1
|
Srinivasan S, Di Luca A, Álvarez D, John Peter AT, Gehin C, Lone MA, Hornemann T, D’Angelo G, Vanni S. The conformational plasticity of structurally unrelated lipid transport proteins correlates with their mode of action. PLoS Biol 2024; 22:e3002737. [PMID: 39159271 PMCID: PMC11361750 DOI: 10.1371/journal.pbio.3002737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 08/29/2024] [Accepted: 07/05/2024] [Indexed: 08/21/2024] Open
Abstract
Lipid transfer proteins (LTPs) are key players in cellular homeostasis and regulation, as they coordinate the exchange of lipids between different cellular organelles. Despite their importance, our mechanistic understanding of how LTPs function at the molecular level is still in its infancy, mostly due to the large number of existing LTPs and to the low degree of conservation at the sequence and structural level. In this work, we use molecular simulations to characterize a representative dataset of lipid transport domains (LTDs) of 12 LTPs that belong to 8 distinct families. We find that despite no sequence homology nor structural conservation, the conformational landscape of LTDs displays common features, characterized by the presence of at least 2 main conformations whose populations are modulated by the presence of the bound lipid. These conformational properties correlate with their mechanistic mode of action, allowing for the interpretation and design of experimental strategies to further dissect their mechanism. Our findings indicate the existence of a conserved, fold-independent mechanism of lipid transfer across LTPs of various families and offer a general framework for understanding their functional mechanism.
Collapse
Affiliation(s)
| | - Andrea Di Luca
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Daniel Álvarez
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Departamento de Química Física y Analítica, Universidad de Oviedo, Oviedo, Spain
| | | | - Charlotte Gehin
- Institute of Bioengineering (IBI) and Global Heath Institute (GHI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Museer A. Lone
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Giovanni D’Angelo
- Institute of Bioengineering (IBI) and Global Heath Institute (GHI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- National Center of Competence in Research Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
2
|
Traber MG. Human Vitamin E deficiency, and what is and is not Vitamin E? Free Radic Biol Med 2024; 213:285-292. [PMID: 38242248 PMCID: PMC10923111 DOI: 10.1016/j.freeradbiomed.2024.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Affiliation(s)
- Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
3
|
Hornbergs J, Montag K, Loschwitz J, Mohr I, Poschmann G, Schnake A, Gratz R, Brumbarova T, Eutebach M, Angrand K, Fink-Straube C, Stühler K, Zeier J, Hartmann L, Strodel B, Ivanov R, Bauer P. SEC14-GOLD protein PATELLIN2 binds IRON-REGULATED TRANSPORTER1 linking root iron uptake to vitamin E. PLANT PHYSIOLOGY 2023; 192:504-526. [PMID: 36493393 PMCID: PMC10152663 DOI: 10.1093/plphys/kiac563] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/23/2022] [Accepted: 12/07/2022] [Indexed: 05/03/2023]
Abstract
Organisms require micronutrients, and Arabidopsis (Arabidopsis thaliana) IRON-REGULATED TRANSPORTER1 (IRT1) is essential for iron (Fe2+) acquisition into root cells. Uptake of reactive Fe2+ exposes cells to the risk of membrane lipid peroxidation. Surprisingly little is known about how this is avoided. IRT1 activity is controlled by an intracellular variable region (IRT1vr) that acts as a regulatory protein interaction platform. Here, we describe that IRT1vr interacted with peripheral plasma membrane SEC14-Golgi dynamics (SEC14-GOLD) protein PATELLIN2 (PATL2). SEC14 proteins bind lipophilic substrates and transport or present them at the membrane. To date, no direct roles have been attributed to SEC14 proteins in Fe import. PATL2 affected root Fe acquisition responses, interacted with ROS response proteins in roots, and alleviated root lipid peroxidation. PATL2 had high affinity in vitro for the major lipophilic antioxidant vitamin E compound α-tocopherol. Molecular dynamics simulations provided insight into energetic constraints and the orientation and stability of the PATL2-ligand interaction in atomic detail. Hence, this work highlights a compelling mechanism connecting vitamin E with root metal ion transport at the plasma membrane with the participation of an IRT1-interacting and α-tocopherol-binding SEC14 protein.
