1
|
Braun HG, Kanwal N, Rivera Lopez LF, Thomassin JL. Generation of a plasmid series for rapid sub-cloning and use in various Enterobacteriaceae. J Biosci Bioeng 2024; 138:478-487. [PMID: 39244484 DOI: 10.1016/j.jbiosc.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 09/09/2024]
Abstract
Plasmids are molecular genetic tools used for trans-complementation and gene expression in bacteria. Challenges faced by researchers include limited repertoire of antibiotic resistance of plasmids, issues related to plasmid compatibility and restricted or incompatible multiple cloning sites when needing to change plasmid copy number to tune production of their protein of interest. In this study, a series of plasmids were generated with compatible multiple cloning sites and homologous DNA regions to allow for modular cloning for rapid exchange of antibiotic resistance and plasmid origin. Plasmids generated in this series have options for high, mid, and low plasmid copy number, and have either an integrated FLAG epitope in the multiple cloning site or possess an uninterrupted multiple cloning site with the option of using the common LacZ-based blue/white screening method. Low copy plasmids also have one of five antibiotic selection markers. To demonstrate functionality of these plasmids, a representative FLAG tagged protein and mCherry were cloned into the low copy plasmids and expressed in various bacteria belonging to the Enterobacteriaceae family. In conclusion, by creating a new plasmid series, we have expanded the toolkit of available molecular biology tools for bacterial work.
Collapse
Affiliation(s)
- Hannah Gertrude Braun
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan SK S7H 5N5, Canada
| | - Nabeela Kanwal
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan SK S7H 5N5, Canada
| | - Luisa Fernanda Rivera Lopez
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan SK S7H 5N5, Canada; Department of Biochemistry and Microbiology, Universidad del Valle de Guatemala, Guatemala
| | - Jenny-Lee Thomassin
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan SK S7H 5N5, Canada.
| |
Collapse
|
2
|
Richardson-Sanchez T, Chan ACK, Sabatino B, Lin H, Gaynor EC, Murphy MEP. Dissecting components of the Campylobacter jejuni fetMP-fetABCDEF gene cluster under iron limitation. Microbiol Spectr 2024; 12:e0314823. [PMID: 38096459 PMCID: PMC10783030 DOI: 10.1128/spectrum.03148-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023] Open
Abstract
IMPORTANCE Campylobacter jejuni is a bacterium that is prevalent in the ceca of farmed poultry such as chickens. Consumption of ill-prepared poultry is thus the most common route by which C. jejuni infects the human gut to cause a typically self-limiting but severe gastrointestinal illness that can be fatal to very young, old, or immunocompromised people. The lack of a vaccine and an increasing resistance to current antibiotics highlight a need to better understand the mechanisms that make C. jejuni a successful human pathogen. This study focused on the functional components of one such mechanism-a molecular system that helps C. jejuni thrive despite the restriction on growth-available iron by the human body, which typically defends against pathogens. In providing a deeper understanding of how this system functions, this study contributes toward the goal of reducing the enormous global socioeconomic burden caused by C. jejuni.
Collapse
Affiliation(s)
- Tomas Richardson-Sanchez
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anson C. K. Chan
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Brendil Sabatino
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Helen Lin
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Erin C. Gaynor
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael E. P. Murphy
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Ruddell B, Hassall A, Moss WN, Sahin O, Plummer PJ, Zhang Q, Kreuder AJ. Direct interaction of small non-coding RNAs CjNC140 and CjNC110 optimizes expression of key pathogenic phenotypes of Campylobacter jejuni. mBio 2023; 14:e0083323. [PMID: 37409826 PMCID: PMC10470494 DOI: 10.1128/mbio.00833-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 07/07/2023] Open
Abstract
Small non-coding RNAs (sRNAs) are important players in modulating gene expression in bacterial pathogens, but their functions are largely undetermined in Campylobacter jejuni, an important cause of foodborne gastroenteritis in humans. In this study, we elucidated the functions of sRNA CjNC140 and its interaction with CjNC110, a previously characterized sRNA involved in the regulation of several virulence phenotypes of C. jejuni. Inactivation of CjNC140 increased motility, autoagglutination, L-methionine concentration, autoinducer-2 production, hydrogen peroxide resistance, and early chicken colonization, indicating a primarily inhibitory role of CjNC140 for these phenotypes. Apart from motility, all these effects directly contrasted the previously demonstrated positive regulation by CjNC110, suggesting that CjNC110 and CjNC140 operate in an opposite manner to modulate physiologic processes in C. jejuni. RNAseq and northern blotting further demonstrated that expression of CjNC140 increased in the absence of CjNC110, while expression of CjNC110 decreased in the absence of CjNC140, suggesting a possibility of their direct interaction. Indeed, electrophoretic mobility shift assay demonstrated a direct binding between the two sRNAs via GA- (CjNC110) and CU- (CjNC140) rich stem-loops. Additionally, RNAseq and follow-up experiments identified that CjNC140 positively regulates p19, which encodes a key iron uptake transporter in Campylobacter. Furthermore, computational analysis revealed both CjNC140 and CjNC110 are highly conserved in C. jejuni, and the predicted secondary structures support CjNC140 as a functional homolog of the iron regulatory sRNA, RyhB. These findings establish CjNC140 and CjNC110 as a key checks-and- balances mechanism in maintaining homeostasis of gene expression and optimizing phenotypes critical for C. jejuni pathobiology. IMPORTANCE Gene regulation is critical to all aspects of pathogenesis of bacterial disease, and small non-coding RNAs (sRNAs) represent a new frontier in gene regulation of bacteria. In Campylobacter jejuni, the role of sRNAs remains largely unexplored. Here, we investigate the role of two highly conserved sRNAs, CjNC110 and CjNC140, and demonstrate that CjNC140 displays a primarily inhibitory role in contrast to a primarily activating role for CjNC110 for several key virulence-associated phenotypes. Our results also revealed that the sRNA regulatory pathway is intertwined with the iron uptake system, another virulence mechanism critical for in vivo colonization. These findings open a new direction for understanding C. jejuni pathobiology and identify potential targets for intervention for this major foodborne pathogen.
