1
|
Prajapati V, Singh AK, Kumar A, Singh H, Pathak P, Grishina M, Kumar V, Khalilullah H, Verma A, Kumar P. Structural insights, regulation, and recent advances of RAS inhibitors in the MAPK signaling cascade: a medicinal chemistry perspective. RSC Med Chem 2025:d4md00923a. [PMID: 40052089 PMCID: PMC11880839 DOI: 10.1039/d4md00923a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/25/2025] [Indexed: 03/09/2025] Open
Abstract
The MAPK pathway has four main components: RAS, RAF, MEK, and ERK. Among these, RAS is the most frequently mutated protein and the leading cause of cancer. The three isoforms of the RAS gene are HRAS, NRAS, and KRAS. The KRAS gene is characterized by two splice variants, K-Ras4A and K-Ras4B. The occurrence of cancer often involves a mutation in both KRAS4A and KRAS4B. In this study, we have elucidated the mechanism of the RAS protein complex and the movement of switches I and II. Only two RAS inhibitors, sotorasib and adagrasib, have been approved by the FDA, and several are in clinical trials. This review comprises recent developments in synthetic RAS inhibitors, their unique properties, their importance in inhibiting RAS mutations, and the current challenges in developing new RAS inhibitors. This review will undoubtedly help researchers design novel RAS inhibitors.
Collapse
Affiliation(s)
- Vineet Prajapati
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance and Pharmaceutical Chemistry, School of Pharmacy, GITAM (Deemed to be University) Hyderabad Campus India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University Chelyabinsk 454008 Russia
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
- University Centre for Research and Development, Chandigarh University Gharuan 140413 Punjab India
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University Unayzah 51911 Saudi Arabia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
- Department of Allied Sciences (Chemistry), Graphic Era (Deemed to be University) Dehradun 248002 India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| |
Collapse
|
2
|
Skhoun H, El Fessikh M, Khattab M, Mchich B, Agadr A, Abilkassem R, Dakka N, Flatters D, Camproux AC, Ouzzif Z, El Baghdadi J. A Novel NRAS Variant Near the Splice Junction in Moroccan Childhood Acute Lymphoblastic Leukemia: A Molecular Dynamics Study. Biochem Genet 2024:10.1007/s10528-024-10968-2. [PMID: 39514082 DOI: 10.1007/s10528-024-10968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The RAS genes are importantly implicated in oncogenesis and are frequently mutated in childhood acute lymphoblastic leukemia. This study is the first to our knowledge, to determine the mutational status of NRAS and KRAS genes in Moroccan pediatric acute lymphoblastic leukemia (ALL). Polymerase chain reaction and Sanger sequencing were performed for 45 ALL samples to explore the coding exons. The functional effect of the mutation was evaluated using in silico prediction tools and molecular modeling. We identified a novel variant c.290 G > C p.Arg97Thr within NRAS gene in a patient with T-ALL, which is a rare missense point mutation affecting the last base of exon 3. Analyses revealed that p.Arg97Thr impairs the adjacent splice site efficiency. Moreover, it leads to structural modifications at local and global levels of the protein through the loss of hydrogen bonds. Additionally, the molecular dynamics (MD) simulation showed that it slightly increases the stability of NRAS protein by locally decreasing the flexibility of the mutated region. No variant was detected within KRAS gene. R97 at NRAS gene is an overlapping splice site residue. Our findings suggest that the NRAS p.Arg97Thr variant may disrupt the splicing machinery and functions of the protein, thus playing a vital role in leukemogenesis. In addition, the highly druggable pocket may possibly be studied for its therapeutic implications.
Collapse
Affiliation(s)
- Hanaa Skhoun
- Genetics Unit, Military Hospital Mohammed V, Rabat, Morocco
- Laboratory of Human Pathologies Biology and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Meriem El Fessikh
- Genetics Unit, Military Hospital Mohammed V, Rabat, Morocco
- Laboratory of Human Pathologies Biology and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Mohammed Khattab
- Pediatric Hematology and Oncology Center, Children's Hospital, Rabat, Morocco
- Centre of Childhood Care and Prevention, Cheikh Zaid International University Hospital, Rabat, Morocco
| | - Basma Mchich
- Unité de Biologie Fonctionnelle Et Adaptative, Université Paris Cité, CNRS, INSERM, Paris, France
| | - Aomar Agadr
- Department of Pediatrics, Military Hospital Mohammed V, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Rachid Abilkassem
- Department of Pediatrics, Military Hospital Mohammed V, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Nadia Dakka
- Laboratory of Human Pathologies Biology and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Delphine Flatters
- Unité de Biologie Fonctionnelle Et Adaptative, Université Paris Cité, CNRS, INSERM, Paris, France
| | - Anne-Claude Camproux
- Unité de Biologie Fonctionnelle Et Adaptative, Université Paris Cité, CNRS, INSERM, Paris, France
| | - Zohra Ouzzif
- Laboratories Pole, Military Hospital Mohammed V, Rabat, Morocco
| | - Jamila El Baghdadi
- Genetics Unit, Military Hospital Mohammed V, Rabat, Morocco.
- Laboratories Pole, Military Hospital Mohammed V, Rabat, Morocco.
| |
Collapse
|
3
|
Gerstberger T, Berger H, Büttner FH, Gmachl M, Kessler D, Koegl M, Lucas S, Martin LJ, Mayer M, McConnell DB, Mitzner S, Scholz G, Treu M, Wolkerstorfer B, Zahn S, Zak KM, Jaeger PA, Ettmayer P. Chasing Red Herrings: Palladium Metal Salt Impurities Feigning KRAS Activity in Biochemical Assays. J Med Chem 2024; 67:11701-11711. [PMID: 39009041 DOI: 10.1021/acs.jmedchem.3c02381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Identifying promising chemical starting points for small molecule inhibitors of active, GTP-loaded KRAS "on" remains of great importance to clinical oncology and represents a significant challenge in medicinal chemistry. Here, we describe broadly applicable learnings from a KRAS hit finding campaign: While we initially identified KRAS inhibitors in a biochemical high-throughput screen, we later discovered that compound potencies were all but assay artifacts linked to metal salts interfering with KRAS AlphaScreen assay technology. The source of the apparent biochemical KRAS inhibition was ultimately traced to unavoidable palladium impurities from chemical synthesis. This discovery led to the development of a Metal Ion Interference Set (MIIS) for up-front assay development and testing. Profiling of the MIIS across 74 assays revealed a reduced interference liability of label-free biophysical assays and, as a result, provided general estimates for luminescence- and fluorescence-based assay susceptibility to metal salt interference.
Collapse
Affiliation(s)
- Thomas Gerstberger
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Helmut Berger
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Frank H Büttner
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, D-88397 Biberach, Germany
| | - Michael Gmachl
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Dirk Kessler
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Manfred Koegl
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Simon Lucas
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Laetitia J Martin
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Moriz Mayer
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Darryl B McConnell
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Sophie Mitzner
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Guido Scholz
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Matthias Treu
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Bernhard Wolkerstorfer
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Stephan Zahn
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Krzysztof M Zak
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Philipp A Jaeger
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Peter Ettmayer
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| |
Collapse
|
4
|
Pagba CV, Gupta AK, Dilsha K, Sadrpour P, Jakubec J, Prakash P, van der Hoeven D, Cho KJ, Gilbertson S, Gorfe AA. Biophysical and Biochemical Characterization of Structurally Diverse Small Molecule Hits for KRAS Inhibition. Chembiochem 2024; 25:e202300827. [PMID: 38349283 DOI: 10.1002/cbic.202300827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/12/2024] [Indexed: 03/08/2024]
Abstract
We describe six compounds as early hits for the development of direct inhibitors of KRAS, an important anticancer drug target. We show that these compounds bind to KRAS with affinities in the low micromolar range and exert different effects on its interactions with binding partners. Some of the compounds exhibit selective binding to the activated form of KRAS and inhibit signal transduction through both the MAPK or the phosphatidylinositide 3-kinase PI3K-protein kinase B (AKT) pathway in cells expressing mutant KRAS. Most inhibit intrinsic and/or SOS-mediated KRAS activation while others inhibit RAS-effector interaction. We propose these compounds as starting points for the development of non-covalent allosteric KRAS inhibitors.
Collapse
Affiliation(s)
- Cynthia V Pagba
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, Texas, 77030, USA
| | - Amit K Gupta
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, Texas, 77030, USA
| | - Kasuni Dilsha
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Houston, TX 77204, USA
| | - Parisa Sadrpour
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA
| | - Jacob Jakubec
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, Texas, 77030, USA
| | - Priyanka Prakash
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, Texas, 77030, USA
| | - Dharini van der Hoeven
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 7500 Cambridge St., Houston, Texas, 77030, USA
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA
| | - Scott Gilbertson
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Houston, TX 77204, USA
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, Texas, 77030, USA
- Biochemistry and Cell Biology Program & Therapeutics and Pharmacology Program, UTHealth MD Anderson Cancer Center Graduate School of Biomedical Sciences, Houston, 6431 Fannin St., Houston, Texas, 77030, USA
| |
Collapse
|
5
|
Khan O, Jones G, Lazou M, Joseph-McCarthy D, Kozakov D, Beglov D, Vajda S. Expanding FTMap for Fragment-Based Identification of Pharmacophore Regions in Ligand Binding Sites. J Chem Inf Model 2024; 64:2084-2100. [PMID: 38456842 PMCID: PMC11694573 DOI: 10.1021/acs.jcim.3c01969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The knowledge of ligand binding hot spots and of the important interactions within such hot spots is crucial for the design of lead compounds in the early stages of structure-based drug discovery. The computational solvent mapping server FTMap can reliably identify binding hot spots as consensus clusters, free energy minima that bind a variety of organic probe molecules. However, in its current implementation, FTMap provides limited information on regions within the hot spots that tend to interact with specific pharmacophoric features of potential ligands. E-FTMap is a new server that expands on the original FTMap protocol. E-FTMap uses 119 organic probes, rather than the 16 in the original FTMap, to exhaustively map binding sites, and identifies pharmacophore features as atomic consensus sites where similar chemical groups bind. We validate E-FTMap against a set of 109 experimentally derived structures of fragment-lead pairs, finding that highly ranked pharmacophore features overlap with the corresponding atoms in both fragments and lead compounds. Additionally, comparisons of mapping results to ensembles of bound ligands reveal that pharmacophores generated with E-FTMap tend to sample highly conserved protein-ligand interactions. E-FTMap is available as a web server at https://eftmap.bu.edu.
Collapse
Affiliation(s)
- Omeir Khan
- Department of Chemistry, Boston University, Boston, MA 02215
| | - George Jones
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794
| | - Maria Lazou
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | | | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794
| | - Dmitri Beglov
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
- Acpharis Inc, Holliston, MA 01746
| | - Sandor Vajda
- Department of Chemistry, Boston University, Boston, MA 02215
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| |
Collapse
|
6
|
Lu X, Jin J, Wu Y, Liu X, Liang X, Lin J, Sun Q, Qin J, Zhang W, Luan X. Progress in RAS-targeted therapeutic strategies: From small molecule inhibitors to proteolysis targeting chimeras. Med Res Rev 2024; 44:812-832. [PMID: 38009264 DOI: 10.1002/med.21993] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/14/2023] [Accepted: 10/29/2023] [Indexed: 11/28/2023]
Abstract
As a widely considerable target in chemical biology and pharmacological research, rat sarcoma (RAS) gene mutations play a critical driving factor in several fatal cancers. Despite the great progress of RAS subtype-specific inhibitors, rapid acquired drug resistance could limit their further clinical applications. Proteolysis targeting chimera (PROTAC) has emerged as a powerful tool to handle "undruggable" targets and exhibited significant therapeutic benefit for the combat of drug resistance. Owing to unique molecular mechanism and binding kinetics, PROTAC is expected to become a feasible strategy to break the bottleneck of classical RAS inhibitors. This review aims to discuss the current advances of RAS inhibitors and especially focus on PROTAC strategy targeting RAS mutations and their downstream effectors for relevant cancer treatment.