Collapse
Affiliation(s)
- Jannik Hornbergs
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Karolin Montag
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Jennifer Loschwitz
- Institute of Theoretical Chemistry and Computer Chemistry, Heinrich Heine University, Düsseldorf 40225, Germany
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Inga Mohr
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Anika Schnake
- Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Regina Gratz
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | | | - Monique Eutebach
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Kalina Angrand
- Department of Biosciences-Plant Biology, Saarland University, Campus A2.4, D-66123 Saarbrücken, Germany
| | | | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Molecular Proteomics Laboratory, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| | - Laura Hartmann
- Institute of Macromolecular Chemistry, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Birgit Strodel
- Institute of Theoretical Chemistry and Computer Chemistry, Heinrich Heine University, Düsseldorf 40225, Germany
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| |
Collapse
|
4
|
Ulatowski L, Ghelfi M, West R, Atkinson J, Finno CJ, Manor D. The tocopherol transfer protein TTP mediates Vitamin Vitamin E trafficking between cerebellar astrocytes and neurons. J Biol Chem 2022; 298:101712. [PMID: 35150738 PMCID: PMC8913317 DOI: 10.1016/j.jbc.2022.101712] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
Alpha-tocopherol (vitamin E) is an essential nutrient that functions as a major lipid-soluble antioxidant in humans. The tocopherol transfer protein (TTP) binds α-tocopherol with high affinity and selectivity and regulates whole-body distribution of the vitamin. Heritable mutations in the TTPA gene result in familial vitamin E deficiency, elevated indices of oxidative stress, and progressive neurodegeneration that manifest primarily in spinocerebellar ataxia. Although the essential role of vitamin E in neurological health has been recognized for over 50 years, the mechanisms by which this essential nutrient is transported in the central nervous system are poorly understood. Here we found that, in the murine cerebellum, TTP is selectively expressed in GFAP-positive astrocytes, where it facilitates efflux of vitamin E to neighboring neurons. We also show that induction of oxidative stress enhances the transcription of the TtpA gene in cultured cerebellar astrocytes. Furthermore, secretion of vitamin E from astrocytes is mediated by an ABC-type transporter, and uptake of the vitamin into neurons involves the low-density lipoprotein receptor-related protein 1 (LRP1) receptor. Taken together, our data indicate that TTP-expressing astrocytes control the delivery of vitamin E from astrocytes to neurons, and that this process is homeostatically responsive to oxidative stress. These are the first observations that address the detailed molecular mechanisms of vitamin E transport in the central nervous system, and these results have important implications for understanding the molecular underpinnings of oxidative stress-related neurodegenerative diseases.
Collapse
Affiliation(s)
- L Ulatowski
- Department of Biology, Ursuline College, Pepper Pike, OH 44124
| | - Mikel Ghelfi
- Department of Chemistry, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Ryan West
- Department of Chemistry, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - J Atkinson
- Department of Chemistry, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - C J Finno
- Department of Population Health and Reproduction, University of California School of Veterinary Medicine, Davis, CA 95616
| | - D Manor
- Departments of Nutrition and Pharmacology, School of Medicine, Cleveland, OH 44106; Case Western Reserve University and the Case Comprehensive Cancer Center, Cleveland, OH 44106.
| |
Collapse
|
5
|
Arai H, Kono N. α-Tocopherol transfer protein (α-TTP). Free Radic Biol Med 2021; 176:162-175. [PMID: 34563650 DOI: 10.1016/j.freeradbiomed.2021.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
α-Tocopherol transfer protein (α-TTP) is so far the only known protein that specifically recognizes α-tocopherol (α-Toc), the most abundant and most biologically active form of vitamin E, in higher animals. α-TTP is highly expressed in the liver where α-TTP selects α-Toc among vitamin E forms taken up via plasma lipoproteins and promotes its secretion to circulating lipoproteins. Thus, α-TTP is a major determinant of plasma α-Toc concentrations. Familial vitamin E deficiency, also called Ataxia with vitamin E deficiency, is caused by mutations in the α-TTP gene. More than 20 different mutations have been found in the α-TTP gene worldwide, among which some missense mutations provided valuable clues to elucidate the molecular mechanisms underlying intracellular α-Toc transport. In hepatocytes, α-TTP catalyzes the vectorial transport of α-Toc from the endocytotic compartment to the plasma membrane (PM) by targeting phosphatidylinositol phosphates (PIPs) such as PI(4,5)P2. By binding PIPs at the PM, α-TTP opens the lid covering the hydrophobic pocket, thus facilitating the release of bound α-Toc to the PM.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
6
|
Perez DM, Tatiyaborworntham N, Sifri M, Richards MP. Hemolysis, tocopherol, and lipid oxidation in erythrocytes and muscle tissue in chickens, ducks, and turkeys. Poult Sci 2019; 98:456-463. [PMID: 30165533 DOI: 10.3382/ps/pey329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/17/2018] [Indexed: 11/20/2022] Open
Abstract
Muscle from turkeys is more sensitive to lipid oxidation during post mortem storage compared with that of chicken and duck which may involve increased lysis of turkey erythrocytes that releases hemoglobin oxidant. Three separate experiments were conducted to study characteristics of chicken, duck, and turkey erythrocytes in which dietary tocopherols were standardized. In Experiment I, tocopherol, fatty acid composition, and lipid oxidation capacity were measured in erythrocytes from chickens, ducks, and turkeys. Tocopherol content was greater in chicken erythrocytes compared with that of duck and turkey (P < 0.05). Oleic and linoleic acid content was higher in chicken erythrocytes compared with that of turkey (P < 0.05). Lipid oxidation capacity of erythrocytes in washed turkey muscle (WTM) at pH 5.8 ranked chicken > duck > turkey (P < 0.05). In Experiment II, hemolysis was measured in erythrocytes from turkeys and chickens. Detergent-induced hemolysis (pH 7.4) was on average 12-fold greater for turkey erythrocytes compared with that of chicken (P < 0.05). In Experiment III, the ability of lysed and non-lysed erythrocytes to promote lipid oxidation was examined. Lysed erythrocytes promoted lipid oxidation in WTM more effectively than intact erythrocytes (P < 0.05). Reasons that turkey erythrocytes were more labile to detergent-induced hemolysis whereas chicken erythrocytes more effectively promoted lipid oxidation in the WTM model system are discussed. These studies describe variation in chemical and physical properties of erythrocytes from chickens, ducks, and turkeys that can influence progression of lipid oxidation in poultry muscle.