Collapse
Affiliation(s)
- Brandon Ruddell
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
| | - Alan Hassall
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Walter N. Moss
- The Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Orhan Sahin
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Paul J. Plummer
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
| | - Amanda J. Kreuder
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
| |
Collapse
|
4
|
Richardson-Sanchez T, Chan ACK, Sabatino B, Lin H, Gaynor EC, Murphy MEP. Dissecting components of the Campylobacter jejuni fetMP-fetABCDEF gene cluster in iron scavenging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547857. [PMID: 37461706 PMCID: PMC10350000 DOI: 10.1101/2023.07.05.547857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Campylobacter jejuni is a leading cause of bacterial gastroenteritis worldwide. Acute infection can be antecedent to highly debilitating long-term sequelae. Expression of iron acquisition systems is vital for C. jejuni to survive the low iron availability within the human gut. The C. jejuni fetMP-fetABCDEF gene cluster is known to be upregulated during human infection and under iron limitation. While FetM and FetP have been functionally linked to iron transport in prior work, here we assess the contribution by each of the downstream genes ( fetABCDEF ) to C. jejuni growth during both iron-depleted and iron-replete conditions. Significant growth impairment was observed upon disruption of fetA , fetB, fetC , and fetD , suggesting a role in iron acquisition for each encoded protein. FetA expression was modulated by iron-availability but not dependent on the presence of FetB, FetC, FetD, FetE or FetF. Functions of the putative thioredoxins FetE and FetF were redundant in iron scavenging, requiring a double deletion (Δ fetEF ) to exhibit a growth defect. C. jejuni FetE was expressed and the structure solved to 1.50 Å, revealing structural similarity to thiol-disulfide oxidases. Functional characterization in biochemical assays showed that FetE reduced insulin at a slower rate than E. coli Trx and that together, FetEF promoted substrate oxidation in cell extracts, suggesting that FetE (and presumably FetF) are oxidoreductases that can mediate oxidation in vivo . This study advances our understanding of the contributions by the fetMP-fetABCDEF gene cluster to virulence at a genetic and functional level, providing foundational knowledge towards mitigating C. jejuni -related morbidity and mortality.
Collapse
|
5
|
Rajasekaran MB, Hussain R, Siligardi G, Andrews SC, Watson KA. Crystal structure and metal binding properties of the periplasmic iron component EfeM from Pseudomonas syringae EfeUOB/M iron-transport system. Biometals 2022; 35:573-589. [PMID: 35348940 PMCID: PMC9174327 DOI: 10.1007/s10534-022-00389-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/14/2022] [Indexed: 11/08/2022]
Abstract
EfeUOB/M has been characterised in Pseudomonas syringae pathovar. syringae as a novel type of ferrous-iron transporter, consisting of an inner-membrane protein (EfeUPsy) and three periplasmic proteins (EfeOPsy, EfeMPsy and EfeBPsy). The role of an iron permease and peroxidase function has been identified for the EfeU and EfeB proteins, respectively, but the role of EfeO/M remains unclear. EfeMPsy is an 'M75-only' EfeO-like protein with a C-terminal peptidase-M75 domain (EfeOII/EfeM family). Herein, we report the 1.6 Å resolution crystal structure of EfeMPsy, the first structural report for an EfeM component of P. syringae pv. syringae. The structure possesses the bi-lobate architecture found in other bacterial periplasmic substrate/solute binding proteins. Metal binding studies, using SRCD and ICP-OES, reveal a preference of EfeMPsy for copper, iron and zinc. This work provides detailed knowledge of the structural scaffold, the metal site geometry, and the divalent metal binding potential of EfeM. This work provides crucial underpinning for a more detailed understanding of the role of EfeM/EfeO proteins and the peptidase-M75 domains in EfeUOB/M iron uptake systems in bacteria.
Collapse
Affiliation(s)
- Mohan B Rajasekaran
- School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights Campus, Reading, RG6 6EX, UK
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN19QJ, UK
| | - Rohanah Hussain
- B23 Beamline, Diamond Light Source, Harwell Science Innovation Campus, Chilton, Didcot, OX11 0DE, UK
| | - Giuliano Siligardi
- B23 Beamline, Diamond Light Source, Harwell Science Innovation Campus, Chilton, Didcot, OX11 0DE, UK
| | - Simon C Andrews
- School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights Campus, Reading, RG6 6EX, UK
| | - Kimberly A Watson
- School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights Campus, Reading, RG6 6EX, UK.
| |
Collapse
|
6
|
Steunou AS, Vigouroux A, Aumont‐Nicaise M, Plancqueel S, Boussac A, Ouchane S, Moréra S. New insights into the mechanism of iron transport through the bacterial Ftr system present in pathogens. FEBS J 2022; 289:6286-6307. [DOI: 10.1111/febs.16476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/11/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Anne Soisig Steunou
- Université Paris‐Saclay, CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| | - Armelle Vigouroux
- Université Paris‐Saclay, CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| | - Magali Aumont‐Nicaise
- Université Paris‐Saclay, CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| | - Stéphane Plancqueel
- Université Paris‐Saclay, CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| | - Alain Boussac
- Université Paris‐Saclay, CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| | - Soufian Ouchane
- Université Paris‐Saclay, CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| | - Solange Moréra
- Université Paris‐Saclay, CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| |
Collapse
|
7
|
Banerjee S, Chanakira MN, Hall J, Kerkan A, Dasgupta S, Martin DW. A review on bacterial redox dependent iron transporters and their evolutionary relationship. J Inorg Biochem 2022; 229:111721. [PMID: 35033753 DOI: 10.1016/j.jinorgbio.2022.111721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/05/2023]
Abstract
Iron is an essential yet toxic micronutrient and its transport across biological membranes is tightly regulated in all living organisms. One such iron transporter, the Ftr-type permeases, is found in both eukaryotic and prokaryotic cells. These Ftr-type transporters are required for iron transport, predicted to form α-helical transmembrane structures, and conserve two ArgGluxxGlu (x = any amino acid) motifs. In the yeast Ftr transporter (Ftr1p), a ferroxidase (Fet3p) is required for iron transport in an oxidation coupled transport step. None of the bacterial Ftr-type transporters (EfeU and FetM from E. coli; cFtr from Campylobacter jejuni; FtrC from Brucella, Bordetella, and Burkholderia spp.) contain a ferroxidase protein. Bioinformatics report predicted periplasmic EfeO and FtrB (from the EfeUOB and FtrABCD systems) as novel cupredoxins. The Cu2+ binding and the ferrous oxidation properties of these proteins are uncharacterized and the other two bacterial Ftr-systems are expressed without any ferroxidase/cupredoxin, leading to controversy about the mode of function of these transporters. Here, we review published data on Ftr-type transporters to gain insight into their functional diversity. Based on original bioinformatics data presented here evolutionary relations between these systems are presented.