Collapse
Affiliation(s)
- Xinchen Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Jinmei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxia Liu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaohui Liang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingyan Sun
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Jiangjiang Qin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Yu Z, Wang Z, Cui X, Cao Z, Zhang W, Sun K, Hu G. Conformational States of the GDP- and GTP-Bound HRAS Affected by A59E and K117R: An Exploration from Gaussian Accelerated Molecular Dynamics. Molecules 2024; 29:645. [PMID: 38338389 PMCID: PMC10856033 DOI: 10.3390/molecules29030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/01/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The HRAS protein is considered a critical target for drug development in cancers. It is vital for effective drug development to understand the effects of mutations on the binding of GTP and GDP to HRAS. We conducted Gaussian accelerated molecular dynamics (GaMD) simulations and free energy landscape (FEL) calculations to investigate the impacts of two mutations (A59E and K117R) on GTP and GDP binding and the conformational states of the switch domain. Our findings demonstrate that these mutations not only modify the flexibility of the switch domains, but also affect the correlated motions of these domains. Furthermore, the mutations significantly disrupt the dynamic behavior of the switch domains, leading to a conformational change in HRAS. Additionally, these mutations significantly impact the switch domain's interactions, including their hydrogen bonding with ligands and electrostatic interactions with magnesium ions. Since the switch domains are crucial for the binding of HRAS to effectors, any alterations in their interactions or conformational states will undoubtedly disrupt the activity of HRAS. This research provides valuable information for the design of drugs targeting HRAS.
Collapse
Affiliation(s)
- Zhiping Yu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China; (Z.Y.); (Z.C.)
| | - Zhen Wang
- Pingyin People’s Hospital, Jinan 250400, China; (Z.W.); (X.C.)
| | - Xiuzhen Cui
- Pingyin People’s Hospital, Jinan 250400, China; (Z.W.); (X.C.)
| | - Zanxia Cao
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China; (Z.Y.); (Z.C.)
| | - Wanyunfei Zhang
- School of Science, Xi’an Polytechnic University, Xi’an 710048, China; (W.Z.); (K.S.)
| | - Kunxiao Sun
- School of Science, Xi’an Polytechnic University, Xi’an 710048, China; (W.Z.); (K.S.)
| | - Guodong Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China; (Z.Y.); (Z.C.)
| |
Collapse
|
8
|
Briseño-Díaz P, Schnoor M, Bello-Ramirez M, Correa-Basurto J, Rojo-Domínguez A, Arregui L, Vega L, Núñez-González E, Palau-Hernández LA, Parra-Torres CG, García Córdova ÓM, Zepeda-Castilla E, Torices-Escalante E, Domínguez-Camacho L, Xoconostle-Cazares B, Meraz-Ríos MA, Delfín-Azuara S, Carrión-Estrada DA, Villegas-Sepúlveda N, Hernández-Rivas R, Thompson-Bonilla MDR, Vargas M. Synergistic effect of antagonists to KRas4B/PDE6 molecular complex in pancreatic cancer. Life Sci Alliance 2023; 6:e202302019. [PMID: 37813486 PMCID: PMC10561825 DOI: 10.26508/lsa.202302019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis among all human cancers as it is highly resistant to chemotherapy. K-Ras mutations usually trigger the development and progression of PDAC. We hypothesized that compounds stabilizing the KRas4B/PDE6δ complex could serve as PDAC treatments. Using in silico approaches, we identified the small molecules C14 and P8 that reduced K-Ras activation in primary PDAC cells. Importantly, C14 and P8 significantly prevented tumor growth in patient-derived xenotransplants. Combined treatment with C14 and P8 strongly increased cytotoxicity in PDAC cell lines and primary cultures and showed strong synergistic antineoplastic effects in preclinical murine PDAC models that were superior to conventional therapeutics without causing side effects. Mechanistically, C14 and P8 reduced tumor growth by inhibiting AKT and ERK signaling downstream of K-RAS leading to apoptosis, specifically in PDAC cells. Thus, combined treatment with C14 and P8 may be a superior pharmaceutical strategy to improve the outcome of PDAC.
Collapse
Affiliation(s)
- Paola Briseño-Díaz
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, Mexico
| | - Martiniano Bello-Ramirez
- Laboratory of Molecular Modeling and Drug Design of the Higher School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - Jose Correa-Basurto
- Laboratory of Molecular Modeling and Drug Design of the Higher School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - Arturo Rojo-Domínguez
- Department of Natural Sciences, Metropolitan Autonomous University, Mexico City, Mexico
| | - Leticia Arregui
- Department of Natural Sciences, Metropolitan Autonomous University, Mexico City, Mexico
| | - Libia Vega
- Toxicology Department, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Enrique Núñez-González
- Department of Surgical Oncology and General Surgery, Hospital 1 de Octubre, ISSSTE, Mexico City, Mexico
| | | | | | | | - Ernesto Zepeda-Castilla
- Department of Surgical Oncology and General Surgery, Hospital 1 de Octubre, ISSSTE, Mexico City, Mexico
| | - Eduardo Torices-Escalante
- Department of Surgical Oncology and General Surgery, Hospital 1 de Octubre, ISSSTE, Mexico City, Mexico
| | - Leticia Domínguez-Camacho
- Department of Surgical Oncology and General Surgery, Hospital 1 de Octubre, ISSSTE, Mexico City, Mexico
| | - Beatriz Xoconostle-Cazares
- Department of Biotechnology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, Mexico
| | - Marco Antonio Meraz-Ríos
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, Mexico
| | - Sandra Delfín-Azuara
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, Mexico
| | - Dayan Andrea Carrión-Estrada
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, Mexico
| | - Nicolas Villegas-Sepúlveda
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, Mexico
| | - Rosaura Hernández-Rivas
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, Mexico
| | | | - Miguel Vargas
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, Mexico
| |
Collapse
|
9
|
Batrash F, Kutmah M, Zhang J. The current landscape of using direct inhibitors to target KRAS G12C-mutated NSCLC. Exp Hematol Oncol 2023; 12:93. [PMID: 37925476 PMCID: PMC10625227 DOI: 10.1186/s40164-023-00453-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/02/2023] [Indexed: 11/06/2023] Open
Abstract
Mutation in KRAS protooncogene represents one of the most common genetic alterations in NSCLC and has posed a great therapeutic challenge over the past ~ 40 years since its discovery. However, the pioneer work from Shokat's lab in 2013 has led to a recent wave of direct KRASG12C inhibitors that utilize the switch II pocket identified. Notably, two of the inhibitors have recently received US FDA approval for their use in the treatment of KRASG12C mutant NSCLC. Despite this success, there remains the challenge of combating the resistance that cell lines, xenografts, and patients have exhibited while treated with KRASG12C inhibitors. This review discusses the varying mechanisms of resistance that limit long-lasting effective treatment of those direct inhibitors and highlights several novel therapeutic approaches including a new class of KRASG12C (ON) inhibitors, combinational therapies across the same and different pathways, and combination with immunotherapy/chemotherapy as possible solutions to the pressing question of adaptive resistance.
Collapse
Affiliation(s)
- Firas Batrash
- School of Medicine, University of Missouri Kansas City, Kansas City, MO, 64108, USA
| | - Mahmoud Kutmah
- School of Medicine, University of Missouri Kansas City, Kansas City, MO, 64108, USA
| | - Jun Zhang
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
10
|
Zeissig MN, Ashwood LM, Kondrashova O, Sutherland KD. Next batter up! Targeting cancers with KRAS-G12D mutations. Trends Cancer 2023; 9:955-967. [PMID: 37591766 DOI: 10.1016/j.trecan.2023.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/12/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
KRAS is the most frequently mutated oncogene in cancer. Activating mutations in codon 12, especially G12D, have the highest prevalence across a range of carcinomas and adenocarcinomas. With inhibitors to KRAS-G12D now entering clinical trials, understanding the biology of KRAS-G12D cancers, and identifying biomarkers that predict therapeutic response is crucial. In this Review, we discuss the genomics and biology of KRAS-G12D adenocarcinomas, including histological features, transcriptional landscape, the immune microenvironment, and how these factors influence response to therapy. Moreover, we explore potential therapeutic strategies using novel G12D inhibitors, leveraging knowledge gained from clinical trials using G12C inhibitors.
Collapse
Affiliation(s)
- Mara N Zeissig
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, 3052, Australia
| | - Lauren M Ashwood
- QIMR Berghofer Medical Research Institute, Herston, 4006, Australia; The University of Queensland, Brisbane, 4072, Australia
| | - Olga Kondrashova
- QIMR Berghofer Medical Research Institute, Herston, 4006, Australia; The University of Queensland, Brisbane, 4072, Australia
| | - Kate D Sutherland
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, 3052, Australia.
| |
Collapse
|
11
|
Gomez-Gutierrez P, Rubio-Martinez J, Perez JJ. Discovery of Hit Compounds Targeting the P4 Allosteric Site of K-RAS, Identified through Ensemble-Based Virtual Screening. J Chem Inf Model 2023; 63:6412-6422. [PMID: 37824186 PMCID: PMC10598794 DOI: 10.1021/acs.jcim.3c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Indexed: 10/13/2023]
Abstract
Mutants of Ras are oncogenic drivers of a large number of human tumors. Despite being recognized as an attractive target for the treatment of cancer, the high affinity for its substrate tagged the protein as undruggable for a few years. The identification of cryptic pockets on the protein surface gave the opportunity to identify molecules capable of acting as allosteric modulators. Several molecules were disclosed in recent years, with sotorasib and adagrasib already approved for clinical use. The present study makes use of computational methods to characterize eight prospective allosteric pockets (P1-P8) in K-Ras, four of which (P1-P4) were previously characterized in the literature. The present study also describes the results of a virtual screening study focused on the discovery of hit compounds, binders of the P4 site that can be considered as peptidomimetics of a fragment of the SOS αI helix, a guanine exchange factor of Ras. After a detailed description of the computational procedure followed, we disclose five hit compounds, prospective binders of the P4 allosteric site that exhibit an inhibitory capability higher than 30% in a cell proliferation assay at 50 μM.
Collapse
Affiliation(s)
- Patricia Gomez-Gutierrez
- Department
of Chemical Engineering. ETSEIB, Universitat
Politecnica de Catalunya, Av. Diagonal, 647, Barcelona 08028, Spain
- Allinky
Biopharma, Madrid Scientific Park, Faraday, 7, Madrid 28049, Spain
| | - Jaime Rubio-Martinez
- Department
of Materials Science and Physical Chemistry, University of Barcelona and the Institut de Recerca en Quimica Teorica
i Computacional (IQTCUB), Marti i Franques, 1, Barcelona 08028, Spain
| | - Juan J. Perez
- Department
of Chemical Engineering. ETSEIB, Universitat
Politecnica de Catalunya, Av. Diagonal, 647, Barcelona 08028, Spain
| |
Collapse
|
12
|
GAP positions catalytic H-Ras residue Q61 for GTP hydrolysis in molecular dynamics simulations, complicating chemical rescue of Ras deactivation. Comput Biol Chem 2023; 104:107835. [PMID: 36893567 DOI: 10.1016/j.compbiolchem.2023.107835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/01/2023] [Accepted: 02/16/2023] [Indexed: 03/05/2023]
Abstract
Functional interaction of Ras signaling proteins with upstream, negative regulatory GTPase activating proteins (GAPs) represents a crucial step in cellular decision making related to growth and survival. Key components of the catalytic transition state for Ras deactivation by GAP-accelerated hydrolysis of Ras-bound guanosine triphosphate (GTP) are thought to include an arginine residue from the GAP (the arginine finger), a glutamine residue from Ras (Q61), and a water molecule that is likely coordinated by Q61 to engage in nucleophilic attack on GTP. Here, we use in-vitro fluorescence experiments to show that 0.1-100 mM concentrations of free arginine, imidazole, and other small nitrogenous molecule fail to accelerate GTP hydrolysis, even in the presence of the catalytic domain of a mutant GAP lacking its arginine finger (R1276A NF1). This result is surprising given that imidazole can chemically rescue enzyme activity in arginine-to-alanine mutant protein tyrosine kinases (PTKs) that share many active site components with Ras/GAP complexes. Complementary all-atom molecular dynamics (MD) simulations reveal that an arginine finger GAP mutant still functions to enhance Ras Q61-GTP interaction, though less extensively than wild-type GAP. This increased Q61-GTP proximity may promote more frequent fluctuations into configurations that enable GTP hydrolysis as a component of the mechanism by which GAPs accelerate Ras deactivation in the face of arginine finger mutations. The failure of small molecule analogs of arginine to chemically rescue catalytic deactivation of Ras is consistent with the idea that the influence of the GAP goes beyond the simple provision of its arginine finger. However, the failure of chemical rescue in the presence of R1276A NF1 suggests that the GAPs arginine finger is either unsusceptible to rescue due to exquisite positioning or that it is involved in complex multivalent interactions. Therefore, in the context of oncogenic Ras proteins with mutations at codons 12 or 13 that inhibit arginine finger penetration toward GTP, drug-based chemical rescue of GTP hydrolysis may have bifunctional chemical/geometric requirements that are more difficult to satisfy than those that result from arginine-to-alanine mutations in other enzymes for which chemical rescue has been demonstrated.