Collapse
Affiliation(s)
- Dale M Perez
- Department of Animal Sciences, University of Wisconsin-Madison, Meat Science and Muscle Biology Laboratory, Madison, WI 53705, USA
| | - Nantawat Tatiyaborworntham
- Department of Animal Sciences, University of Wisconsin-Madison, Meat Science and Muscle Biology Laboratory, Madison, WI 53705, USA
| | | | - Mark P Richards
- Department of Animal Sciences, University of Wisconsin-Madison, Meat Science and Muscle Biology Laboratory, Madison, WI 53705, USA
| |
Collapse
|
7
|
Rengaraj D, Truong AD, Hong Y, Pitargue FM, Kim JH, Hong YH, Han JY, Kil DY. Identification and expression analysis of alpha tocopherol transfer protein in chickens fed diets containing different concentrations of alpha-tocopherol. Res Vet Sci 2018; 123:99-110. [PMID: 30599294 DOI: 10.1016/j.rvsc.2018.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/27/2022]
Abstract
Among the eight forms of vitamin E, the liver preferentially releases α-tocopherol into the circulation and it is distributed to the non-liver tissues. In the hepatocytes, alpha tocopherol transfer protein (TTPA) specifically recognizes α-tocopherol with 2R-configuration and facilitates its intracellular transfer. The identification and characterization of TTPA expression have not been demonstrated in avian species. Therefore, the objectives of this study were to identify avian TTPAs, to compare the sequence conservation, phylogenetic relationship, protein interactions, and disease associations of chicken TTPA with those of human and vertebrate TTPA, and to characterize the tissue expression of the TTPA gene in chickens fed diets supplemented with different amounts of α-tocopherol. Our results suggest that the chicken TTPA was highly conserved with the human and vertebrate TTPA, and consisted of a cellular retinaldehyde binding protein and TRIO guanine exchange factor (CRAL_TRIO) domain. Feeding diets supplemented with increasing amounts of α-tocopherol (25 IU/Kg, 50 IU/Kg, or 100 IU/Kg) to broiler chickens had no effects on growth performance compared with feeding basal diets containing no supplemental α-tocopherol. The expression of TTPA gene was detected high in the liver of chickens in response to dietary α-tocopherol concentrations, whereas its expression was very low or undetectable in the non-liver tissues. In conclusion, the chicken TTPA protein sequence is highly conserved with other avian and vertebrate TTPA protein sequences. The higher expression of TTPA gene in the chicken liver in response to dietary α-tocopherol concentrations may suggest its crucial role in transporting α-tocopherol in the chicken liver.
Collapse
Affiliation(s)
- Deivendran Rengaraj
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea; Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea; Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Franco Martinez Pitargue
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Jong Hyuk Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
8
|
Panagabko C, Baptist M, Atkinson J. In vitro lipid transfer assays of phosphatidylinositol transfer proteins provide insight into the in vivo mechanism of ligand transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:619-630. [PMID: 30543784 DOI: 10.1016/j.bbamem.2018.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 11/16/2022]
Abstract
Fluorescence resonance energy transfer (FRET) assays and membrane binding determinations were performed using three phosphatidylinositol transfer proteins, including the yeast Sec14 and two mammalian proteins PITPα and PITPβ. These proteins were able to specifically bind the fluorescent phosphatidylcholine analogue NBD-PC ((2-(12-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)dodecanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine)) and to transfer it to small unilamellar vesicles (SUVs). Rate constants for transfer to vesicles comprising 100% PC were slower for all proteins than when increasing percentages of phosphatidylinositol were incorporated into the same SUVs. The rates of ligand transfer by Sec14 were insensitive to the inclusion of equimolar amounts of another anionic phospholipid phosphatidylserine (PS), but the rates of ligand transfer by both mammalian PITPs were strikingly enhanced by the inclusion of phosphatidic acid (PA) in the receptor SUV. Binding of Sec14 to immobilized bilayers was substantial, while that of PITPα and PITPβ was 3-7 times weaker than Sec14 depending on phospholipid composition. When small proportions of the phosphoinositide PI(4)P were included in receptor SUVs (either with PI or not), Sec14 showed substantially increased rates of NBD-PC pick-up, whereas the PITPs were unaffected. The data are supportive of a role for PITPβ as functional PI transfer protein in vivo, but that Sec14 likely has a more elaborate function.
Collapse
Affiliation(s)
- Candace Panagabko
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, Ontario L2A 3S1, Canada
| | - Matilda Baptist
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, Ontario L2A 3S1, Canada
| | - Jeffrey Atkinson
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, Ontario L2A 3S1, Canada.