Collapse
Affiliation(s)
- Sambuddha Banerjee
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA.
| | - Mina N Chanakira
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - Jonathan Hall
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - Alexa Kerkan
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - Saumya Dasgupta
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Kolkata, WB 700135, India
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
8
|
Garg N, Taylor AJ, Pastorelli F, Flannery SE, Jackson PJ, Johnson MP, Kelly DJ. Genes Linking Copper Trafficking and Homeostasis to the Biogenesis and Activity of the cbb 3-Type Cytochrome c Oxidase in the Enteric Pathogen Campylobacter jejuni. Front Microbiol 2021; 12:683260. [PMID: 34248902 PMCID: PMC8267372 DOI: 10.3389/fmicb.2021.683260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial C-type haem-copper oxidases in the cbb 3 family are widespread in microaerophiles, which exploit their high oxygen-binding affinity for growth in microoxic niches. In microaerophilic pathogens, C-type oxidases can be essential for infection, yet little is known about their biogenesis compared to model bacteria. Here, we have identified genes involved in cbb 3-oxidase (Cco) assembly and activity in the Gram-negative pathogen Campylobacter jejuni, the commonest cause of human food-borne bacterial gastroenteritis. Several genes of unknown function downstream of the oxidase structural genes ccoNOQP were shown to be essential (cj1483c and cj1486c) or important (cj1484c and cj1485c) for Cco activity; Cj1483 is a CcoH homologue, but Cj1484 (designated CcoZ) has structural similarity to MSMEG_4692, involved in Qcr-oxidase supercomplex formation in Mycobacterium smegmatis. Blue-native polyacrylamide gel electrophoresis of detergent solubilised membranes revealed three major bands, one of which contained CcoZ along with Qcr and oxidase subunits. Deletion of putative copper trafficking genes ccoI (cj1155c) and ccoS (cj1154c) abolished Cco activity, which was partially restored by addition of copper during growth, while inactivation of cj0369c encoding a CcoG homologue led to a partial reduction in Cco activity. Deletion of an operon encoding PCu A C (Cj0909) and Sco (Cj0911) periplasmic copper chaperone homologues reduced Cco activity, which was partially restored in the cj0911 mutant by exogenous copper. Phenotypic analyses of gene deletions in the cj1161c-1166c cluster, encoding several genes involved in intracellular metal homeostasis, showed that inactivation of copA (cj1161c), or copZ (cj1162c) led to both elevated intracellular Cu and reduced Cco activity, effects exacerbated at high external Cu. Our work has therefore identified (i) additional Cco subunits, (ii) a previously uncharacterized set of genes linking copper trafficking and Cco activity, and (iii) connections with Cu homeostasis in this important pathogen.
Collapse
Affiliation(s)
- Nitanshu Garg
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Aidan J Taylor
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Federica Pastorelli
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Sarah E Flannery
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Phillip J Jackson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Matthew P Johnson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
9
|
Méheust R, Huang S, Rivera-Lugo R, Banfield JF, Light SH. Post-translational flavinylation is associated with diverse extracytosolic redox functionalities throughout bacterial life. eLife 2021; 10:66878. [PMID: 34032212 PMCID: PMC8238504 DOI: 10.7554/elife.66878] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Disparate redox activities that take place beyond the bounds of the prokaryotic cell cytosol must connect to membrane or cytosolic electron pools. Proteins post-translationally flavinylated by the enzyme ApbE mediate electron transfer in several characterized extracytosolic redox systems but the breadth of functions of this modification remains unknown. Here, we present a comprehensive bioinformatic analysis of 31,910 prokaryotic genomes that provides evidence of extracytosolic ApbEs within ~50% of bacteria and the involvement of flavinylation in numerous uncharacterized biochemical processes. By mining flavinylation-associated gene clusters, we identify five protein classes responsible for transmembrane electron transfer and two domains of unknown function (DUF2271 and DUF3570) that are flavinylated by ApbE. We observe flavinylation/iron transporter gene colocalization patterns that implicate functions in iron reduction and assimilation. We find associations with characterized and uncharacterized respiratory oxidoreductases that highlight roles of flavinylation in respiratory electron transport chains. Finally, we identify interspecies gene cluster variability consistent with flavinylation/cytochrome functional redundancies and discover a class of ‘multi-flavinylated proteins’ that may resemble multi-heme cytochromes in facilitating longer distance electron transfer. These findings provide mechanistic insight into an important facet of bacterial physiology and establish flavinylation as a functionally diverse mediator of extracytosolic electron transfer. In bacteria, certain chemical reactions required for life do not take place directly inside the cells. For instance, ‘redox’ reactions essential to gather minerals, repair proteins and obtain energy are localised in the membranes and space that surround a bacterium. These chemical reactions involve electrons being transferred from one molecule to another in a cascade that connects the exterior of a cell to its internal space. The enzyme ApbE allows proteins to perform electron transfer by equipping them with ring-like compounds called flavins, through a process known as flavinylation. Yet, the prevelance of flavinylation in bacteria and the scope of redox reactions it facilitates has remained unclear. To investigate this question, Méheust, Huang et al. analysed over 30,000 bacterial genomes, finding genes essential for ApbE flavinylation in about half of all bacterial species across the tree of life. The role of ApbE-flavinylated proteins was then deciphered using a ‘guilt by association’ approach. In bacteria, genes that perform similar roles are often close to each other in the genome, which helps to infer the function of a protein coded by a specific gene. This approach revealed that flavinylation is involved in processes that allow bacteria to acquire iron and to use various energy sources. A number of interesting proteins were also identified, including a group that carry multiple flavins, and could therefore, in theory, transfer electrons over long distances. This discovery could be relevant to bioelectronic applications, which are already considering another class of bacterial electron-carrying molecules as candidates to form minuscule electric wires.
Collapse
Affiliation(s)
- Raphaël Méheust
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, United States.,Innovative Genomics Institute, Berkeley, United States.,LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, Evry, France
| | - Shuo Huang
- Duchossois Family Institute, University of Chicago, Chicago, United States.,Department of Microbiology, University of Chicago, Chicago, United States
| | - Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, United States.,Innovative Genomics Institute, Berkeley, United States
| | - Samuel H Light
- Duchossois Family Institute, University of Chicago, Chicago, United States.,Department of Microbiology, University of Chicago, Chicago, United States
| |
Collapse
|
10
|
Kelley BR, Lu J, Haley KP, Gaddy JA, Johnson JG. Metal homeostasis in pathogenic Epsilonproteobacteria: mechanisms of acquisition, efflux, and regulation. Metallomics 2021; 13:mfaa002. [PMID: 33570133 PMCID: PMC8043183 DOI: 10.1093/mtomcs/mfaa002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
Epsilonproteobacteria are a diverse class of eubacteria within the Proteobacteria phylum that includes environmental sulfur-reducing bacteria and the human pathogens, Campylobacter jejuni and Helicobacter pylori. These pathogens infect and proliferate within the gastrointestinal tracts of multiple animal hosts, including humans, and cause a variety of disease outcomes. While infection of these hosts provides nutrients for the pathogenic Epsilonproteobacteria, many hosts have evolved a variety of strategies to either sequester metals from the invading pathogen or exploit the toxicity of metals and drive their accumulation as an antimicrobial strategy. As a result, C. jejuni and H. pylori have developed mechanisms to sense changes in metal availability and regulate their physiology in order to respond to either metal limitation or accumulation. In this review, we will discuss the challenges of metal availability at the host-pathogen interface during infection with C. jejuni and H. pylori and describe what is currently known about how these organisms alter their gene expression and/or deploy bacterial virulence factors in response to these environments.