Collapse
|
13
|
Wang H, Liu D, Yu Y, Fang M, Gu X, Long D. Exploring the state- and allele-specific conformational landscapes of Ras: understanding their respective druggabilities. Phys Chem Chem Phys 2023; 25:1045-1053. [PMID: 36537570 DOI: 10.1039/d2cp04964c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent advances in direct inhibition of Ras benefit from the protein's intrinsic dynamic nature that derives therapeutically vulnerable conformers bearing transiently formed cryptic pockets. Hotspot mutants of Ras are major tumor drivers and are hyperactivated in cells at variable levels, which may require allele-specific strategies for effective targeting. However, it remains unclear how the prevalent oncogenic mutations and activation states perturb the free energy landscape governing the protein dynamics and druggability. Here we characterized the nucleotide state- and allele-dependent alterations of Ras conformational dynamics using a combined NMR experimental and computational approach and constructed quantitative ensembles revealing the conservation of the cryptic SI/II-P and SII-P pockets in different states and alleles. Highly local but critical conformational reorganizations that undermine the SII-P accessibility to residue 12 have been identified as a common mechanism resulting in the low reactivities of Ras·GTP as well as Ras(G12D)·GDP with covalent SII-P inhibitors. Our results strongly support the conformational selection scenario for interactions between Ras and the previously reported binders and offer insights for the future development of state- and allele-specific, as well as pan-Ras, inhibitors.
Collapse
Affiliation(s)
- Hui Wang
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Dan Liu
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Yongkui Yu
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Mengqi Fang
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Xue Gu
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Dong Long
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China. .,Department of Chemistry, University of Science and Technology of China, Hefei, China
| |
Collapse
|
14
|
Pagba C, Gupta AK, Naji AK, van der Hoeven D, Churion K, Liang X, Jakubec J, Hook M, Zuo Y, Martinez de Kraatz M, Frost JA, Gorfe AA. KRAS Inhibitor that Simultaneously Inhibits Nucleotide Exchange Activity and Effector Engagement. ACS BIO & MED CHEM AU 2022; 2:617-626. [PMID: 37101428 PMCID: PMC10125367 DOI: 10.1021/acsbiomedchemau.2c00045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/27/2022] [Accepted: 09/12/2022] [Indexed: 04/28/2023]
Abstract
We describe a small molecule ligand ACA-14 (2-hydroxy-5-{[(2-phenylcyclopropyl) carbonyl] amino} benzoic acid) as an initial lead for the development of direct inhibitors of KRAS, a notoriously difficult anticancer drug target. We show that the compound binds to KRAS near the switch regions with affinities in the low micromolar range and exerts different effects on KRAS interactions with binding partners. Specifically, ACA-14 impedes the interaction of KRAS with its effector Raf and reduces both intrinsic and SOS-mediated nucleotide exchange rates. Likely as a result of these effects, ACA-14 inhibits signal transduction through the MAPK pathway in cells expressing mutant KRAS and inhibits the growth of pancreatic and colon cancer cells harboring mutant KRAS. We thus propose compound ACA-14 as a useful initial lead for the development of broad-acting inhibitors that target multiple KRAS mutants and simultaneously deplete the fraction of GTP-loaded KRAS while abrogating the effector-binding ability of the already GTP-loaded fraction.
Collapse
Affiliation(s)
- Cynthia
V. Pagba
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Amit K. Gupta
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Ali K. Naji
- Department
of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 7500 Cambridge Street, Houston, Texas 77030, United States
| | - Dharini van der Hoeven
- Department
of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 7500 Cambridge Street, Houston, Texas 77030, United States
| | - Kelly Churion
- Center
for Infectious and Inflammatory Diseases, Texas A&M University Health Science Center, 2121 W Holcombe Blvd, Houston, Texas 77030, United States
| | - Xiaowen Liang
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Jacob Jakubec
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Magnus Hook
- Center
for Infectious and Inflammatory Diseases, Texas A&M University Health Science Center, 2121 W Holcombe Blvd, Houston, Texas 77030, United States
| | - Yan Zuo
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Marisela Martinez de Kraatz
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Jeffrey A. Frost
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
- Biochemistry
and Cell Biology Program, UTHealth MD Anderson
Cancer Center Graduate School of Biomedical Sciences, 6431 Fannin Street, Houston, Texas 77030, United States
| | - Alemayehu A. Gorfe
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, United States
- Biochemistry
and Cell Biology Program & Therapeutics and Pharmacology Program, UTHealth MD Anderson Cancer Center Graduate School
of Biomedical Sciences, 6431 Fannin Street, Houston, Texas 77030, United
States
| |
Collapse
|
15
|
Pálfy G, Menyhárd DK, Ákontz‐Kiss H, Vida I, Batta G, Tőke O, Perczel A. The Importance of Mg 2+ -Free State in Nucleotide Exchange of Oncogenic K-Ras Mutants. Chemistry 2022; 28:e202201449. [PMID: 35781716 PMCID: PMC9804424 DOI: 10.1002/chem.202201449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 01/05/2023]
Abstract
For efficient targeting of oncogenic K-Ras interaction sites, a mechanistic picture of the Ras-cycle is necessary. Herein, we used NMR relaxation techniques and molecular dynamics simulations to decipher the role of slow dynamics in wild-type and three oncogenic P-loop mutants of K-Ras. Our measurements reveal a dominant two-state conformational exchange on the ms timescale in both GDP- and GTP-bound K-Ras. The identified low-populated higher energy state in GDP-loaded K-Ras has a conformation reminiscent of a nucleotide-bound/Mg2+ -free state characterized by shortened β2/β3-strands and a partially released switch-I region preparing K-Ras for the interaction with the incoming nucleotide exchange factor and subsequent reactivation. By providing insight into mutation-specific differences in K-Ras structural dynamics, our systematic analysis improves our understanding of prolonged K-Ras signaling and may aid the development of allosteric inhibitors targeting nucleotide exchange in K-Ras.
Collapse
Affiliation(s)
- Gyula Pálfy
- Laboratory of Structural Chemistry and BiologyInstitute of ChemistryEötvös Loránd University1/a Pázmány Péter stny.Budapest1117Hungary,MTA-ELTE Protein Modeling Research GroupEötvös Loránd Research Network (ELKH)1/a Pázmány Péter stny.Budapest1117Hungary
| | - Dóra K. Menyhárd
- MTA-ELTE Protein Modeling Research GroupEötvös Loránd Research Network (ELKH)1/a Pázmány Péter stny.Budapest1117Hungary
| | - Hanna Ákontz‐Kiss
- Laboratory of Structural Chemistry and BiologyInstitute of ChemistryEötvös Loránd University1/a Pázmány Péter stny.Budapest1117Hungary,Hevesy György PhD School of ChemistryEötvös Loránd University1/a Pázmány Péter stny.Budapest1117Hungary
| | - István Vida
- Laboratory of Structural Chemistry and BiologyInstitute of ChemistryEötvös Loránd University1/a Pázmány Péter stny.Budapest1117Hungary,Hevesy György PhD School of ChemistryEötvös Loránd University1/a Pázmány Péter stny.Budapest1117Hungary
| | - Gyula Batta
- Structural Biology Research GroupDepartment of Organic ChemistryUniversity of Debrecen1 Egyetem térDebrecen4032Hungary
| | - Orsolya Tőke
- Laboratory for NMR SpectroscopyResearch Centre for Natural Sciences (RCNS)2 Magyar tudósok körútjaBudapest1117Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and BiologyInstitute of ChemistryEötvös Loránd University1/a Pázmány Péter stny.Budapest1117Hungary,MTA-ELTE Protein Modeling Research GroupEötvös Loránd Research Network (ELKH)1/a Pázmány Péter stny.Budapest1117Hungary
| |
Collapse
|
16
|
Abrego J, Sanford-Crane H, Oon C, Xiao X, Betts CB, Sun D, Nagarajan S, Diaz L, Sandborg H, Bhattacharyya S, Xia Z, Coussens LM, Tontonoz P, Sherman MH. A Cancer Cell-Intrinsic GOT2-PPARδ Axis Suppresses Antitumor Immunity. Cancer Discov 2022; 12:2414-2433. [PMID: 35894778 PMCID: PMC9533011 DOI: 10.1158/2159-8290.cd-22-0661] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/10/2022] [Accepted: 07/22/2022] [Indexed: 01/16/2023]
Abstract
Despite significant recent advances in precision medicine, pancreatic ductal adenocarcinoma (PDAC) remains near uniformly lethal. Although immune-modulatory therapies hold promise to meaningfully improve outcomes for patients with PDAC, the development of such therapies requires an improved understanding of the immune evasion mechanisms that characterize the PDAC microenvironment. Here, we show that cancer cell-intrinsic glutamic-oxaloacetic transaminase 2 (GOT2) shapes the immune microenvironment to suppress antitumor immunity. Mechanistically, we find that GOT2 functions beyond its established role in the malate-aspartate shuttle and promotes the transcriptional activity of nuclear receptor peroxisome proliferator-activated receptor delta (PPARδ), facilitated by direct fatty acid binding. Although GOT2 is dispensable for cancer cell proliferation in vivo, the GOT2-PPARδ axis promotes spatial restriction of both CD4+ and CD8+ T cells from the tumor microenvironment. Our results demonstrate a noncanonical function for an established mitochondrial enzyme in transcriptional regulation of immune evasion, which may be exploitable to promote a productive antitumor immune response. SIGNIFICANCE Prior studies demonstrate the important moonlighting functions of metabolic enzymes in cancer. We find that the mitochondrial transaminase GOT2 binds directly to fatty acid ligands that regulate the nuclear receptor PPARδ, and this functional interaction critically regulates the immune microenvironment of pancreatic cancer to promote tumor progression. See related commentary by Nwosu and di Magliano, p. 2237.. This article is highlighted in the In This Issue feature, p. 2221.