| |
Collapse
|
9
|
Mukherjee P, Madarati H, Ridgway ND, Atkinson J. Lipid and membrane recognition by the oxysterol binding protein and its phosphomimetic mutant using dual polarization interferometry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2356-2365. [PMID: 29879417 DOI: 10.1016/j.bbamem.2018.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/22/2018] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
Abstract
OSBP binds, extracts and transfers sterols and phosphatidylinositol-4-phosphate (PI(4)P between liposomes, but the sequence of steps at the membrane surface leading to ligand removal is poorly characterized. In this study, we used dual polarization interferometry (DPI), a label-free surface analytical technique, to characterize the interaction of recombinant, purified OSBP as it flows over immobilized dioleoyl-phosphatidylcholine (DOPC) bilayers containing PI(4)P, cholesterol or 25-hydroxycholesterol. Kinetics of membrane interaction were analyzed for PI(4)P-binding and phosphorylation mutants of OSBP. Wild-type OSBP demonstrated a distinctive association with immobilized DOPC bilayers containing 1-8 mol% PI(4)P that was characterized by initial saturable binding followed by desorption, indicative of PI(4)P extraction. In support of this conclusion, an OSBP mutant with impaired binding and extraction of PI(4)P was stably absorbed to PI(4)P-containing membranes, while a pleckstrin homology domain mutant did not associate with PI(4)P-containing membranes. The inclusion of >2 mol% cholesterol, but not 25-hydroxycholesterol, in membranes, enhanced the absorption of the wild-type OSBP. A phosphomimetic of OSBP with enhanced in vitro sterol binding activity displayed membrane interaction properties similar to wild-type. These real-time flow studies allow us to dissect the association of OSBP with PI(4)P into discrete components; initial recruitment to PI(4)P membranes by the PH domain, detection and extraction of PI(4)P, and desorption due to ligand depletion.
Collapse
Affiliation(s)
- Parthajit Mukherjee
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, Ontario L2A 3S1, Canada
| | - Hasam Madarati
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, Ontario L2A 3S1, Canada
| | - Neale D Ridgway
- Department of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jeffrey Atkinson
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, Ontario L2A 3S1, Canada.
| |
Collapse
|
10
|
Elucidation of structural and functional integration of a novel antimicrobial peptide from Antheraea mylitta. Bioorg Med Chem Lett 2017; 27:1686-1692. [DOI: 10.1016/j.bmcl.2017.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 02/22/2017] [Accepted: 03/02/2017] [Indexed: 01/09/2023]
|
11
|
Chung S, Ghelfi M, Atkinson J, Parker R, Qian J, Carlin C, Manor D. Vitamin E and Phosphoinositides Regulate the Intracellular Localization of the Hepatic α-Tocopherol Transfer Protein. J Biol Chem 2016; 291:17028-39. [PMID: 27307040 DOI: 10.1074/jbc.m116.734210] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Indexed: 12/12/2022] Open
Abstract
α-Tocopherol (vitamin E) is an essential nutrient for all vertebrates. From the eight naturally occurring members of the vitamin E family, α-tocopherol is the most biologically active species and is selectively retained in tissues. The hepatic α-tocopherol transfer protein (TTP) preferentially selects dietary α-tocopherol and facilitates its transport through the hepatocyte and its secretion to the circulation. In doing so, TTP regulates body-wide levels of α-tocopherol. The mechanisms by which TTP facilitates α-tocopherol trafficking in hepatocytes are poorly understood. We found that the intracellular localization of TTP in hepatocytes is dynamic and responds to the presence of α-tocopherol. In the absence of the vitamin, TTP is localized to perinuclear vesicles that harbor CD71, transferrin, and Rab8, markers of the recycling endosomes. Upon treatment with α-tocopherol, TTP- and α-tocopherol-containing vesicles translocate to the plasma membrane, prior to secretion of the vitamin to the exterior of the cells. The change in TTP localization is specific to α-tocopherol and is time- and dose-dependent. The aberrant intracellular localization patterns of lipid binding-defective TTP mutants highlight the importance of protein-lipid interaction in the transport of α-tocopherol. These findings provide the basis for a proposed mechanistic model that describes TTP-facilitated trafficking of α-tocopherol through hepatocytes.
Collapse
Affiliation(s)
| | - Mikel Ghelfi
- the Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada, and
| | - Jeffrey Atkinson
- the Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada, and
| | - Robert Parker
- the Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853
| | - Jinghui Qian
- the Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853
| | - Cathleen Carlin
- Microbiology and Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Danny Manor
- From the Departments of Nutrition, Pharmacology, and
| |
Collapse
|
12
|
Ghelfi M, Ulatowski L, Manor D, Atkinson J. Synthesis and characterization of a fluorescent probe for α-tocopherol suitable for fluorescence microscopy. Bioorg Med Chem 2016; 24:2754-61. [PMID: 27161877 DOI: 10.1016/j.bmc.2016.04.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/15/2016] [Accepted: 04/21/2016] [Indexed: 12/18/2022]
Abstract
Previously prepared fluorescent derivatives of α-tocopherol have shown tremendous utility in both in vitro exploration of the mechanism of ligand transfer by the α-tocopherol transfer protein (α-TTP) and the intracellular transport of α-tocopherol in cells and tissues. We report here the synthesis of a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) containing α-tocopherol analog having extended conjugation with an alkenyl thiophene group that extends the absorption and emission maxima to longer wavelengths (λex=571nm and λem=583nm). The final fluorophore thienyl-ene-BODIPY-α-tocopherol, 2, binds to recombinant human α-TTP with a Kd=8.7±1.1nM and is a suitable probe for monitoring the secretion of α-tocopherol from cultured Mcf7#189 cells.