Collapse
Affiliation(s)
- Brittni R Kelley
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Jacky Lu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Kathryn P Haley
- Department of Biology, Grand Valley State University, Grand Rapids, MI, USA
| | - Jennifer A Gaddy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
- Tennessee Valley Healthcare Systems, Department of Veterans Affairs, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
11
|
Chan ACK, Lin H, Koch D, Grass G, Nies DH, Murphy MEP. A copper site is required for iron transport by the periplasmic proteins P19 and FetP. Metallomics 2020; 12:1530-1541. [PMID: 32780051 DOI: 10.1039/d0mt00130a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Campylobacter jejuni is a leading cause of food-borne gastrointestinal disease in humans and uropathogenic Escherichia coli is a leading cause of urinary tract infections. Both human pathogens harbour a homologous iron uptake system (termed cjFetM-P19 in C. jejuni and ecFetM-FetP in E. coli). Although these systems are important for growth under iron limitation, the mechanisms by which these systems function during iron transport remain undefined. The copper ions bound to P19 and FetP, the homologous periplasmic proteins, are coordinated in an uncommon penta-dentate manner involving a Met-Glu-His3 motif and exhibit positional plasticity. Here we demonstrate the function of the Met and Glu residues in modulating copper binding and controlling copper positioning through site-directed variants, binding assays, and crystal structures. Growth of C. jejuni strains with these p19 variants is impaired under iron limited conditions as compared to the wild-type strain. Additionally, an acidic residue-rich secondary site is required for binding iron and function in vivo. Finally, western blot analyses demonstrate direct and specific interactions between periplasmic P19 and FetP with the large periplasmic domain of their respective inner membrane transporters cjFetM and ecFetM.
Collapse
Affiliation(s)
- Anson C K Chan
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Canada.
| | - Helen Lin
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Canada.
| | - Doreen Koch
- Department of Molecular Microbiology, Martin-Luther-University Halle, Wittenberg, European Community, Germany
| | - Gregor Grass
- Bundeswehr Institute for Microbiology, Munich, Germany
| | - Dietrich H Nies
- Department of Molecular Microbiology, Martin-Luther-University Halle, Wittenberg, European Community, Germany
| | - Michael E P Murphy
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Canada.
| |
Collapse
|
12
|
Banerjee S, Garrigues RJ, Chanakira MN, Negron-Olivo JJ, Odeh YH, Spuches AM, Martin Roop R, Pitzer JE, Martin DW, Dasgupta S. Investigating the roles of the conserved Cu 2+-binding residues on Brucella FtrA in producing conformational stability and functionality. J Inorg Biochem 2020; 210:111162. [PMID: 32623149 PMCID: PMC7484176 DOI: 10.1016/j.jinorgbio.2020.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 11/17/2022]
Abstract
Brucella is a zoonotic pathogen requiring iron for its survival and acquires this metal through the expression of several high-affinity uptake systems. Of these, the newly discovered ferrous iron transporter, FtrABCD, is proposed to take part in ferrous iron uptake. Sequence homology shows that, FtrA, the proposed periplasmic ferrous-binding component, is a P19-type protein (a periplasmic protein from C. jejuni which shows Cu2+ dependent iron affinity). Previous structural and biochemical studies on other P19 systems have established a Cu2+ dependent Mn2+ affinity as well as formation of homodimers for these systems. The Cu2+ coordinating amino acids from these proteins are conserved in Brucella FtrA, hinting towards similar properties. However, there has been no experimental evidence, till date, establishing metal affinities and the possibility of dimer formation by Brucella FtrA. Using wild-type FtrA and Cu2+-binding mutants (H65A, E67A, H118A, and H151A) we investigated the metal affinities, folding stabilities, dimer forming abilities, and the molecular basis of the Cu2+ dependence for this P19-type protein employing homology modeling, analytical gel filtration, calorimetric, and spectroscopic methods. The data reported here confirm a Cu2+-dependent, low-μM Mn2+ (Fe2+ mimic) affinity for the wild-type FtrA. In addition, our data clearly show the loss of Mn2+ affinity, and the formation of less stable protein conformations as a result of mutating these conserved Cu2+-binding residues, indicating the important roles these residues play in producing a native and functional fold of Brucella FtrA.
Collapse
Affiliation(s)
- Sambuddha Banerjee
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA.
| | - Ryan J Garrigues
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Mina N Chanakira
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | | | - Yasmene H Odeh
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - Anne M Spuches
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Joshua Edison Pitzer
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Saumya Dasgupta
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Kolkata, WB, 700135, India
| |
Collapse
|
13
|
García V, Herrero-Fresno A, Rodicio R, Felipe-López A, Montero I, Olsen JE, Hensel M, Rodicio MR. A Plasmid-Encoded FetMP-Fls Iron Uptake System Confers Selective Advantages to Salmonella enterica Serovar Typhimurium in Growth under Iron-Restricted Conditions and for Infection of Mammalian Host Cells. Microorganisms 2020; 8:microorganisms8050630. [PMID: 32349391 PMCID: PMC7285068 DOI: 10.3390/microorganisms8050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 12/03/2022] Open
Abstract
The resistance plasmid pUO-StVR2, derived from virulence plasmid pSLT, is widespread in clinical isolates of Salmonella enterica serovar Typhimurium recovered in Spain and other European countries. pUO-StVR2 carries several genes encoding a FetMP-Fls system, which could be involved in iron uptake. We therefore analyzed S. Typhimurium LSP 146/02, a clinical strain selected as representative of the isolates carrying the plasmid, and an otherwise isogenic mutant lacking four genes (fetMP-flsDA) of the fetMP-fls region. Growth curves and determination of the intracellular iron content under iron-restricted conditions demonstrated that deletion of these genes impairs iron acquisition. Thus, under these conditions, the mutant grew significantly worse than the wild-type strain, its iron content was significantly lower, and it was outcompeted by the wild-type strain in competition assays. Importantly, the strain lacking the fetMP-flsDA genes was less invasive in cultured epithelial HeLa cells and replicated poorly upon infection of RAW264.7 macrophages. The genes were introduced into S. Typhimurium ATCC 14028, which lacks the FetMP-Fls system, and this resulted in increased growth under iron limitation as well as an increased ability to multiply inside macrophages. These findings indicate that the FetMP-Fls iron acquisition system exceeds the benefits conferred by the other high-affinity iron uptake systems carried by ATCC 14028 and LSP 146/02. We proposed that effective iron acquisition by this system in conjunction with antimicrobial resistance encoded from the same plasmid have greatly contributed to the epidemic success of S. Typhimurium isolates harboring pUO-StVR2.
Collapse
Affiliation(s)
- Vanesa García
- Department of Functional Biology, Section of Microbiology, University of Oviedo, 33006 Oviedo, Spain; (V.G.); (I.M.)