Collapse
Affiliation(s)
- Jaime Abrego
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Hannah Sanford-Crane
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Chet Oon
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Xu Xiao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Courtney B. Betts
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Duanchen Sun
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon
| | - Shanthi Nagarajan
- Medicinal Chemistry Core, Oregon Health & Science University, Portland, Oregon
| | - Luis Diaz
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Holly Sandborg
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Sohinee Bhattacharyya
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Zheng Xia
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Lisa M. Coussens
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California
| | - Mara H. Sherman
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
17
|
Volmar AY, Guterres H, Zhou H, Reid D, Pavlopoulos S, Makowski L, Mattos C. Mechanisms of isoform-specific residue influence on GTP-bound HRas, KRas, and NRas. Biophys J 2022; 121:3616-3629. [PMID: 35794829 PMCID: PMC9617160 DOI: 10.1016/j.bpj.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/04/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
HRas, KRas, and NRas are GTPases with a common set of effectors that control many cell-signaling pathways, including proliferation through Raf kinase. Their G-domains are nearly identical in sequence, with a few isoform-specific residues that have an effect on dynamics and biochemical properties. Here, we use accelerated molecular dynamics (aMD) simulations consistent with solution x-ray scattering experiments to elucidate mechanisms through which isoform-specific residues associated with each Ras isoform affects functionally important regions connected to the active site. HRas-specific residues cluster in loop 8 to stabilize the nucleotide-binding pocket, while NRas-specific residues on helix 3 directly affect the conformations of switch I and switch II. KRas, the most globally flexible of the isoforms, shows greatest fluctuations in the switch regions enhanced by a KRas-specific residue in loop 7 and a highly dynamic loop 8 region. The analysis of isoform-specific residue effects on Ras proteins is supported by NMR experiments and is consistent with previously published biochemical data.
Collapse
Affiliation(s)
- Alicia Y Volmar
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Hugo Guterres
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Hao Zhou
- Department of Electrical and Computing Engineering, Northeastern University, Boston, Massachusetts
| | - Derion Reid
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Spiro Pavlopoulos
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts
| | - Lee Makowski
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts; Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
18
|
Wang G, Bai Y, Cui J, Zong Z, Gao Y, Zheng Z. Computer-Aided Drug Design Boosts RAS Inhibitor Discovery. Molecules 2022; 27:5710. [PMID: 36080477 PMCID: PMC9457765 DOI: 10.3390/molecules27175710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/13/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
The Rat Sarcoma (RAS) family (NRAS, HRAS, and KRAS) is endowed with GTPase activity to regulate various signaling pathways in ubiquitous animal cells. As proto-oncogenes, RAS mutations can maintain activation, leading to the growth and proliferation of abnormal cells and the development of a variety of human cancers. For the fight against tumors, the discovery of RAS-targeted drugs is of high significance. On the one hand, the structural properties of the RAS protein make it difficult to find inhibitors specifically targeted to it. On the other hand, targeting other molecules in the RAS signaling pathway often leads to severe tissue toxicities due to the lack of disease specificity. However, computer-aided drug design (CADD) can help solve the above problems. As an interdisciplinary approach that combines computational biology with medicinal chemistry, CADD has brought a variety of advances and numerous benefits to drug design, such as the rapid identification of new targets and discovery of new drugs. Based on an overview of RAS features and the history of inhibitor discovery, this review provides insight into the application of mainstream CADD methods to RAS drug design.
Collapse
Affiliation(s)
- Ge Wang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Yuhao Bai
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Jiarui Cui
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Zirui Zong
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Yuan Gao
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Zhen Zheng
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
19
|
Egbert M, Jones G, Collins MR, Kozakov D, Vajda S. FTMove: A Web Server for Detection and Analysis of Cryptic and Allosteric Binding Sites by Mapping Multiple Protein Structures. J Mol Biol 2022; 434:167587. [PMID: 35662465 PMCID: PMC9789685 DOI: 10.1016/j.jmb.2022.167587] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/25/2022] [Accepted: 04/07/2022] [Indexed: 12/27/2022]
Abstract
Protein mapping distributes many copies of different molecular probes on the surface of a target protein in order to determine binding hot spots, regions that are highly preferable for ligand binding. While mapping of X-ray structures by the FTMap server is inherently static, this limitation can be overcome by the simultaneous analysis of multiple structures of the protein. FTMove is an automated web server that implements this approach. From the input of a target protein, by PDB code, the server identifies all structures of the protein available in the PDB, runs mapping on them, and combines the results to form binding hot spots and binding sites. The user may also upload their own protein structures, bypassing the PDB search for similar structures. Output of the server consists of the consensus binding sites and the individual mapping results for each structure - including the number of probes located in each binding site, for each structure. This level of detail allows the users to investigate how the strength of a binding site relates to the protein conformation, other binding sites, and the presence of ligands or mutations. In addition, the structures are clustered on the basis of their binding properties. The use of FTMove is demonstrated by application to 22 proteins with known allosteric binding sites; the orthosteric and allosteric binding sites were identified in all but one case, and the sites were typically ranked among the top five. The FTMove server is publicly available at https://ftmove.bu.edu.
Collapse
Affiliation(s)
- Megan Egbert
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - George Jones
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Matthew R Collins
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Department of Chemistry, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
20
|
Sharma AK, Dyba M, Tonelli M, Smith B, Gillette WK, Esposito D, Nissley DV, McCormick F, Maciag AE. NMR 1H, 13C, 15N backbone resonance assignments of the T35S and oncogenic T35S/Q61L mutants of human KRAS4b in the active, GppNHp-bound conformation. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:1-8. [PMID: 34686998 PMCID: PMC9068649 DOI: 10.1007/s12104-021-10050-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
RAS proteins cycling between the active-form (GTP-bound) and inactive-form (GDP-bound) play a key role in cell signaling pathways that control cell survival, proliferation, and differentiation. Mutations at codon 12, 13, and 61 in RAS are known to attenuate its GTPase activity favoring the RAS active state and constitutively active downstream signaling. This hyperactivation accounts for various malignancies including pancreatic, lung, and colorectal cancers. Active KRAS is found to exist in equilibrium between two rapidly interconverting conformational states (State1-State2) in solution. Due to this dynamic feature of the protein, the 1H-15N correlation cross-peak signals of several amino acid (AA) residues of KRAS belonging to the flexible loop regions are absent from its 2D 1H-15N HSQC spectrum within and near physiological solution pH. A threonine to serine mutation at position 35 (T35S) shifts the interconverting equilibrium to State1 conformation and enables the emergence of such residues in the 2D 1H-15N HSQC spectrum due to gained conformational rigidity. We report here the 1HN, 15N, and 13C backbone resonance assignments for the 19.2 kDa (AA 1-169) protein constructs of KRAS-GppNHp harboring T35S mutation (KRAST35S/C118S-GppNHp) and of its oncogenic counterpart harboring the Q61L mutation (KRAST35S/Q61L/C118S-GppNHp) using heteronuclear, multidimensional NMR spectroscopy at 298 K. High resolution NMR data allowed the unambiguous assignments of 1H-15N correlation cross-peaks for all the residues except for Met1. Furthermore, 2D 1H-15N HSQC overlay of two proteins assisted in determination of Q61L mutation-induced chemical shift perturbations for select residues in the regions of P-loop, Switch-II, and helix α3.
Collapse
Affiliation(s)
- Alok K Sharma
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA.
- Leidos Biomedical Research, Inc., Post Office Box B, Frederick, MD, 21702, USA.
| | - Marcin Dyba
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brian Smith
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - William K Gillette
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, USA
| | - Anna E Maciag
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| |
Collapse
|
21
|
Xiong Y, Zeng J, Xia F, Cui Q, Deng X, Xu X. Conformations and binding pockets of HRas and its guanine nucleotide exchange factors complexes in the guanosine triphosphate exchange process. J Comput Chem 2022; 43:906-916. [PMID: 35324017 PMCID: PMC9191747 DOI: 10.1002/jcc.26846] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/23/2022]
Abstract
The human Son of Sevenless (SOS) activates the signal-transduction protein Ras by forming the complex SOS·Ras and accelerating the guanosine triphosphate (GTP) exchange in Ras. Inhibition of SOS·Ras could regulate the function of Ras in cells and has emerged as an effective strategy for battling Ras related cancers. A key factor to the success of this approach is to understand the conformational change of Ras during the GTP exchange process. In this study, we perform an extensive molecular dynamics simulation to characterize the specific conformations of Ras without and with guanine nucleotide exchange factors (GEFs) of SOS, especially for the substates of State 1 of HRasGTP∙Mg2+ . The potent binding pockets on the surfaces of the RasGDP∙Mg2+ , the S1.1 and S1.2 substates in State 1 of RasGTP∙Mg2+ and the ternary complexes with SOS are predicted, including the binding sites of other domains of SOS. These findings help to obtain a more thorough understanding of Ras functions in the GTP cycling process and provide a structural foundation for future drug design.
Collapse
Affiliation(s)
- Yuqing Xiong
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai, China
| | - Juan Zeng
- School of Biomedical Engineering, Guangdong Medical University, Dongguan, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai, China
| | - Qiang Cui
- Departments of Chemistry, Physics and Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Departments of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Eves BJ, Gebregiworgis T, Gasmi-Seabrook GM, Kuntz DA, Privé GG, Marshall CB, Ikura M. Structures of RGL1 RAS-Association domain in complex with KRAS and the oncogenic G12V mutant. J Mol Biol 2022; 434:167527. [DOI: 10.1016/j.jmb.2022.167527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
|
23
|
Xu Q, Zhang G, Liu Q, Li S, Zhang Y. Inhibitors of the GTPase KRASG12C in cancer: a patent review (2019-2021). Expert Opin Ther Pat 2022; 32:475-505. [PMID: 35062845 DOI: 10.1080/13543776.2022.2032648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qifu Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Ji’nan, Shandong, 250012, PR China
| | - Guozhen Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Ji’nan, Shandong, 250012, PR China
| | - Qian Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Ji’nan, Shandong, 250012, PR China
| | - Shunda Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Ji’nan, Shandong, 250012, PR China
| | - Yingjie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Ji’nan, Shandong, 250012, PR China
| |
Collapse
|
24
|
Adamopoulos PG, Tsiakanikas P, Boti MA, Scorilas A. Targeted Long-Read Sequencing Decodes the Transcriptional Atlas of the Founding RAS Gene Family Members. Int J Mol Sci 2021; 22:ijms222413298. [PMID: 34948093 PMCID: PMC8709048 DOI: 10.3390/ijms222413298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
The complicity of human RAS proteins in cancer is a well-documented fact, both due to the mutational hyperactivation of these GTPases and the overexpression of the genes encoding these proteins. Thus, it can be easily assumed that the study of RAS genes at the transcriptional and post-transcriptional level is of the utmost importance. Although previous research has shed some light on the basic mechanisms by which GTPases are involved in tumorigenesis, limited information is known regarding the transcriptional profile of the genes encoding these proteins. The present study highlights for the first time the wide spectrum of the mRNAs generated by the three most significant RAS genes (KRAS, NRAS and HRAS), providing an in-depth analysis of the splicing events and exon/intron boundaries. The implementation of a versatile, targeted nanopore-sequencing approach led to the identification of 39 novel RAS mRNA transcript variants and to the elucidation of their expression profiles in a broad panel of human cell lines. Although the present work unveiled multiple hidden aspects of the RAS gene family, further study is required to unravel the biological function of all the novel alternative transcript variants, as well as the putative protein isoforms.
Collapse
|
25
|
Iacono R, Minopoli N, Ferrara MC, Tarallo A, Damiano C, Porto C, Strollo S, Roig-Zamboni V, Peluso G, Sulzenbacher G, Cobucci-Ponzano B, Parenti G, Moracci M. Carnitine is a pharmacological allosteric chaperone of the human lysosomal α-glucosidase. J Enzyme Inhib Med Chem 2021; 36:2068-2079. [PMID: 34565280 PMCID: PMC8477953 DOI: 10.1080/14756366.2021.1975694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 11/22/2022] Open
Abstract
Pompe disease is an inherited metabolic disorder due to the deficiency of the lysosomal acid α-glucosidase (GAA). The only approved treatment is enzyme replacement therapy with the recombinant enzyme (rhGAA). Further approaches like pharmacological chaperone therapy, based on the stabilising effect induced by small molecules on the target enzyme, could be a promising strategy. However, most known chaperones could be limited by their potential inhibitory effects on patient's enzymes. Here we report on the discovery of novel chaperones for rhGAA, L- and D-carnitine, and the related compound acetyl-D-carnitine. These drugs stabilise the enzyme at pH and temperature without inhibiting the activity and acted synergistically with active-site directed pharmacological chaperones. Remarkably, they enhanced by 4-fold the acid α-glucosidase activity in fibroblasts from three Pompe patients with added rhGAA. This synergistic effect of L-carnitine and rhGAA has the potential to be translated into improved therapeutic efficacy of ERT in Pompe disease.