Collapse
Affiliation(s)
- Mikel Ghelfi
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Lynn Ulatowski
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Danny Manor
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeffrey Atkinson
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
13
|
Schmölz L, Birringer M, Lorkowski S, Wallert M. Complexity of vitamin E metabolism. World J Biol Chem 2016; 7:14-43. [PMID: 26981194 PMCID: PMC4768118 DOI: 10.4331/wjbc.v7.i1.14] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/25/2015] [Accepted: 01/19/2016] [Indexed: 02/05/2023] Open
Abstract
Bioavailability of vitamin E is influenced by several factors, most are highlighted in this review. While gender, age and genetic constitution influence vitamin E bioavailability but cannot be modified, life-style and intake of vitamin E can be. Numerous factors must be taken into account however, i.e., when vitamin E is orally administrated, the food matrix may contain competing nutrients. The complex metabolic processes comprise intestinal absorption, vascular transport, hepatic sorting by intracellular binding proteins, such as the significant α-tocopherol-transfer protein, and hepatic metabolism. The coordinated changes involved in the hepatic metabolism of vitamin E provide an effective physiological pathway to protect tissues against the excessive accumulation of, in particular, non-α-tocopherol forms. Metabolism of vitamin E begins with one cycle of CYP4F2/CYP3A4-dependent ω-hydroxylation followed by five cycles of subsequent β-oxidation, and forms the water-soluble end-product carboxyethylhydroxychroman. All known hepatic metabolites can be conjugated and are excreted, depending on the length of their side-chain, either via urine or feces. The physiological handling of vitamin E underlies kinetics which vary between the different vitamin E forms. Here, saturation of the side-chain and also substitution of the chromanol ring system are important. Most of the metabolic reactions and processes that are involved with vitamin E are also shared by other fat soluble vitamins. Influencing interactions with other nutrients such as vitamin K or pharmaceuticals are also covered by this review. All these processes modulate the formation of vitamin E metabolites and their concentrations in tissues and body fluids. Differences in metabolism might be responsible for the discrepancies that have been observed in studies performed in vivo and in vitro using vitamin E as a supplement or nutrient. To evaluate individual vitamin E status, the analytical procedures used for detecting and quantifying vitamin E and its metabolites are crucial. The latest methods in analytics are presented.
Collapse
|
14
|
Chiapparino A, Maeda K, Turei D, Saez-Rodriguez J, Gavin AC. The orchestra of lipid-transfer proteins at the crossroads between metabolism and signaling. Prog Lipid Res 2015; 61:30-9. [PMID: 26658141 DOI: 10.1016/j.plipres.2015.10.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/15/2015] [Indexed: 01/12/2023]
Abstract
Within the eukaryotic cell, more than 1000 species of lipids define a series of membranes essential for cell function. Tightly controlled systems of lipid transport underlie the proper spatiotemporal distribution of membrane lipids, the coordination of spatially separated lipid metabolic pathways, and lipid signaling mediated by soluble proteins that may be localized some distance away from membranes. Alongside the well-established vesicular transport of lipids, non-vesicular transport mediated by a group of proteins referred to as lipid-transfer proteins (LTPs) is emerging as a key mechanism of lipid transport in a broad range of biological processes. More than a hundred LTPs exist in humans and these can be divided into at least ten protein families. LTPs are widely distributed in tissues, organelles and membrane contact sites (MCSs), as well as in the extracellular space. They all possess a soluble and globular domain that encapsulates a lipid monomer and they specifically bind and transport a wide range of lipids. Here, we present the most recent discoveries in the functions and physiological roles of LTPs, which have expanded the playground of lipids into the aqueous spaces of cells.
Collapse
Affiliation(s)
- Antonella Chiapparino
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Kenji Maeda
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Denes Turei
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany; European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Cambridge CB10 1SD, UK
| | - Julio Saez-Rodriguez
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Cambridge CB10 1SD, UK
| | - Anne-Claude Gavin
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany; European Molecular Biology Laboratory (EMBL), Molecular Medicine Partnership Unit (MMPU), Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
| |
Collapse
|
15
|
Lamprakis C, Stocker A, Cascella M. Mechanisms of recognition and binding of α-TTP to the plasma membrane by multi-scale molecular dynamics simulations. Front Mol Biosci 2015; 2:36. [PMID: 26191529 PMCID: PMC4487086 DOI: 10.3389/fmolb.2015.00036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/15/2015] [Indexed: 12/12/2022] Open
Abstract
We used multiple sets of simulations both at the atomistic and coarse-grained level of resolution to investigate interaction and binding of α-tochoperol transfer protein (α-TTP) to phosphatidylinositol phosphate lipids (PIPs). Our calculations indicate that enrichment of membranes with such lipids facilitate membrane anchoring. Atomistic models suggest that PIP can be incorporated into the binding cavity of α-TTP and therefore confirm that such protein can work as lipid exchanger between the endosome and the plasma membrane. Comparison of the atomistic models of the α-TTP-PIPs complex with membrane-bound α-TTP revealed different roles for the various basic residues composing the basic patch that is key for the protein/ligand interaction. Such residues are of critical importance as several point mutations at their position lead to severe forms of ataxia with vitamin E deficiency (AVED) phenotypes. Specifically, R221 is main residue responsible for the stabilization of the complex. R68 and R192 exchange strong interactions in the protein or in the membrane complex only, suggesting that the two residues alternate contact formation, thus facilitating lipid flipping from the membrane into the protein cavity during the lipid exchange process. Finally, R59 shows weaker interactions with PIPs anyway with a clear preference for specific phosphorylation positions, hinting a role in early membrane selectivity for the protein. Altogether, our simulations reveal significant aspects at the atomistic scale of interactions of α-TTP with the plasma membrane and with PIP, providing clarifications on the mechanism of intracellular vitamin E trafficking and helping establishing the role of key residue for the functionality of α-TTP.