- Division of Microbiology, University of Osnabrück, 49076 Osnabrück, Germany; (A.F.-L.); (M.H.)
| | - Ana Herrero-Fresno
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (A.H.-F.); (J.E.O.)
| | - Rosaura Rodicio
- Department of Biochemistry and Molecular Biology, University of Oviedo, 33006 Oviedo, Spain;
- Translacional Microbiology Group, Health Research Institute of Principado de Asturias, 33011 Oviedo, Spain (ISPA)
| | - Alfonso Felipe-López
- Division of Microbiology, University of Osnabrück, 49076 Osnabrück, Germany; (A.F.-L.); (M.H.)
| | - Ignacio Montero
- Department of Functional Biology, Section of Microbiology, University of Oviedo, 33006 Oviedo, Spain; (V.G.); (I.M.)
| | - John E. Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (A.H.-F.); (J.E.O.)
| | - Michael Hensel
- Division of Microbiology, University of Osnabrück, 49076 Osnabrück, Germany; (A.F.-L.); (M.H.)
| | - María Rosario Rodicio
- Department of Functional Biology, Section of Microbiology, University of Oviedo, 33006 Oviedo, Spain; (V.G.); (I.M.)
- Translacional Microbiology Group, Health Research Institute of Principado de Asturias, 33011 Oviedo, Spain (ISPA)
- Correspondence: ; Tel.: +34-985103562
| |
Collapse
|
14
|
Interaction of Copper Toxicity and Oxidative Stress in Campylobacter jejuni. J Bacteriol 2018; 200:JB.00208-18. [PMID: 30150230 DOI: 10.1128/jb.00208-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/16/2018] [Indexed: 11/20/2022] Open
Abstract
Copper is both a required micronutrient and a source of toxicity in most organisms, including Campylobacter jejuni Two proteins expressed in C. jejuni (termed CopA and CueO) have been shown to be a copper transporter and multicopper oxidase, respectively. We have isolated strains with mutations in these genes, and here we report that they were more susceptible to both the addition of copper in the growth media and to induced oxidative stress. Both mutant strains were defective in colonization of an avian host, and copper in the feed exacerbated the colonization deficiency. Overexpression of a cytoplasmic peptide derived from the normally periplasmic copper-binding region of CueO also caused copper intolerance compared to nonexpressing strains or strains expressing the non-copper-binding versions of the peptide. Taken together, the results indicate that copper toxicity in C. jejuni is due to a failure to effectively sequester cytoplasmic copper, resulting in an increase in copper-mediated oxidative damage.IMPORTANCE Copper is a required micronutrient for most aerobic organisms, but it is universally toxic at elevated levels. These organisms use homeostatic mechanisms that allow for cells to acquire enough of the element to sustain metabolic requirements while ensuring that lethal levels cannot build up in the cell. Campylobacter jejuni is an important foodborne pathogen that typically makes its way into the food chain through contaminated poultry. C. jejuni has a metabolic requirement for copper and encodes a copper detoxification system. In the course of studying this system, we have learned that it is important for avian colonization. We have also gained insight into how copper exerts its toxic effects in C. jejuni by promoting oxidative stress.
Collapse
|
15
|
Liu MM, Boinett CJ, Chan ACK, Parkhill J, Murphy MEP, Gaynor EC. Investigating the Campylobacter jejuni Transcriptional Response to Host Intestinal Extracts Reveals the Involvement of a Widely Conserved Iron Uptake System. mBio 2018; 9:e01347-18. [PMID: 30087169 PMCID: PMC6083913 DOI: 10.1128/mbio.01347-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022] Open
Abstract
Campylobacter jejuni is a pathogenic bacterium that causes gastroenteritis in humans yet is a widespread commensal in wild and domestic animals, particularly poultry. Using RNA sequencing, we assessed C. jejuni transcriptional responses to medium supplemented with human fecal versus chicken cecal extracts and in extract-supplemented medium versus medium alone. C. jejuni exposed to extracts had altered expression of 40 genes related to iron uptake, metabolism, chemotaxis, energy production, and osmotic stress response. In human fecal versus chicken cecal extracts, C. jejuni displayed higher expression of genes involved in respiration (fdhTU) and in known or putative iron uptake systems (cfbpA, ceuB, chuC, and CJJ81176_1649-1655 [here designated 1649-1655]). The 1649-1655 genes and downstream overlapping gene 1656 were investigated further. Uncharacterized homologues of this system were identified in 33 diverse bacterial species representing 6 different phyla, 21 of which are associated with human disease. The 1649 and 1650 (p19) genes encode an iron transporter and a periplasmic iron binding protein, respectively; however, the role of the downstream 1651-1656 genes was unknown. A Δ1651-1656 deletion strain had an iron-sensitive phenotype, consistent with a previously characterized Δp19 mutant, and showed reduced growth in acidic medium, increased sensitivity to streptomycin, and higher resistance to H2O2 stress. In iron-restricted medium, the 1651-1656 and p19 genes were required for optimal growth when using human fecal extracts as an iron source. Collectively, this implicates a function for the 1649-1656 gene cluster in C. jejuni iron scavenging and stress survival in the human intestinal environment.IMPORTANCE Direct comparative studies of C. jejuni infection of a zoonotic commensal host and a disease-susceptible host are crucial to understanding the causes of infection outcome in humans. These studies are hampered by the lack of a disease-susceptible animal model reliably displaying a similar pathology to human campylobacteriosis. In this work, we compared the phenotypic and transcriptional responses of C. jejuni to intestinal compositions of humans (disease-susceptible host) and chickens (zoonotic host) by using human fecal and chicken cecal extracts. The mammalian gut is a complex and dynamic system containing thousands of metabolites that contribute to host health and modulate pathogen activity. We identified C. jejuni genes more highly expressed during exposure to human fecal extracts in comparison to chicken cecal extracts and differentially expressed in extracts compared with medium alone, and targeted one specific iron uptake system for further molecular, genetic, and phenotypic study.
Collapse
Affiliation(s)
- Martha M Liu
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Christine J Boinett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Anson C K Chan
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Julian Parkhill
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Michael E P Murphy
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Erin C Gaynor
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Chitarra CS, Oliveira Filho JXD, Morés N, Silva MIVD, Cândido SL, Cezarino PG, Nakazato L, Dutra V. Identification of Pasteurella multocida transcribed genes in porcine lungs through RNAseq. Microb Pathog 2018; 122:180-183. [PMID: 29890333 DOI: 10.1016/j.micpath.2018.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 05/11/2018] [Accepted: 06/08/2018] [Indexed: 11/16/2022]
Abstract
Pasteurella multocida is one of the most important pathogen that causes pneumonia in swine. Although several virulence factors are known, the pathogenesis of this bacterium is not well-studied. Therefore, to study the pathogenesis of P. multocida infection in porcine lung, next-generation RNA sequencing was used to compare the transcriptomes of P. multocida grown in vivo and in vitro, respectively. After P. multocida infection a total of 704 genes were expressed in vitro, 1422 genes were expressed in vivo, and 237 genes were differentially expressed based on statistical analyses, padj of ≤0.1. Genes encoding ribosomal proteins or other products that function in the regulation of transcription and translation were downregulated, whereas genes whose products affected cellular processes (protein transport and RNA degradation) and metabolic pathways, such as those of amino acid metabolism and nucleotide metabolism, were upregulated in vitro compared with in vivo. This study shows that differentially expressed genes in P. multocida regulate pathways that operate during stress, iron capture, heat shock, and nitrogen regulation. However, extensive investigation of the pathogenic mechanism of P. multocida is still required.