Collapse
Affiliation(s)
- Roberta Iacono
- Department of Biology, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Naples, Italy
- Institute of Biosciences and Bioresources – CNR, Naples, Italy
| | - Nadia Minopoli
- Telethon Institute of Genetics & Medicine, Pozzuoli, Italy
| | | | | | - Carla Damiano
- Telethon Institute of Genetics & Medicine, Pozzuoli, Italy
| | - Caterina Porto
- Telethon Institute of Genetics & Medicine, Pozzuoli, Italy
| | - Sandra Strollo
- Telethon Institute of Genetics & Medicine, Pozzuoli, Italy
| | - Véronique Roig-Zamboni
- Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University, AFMB, Marseille, France
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems, UOS Naples-CNR, Naples, Italy
| | - Gerlind Sulzenbacher
- Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University, AFMB, Marseille, France
| | | | - Giancarlo Parenti
- Telethon Institute of Genetics & Medicine, Pozzuoli, Italy
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Marco Moracci
- Department of Biology, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Naples, Italy
- Institute of Biosciences and Bioresources – CNR, Naples, Italy
| |
Collapse
|
26
|
Qiu Y, Wang Y, Chai Z, Ni D, Li X, Pu J, Chen J, Zhang J, Lu S, Lv C, Ji M. Targeting RAS phosphorylation in cancer therapy: Mechanisms and modulators. Acta Pharm Sin B 2021; 11:3433-3446. [PMID: 34900528 PMCID: PMC8642438 DOI: 10.1016/j.apsb.2021.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/26/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
RAS, a member of the small GTPase family, functions as a binary switch by shifting between inactive GDP-loaded and active GTP-loaded state. RAS gain-of-function mutations are one of the leading causes in human oncogenesis, accounting for ∼19% of the global cancer burden. As a well-recognized target in malignancy, RAS has been intensively studied in the past decades. Despite the sustained efforts, many failures occurred in the earlier exploration and resulted in an ‘undruggable’ feature of RAS proteins. Phosphorylation at several residues has been recently determined as regulators for wild-type and mutated RAS proteins. Therefore, the development of RAS inhibitors directly targeting the RAS mutants or towards upstream regulatory kinases supplies a novel direction for tackling the anti-RAS difficulties. A better understanding of RAS phosphorylation can contribute to future therapeutic strategies. In this review, we comprehensively summarized the current advances in RAS phosphorylation and provided mechanistic insights into the signaling transduction of associated pathways. Importantly, the preclinical and clinical success in developing anti-RAS drugs targeting the upstream kinases and potential directions of harnessing allostery to target RAS phosphorylation sites were also discussed.
Collapse
Key Words
- ABL, Abelson
- APC, adenomatous polyposis coli
- Allostery
- CK1, casein kinase 1
- CML, chronic myeloid leukemia
- ER, endoplasmic reticulum
- GAPs, GTPase-activating proteins
- GEFs, guanine nucleotide exchange-factors
- GSK3, glycogen synthase kinase 3
- HVR, hypervariable region
- IP3R, inositol trisphosphate receptors
- LRP6, lipoprotein-receptor-related protein 6
- OMM, outer mitochondrial membrane
- PI3K, phosphatidylinositol 3-kinase
- PKC, protein kinase C
- PPIs, protein−protein interactions
- Phosphorylation
- Protein kinases
- RAS
- RIN1, RAB-interacting protein 1
- SHP2, SRC homology 2 domain containing phosphatase 2
- SOS, Son of Sevenless
- STK19, serine/threonine-protein kinase 19
- TKIs, tyrosine kinase inhibitors
- Undruggable
Collapse
Affiliation(s)
- Yuran Qiu
- Department of Urology, Changzheng Hospital, Naval Military Medical University, Shanghai 200003, China
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yuanhao Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Zongtao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Duan Ni
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Xinyi Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200120, China
| | - Jie Chen
- Department of Urology, Changzheng Hospital, Naval Military Medical University, Shanghai 200003, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Corresponding authors.
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Corresponding authors.
| | - Chuan Lv
- Department of Plastic Surgery, Changhai Hospital, Naval Military Medical University, Shanghai 200438, China
- Corresponding authors.
| | - Mingfei Ji
- Department of Urology, Changzheng Hospital, Naval Military Medical University, Shanghai 200003, China
- Corresponding authors.
| |
Collapse
|
27
|
Egbert M, Ghani U, Ashizawa R, Kotelnikov S, Nguyen T, Desta I, Hashemi N, Padhorny D, Kozakov D, Vajda S. Assessing the binding properties of CASP14 targets and models. Proteins 2021; 89:1922-1939. [PMID: 34368994 DOI: 10.1002/prot.26209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 12/27/2022]
Abstract
An important question is how well the models submitted to CASP retain the properties of target structures. We investigate several properties related to binding. First we explore the binding of small molecules as probes, and count the number of interactions between each residue and such probes, resulting in a binding fingerprint. The similarity between two fingerprints, one for the X-ray structure and the other for a model, is determined by calculating their correlation coefficient. The fingerprint similarity weakly correlates with global measures of accuracy, and GDT_TS higher than 80 is a necessary but not sufficient condition for the conservation of surface binding properties. The advantage of this approach is that it can be carried out without information on potential ligands and their binding sites. The latter information was available for a few targets, and we explored whether the CASP14 models can be used to predict binding sites and to dock small ligands. Finally, we tested the ability of models to reproduce protein-protein interactions by docking both the X-ray structures and the models to their interaction partners in complexes. The analysis showed that in CASP14 the quality of individual domain models is approaching that offered by X-ray crystallography, and hence such models can be successfully used for the identification of binding and regulatory sites, as well as for assembling obligatory protein-protein complexes. Success of ligand docking, however, often depends on fine details of the binding interface, and thus may require accounting for conformational changes by simulation methods.
Collapse
Affiliation(s)
- Megan Egbert
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Usman Ghani
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Ryota Ashizawa
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Sergei Kotelnikov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Thu Nguyen
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Israel Desta
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Nasser Hashemi
- Division of Systems Engineering, Boston University, Boston, Massachusetts, USA
| | - Dzmitry Padhorny
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA.,Department of Chemistry, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Wang X, Gorfe AA, Putkey JA. Antipsychotic phenothiazine drugs bind to KRAS in vitro. JOURNAL OF BIOMOLECULAR NMR 2021; 75:233-244. [PMID: 34176062 DOI: 10.1007/s10858-021-00371-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/22/2021] [Indexed: 06/13/2023]
Abstract
We used NMR to show that the antipsychotic phenothiazine drugs promazine and promethazine bind to GDP-KRAS. Promazine also binds to oncogenic GDP-KRAS(G12D), and to wild type GppNHp-KRAS. A panel of additional phenothiazines bind to GDP-KRAS but with lower affinity than promazine or promethazine. Binding is most dependent on substitutions at C-2 of the tricyclic phenothiazine ring. Promazine was used to generate an NMR-driven HADDOCK model of the drug/GDP-KRAS complex. The structural model shows the tricyclic phenothiazine ring of promazine associates with the hydrophobic pocket p1 that is bordered by the central β sheet and Switch II in KRAS. Binding appears to stabilize helix 2 in a conformation that is similar to that seen in KRAS bound to other small molecules. Association of phenothiazines with KRAS may affect normal KRAS signaling that could contribute to multiple biological activities of these antipsychotic drugs. Moreover, the phenothiazine ring represents a new core scaffold on which to design modulators of KRAS activity.
Collapse
Affiliation(s)
- Xu Wang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - John A Putkey
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA.
| |
Collapse
|
29
|
RAS-inhibiting biologics identify and probe druggable pockets including an SII-α3 allosteric site. Nat Commun 2021; 12:4045. [PMID: 34193876 PMCID: PMC8245420 DOI: 10.1038/s41467-021-24316-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/04/2021] [Indexed: 11/09/2022] Open
Abstract
RAS mutations are the most common oncogenic drivers across human cancers, but there remains a paucity of clinically-validated pharmacological inhibitors of RAS, as druggable pockets have proven difficult to identify. Here, we identify two RAS-binding Affimer proteins, K3 and K6, that inhibit nucleotide exchange and downstream signaling pathways with distinct isoform and mutant profiles. Affimer K6 binds in the SI/SII pocket, whilst Affimer K3 is a non-covalent inhibitor of the SII region that reveals a conformer of wild-type RAS with a large, druggable SII/α3 pocket. Competitive NanoBRET between the RAS-binding Affimers and known RAS binding small-molecules demonstrates the potential to use Affimers as tools to identify pharmacophores. This work highlights the potential of using biologics with small interface surfaces to select unseen, druggable conformations in conjunction with pharmacophore identification for hard-to-drug proteins. Oncogenic RAS mutants remain difficult to target with small molecules. Here, the authors show that RAS-binding Affimer proteins inhibit RAS signaling while binding diverse regions on the RAS surface, suggesting the potential to use Affimers as tools to identify new binding pockets and pharmacophores.
Collapse
|
30
|
Ras Isoforms from Lab Benches to Lives-What Are We Missing and How Far Are We? Int J Mol Sci 2021; 22:ijms22126508. [PMID: 34204435 PMCID: PMC8233758 DOI: 10.3390/ijms22126508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/21/2022] Open
Abstract
The central protein in the oncogenic circuitry is the Ras GTPase that has been under intense scrutiny for the last four decades. From its discovery as a viral oncogene and its non-oncogenic contribution to crucial cellular functioning, an elaborate genetic, structural, and functional map of Ras is being created for its therapeutic targeting. Despite decades of research, there still exist lacunae in our understanding of Ras. The complexity of the Ras functioning is further exemplified by the fact that the three canonical Ras genes encode for four protein isoforms (H-Ras, K-Ras4A, K-Ras4B, and N-Ras). Contrary to the initial assessment that the H-, K-, and N-Ras isoforms are functionally similar, emerging data are uncovering crucial differences between them. These Ras isoforms exhibit not only cell-type and context-dependent functions but also activator and effector specificities on activation by the same receptor. Preferential localization of H-, K-, and N-Ras in different microdomains of the plasma membrane and cellular organelles like Golgi, endoplasmic reticulum, mitochondria, and endosome adds a new dimension to isoform-specific signaling and diverse functions. Herein, we review isoform-specific properties of Ras GTPase and highlight the importance of considering these towards generating effective isoform-specific therapies in the future.
Collapse
|
31
|
Reck M, Carbone DP, Garassino M, Barlesi F. Targeting KRAS in non-small-cell lung cancer: recent progress and new approaches. Ann Oncol 2021; 32:1101-1110. [PMID: 34089836 DOI: 10.1016/j.annonc.2021.06.001] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Rat sarcoma (RAS) is the most frequently mutated oncogene in human cancer, with Kirsten rat sarcoma (KRAS) being the most commonly mutated RAS isoform. Overall, KRAS accounts for 85% of RAS mutations observed in human cancers and is present in 35% of lung adenocarcinomas (LUADs). While the use of targeted therapies and immune checkpoint inhibitors (CPIs) has drastically changed the treatment landscape of advanced non-small-cell lung cancer (NSCLC) in recent years, historic attempts to target KRAS (both direct and indirect approaches) have had little success, and no KRAS-specific targeted therapies have been approved to date for patients in this molecular subset of NSCLC. With the discovery by Ostrem, Shokat, and colleagues of the switch II pocket on the surface of the active and inactive forms of KRAS, we now have an improved understanding of the complex interactions involved in the RAS family of signaling proteins which has led to the development of a number of promising direct KRASG12C inhibitors, such as sotorasib and adagrasib. In previously treated patients with KRASG12C-mutant NSCLC, clinical activity has been shown for both sotorasib and adagrasib monotherapy; these data suggest promising new treatment options are on the horizon. With the stage now set for a new era in the treatment of KRASG12C-mutated NSCLC, many questions remain to be answered in order to further elucidate the mechanisms of resistance, how best to use combination strategies, and if KRASG12C inhibitors will have suitable activity in earlier lines of therapy for patients with advanced/metastatic NSCLC.
