bbamem.2011.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/08/2011] [Accepted: 08/15/2011] [Indexed: 01/19/2023]
Abstract
The stability of bacteriorhodopsin (bR) has often been assessed using SDS unfolding assays that monitor the transition of folded bR (bR(f)) to unfolded (bR(u)). While many criteria suggest that the unfolding curves reflect thermodynamic stability, slow retinal (RET) hydrolysis during refolding makes it impossible to perform the most rigorous test for equilibrium, i.e., superimposable unfolding and refolding curves. Here we made a new equilibrium test by asking whether the refolding rate in the transition zone is faster than RET hydrolysis. We find that under conditions we have used previously, refolding is in fact slower than hydrolysis, strongly suggesting that equilibrium is not achieved. Instead, the apparent free energy values reported previously are dominated by unfolding rates. To assess how different the true equilibrium values are, we employed an alternative method by measuring the transition of bR(f) to unfolded bacterioopsin (bO(u)), the RET-free form of unfolded protein. The bR(f)-to-bO(u) transition is fully reversible, particular when we add excess RET. We compared the difference in unfolding free energies for 13 bR mutants measured by both assays. For 12 of the 13 mutants with a wide range of stabilities, the results are essentially the same within experimental error. The congruence of the results is fortuitous and suggests the energetic effects of most mutations may be focused on the folded state. The bR(f)-to-bO(u) reaction is inconvenient because many days are required to reach equilibrium, but it is the preferable measure of thermodynamic stability. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Chemistry and Biochemistry, UCLA DOE Institute of Genomics and Proteomics, Molecular Biology Insitute, University of California, Los Angeles, CA 90095-1570, USA
| | | | | | | |
Collapse
|
22
|
Manta B, Obal G, Ricciardi A, Pritsch O, Denicola A. Tools to evaluate the conformation of protein products. Biotechnol J 2011; 6:731-41. [DOI: 10.1002/biot.201100107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/31/2011] [Accepted: 04/04/2011] [Indexed: 11/10/2022]
|
23
|
Otzen D. Protein–surfactant interactions: A tale of many states. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:562-91. [DOI: 10.1016/j.bbapap.2011.03.003] [Citation(s) in RCA: 362] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/23/2011] [Accepted: 03/04/2011] [Indexed: 10/18/2022]
|
24
|
Roman EA, Rosi P, González Lebrero MC, Wuilloud R, González Flecha FL, Delfino JM, Santos J. Gain of local structure in an amphipathic peptide does not require a specific tertiary framework. Proteins 2011; 78:2757-68. [PMID: 20607854 DOI: 10.1002/prot.22789] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this work, we studied how an amphipathic peptide of the surface of the globular protein thioredoxin, TRX94-108, acquires a native-like structure when it becomes involved in an apolar interaction network. We designed peptide variants where the tendency to form alpha-helical conformation is modulated by replacing each of the leucine amino acid residues by an alanine. The induction of structure caused by sodium dodecyl sulfate (SDS) binding was studied by capillary zone electrophoresis, circular dichroism, DOSY-NMR, and molecular dynamics simulations (MDS). In addition, we analyzed the strength of the interaction between a C18 RP-HPLC matrix and the peptides. The results presented here reveal that (a) critical elements in the sequence of the wild-type peptide stabilize a SDS/peptide supramolecular cluster; (b) the hydrophobic nature of the interaction between SDS molecules and the peptide constrains the ensemble of conformations; (c) nonspecific apolar surfaces are sufficient to stabilize peptide secondary structure. Remarkably, MDS shed light on a contact network formed by a limited number of SDS molecules that serves as a structural scaffold preserving the helical conformation of this module. This mechanism might prevail when a peptide with low helical propensity is involved in structure consolidation. We suggest that folding of peptides sharing this feature does not require a preformed tightly-packed protein core. Thus, the formation of specific tertiary interactions would be the consequence of peptide folding and not its cause. In this scenario, folding might be thought of as a process that includes unspecific rounds of structure stabilization guiding the protein to the native state.
Collapse
Affiliation(s)
- Ernesto A Roman
- Department of Biological Chemistry and Institute of Biochemistry and Biophysics (IQUIFIB), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
25
|
Wang JZ, Lin T, Teng T, Xie SS, Zhu GF, Du LF. Spectroscopic studies on the irreversible heat-induced structural transition of Pin1. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 78:142-147. [PMID: 20934373 DOI: 10.1016/j.saa.2010.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 08/31/2010] [Accepted: 09/08/2010] [Indexed: 05/30/2023]
Abstract
Previously, the mechanism of the thermal unfolding of Pin1 (on-line measurements) was studied, revealing that Pin1 has a relatively high thermal stability. However, it is still questionable whether the unfolding of Pin1 is reversible. In the present work, intrinsic tryptophan fluorescence, ANS fluorescence, RLS, FTIR and CD spectroscopies are used to evaluate the reversibility of the thermal unfolding of Pin1. Intrinsic tryptophan fluorescence studies indicate that structural changes around tryptophan motifs in Pin1 are possibly reversible after heat treatment (even above 98°C), for no significant change in the intensity or λ(max) of the spectra was observed. ANS fluorescence measurements indicate the irreversible exposure of the hydrophobic clusters in Pin1 after heat treatment at 98°C, with increase in the fluorescence intensity and blue shift in λmax. Also, RLS signals of the Pin1-ANS system increased after heat treatment, possibly implying both the unfolding and the aggregation of Pin1. In addition, FTIR and CD results confirmed the irreversible unfolding of the secondary structure in Pin1 after heat treatment above 90°C, showing decreases in both α-helix and β-sheet. In summary, the present work mainly suggests that heat treatment, especially above 90°C, has an important impact on the structural stability of Pin1, and the structural unfolding induced by heat was proved to be irreversible.
Collapse
Affiliation(s)
- Jing-Zhang Wang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | | | | | | | | | | |
Collapse
|
26
|
Garber Cohen IP, Castello PR, González Flecha FL. Ice-induced partial unfolding and aggregation of an integral membrane protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:2040-7. [PMID: 20691147 DOI: 10.1016/j.bbamem.2010.07.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 07/10/2010] [Accepted: 07/28/2010] [Indexed: 11/27/2022]
Abstract
Although the deleterious effects of ice on water-soluble proteins are well established, little is known about the freeze stability of membrane proteins. Here we explore this issue through a combined kinetic and spectroscopic approach using micellar-purified plasma membrane calcium pump as a model. The ATPase activity of this protein significantly diminished after freezing using a slow-cooling procedure, with the decrease in the activity being an exponential function of the storage time at 253K, with t(½)=3.9±0.6h. On the contrary, no significant changes on enzyme activity were detected when a fast cooling procedure was performed. Regardless of the cooling rate, successive freeze-thaw cycles produced an exponential decrease in the Ca(2+)-ATPase activity, with the number of cycles at which the activity was reduced to half being 9.2±0.3 (fast cooling) and 3.7±0.2 (slow cooling). PAGE analysis showed that neither degradation nor formation of SDS-stable aggregates of the protein takes place during protein inactivation. Instead, the inactivation process was found to be associated with the irreversible partial unfolding of the polypeptide chain, as assessed by Trp fluorescence, far UV circular dichroism, and 1-anilino-naphtalene-8-sulfonate binding. This inactive protein undergoes, in a later stage, a further irreversible transformation leading to large aggregates.
Collapse
|