Collapse
Affiliation(s)
- Cristiane Silva Chitarra
- Avenida Fernando Corrêa da Costa, nº 2367 - Bairro Boa Esperança, Cuiabá, Mato Grosso, CEP: 78060-900, Brazil.
| | | | - Nelson Morés
- Rodovia BR-153, Km 110, Distrito de Tamanduá Caixa Postal: 321, Concórdia, Santa Catarina, CEP: 89715-899, Brazil
| | | | - Stefhano Luis Cândido
- Avenida Fernando Corrêa da Costa, nº 2367 - Bairro Boa Esperança, Cuiabá, Mato Grosso, CEP: 78060-900, Brazil
| | - Paula Gabriela Cezarino
- Avenida Fernando Corrêa da Costa, nº 2367 - Bairro Boa Esperança, Cuiabá, Mato Grosso, CEP: 78060-900, Brazil
| | - Luciano Nakazato
- Avenida Fernando Corrêa da Costa, nº 2367 - Bairro Boa Esperança, Cuiabá, Mato Grosso, CEP: 78060-900, Brazil
| | - Valéria Dutra
- Avenida Fernando Corrêa da Costa, nº 2367 - Bairro Boa Esperança, Cuiabá, Mato Grosso, CEP: 78060-900, Brazil
| |
Collapse
|
17
|
Mathew A, Eberl L, Carlier AL. A novel siderophore-independent strategy of iron uptake in the genusBurkholderia. Mol Microbiol 2014; 91:805-20. [DOI: 10.1111/mmi.12499] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Anugraha Mathew
- Institute of Plant Biology; University of Zurich; Zurich CH-8008 Switzerland
| | - Leo Eberl
- Institute of Plant Biology; University of Zurich; Zurich CH-8008 Switzerland
| | - Aurelien L. Carlier
- Institute of Plant Biology; University of Zurich; Zurich CH-8008 Switzerland
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW To use insights from evolutionary biology to assess the current evidence for the causes, treatment, and prevention of inflammatory bowel disease (IBD). RECENT FINDINGS When analyzed in the context of evolutionary adaptation, recent assessments of genetic, microbial, and environmental associations with IBD implicate infectious causation. SUMMARY An evolutionary perspective provides insight into the causes of IBD, interpretation of its manifestations, and assessment of interventions. The evidence implicating infectious causation suggests that future studies of IBD would benefit from increased focus on infectious causes and interventions that prevent or inhibit them.
Collapse
|
19
|
Elhassanny AEM, Anderson ES, Menscher EA, Roop RM. The ferrous iron transporter FtrABCD is required for the virulence ofBrucella abortus2308 in mice. Mol Microbiol 2013; 88:1070-82. [DOI: 10.1111/mmi.12242] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Ahmed E. M. Elhassanny
- Department of Microbiology and Immunology; East Carolina University School of Medicine; Greenville; NC; 27834; USA
| | - Eric S. Anderson
- Department of Biology; East Carolina University School of Medicine; Greenville; NC; 27858; USA
| | - Evan A. Menscher
- Department of Microbiology and Immunology; East Carolina University School of Medicine; Greenville; NC; 27834; USA
| | - R. Martin Roop
- Department of Microbiology and Immunology; East Carolina University School of Medicine; Greenville; NC; 27834; USA
| |
Collapse
|
20
|
Cun S, Lai YT, Chang YY, Sun H. Structure-oriented bioinformatic approach exploring histidine-rich clusters in proteins. Metallomics 2013; 5:904-12. [DOI: 10.1039/c3mt00026e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Zappa S, Bauer CE. Iron homeostasis in the Rhodobacter genus. ADVANCES IN BOTANICAL RESEARCH 2013; 66:10.1016/B978-0-12-397923-0.00010-2. [PMID: 24382933 PMCID: PMC3875232 DOI: 10.1016/b978-0-12-397923-0.00010-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Metals are utilized for a variety of critical cellular functions and are essential for survival. However cells are faced with the conundrum of needing metals coupled with e fact that some metals, iron in particular are toxic if present in excess. Maintaining metal homeostasis is therefore of critical importance to cells. In this review we have systematically analyzed sequenced genomes of three members of the Rhodobacter genus, R. capsulatus SB1003, R. sphaeroides 2.4.1 and R. ferroxidans SW2 to determine how these species undertake iron homeostasis. We focused our analysis on elemental ferrous and ferric iron uptake genes as well as genes involved in the utilization of iron from heme. We also discuss how Rhodobacter species manage iron toxicity through export and sequestration of iron. Finally we discuss the various putative strategies set up by these Rhodobacter species to regulate iron homeostasis and the potential novel means of regulation. Overall, this genomic analysis highlights surprisingly diverse features involved in iron homeostasis in the Rhodobacter genus.
Collapse
Affiliation(s)
- Sébastien Zappa
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 S Hawthorne Dr, Bloomington, IN 47405, U. S. A
| | - Carl E. Bauer
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 S Hawthorne Dr, Bloomington, IN 47405, U. S. A
| |
Collapse
|
22
|
Biophysical and bioinformatic analyses implicate the Treponema pallidum Tp34 lipoprotein (Tp0971) in transition metal homeostasis. J Bacteriol 2012; 194:6771-81. [PMID: 23042995 DOI: 10.1128/jb.01494-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metal ion homeostasis is a critical function of many integral and peripheral membrane proteins. The genome of the etiologic agent of syphilis, Treponema pallidum, is compact and devoid of many metabolic enzyme genes. Nevertheless, it harbors genes coding for homologs of several enzymes that typically require either iron or zinc. The product of the tp0971 gene of T. pallidum, designated Tp34, is a periplasmic lipoprotein that is thought to be tethered to the inner membrane of this organism. Previous work on a water-soluble (nonacylated) recombinant version of Tp34 established that this protein binds to Zn(2+), which, like other transition metal ions, stabilizes the dimeric form of the protein. In this study, we employed analytical ultracentrifugation to establish that four transition metal ions (Ni(2+), Co(2+), Cu(2+), and Zn(2+)) readily induce the dimerization of Tp34; Cu(2+) (50% effective concentration [EC(50)] = 1.7 μM) and Zn(2+) (EC(50) = 6.2 μM) were the most efficacious of these ions. Mutations of the crystallographically identified metal-binding residues hindered the ability of Tp34 to dimerize. X-ray crystallography performed on crystals of Tp34 that had been incubated with metal ions indicated that the binding site could accommodate the metals examined. The findings presented herein, coupled with bioinformatic analyses of related proteins, point to Tp34's likely role in metal ion homeostasis in T. pallidum.