Collapse
Affiliation(s)
- M Reck
- Department of Thoracic Oncology, Lung Clinic Grosshansdorf, Airway Research Center North, German Center for Lung Research, Grosshansdorf, Germany.
| | - D P Carbone
- James Thoracic Oncology Center, The Ohio State University, Columbus, USA
| | - M Garassino
- Department of Medicine, Section Hematology Oncology; The University of Chicago, Chicago, USA
| | - F Barlesi
- Aix Marseille University, Marseille, France; Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
32
|
Eren M, Tuncbag N, Jang H, Nussinov R, Gursoy A, Keskin O. Normal Mode Analysis of KRas4B Reveals Partner Specific Dynamics. J Phys Chem B 2021; 125:5210-5221. [PMID: 33978412 PMCID: PMC9969846 DOI: 10.1021/acs.jpcb.1c00891] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ras GTPase interacts with its regulators and downstream effectors for its critical function in cellular signaling. Targeting the disrupted mechanisms in Ras-related human cancers requires understanding the distinct dynamics of these protein-protein interactions. We performed normal mode analysis (NMA) of KRas4B in wild-type or mutant monomeric and neurofibromin-1 (NF1), Son of Sevenless 1 (SOS1) or Raf-1 bound dimeric conformational states to reveal partner-specific dynamics of the protein. Gaussian network model (GNM) analysis showed that the known KRas4B lobes further partition into subdomains upon binding to its partners. Furthermore, KRas4B interactions with different partners suppress the flexibility in not only their binding sites but also distant residues in the allosteric lobe in a partner-specific way. The conformational changes can be driven by intrinsic residue fluctuations of the open state KRas4B-GDP, as we illustrated with anisotropic network model (ANM) analysis. The allosteric paths connecting the nucleotide binding residues to the allosteric site at α3-L7 portray differences in the inactive and active states. These findings help in understanding the partner-specific KRas4B dynamics, which could be utilized for therapeutic targeting.
Collapse
Affiliation(s)
| | - Nurcan Tuncbag
- Chemical and Biological Engineering, College of Engineering, and School of Medicine, Koc University, 34450 Istanbul, Turkey
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
33
|
Egbert M, Porter KA, Ghani U, Kotelnikov S, Nguyen T, Ashizawa R, Kozakov D, Vajda S. Conservation of binding properties in protein models. Comput Struct Biotechnol J 2021; 19:2549-2566. [PMID: 34025942 PMCID: PMC8114079 DOI: 10.1016/j.csbj.2021.04.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 01/09/2023] Open
Abstract
We study the models submitted to round 12 of the Critical Assessment of protein Structure Prediction (CASP) experiment to assess how well the binding properties are conserved when the X-ray structures of the target proteins are replaced by their models. To explore small molecule binding we generate distributions of molecular probes - which are fragment-sized organic molecules of varying size, shape, and polarity - around the protein, and count the number of interactions between each residue and the probes, resulting in a vector of interactions we call a binding fingerprint. The similarity between two fingerprints, one for the X-ray structure and the other for a model of the protein, is determined by calculating the correlation coefficient between the two vectors. The resulting correlation coefficients are shown to correlate with global measures of accuracy established in CASP, and the relationship yields an accuracy threshold that has to be reached for meaningful binding surface conservation. The clusters formed by the probe molecules reliably predict binding hot spots and ligand binding sites in both X-ray structures and reasonably accurate models of the target, but ensembles of models may be needed for assessing the availability of proper binding pockets. We explored ligand docking to the few targets that had bound ligands in the X-ray structure. More targets were available to assess the ability of the models to reproduce protein-protein interactions by docking both the X-ray structures and models to their interaction partners in complexes. It was shown that this application is more difficult than finding small ligand binding sites, and the success rates heavily depend on the local structure in the potential interface. In particular, predicted conformations of flexible loops are frequently incorrect in otherwise highly accurate models, and may prevent predicting correct protein-protein interactions.
Collapse
Affiliation(s)
- Megan Egbert
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Kathryn A. Porter
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Usman Ghani
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Sergei Kotelnikov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Thu Nguyen
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Ryota Ashizawa
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
- Department of Chemistry, Boston University, Boston, MA 02215, United States
| |
Collapse
|
34
|
Han CW, Jeong MS, Jang SB. Understand KRAS and the Quest for Anti-Cancer Drugs. Cells 2021; 10:cells10040842. [PMID: 33917906 PMCID: PMC8068306 DOI: 10.3390/cells10040842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/30/2022] Open
Abstract
The KRAS oncogene is mutated in approximately ~30% of human cancers, and the targeting of KRAS has long been highlighted in many studies. Nevertheless, attempts to target KRAS directly have been ineffective. This review provides an overview of the structure of KRAS and its characteristic signaling pathways. Additionally, we examine the problems associated with currently available KRAS inhibitors and discuss promising avenues for drug development.
Collapse
Affiliation(s)
- Chang Woo Han
- Institute of Systems Biology, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Korea;
| | - Mi Suk Jeong
- Institute for Plastic Information and Energy Materials and Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Korea
- Correspondence: (M.S.J.); (S.B.J.); Tel.: +82-51-510-2523 (M.S.J. & S.B.J.)
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Korea
- Correspondence: (M.S.J.); (S.B.J.); Tel.: +82-51-510-2523 (M.S.J. & S.B.J.)
| |
Collapse
|
35
|
Shu L, Wang D, Saba NF, Chen ZG. A Historic Perspective and Overview of H-Ras Structure, Oncogenicity, and Targeting. Mol Cancer Ther 2021; 19:999-1007. [PMID: 32241873 DOI: 10.1158/1535-7163.mct-19-0660] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/02/2019] [Accepted: 01/14/2020] [Indexed: 12/24/2022]
Abstract
H-Ras is a unique isoform of the Ras GTPase family, one of the most prominently mutated oncogene families across the cancer landscape. Relative to other isoforms, though, mutations of H-Ras account for the smallest proportion of mutant Ras cancers. Yet, in recent years, there have been renewed efforts to study this isoform, especially as certain H-Ras-driven cancers, like those of the head and neck, have become more prominent. Important advances have therefore been made not only in the understanding of H-Ras structural biology but also in approaches designed to inhibit and impair its signaling activity. In this review, we outline historic and present initiatives to elucidate the mechanisms of H-Ras-dependent tumorigenesis as well as highlight ongoing developments in the quest to target this critical oncogene.
Collapse
Affiliation(s)
- Lihua Shu
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.
| | - Zhuo G Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
36
|
Engineering subtilisin proteases that specifically degrade active RAS. Commun Biol 2021; 4:299. [PMID: 33674772 PMCID: PMC7935941 DOI: 10.1038/s42003-021-01818-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
We describe the design, kinetic properties, and structures of engineered subtilisin proteases that degrade the active form of RAS by cleaving a conserved sequence in switch 2. RAS is a signaling protein that, when mutated, drives a third of human cancers. To generate high specificity for the RAS target sequence, the active site was modified to be dependent on a cofactor (imidazole or nitrite) and protease sub-sites were engineered to create a linkage between substrate and cofactor binding. Selective proteolysis of active RAS arises from a 2-step process wherein sub-site interactions promote productive binding of the cofactor, enabling cleavage. Proteases engineered in this way specifically cleave active RAS in vitro, deplete the level of RAS in a bacterial reporter system, and also degrade RAS in human cell culture. Although these proteases target active RAS, the underlying design principles are fundamental and will be adaptable to many target proteins.
Collapse
|
37
|
Wakefield AE, Yueh C, Beglov D, Castilho MS, Kozakov D, Keserű GM, Whitty A, Vajda S. Benchmark Sets for Binding Hot Spot Identification in Fragment-Based Ligand Discovery. J Chem Inf Model 2020; 60:6612-6623. [PMID: 33291870 DOI: 10.1021/acs.jcim.0c00877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Binding hot spots are regions of proteins that, due to their potentially high contribution to the binding free energy, have high propensity to bind small molecules. We present benchmark sets for testing computational methods for the identification of binding hot spots with emphasis on fragment-based ligand discovery. Each protein structure in the set binds a fragment, which is extended into larger ligands in other structures without substantial change in its binding mode. Structures of the same proteins without any bound ligand are also collected to form an unbound benchmark. We also discuss a set developed by Astex Pharmaceuticals for the validation of hot and warm spots for fragment binding. The set is based on the assumption that a fragment that occurs in diverse ligands in the same subpocket identifies a binding hot spot. Since this set includes only ligand-bound proteins, we added a set with unbound structures. All four sets were tested using FTMap, a computational analogue of fragment screening experiments to form a baseline for testing other prediction methods, and differences among the sets are discussed.
Collapse
Affiliation(s)
- Amanda E Wakefield
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States.,Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Christine Yueh
- Acpharis Inc., Holliston, Massachusetts 01746, United States
| | - Dmitri Beglov
- Acpharis Inc., Holliston, Massachusetts 01746, United States
| | - Marcelo S Castilho
- Faculdade de Farmácia da Universidade Federal da Bahia, Bahia, Salvador, BA 40170-115, Brazil
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794, United States.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Adrian Whitty
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States.,Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
38
|
Pálfy G, Menyhárd DK, Perczel A. Dynamically encoded reactivity of Ras enzymes: opening new frontiers for drug discovery. Cancer Metastasis Rev 2020; 39:1075-1089. [PMID: 32815102 PMCID: PMC7680338 DOI: 10.1007/s10555-020-09917-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
Decoding molecular flexibility in order to understand and predict biological processes-applying the principles of dynamic-structure-activity relationships (DSAR)-becomes a necessity when attempting to design selective and specific inhibitors of a protein that has overlapping interaction surfaces with its upstream and downstream partners along its signaling cascade. Ras proteins are molecular switches that meet this definition perfectly. The close-lying P-loop and the highly flexible switch I and switch II regions are the site of nucleotide-, assisting-, and effector-protein binding. Oncogenic mutations that also appear in this region do not cause easily characterized overall structural changes, due partly to the inherent conformational heterogeneity and pliability of these segments. In this review, we present an overview of the results obtained using approaches targeting Ras dynamics, such as nuclear magnetic resonance (NMR) measurements and experiment-based modeling calculations (mostly molecular dynamics (MD) simulations). These methodologies were successfully used to decipher the mutant- and isoform-specific nature of certain transient states, far-lying allosteric sites, and the internal interaction networks, as well as the interconnectivity of the catalytic and membrane-binding regions. This opens new therapeutic potential: the discovered interaction hotspots present hitherto not targeted, selective sites for drug design efforts in diverse locations of the protein matrix.
Collapse
Affiliation(s)
- Gyula Pálfy
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
- Protein Modeling Group HAS-ELTE, Institute of Chemistry, Eötvös Loránd University, P.O.B. 32, Budapest, 1538, Hungary
| | - Dóra K Menyhárd
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary.
- Protein Modeling Group HAS-ELTE, Institute of Chemistry, Eötvös Loránd University, P.O.B. 32, Budapest, 1538, Hungary.
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary.