Collapse
Affiliation(s)
- Christos Lamprakis
- Department of Chemistry and Biochemistry, University of BernBern, Switzerland
| | - Achim Stocker
- Department of Chemistry and Biochemistry, University of BernBern, Switzerland
| | - Michele Cascella
- Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of OsloOslo, Norway
| |
Collapse
|
16
|
Baptist M, Panagabko C, Nickels JD, Katsaras J, Atkinson J. 2,2′‐Bis(monoacylglycero) PO
4
(BMP), but Not 3,1′‐BMP, Increases Membrane Curvature Stress to Enhance α‐Tocopherol Transfer Protein Binding to Membranes. Lipids 2015; 50:323-8. [DOI: 10.1007/s11745-015-3989-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 01/07/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Matilda Baptist
- Chemistry and Centre for BiotechnologyBrock UniversitySt. CatharinesCanada
| | - Candace Panagabko
- Chemistry and Centre for BiotechnologyBrock UniversitySt. CatharinesCanada
| | | | | | - Jeffrey Atkinson
- Chemistry and Centre for BiotechnologyBrock UniversitySt. CatharinesCanada
| |
Collapse
|
17
|
Kono N, Arai H. Intracellular transport of fat-soluble vitamins A and E. Traffic 2014; 16:19-34. [PMID: 25262571 DOI: 10.1111/tra.12231] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/11/2022]
Abstract
Vitamins are compounds that are essential for the normal growth, reproduction and functioning of the human body. Of the 13 known vitamins, vitamins A, D, E and K are lipophilic compounds and are therefore called fat-soluble vitamins. Because of their lipophilicity, fat-soluble vitamins are solubilized and transported by intracellular carrier proteins to exert their actions and to be metabolized properly. Vitamin A and its derivatives, collectively called retinoids, are solubilized by intracellular retinoid-binding proteins such as cellular retinol-binding protein (CRBP), cellular retinoic acid-binding protein (CRABP) and cellular retinal-binding protein (CRALBP). These proteins act as chaperones that regulate the metabolism, signaling and transport of retinoids. CRALBP-mediated intracellular retinoid transport is essential for vision in human. α-Tocopherol, the main form of vitamin E found in the body, is transported by α-tocopherol transfer protein (α-TTP) in hepatic cells. Defects of α-TTP cause vitamin E deficiency and neurological disorders in humans. Recently, it has been shown that the interaction of α-TTP with phosphoinositides plays a critical role in the intracellular transport of α-tocopherol and is associated with familial vitamin E deficiency. In this review, we summarize the mechanisms and biological significance of the intracellular transport of vitamins A and E.
Collapse
Affiliation(s)
- Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | |
Collapse
|
18
|
Traber MG. Mechanisms for the prevention of vitamin E excess. J Lipid Res 2013; 54:2295-306. [PMID: 23505319 PMCID: PMC3735929 DOI: 10.1194/jlr.r032946] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 03/04/2013] [Indexed: 02/07/2023] Open
Abstract
The liver is at the nexus of the regulation of lipoprotein uptake, synthesis, and secretion, and it is the site of xenobiotic detoxification by cytochrome P450 oxidation systems (phase I), conjugation systems (phase II), and transporters (phase III). These two major liver systems control vitamin E status. The mechanisms for the preference for α-tocopherol relative to the eight naturally occurring vitamin E forms largely depend upon the liver and include both a preferential secretion of α-tocopherol from the liver into the plasma for its transport in circulating lipoproteins for subsequent uptake by tissues, as well as the preferential hepatic metabolism of non-α-tocopherol forms. These mechanisms are the focus of this review.