Collapse
|
23
|
Brickman TJ, Armstrong SK. Iron and pH-responsive FtrABCD ferrous iron utilization system of Bordetella species. Mol Microbiol 2012; 86:580-93. [PMID: 22924881 DOI: 10.1111/mmi.12003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2012] [Indexed: 12/30/2022]
Abstract
A putative operon encoding an uncharacterized ferrous iron transport (FtrABCD) system was previously identified in cDNA microarray studies. In growth studies using buffered medium at pH values ranging from pH 6.0 to 7.6, Bordetella pertussis and Bordetella bronchiseptica FtrABCD system mutants showed dramatic reductions in growth yields under iron-restricted conditions at pH 6.0, but had no growth defects at pH 7.6. Supplementation of culture medium with 2 mM ascorbate reductant was inhibitory to alcaligin siderophore-dependent growth at pH 7.6, but had a neglible effect on FtrABCD system-dependent iron assimilation at pH 6.0 consistent with its predicted specificity for ferrous iron. Unlike Bordetella siderophore-dependent and haem iron transport systems, and in agreement with its hypothesized role in transport of inorganic iron from periplasm to cytoplasm, FtrABCD system function did not require the TonB energy transduction complex. Gene fusion analysis revealed that ftrABCD promoter activity was maximal under iron-restricted growth conditions at acidic pH. The pH of human airway surface fluids ranges from pH 5.5 to 7.9, and the FtrABCD system may supply ferrous iron necessary for Bordetella growth in acidic host microenvironments in which siderophores are ineffective for iron retrieval.
Collapse
Affiliation(s)
- Timothy J Brickman
- Department of Microbiology, University of Minnesota Medical School, 925 Mayo Memorial Building, 420 Delaware Street, S.E., Minneapolis, MN 55455-0312, USA.
| | | |
Collapse
|
24
|
The Yfe and Feo transporters are involved in microaerobic growth and virulence of Yersinia pestis in bubonic plague. Infect Immun 2012; 80:3880-91. [PMID: 22927049 DOI: 10.1128/iai.00086-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Yfe/Sit and Feo transport systems are important for the growth of a variety of bacteria. In Yersinia pestis, single mutations in either yfe or feo result in reduced growth under static (limited aeration), iron-chelated conditions, while a yfe feo double mutant has a more severe growth defect. These growth defects were not observed when bacteria were grown under aerobic conditions or in strains capable of producing the siderophore yersiniabactin (Ybt) and the putative ferrous transporter FetMP. Both fetP and a downstream locus (flp for fet linked phenotype) were required for growth of a yfe feo ybt mutant under static, iron-limiting conditions. An feoB mutation alone had no effect on the virulence of Y. pestis in either bubonic or pneumonic plague models. An feo yfe double mutant was still fully virulent in a pneumonic plague model but had an ∼90-fold increase in the 50% lethal dose (LD(50)) relative to the Yfe(+) Feo(+) parent strain in a bubonic plague model. Thus, Yfe and Feo, in addition to Ybt, play an important role in the progression of bubonic plague. Finally, we examined the factors affecting the expression of the feo operon in Y. pestis. Under static growth conditions, the Y. pestis feo::lacZ fusion was repressed by iron in a Fur-dependent manner but not in cells grown aerobically. Mutations in feoC, fnr, arcA, oxyR, or rstAB had no significant effect on transcription of the Y. pestis feo promoter. Thus, the factor(s) that prevents repression by Fur under aerobic growth conditions remains to be identified.
Collapse
|
25
|
Stahl M, Butcher J, Stintzi A. Nutrient acquisition and metabolism by Campylobacter jejuni. Front Cell Infect Microbiol 2012; 2:5. [PMID: 22919597 PMCID: PMC3417520 DOI: 10.3389/fcimb.2012.00005] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/21/2012] [Indexed: 12/03/2022] Open
Abstract
The gastrointestinal pathogen Campylobacter jejuni is able to colonize numerous different hosts and compete against the gut microbiota. To do this, it must be able to efficiently acquire sufficient nutrients from its environment to support its survival and rapid growth in the intestine. However, despite almost 50 years of research, many aspects as to how C. jejuni accomplishes this feat remain poorly understood. C. jejuni lacks many of the common metabolic pathways necessary for the use of glucose, galactose, or other carbohydrates upon which most other microbes thrive. It does however make efficient use of citric acid cycle intermediates and various amino acids. C. jejuni readily uses the amino acids aspartate, glutamate, serine, and proline, with certain strains also possessing additional pathways allowing for the use of glutamine and asparagine. More recent work has revealed that some C. jejuni strains can metabolize the sugar l-fucose. This finding has upset years of dogma that C. jejuni is an asaccharolytic organism. C. jejuni also possesses diverse mechanisms for the acquisition of various transition metals that are required for metabolic activities. In particular, iron acquisition is critical for the formation of iron–sulfur complexes. C. jejuni is also unique in possessing both molybdate and tungsten cofactored proteins and thus has an unusual regulatory scheme for these metals. Together these various metabolic and acquisition pathways help C. jejuni to compete and thrive in wide variety of hosts and environments.
Collapse
Affiliation(s)
- Martin Stahl
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa Ottawa, ON, Canada
| | | | | |
Collapse
|
26
|
Alvarez Hayes J, Erben E, Lamberti Y, Ayala M, Maschi F, Carbone C, Gatti B, Parisi G, Rodriguez ME. Identification of a new protective antigen of Bordetella pertussis. Vaccine 2011; 29:8731-9. [PMID: 21884746 DOI: 10.1016/j.vaccine.2011.07.143] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/20/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022]
Abstract
Antigenic proteins whose expression is induced under iron starvation, an environmental condition that bacterial pathogens have to face during colonization, might be potential candidates for improved vaccine. By mean of immune proteomics we identified novel antigens of Bordetella pertussis maximally expressed under iron limitation. Among them, Bp1152 (named as IRP1-3) showed a particularly strong reaction with human IgG purified from pooled sera of pertussis-infected individuals. Computer analysis showed IRP1-3 as a dimeric membrane protein potentially involved in iron uptake. Experimental data revealed the surface-exposure of this protein and showed its increase under iron starvation to be independent of bacterial virulence phase. Immunization of mice with the recombinant IRP1-3 resulted in a strong antibody response. These antibodies not only recognized the native protein on bacterial surface but also promote effective bacterial phagocytosis by human PMN, a key protecting activity against this pathogen. Accordingly, IRP1-3 proved protective against B. pertussis infection in mouse model. Expression of IRP1-3 was found conserved among clinical isolates of B. pertussis and positively regulated by iron starvation in these strains. Taken together these results suggest that this protein might be an interesting novel vaccine candidate.