- Protein Modeling Group HAS-ELTE, Institute of Chemistry, Eötvös Loránd University, P.O.B. 32, Budapest, 1538, Hungary.
| |
Collapse
|
39
|
Zuberi M, Khan I, O’Bryan JP. Inhibition of RAS: proven and potential vulnerabilities. Biochem Soc Trans 2020; 48:1831-1841. [PMID: 32869838 PMCID: PMC7875515 DOI: 10.1042/bst20190023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
RAS is a membrane localized small GTPase frequently mutated in human cancer. As such, RAS has been a focal target for developing cancer therapeutics since its discovery nearly four decades ago. However, efforts to directly target RAS have been challenging due to the apparent lack of readily discernable deep pockets for binding small molecule inhibitors leading many to consider RAS as undruggable. An important milestone in direct RAS inhibition was achieved recently with the groundbreaking discovery of covalent inhibitors that target the mutant Cys residue in KRAS(G12C). Surprisingly, these G12C-reactive compounds only target mutant RAS in the GDP-bound state thereby locking it in the inactive conformation and blocking its ability to couple with downstream effector pathways. Building on this success, several groups have developed similar compounds that selectively target KRAS(G12C), with AMG510 and MRTX849 the first to advance to clinical trials. Both have shown early promising results. Though the success with these compounds has reignited the possibility of direct pharmacological inhibition of RAS, these covalent inhibitors are limited to treating KRAS(G12C) tumors which account for <15% of all RAS mutants in human tumors. Thus, there remains an unmet need to identify more broadly efficacious RAS inhibitors. Here, we will discuss the current state of RAS(G12C) inhibitors and the potential for inhibiting additional RAS mutants through targeting RAS dimerization which has emerged as an important step in the allosteric regulation of RAS function.
Collapse
Affiliation(s)
- Mariyam Zuberi
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States of America; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, United States of America
| | - Imran Khan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States of America; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, United States of America
| | - John P. O’Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States of America; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, United States of America
| |
Collapse
|
40
|
How to make an undruggable enzyme druggable: lessons from ras proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020. [PMID: 32951811 DOI: 10.1016/bs.apcsb.2020.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Significant advances have been made toward discovering allosteric inhibitors for challenging drug targets such as the Ras family of membrane-associated signaling proteins. Malfunction of Ras proteins due to somatic mutations is associated with up to a quarter of all human cancers. Computational techniques have played critical roles in identifying and characterizing allosteric ligand-binding sites on these proteins, and to screen ligand libraries against those sites. These efforts, combined with a wide range of biophysical, structural, biochemical and cell biological experiments, are beginning to yield promising inhibitors to treat malignancies associated with mutated Ras proteins. In this chapter, we discuss some of these developments and how the lessons learned from Ras might be applied to similar other challenging drug targets.
Collapse
|
41
|
Menyhárd DK, Pálfy G, Orgován Z, Vida I, Keserű GM, Perczel A. Structural impact of GTP binding on downstream KRAS signaling. Chem Sci 2020; 11:9272-9289. [PMID: 34094198 PMCID: PMC8161693 DOI: 10.1039/d0sc03441j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oncogenic RAS proteins, involved in ∼30% of human tumors, are molecular switches of various signal transduction pathways. Here we apply a new protocol for the NMR study of KRAS in its (inactive) GDP- and (activated) GTP-bound form, allowing a comprehensive analysis of the backbone dynamics of its WT-, G12C- and G12D variants. We found that Tyr32 shows opposite mobility with respect to the backbone of its surroundings: it is more flexible in the GDP-bound form while more rigid in GTP-complexes (especially in WT- and G12D-GTP). Using the G12C/Y32F double mutant, we showed that the presence of the hydroxyl group of Tyr32 has a marked effect on the G12C-KRAS-GTP system as well. Molecular dynamics simulations indicate that Tyr32 is linked to the γ-phosphate of GTP in the activated states – an arrangement shown, using QM/MM calculations, to support catalysis. Anchoring Tyr32 to the γ-phosphate contributes to the capture of the catalytic waters participating in the intrinsic hydrolysis of GTP and supports a simultaneous triple proton transfer step (catalytic water → assisting water → Tyr32 → O1G of the γ-phosphate) leading to straightforward product formation. The coupled flip of negatively charged residues of switch I toward the inside of the effector binding pocket potentiates ligand recognition, while positioning of Thr35 to enter the coordination sphere of the Mg2+ widens the pocket. Position 12 mutations do not disturb the capture of Tyr32 by the γ-phosphate, but (partially) displace Gln61, which opens up the catalytic pocket and destabilizes catalytic water molecules thus impairing intrinsic hydrolysis. Nucleotide exchange to the physiological, activated, GTP-bound form of KRAS results in the anchoring of Tyr32 within the active site.![]()
Collapse
Affiliation(s)
- Dóra K Menyhárd
- Laboratory of Structural Chemistry and Biology, MTA-ELTE Protein Modelling Research Group, Institute of Chemistry, Eötvös Loránd University Pázmány Péter sétány 1/A 1117 Budapest Hungary
| | - Gyula Pálfy
- Laboratory of Structural Chemistry and Biology, MTA-ELTE Protein Modelling Research Group, Institute of Chemistry, Eötvös Loránd University Pázmány Péter sétány 1/A 1117 Budapest Hungary
| | - Zoltán Orgován
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - István Vida
- Laboratory of Structural Chemistry and Biology, MTA-ELTE Protein Modelling Research Group, Institute of Chemistry, Eötvös Loránd University Pázmány Péter sétány 1/A 1117 Budapest Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, MTA-ELTE Protein Modelling Research Group, Institute of Chemistry, Eötvös Loránd University Pázmány Péter sétány 1/A 1117 Budapest Hungary
| |
Collapse
|
42
|
Hanna CB, Mudaliar D, John K, Allen CL, Sun L, Hawkinson JE, Schönbrunn E, Georg GI, Jensen JT. Development of WEE2 kinase inhibitors as novel non-hormonal female contraceptives that target meiosis†. Biol Reprod 2020; 103:368-377. [PMID: 32667031 PMCID: PMC7401407 DOI: 10.1093/biolre/ioaa097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 05/26/2020] [Indexed: 11/24/2022] Open
Abstract
WEE2 oocyte meiosis inhibiting kinase is a well-conserved oocyte specific kinase with a dual regulatory role during meiosis. Active WEE2 maintains immature, germinal vesicle stage oocytes in prophase I arrest prior to the luteinizing hormone surge and facilitates exit from metaphase II arrest at fertilization. Spontaneous mutations at the WEE2 gene locus in women have been linked to total fertilization failure indicating that selective inhibitors to this kinase could function as non-hormonal contraceptives. Employing co-crystallization with WEE1 G2 checkpoint kinase inhibitors, we revealed the structural basis of action across WEE kinases and determined type I inhibitors were not selective to WEE2 over WEE1. In response, we performed in silico screening by FTMap/FTSite and Schrodinger SiteMap analysis to identify potential allosteric sites, then used an allosterically biased activity assay to conduct high-throughput screening of a 26 000 compound library containing scaffolds of known allosteric inhibitors. Resulting hits were validated and a selective inhibitor that binds full-length WEE2 was identified, designated GPHR-00336382, along with a fragment-like inhibitor that binds the kinase domain, GPHR-00355672. Additionally, we present an in vitro testing workflow to evaluate biological activity of candidate WEE2 inhibitors including; (1) enzyme-linked immunosorbent assays measuring WEE2 phosphorylation activity of cyclin dependent kinase 1 (CDK1; also known as cell division cycle 2 kinase, CDC2), (2) in vitro fertilization of bovine ova to determine inhibition of metaphase II exit, and (3) cell-proliferation assays to look for off-target effects against WEE1 in somatic (mitotic) cells.
Collapse
Affiliation(s)
- Carol B Hanna
- Oregon National Primate Research Center, Beaverton, Division of Reproductive & Developmental Sciences OR, USA
- Correspondence: Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA. Tel: +1-503-346-5000; Fax: +1-503-346-5585; E-mail:
| | - Deepti Mudaliar
- University of Minnesota, Department of Obstetrics & Gynecology, Minneapolis, MN, USA
| | - Kristen John
- University of Minnesota, Department of Obstetrics & Gynecology, Minneapolis, MN, USA
| | - C Leigh Allen
- University of Minnesota, Department of Obstetrics & Gynecology, Minneapolis, MN, USA
| | - Luxin Sun
- Moffitt Cancer Center, Drug Discovery Department, Tampa, FL, USA
| | - Jon E Hawkinson
- University of Minnesota, Department of Obstetrics & Gynecology, Minneapolis, MN, USA
| | - Ernst Schönbrunn
- Moffitt Cancer Center, Drug Discovery Department, Tampa, FL, USA
| | - Gunda I Georg
- University of Minnesota, Department of Obstetrics & Gynecology, Minneapolis, MN, USA
| | - Jeffrey T Jensen
- Oregon National Primate Research Center, Beaverton, Division of Reproductive & Developmental Sciences OR, USA
- Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
43
|
Gillson J, Ramaswamy Y, Singh G, Gorfe AA, Pavlakis N, Samra J, Mittal A, Sahni S. Small Molecule KRAS Inhibitors: The Future for Targeted Pancreatic Cancer Therapy? Cancers (Basel) 2020; 12:cancers12051341. [PMID: 32456277 PMCID: PMC7281596 DOI: 10.3390/cancers12051341] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest solid tumors in the world. Currently, there are no approved targeted therapies for PDAC. Mutations in Kirsten rat sarcoma viral oncogene homologue (KRAS) are known to be a major driver of PDAC progression, but it was considered an undruggable target until recently. Moreover, PDAC also suffers from drug delivery issues due to the highly fibrotic tumor microenvironment. In this perspective, we provide an overview of recent developments in targeting mutant KRAS and strategies to overcome drug delivery issues (e.g., nanoparticle delivery). Overall, we propose that the antitumor effects from novel KRAS inhibitors along with strategies to overcome drug delivery issues could be a new therapeutic way forward in PDAC.
Collapse
Affiliation(s)
- Josef Gillson
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards 2065, NSW, Australia; (J.G.); (N.P.); (J.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, St Leonards 2065, NSW, Australia
- Australian Pancreatic Centre, St Leonards 2065, NSW, Australia
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney 2006, Sydney, Australia; (Y.R.); (G.S.)
| | - Gurvinder Singh
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney 2006, Sydney, Australia; (Y.R.); (G.S.)
| | - Alemayehu A. Gorfe
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center Houston, Houston, TX 77030, USA;
| | - Nick Pavlakis
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards 2065, NSW, Australia; (J.G.); (N.P.); (J.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, St Leonards 2065, NSW, Australia
- Northern Sydney Cancer Center, Royal North Shore Hospital, St Leonards 2065, NSW, Australia
- Genesis Care, St Leonards and Frenchs Forest 2065, NSW, Australia
| | - Jaswinder Samra
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards 2065, NSW, Australia; (J.G.); (N.P.); (J.S.); (A.M.)
- Australian Pancreatic Centre, St Leonards 2065, NSW, Australia
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards 2065, NSW, Australia
| | - Anubhav Mittal
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards 2065, NSW, Australia; (J.G.); (N.P.); (J.S.); (A.M.)
- Australian Pancreatic Centre, St Leonards 2065, NSW, Australia
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards 2065, NSW, Australia
| | - Sumit Sahni
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards 2065, NSW, Australia; (J.G.); (N.P.); (J.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, St Leonards 2065, NSW, Australia
- Australian Pancreatic Centre, St Leonards 2065, NSW, Australia
- Correspondence: ; Tel.: +61-2-9926-7829
| |
Collapse
|
44
|
Pálfy G, Vida I, Perczel A. 1H, 15N backbone assignment and comparative analysis of the wild type and G12C, G12D, G12V mutants of K-Ras bound to GDP at physiological pH. BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:1-7. [PMID: 31468366 PMCID: PMC7069925 DOI: 10.1007/s12104-019-09909-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/02/2019] [Indexed: 05/14/2023]
Abstract
K-Ras protein is a membrane-bound small GTPase acting as a molecular switch. It plays a key role in many signal transduction pathways regulating cell proliferation, differentiation, survival, etc. It alternates between its GTP-bound active and the GDP-bound inactive conformers regulated by guanine nucleotide exchange factors and GTPase activating proteins. Its most frequent oncogenic mutants are G12C, G12D, and G12V that have impaired GTPase activity, thus induce malignant tumors. Here we report the resonance assignment of the backbone 1H and 15N nuclei of K-Ras wildtype, G12C, G12D and G12V proteins' catalytic G domain (1-169 residues) in GDP-bound state, and 13C of backbone and side chains of G12C mutant at physiological pH 7.4. Triple resonance data were used to get secondary structure information and backbone dynamics of G12C, the best-known drug target among K-Ras mutants. Simultaneous investigation of G12C, G12D and G12V mutants, along with the wild type form at the very same conditions allowed us to perform a comprehensive analysis based on the combined chemical shifts to reveal the effect of mutation at G12 position on structure. Intriguingly, the G12C and G12V mutants found to be structurally very similar at the three most important regions of K-Ras (P-loop, Switch-I, Switch-II), while the G12D mutant significantly differs at P-loop and Switch-II from the wildtype as well as G12C and G12V mutants. However, in Switch-I it hardly deviates from the wildtype protein.