Collapse
Affiliation(s)
- Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
19
|
Madhongsa K, Pasan S, Phophetleb O, Nasompag S, Thammasirirak S, Daduang S, Taweechaisupapong S, Lomize AL, Patramanon R. Antimicrobial action of the cyclic peptide bactenecin on Burkholderia pseudomallei correlates with efficient membrane permeabilization. PLoS Negl Trop Dis 2013; 7:e2267. [PMID: 23785532 PMCID: PMC3681726 DOI: 10.1371/journal.pntd.0002267] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/01/2013] [Indexed: 01/05/2023] Open
Abstract
Burkholderia pseudomallei is a category B agent that causes Melioidosis, an acute and chronic disease with septicemia. The current treatment regimen is a heavy dose of antibiotics such as ceftazidime (CAZ); however, the risk of a relapse is possible. Peptide antibiotics are an alternative to classical antibiotics as they exhibit rapid action and are less likely to result in the development of resistance. The aim of this study was to determine the bactericidal activity against B. pseudomallei and examine the membrane disrupting abilities of the potent antimicrobial peptides: bactenecin, RTA3, BMAP-18 and CA-MA. All peptides exhibited >97% bactericidal activity at 20 µM, with bactenecin having slightly higher activity. Long term time-kill assays revealed a complete inhibition of cell growth at 50 µM bactenecin and CA-MA. All peptides inhibited biofilm formation comparable to CAZ, but exhibited faster kinetics (within 1 h). Bactenecin exhibited stronger binding to LPS and induced perturbation of the inner membrane of live cells. Interaction of bactenecin with model membranes resulted in changes in membrane fluidity and permeability, leading to leakage of dye across the membrane at levels two-fold greater than that of other peptides. Modeling of peptide binding on the membrane showed stable and deep insertion of bactenecin into the membrane (up to 9 Å). We propose that bactenecin is able to form dimers or large β-sheet structures in a concentration dependent manner and subsequently rapidly permeabilize the membrane, leading to cytosolic leakage and cell death in a shorter period of time compared to CAZ. Bactenecin might be considered as a potent antimicrobial agent for use against B. pseudomallei. Burkholderia pseudomallei is a category B agent that causes Melioidosis, an acute and chronic disease with septicemia. The current treatment regimen is a heavy dose of antibiotics such as ceftazidime (CAZ), however, the risk of a relapse is possible. In this study we demonstrate that bactenecin, CA-MA, RTA3 and BMAP-18 are able to inhibit the growth and biofilm formation of B. pseudomallei. The strong bactericidal activity of bactenecin is attributed to its greater ability to permeabilize the membrane. Computational modeling of these peptide-membrane interactions provide support for a model in which bactenecin is able to penetrate the membrane most effectively due to its cyclical structure. The peptide, bactenecin has the potential to act as a highly effective alternative to CAZ, or as a combination therapy with CAZ in the treatment of melioidosis. Furthermore, understanding the mechanism of bactenecin may help us better design more effective peptides therapeutics of choice for melioidosis.
Collapse
Affiliation(s)
- Kanjana Madhongsa
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Supaluk Pasan
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Onanong Phophetleb
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sawinee Nasompag
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sompong Thammasirirak
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Suwimol Taweechaisupapong
- Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
- Biofilm Research Group, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Andrei L. Lomize
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rina Patramanon
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
20
|
Bromley D, Anderson PC, Daggett V. Structural consequences of mutations to the α-tocopherol transfer protein associated with the neurodegenerative disease ataxia with vitamin E deficiency. Biochemistry 2013; 52:4264-73. [PMID: 23713716 DOI: 10.1021/bi4001084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The α-tocopherol transfer protein (α-TTP) is a liver protein that transfers α-tocopherol (vitamin E) to very-low-density lipoproteins (VLDLs). These VLDLs are then circulated throughout the body to maintain blood α-tocopherol levels. Mutations to the α-TTP gene are associated with ataxia with vitamin E deficiency, a disease characterized by peripheral nerve degeneration. In this study, molecular dynamics simulations of the E141K and R59W disease-associated mutants were performed. The mutants displayed disruptions in and around the ligand-binding pocket. Structural analysis and ligand docking to the mutant structures predicted a decreased affinity for α-tocopherol. To determine the detailed mechanism of the mutation-related changes, we developed a new tool called ContactWalker that analyzes contact differences between mutant and wild-type proteins and highlights pathways of altered contacts within the mutant proteins. Taken together, our findings are in agreement with experiment and suggest structural explanations for the weakened ability of the mutants to bind and carry α-tocopherol.
Collapse
Affiliation(s)
- Dennis Bromley
- Division of Biomedical and Health Informatics, Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
21
|
Fanali G, Fasano M, Ascenzi P, Zingg JM, Azzi A. α-Tocopherol binding to human serum albumin. Biofactors 2013; 39:294-303. [PMID: 23355326 DOI: 10.1002/biof.1070] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 11/02/2012] [Indexed: 11/12/2022]
Abstract
Given the ability of human serum albumin (HSA) to bind hydrophobic ligands, the binding mode of α-tocopherol, the most representative member of the vitamin E family, is reported. α-Tocopherol binds to HSA with Kd0 = (7.0 ± 3.0) × 10(-6) M (pH 7.2, 25.0°C). Competitive and allosteric modulation of α-tocopherol binding to full-length and truncated (Asp1-Glu382) HSA by endogenous and exogenous ligands suggests that it accommodates preferentially in the FA3-FA4 site. As HSA is taken up into cells, colocalizes with the α-tocopherol transfer protein, and contributes to ligand secretion via ABCA1, it might participate in the distribution of α-tocopherol between plasma, cells, and tissues.
Collapse
Affiliation(s)
- Gabriella Fanali
- Division of Biomedical Sciences, Department of Theoretical and Applied Sciences, Center of Neuroscience, University of Insubria, Busto Arsizio (VA), Italy.
| | | | | | | | | |
Collapse
|
22
|
Abstract
Vitamin E was identified almost a century ago as a botanical compound necessary for rodent reproduction. Decades of research since then established that of all members of the vitamin E family, α-tocopherol is selectively enriched in human tissues, and it is essential for human health. The major function of α-tocopherol is thought to be that of a lipid-soluble antioxidant that prevents oxidative damage to biological components. As such, α-tocopherol is necessary for numerous physiological processes such as permeability of lipid bilayers, cell adhesion, and gene expression. Inadequate levels of α-tocopherol interfere with cellular function and precipitate diseases, notably ones that affect the central nervous system. The extreme hydrophobicity of α-tocopherol poses a serious thermodynamic barrier for proper distribution of the vitamin to target tissues and cells. Although transport of the vitamin shares some steps with that of other lipids, selected tissues evolved dedicated transport mechanisms involving the α-tocopherol transfer protein (αTTP). The critical roles of this protein and its ligand are underscored by the debilitating pathologies that characterize human carriers of mutations in the TTPA gene.