Collapse
Affiliation(s)
- Jimena Alvarez Hayes
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
The NO-responsive hemoglobins of Campylobacter jejuni: Concerted responses of two globins to NO and evidence in vitro for globin regulation by the transcription factor NssR. Nitric Oxide 2011; 25:234-41. [DOI: 10.1016/j.niox.2010.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/23/2010] [Accepted: 12/29/2010] [Indexed: 01/10/2023]
|
28
|
Koch D, Chan ACK, Murphy MEP, Lilie H, Grass G, Nies DH. Characterization of a dipartite iron uptake system from uropathogenic Escherichia coli strain F11. J Biol Chem 2011; 286:25317-30. [PMID: 21596746 PMCID: PMC3137103 DOI: 10.1074/jbc.m111.222745] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/25/2011] [Indexed: 11/06/2022] Open
Abstract
In the uropathogenic Escherichia coli strain F11, in silico genome analysis revealed the dicistronic iron uptake operon fetMP, which is under iron-regulated control mediated by the Fur regulator. The expression of fetMP in a mutant strain lacking known iron uptake systems improved growth under iron depletion and increased cellular iron accumulation. FetM is a member of the iron/lead transporter superfamily and is essential for iron uptake by the Fet system. FetP is a periplasmic protein that enhanced iron uptake by FetM. Recombinant FetP bound Cu(II) and the iron analog Mn(II) at distinct sites. The crystal structure of the FetP dimer reveals a copper site in each FetP subunit that adopts two conformations: CuA with a tetrahedral geometry composed of His(44), Met(90), His(97), and His(127), and CuB, a second degenerate octahedral geometry with the addition of Glu(46). The copper ions of each site occupy distinct positions and are separated by ∼1.3 Å. Nearby, a putative additional Cu(I) binding site is proposed as an electron source that may function with CuA/CuB displacement to reduce Fe(III) for transport by FetM. Together, these data indicate that FetMP is an additional iron uptake system composed of a putative iron permease and an iron-scavenging and potentially iron-reducing periplasmic protein.
Collapse
Affiliation(s)
| | - Anson C. K. Chan
- the Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Michael E. P. Murphy
- the Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Hauke Lilie
- the Institute for Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle/Saale, Germany
| | - Gregor Grass
- the School of Biological Sciences, Beadle Center, University of Nebraska, Lincoln, Nebraska 68588, and
- the Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, 80937 Munich, Germany
| | | |
Collapse
|
29
|
Lin H, Lou B, Glynn JM, Doddapaneni H, Civerolo EL, Chen C, Duan Y, Zhou L, Vahling CM. The complete genome sequence of 'Candidatus Liberibacter solanacearum', the bacterium associated with potato zebra chip disease. PLoS One 2011; 6:e19135. [PMID: 21552483 PMCID: PMC3084294 DOI: 10.1371/journal.pone.0019135] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 03/17/2011] [Indexed: 12/21/2022] Open
Abstract
Zebra Chip (ZC) is an emerging plant disease that causes aboveground decline of potato shoots and generally results in unusable tubers. This disease has led to multi-million dollar losses for growers in the central and western United States over the past decade and impacts the livelihood of potato farmers in Mexico and New Zealand. ZC is associated with 'Candidatus Liberibacter solanacearum', a fastidious alpha-proteobacterium that is transmitted by a phloem-feeding psyllid vector, Bactericera cockerelli Sulc. Research on this disease has been hampered by a lack of robust culture methods and paucity of genome sequence information for 'Ca. L. solanacearum'. Here we present the sequence of the 1.26 Mbp metagenome of 'Ca. L. solanacearum', based on DNA isolated from potato psyllids. The coding inventory of the 'Ca. L. solanacearum' genome was analyzed and compared to related Rhizobiaceae to better understand 'Ca. L. solanacearum' physiology and identify potential targets to develop improved treatment strategies. This analysis revealed a number of unique transporters and pathways, all potentially contributing to ZC pathogenesis. Some of these factors may have been acquired through horizontal gene transfer. Taxonomically, 'Ca. L. solanacearum' is related to 'Ca. L. asiaticus', a suspected causative agent of citrus huanglongbing, yet many genome rearrangements and several gene gains/losses are evident when comparing these two Liberibacter. species. Relative to 'Ca. L. asiaticus', 'Ca. L. solanacearum' probably has reduced capacity for nucleic acid modification, increased amino acid and vitamin biosynthesis functionalities, and gained a high-affinity iron transport system characteristic of several pathogenic microbes.
Collapse
Affiliation(s)
- Hong Lin
- United States Department of Agriculture-Agricultural Research Service, CDPG, San Joaquin Valley Agricultural Sciences Center, Parlier, California, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gilbreath JJ, Cody WL, Merrell DS, Hendrixson DR. Change is good: variations in common biological mechanisms in the epsilonproteobacterial genera Campylobacter and Helicobacter. Microbiol Mol Biol Rev 2011; 75:84-132. [PMID: 21372321 PMCID: PMC3063351 DOI: 10.1128/mmbr.00035-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Microbial evolution and subsequent species diversification enable bacterial organisms to perform common biological processes by a variety of means. The epsilonproteobacteria are a diverse class of prokaryotes that thrive in diverse habitats. Many of these environmental niches are labeled as extreme, whereas other niches include various sites within human, animal, and insect hosts. Some epsilonproteobacteria, such as Campylobacter jejuni and Helicobacter pylori, are common pathogens of humans that inhabit specific regions of the gastrointestinal tract. As such, the biological processes of pathogenic Campylobacter and Helicobacter spp. are often modeled after those of common enteric pathogens such as Salmonella spp. and Escherichia coli. While many exquisite biological mechanisms involving biochemical processes, genetic regulatory pathways, and pathogenesis of disease have been elucidated from studies of Salmonella spp. and E. coli, these paradigms often do not apply to the same processes in the epsilonproteobacteria. Instead, these bacteria often display extensive variation in common biological mechanisms relative to those of other prototypical bacteria. In this review, five biological processes of commonly studied model bacterial species are compared to those of the epsilonproteobacteria C. jejuni and H. pylori. Distinct differences in the processes of flagellar biosynthesis, DNA uptake and recombination, iron homeostasis, interaction with epithelial cells, and protein glycosylation are highlighted. Collectively, these studies support a broader view of the vast repertoire of biological mechanisms employed by bacteria and suggest that future studies of the epsilonproteobacteria will continue to provide novel and interesting information regarding prokaryotic cellular biology.
Collapse
Affiliation(s)
- Jeremy J. Gilbreath
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - William L. Cody
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - D. Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - David R. Hendrixson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|