Collapse
Affiliation(s)
- Gyula Pálfy
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, 1/a. Pázmány Péter stny, Budapest, H-1117, Hungary
| | - István Vida
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, 1/a. Pázmány Péter stny, Budapest, H-1117, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, 1/a. Pázmány Péter stny, Budapest, H-1117, Hungary.
- MTA-ELTE Protein Modeling Research Group, Institute of Chemistry, Eötvös Loránd University, 1/a. Pázmány Péter stny, Budapest, H-1117, Hungary.
| |
Collapse
|
45
|
Marcus K, Mattos C. Water in Ras Superfamily Evolution. J Comput Chem 2020; 41:402-414. [PMID: 31483874 DOI: 10.1002/jcc.26060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/17/2019] [Accepted: 08/16/2019] [Indexed: 01/14/2023]
Abstract
The Ras GTPase superfamily of proteins coordinates a diverse set of cellular outcomes, including cell morphology, vesicle transport, and cell proliferation. Primary amino acid sequence analysis has identified Specificity determinant positions (SDPs) that drive diversified functions specific to the Ras, Rho, Rab, and Arf subfamilies (Rojas et al. 2012, J Cell Biol 196:189-201). The inclusion of water molecules in structural and functional adaptation is likely to be a major response to the selection pressures that drive evolution, yet hydration patterns are not included in phylogenetic analysis. This article shows that conserved crystallographic water molecules coevolved with SDP residues in the differentiation of proteins within the Ras superfamily of small GTPases. The patterns of water conservation between protein subfamilies parallel those of sequence-based evolutionary trees. Thus, hydration patterns have the potential to help elucidate functional significance in the evolution of amino acid residues observed in phylogenetic analysis of homologous proteins. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kendra Marcus
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, Massachusetts, 02115
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, Massachusetts, 02115
| |
Collapse
|
46
|
Zhong M, Lynch A, Muellers SN, Jehle S, Luo L, Hall DR, Iwase R, Carolan JP, Egbert M, Wakefield A, Streu K, Harvey CM, Ortet PC, Kozakov D, Vajda S, Allen KN, Whitty A. Interaction Energetics and Druggability of the Protein-Protein Interaction between Kelch-like ECH-Associated Protein 1 (KEAP1) and Nuclear Factor Erythroid 2 Like 2 (Nrf2). Biochemistry 2020; 59:563-581. [PMID: 31851823 PMCID: PMC8177486 DOI: 10.1021/acs.biochem.9b00943] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Development of small molecule inhibitors of protein-protein interactions (PPIs) is hampered by our poor understanding of the druggability of PPI target sites. Here, we describe the combined application of alanine-scanning mutagenesis, fragment screening, and FTMap computational hot spot mapping to evaluate the energetics and druggability of the highly charged PPI interface between Kelch-like ECH-associated protein 1 (KEAP1) and nuclear factor erythroid 2 like 2 (Nrf2), an important drug target. FTMap identifies four binding energy hot spots at the active site. Only two of these are exploited by Nrf2, which alanine scanning of both proteins shows to bind primarily through E79 and E82 interacting with KEAP1 residues S363, R380, R415, R483, and S508. We identify fragment hits and obtain X-ray complex structures for three fragments via crystal soaking using a new crystal form of KEAP1. Combining these results provides a comprehensive and quantitative picture of the origins of binding energy at the interface. Our findings additionally reveal non-native interactions that might be exploited in the design of uncharged synthetic ligands to occupy the same site on KEAP1 that has evolved to bind the highly charged DEETGE binding loop of Nrf2. These include π-stacking with KEAP1 Y525 and interactions at an FTMap-identified hot spot deep in the binding site. Finally, we discuss how the complementary information provided by alanine-scanning mutagenesis, fragment screening, and computational hot spot mapping can be integrated to more comprehensively evaluate PPI druggability.
Collapse
Affiliation(s)
| | | | | | | | | | - David R Hall
- Acpharis, Inc. , 160 North Mill Street , Holliston , Massachusetts 01746 , United States
| | | | | | | | | | | | | | | | - Dima Kozakov
- Department of Applied Mathematics , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Sandor Vajda
- Biomolecular Engineering Research Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Karen N Allen
- Biomolecular Engineering Research Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Adrian Whitty
- Biomolecular Engineering Research Center , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
47
|
Khan I, Rhett JM, O'Bryan JP. Therapeutic targeting of RAS: New hope for drugging the "undruggable". BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118570. [PMID: 31678118 PMCID: PMC6937383 DOI: 10.1016/j.bbamcr.2019.118570] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/01/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022]
Abstract
RAS is the most frequently mutated oncogene in cancer and a critical driver of oncogenesis. Therapeutic targeting of RAS has been a goal of cancer research for more than 30 years due to its essential role in tumor formation and maintenance. Yet the quest to inhibit this challenging foe has been elusive. Although once considered "undruggable", the struggle to directly inhibit RAS has seen recent success with the development of pharmacological agents that specifically target the KRAS(G12C) mutant protein, which include the first direct RAS inhibitor to gain entry to clinical trials. However, the limited applicability of these inhibitors to G12C-mutant tumors demands further efforts to identify more broadly efficacious RAS inhibitors. Understanding allosteric influences on RAS may open new avenues to inhibit RAS. Here, we provide a brief overview of RAS biology and biochemistry, discuss the allosteric regulation of RAS, and summarize the various approaches to develop RAS inhibitors.
Collapse
Affiliation(s)
- Imran Khan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States of America; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, United States of America
| | - J Matthew Rhett
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States of America; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, United States of America
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States of America; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, United States of America.
| |
Collapse
|
48
|
Mattox TE, Chen X, Maxuitenko YY, Keeton AB, Piazza GA. Exploiting RAS Nucleotide Cycling as a Strategy for Drugging RAS-Driven Cancers. Int J Mol Sci 2019; 21:ijms21010141. [PMID: 31878223 PMCID: PMC6982188 DOI: 10.3390/ijms21010141] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Oncogenic mutations in RAS genes result in the elevation of cellular active RAS protein levels and increased signal propagation through downstream pathways that drive tumor cell proliferation and survival. These gain-of-function mutations drive over 30% of all human cancers, presenting promising therapeutic potential for RAS inhibitors. However, many have deemed RAS “undruggable” after nearly 40 years of failed drug discovery campaigns aimed at identifying a RAS inhibitor with clinical activity. Here we review RAS nucleotide cycling and the opportunities that RAS biochemistry presents for developing novel RAS inhibitory compounds. Additionally, compounds that have been identified to inhibit RAS by exploiting various aspects of RAS biology and biochemistry will be covered. Our current understanding of the biochemical properties of RAS, along with reports of direct-binding inhibitors, both provide insight on viable strategies for the discovery of novel clinical candidates with RAS inhibitory activity.
Collapse
Affiliation(s)
- Tyler E. Mattox
- Drug Discovery Research Center, University of South Alabama Mitchell Cancer Institute, Mobile, AL 36604, USA; (X.C.); (Y.Y.M.); (A.B.K.); (G.A.P.)
- Correspondence:
| | - Xi Chen
- Drug Discovery Research Center, University of South Alabama Mitchell Cancer Institute, Mobile, AL 36604, USA; (X.C.); (Y.Y.M.); (A.B.K.); (G.A.P.)
- ADT Pharmaceuticals, Orange Beach, AL 36561, USA
| | - Yulia Y. Maxuitenko
- Drug Discovery Research Center, University of South Alabama Mitchell Cancer Institute, Mobile, AL 36604, USA; (X.C.); (Y.Y.M.); (A.B.K.); (G.A.P.)
| | - Adam B. Keeton
- Drug Discovery Research Center, University of South Alabama Mitchell Cancer Institute, Mobile, AL 36604, USA; (X.C.); (Y.Y.M.); (A.B.K.); (G.A.P.)
- ADT Pharmaceuticals, Orange Beach, AL 36561, USA
| | - Gary A. Piazza
- Drug Discovery Research Center, University of South Alabama Mitchell Cancer Institute, Mobile, AL 36604, USA; (X.C.); (Y.Y.M.); (A.B.K.); (G.A.P.)
- ADT Pharmaceuticals, Orange Beach, AL 36561, USA
| |
Collapse
|
49
|
Sabanés Zariquiey F, de Souza JV, Bronowska AK. Cosolvent Analysis Toolkit (CAT): a robust hotspot identification platform for cosolvent simulations of proteins to expand the druggable proteome. Sci Rep 2019; 9:19118. [PMID: 31836830 PMCID: PMC6910964 DOI: 10.1038/s41598-019-55394-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/23/2019] [Indexed: 11/18/2022] Open
Abstract
Cosolvent Molecular Dynamics (MD) simulations are increasingly popular techniques developed for prediction and characterization of allosteric and cryptic binding sites, which can be rendered “druggable” by small molecule ligands. Despite their conceptual simplicity and effectiveness, the analysis of cosolvent MD trajectories relies on pocket volume data, which requires a high level of manual investigation and may introduce a bias. In this work, we present CAT (Cosolvent Analysis Toolkit): an open-source, freely accessible analytical tool, suitable for automated analysis of cosolvent MD trajectories. CAT is compatible with commonly used molecular graphics software packages such as UCSF Chimera and VMD. Using a novel hybrid empirical force field scoring function, CAT accurately ranks the dynamic interactions between the macromolecular target and cosolvent molecules. To benchmark, CAT was used for three validated protein targets with allosteric and orthosteric binding sites, using five chemically distinct cosolvent molecules. For all systems, CAT has accurately identified all known sites. CAT can thus assist in computational studies aiming at identification of protein “hotspots” in a wide range of systems. As an easy-to-use computational tool, we expect that CAT will contribute to an increase in the size of the potentially ‘druggable’ human proteome.
Collapse
Affiliation(s)
- Francesc Sabanés Zariquiey
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, NE1 7RU, Newcastle, United Kingdom
| | - João V de Souza
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, NE1 7RU, Newcastle, United Kingdom
| | - Agnieszka K Bronowska
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, NE1 7RU, Newcastle, United Kingdom.
| |
Collapse
|
50
|
Oncogenic G12D mutation alters local conformations and dynamics of K-Ras. Sci Rep 2019; 9:11730. [PMID: 31409810 PMCID: PMC6692342 DOI: 10.1038/s41598-019-48029-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
K-Ras is the most frequently mutated oncoprotein in human cancers, and G12D is its most prevalent mutation. To understand how G12D mutation impacts K-Ras function, we need to understand how it alters the regulation of its dynamics. Here, we present local changes in K-Ras structure, conformation and dynamics upon G12D mutation, from long-timescale Molecular Dynamics simulations of active (GTP-bound) and inactive (GDP-bound) forms of wild-type and mutant K-Ras, with an integrated investigation of atomistic-level changes, local conformational shifts and correlated residue motions. Our results reveal that the local changes in K-Ras are specific to bound nucleotide (GTP or GDP), and we provide a structural basis for this. Specifically, we show that G12D mutation causes a shift in the population of local conformational states of K-Ras, especially in Switch-II (SII) and α3-helix regions, in favor of a conformation that is associated with a catalytically impaired state through structural changes; it also causes SII motions to anti-correlate with other regions. This detailed picture of G12D mutation effects on the local dynamic characteristics of both active and inactive protein helps enhance our understanding of local K-Ras dynamics, and can inform studies on the development of direct inhibitors towards the treatment of K-RasG12D-driven cancers.
Collapse
|