Collapse
Affiliation(s)
- Lynn Ulatowski
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
23
|
Lomize AL, Pogozheva ID. Solvation models and computational prediction of orientations of peptides and proteins in membranes. Methods Mol Biol 2013; 1063:125-42. [PMID: 23975775 DOI: 10.1007/978-1-62703-583-5_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Membrane-associated peptides and proteins function in the highly heterogeneous environment of the lipid bilayer whose physico-chemical properties change non-monotonically along the bilayer normal. To simulate insertion of peptides and proteins into membranes and correctly reproduce the energetics of this process, an adequate solvation model and physically realistic representation of the lipid bilayer should be employed. We present a brief overview of the existing solvation models and their application for prediction of binding affinities and orientations of proteins in membranes. Particular emphasis is placed on the recently proposed PPM method, the corresponding web server, and the OPM database that were designed for positioning in membranes of integral and peripheral proteins with known three-dimensional structures.
Collapse
Affiliation(s)
- Andrei L Lomize
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
24
|
Helbling RE, Aeschimann W, Simona F, Stocker A, Cascella M. Engineering tocopherol selectivity in α-TTP: a combined in vitro/in silico study. PLoS One 2012; 7:e49195. [PMID: 23152872 PMCID: PMC3496730 DOI: 10.1371/journal.pone.0049195] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 10/04/2012] [Indexed: 01/21/2023] Open
Abstract
We present a combined in vitro/in silico study to determine the molecular origin of the selectivity of [Formula: see text]-tocopherol transfer protein ([Formula: see text]-TTP) towards [Formula: see text]-tocopherol. Molecular dynamics simulations combined to free energy perturbation calculations predict a binding free energy for [Formula: see text]-tocopherol to [Formula: see text]-TTP 8.26[Formula: see text]2.13 kcal mol[Formula: see text] lower than that of [Formula: see text]-tocopherol. Our calculations show that [Formula: see text]-tocopherol binds to [Formula: see text]-TTP in a significantly distorted geometry as compared to that of the natural ligand. Variations in the hydration of the binding pocket and in the protein structure are found as well. We propose a mutation, A156L, which significantly modifies the selectivity properties of [Formula: see text]-TTP towards the two tocopherols. In particular, our simulations predict that A156L binds preferentially to [Formula: see text]-tocopherol, with striking structural similarities to the wild-type-[Formula: see text]-tocopherol complex. The affinity properties are confirmed by differential scanning fluorimetry as well as in vitro competitive binding assays. Our data indicate that residue A156 is at a critical position for determination of the selectivity of [Formula: see text]-TTP. The engineering of TTP mutants with modulating binding properties can have potential impact at industrial level for easier purification of single tocopherols from vitamin E mixtures coming from natural oils or synthetic processes. Moreover, the identification of a [Formula: see text]-tocopherol selective TTP offers the possibility to challenge the hypotheses for the evolutionary development of a mechanism for [Formula: see text]-tocopherol selection in omnivorous animals.
Collapse
Affiliation(s)
- Rachel E. Helbling
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Walter Aeschimann
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Fabio Simona
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Achim Stocker
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Michele Cascella
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| |
Collapse
|
25
|
Lomize AL, Pogozheva ID, Mosberg HI. Anisotropic solvent model of the lipid bilayer. 2. Energetics of insertion of small molecules, peptides, and proteins in membranes. J Chem Inf Model 2011; 51:930-46. [PMID: 21438606 DOI: 10.1021/ci200020k] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A new computational approach to calculating binding energies and spatial positions of small molecules, peptides, and proteins in the lipid bilayer has been developed. The method combines an anisotropic solvent representation of the lipid bilayer and universal solvation model, which predicts transfer energies of molecules from water to an arbitrary medium with defined polarity properties. The universal solvation model accounts for hydrophobic, van der Waals, hydrogen-bonding, and electrostatic solute-solvent interactions. The lipid bilayer is represented as a fluid anisotropic environment described by profiles of dielectric constant (ε), solvatochromic dipolarity parameter (π*), and hydrogen bonding acidity and basicity parameters (α and β). The polarity profiles were calculated using published distributions of quasi-molecular segments of lipids determined by neutron and X-ray scattering for DOPC bilayer and spin-labeling data that define concentration of water in the lipid acyl chain region. The model also accounts for the preferential solvation of charges and polar groups by water and includes the effect of the hydrophobic mismatch for transmembrane proteins. The method was tested on calculations of binding energies and preferential positions in membranes for small-molecules, peptides and peripheral membrane proteins that have been experimentally studied. The new theoretical approach was implemented in a new version (2.0) of our PPM program and applied for the large-scale calculations of spatial positions in membranes of more than 1000 peripheral and integral proteins. The results of calculations are deposited in the updated OPM database ( http://opm.phar.umich.edu ).
Collapse
Affiliation(s)
- Andrei L Lomize
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , 428 Church St., Ann Arbor, Michigan 48109-1065, USA.
| | | | | |
Collapse
|