1
|
Hasan MK, Jeannine Brady L. Nucleic acid-binding KH domain proteins influence a spectrum of biological pathways including as part of membrane-localized complexes. J Struct Biol X 2024; 10:100106. [PMID: 39040530 PMCID: PMC11261784 DOI: 10.1016/j.yjsbx.2024.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
K-Homology domain (KH domain) proteins bind single-stranded nucleic acids, influence protein-protein interactions of proteins that harbor them, and are found in all kingdoms of life. In concert with other functional protein domains KH domains contribute to a variety of critical biological activities, often within higher order machineries including membrane-localized protein complexes. Eukaryotic KH domain proteins are linked to developmental processes, morphogenesis, and growth regulation, and their aberrant expression is often associated with cancer. Prokaryotic KH domain proteins are involved in integral cellular activities including cell division and protein translocation. Eukaryotic and prokaryotic KH domains share structural features, but are differentiated based on their structural organizations. In this review, we explore the structure/function relationships of known examples of KH domain proteins, and highlight cases in which they function within or at membrane surfaces. We also summarize examples of KH domain proteins that influence bacterial virulence and pathogenesis. We conclude the article by discussing prospective research avenues that could be pursued to better investigate this largely understudied protein category.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Pereira de Castro KL, Abril JM, Liao KC, Hao H, Donohue JP, Russell WK, Fagg WS. An ancient competition for the conserved branchpoint sequence influences physiological and evolutionary outcomes in splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617384. [PMID: 39416098 PMCID: PMC11483029 DOI: 10.1101/2024.10.09.617384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Recognition of the intron branchpoint during spliceosome assembly is a multistep process that defines both mRNA structure and amount. A branchpoint sequence motif UACUAAC is variably conserved in eukaryotic genomes, but in some organisms more than one protein can recognize it. Here we show that SF1 and Quaking (QKI) compete for a subset of intron branchpoints with the sequence ACUAA. SF1 activates exon inclusion through this sequence, but QKI represses the inclusion of alternatively spliced exons with this intron branchpoint sequence. Using mutant reporters derived from a natural intron with two branchpoint-like sequences, we find that when either branchpoint sequence is mutated, the other is used as a branchpoint, but when both are present, neither is used due to high affinity binding and strong splicing repression by QKI. QKI occupancy at the dual branchpoint site directly prevents SF1 binding and subsequent recruitment of spliceosome-associated factors. Finally, the ectopic expression of QKI in budding yeast (which lacks QKI) is lethal, due at least in part to widespread splicing repression. In conclusion, QKI can function as a splicing repressor by directly competing with SF1/BBP for a subset of branchpoint sequences that closely mirror its high affinity binding site. This suggests that QKI and degenerate branchpoint sequences may have co-evolved as a means through which specific gene expression patterns could be maintained in QKI-expressing or non-expressing cells in metazoans, plants, and animals.
Collapse
Affiliation(s)
| | - Jose M. Abril
- Transplant Division, Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Kuo-Chieh Liao
- RNA Genomics and Structure, Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR) Singapore
| | - Haiping Hao
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - John Paul Donohue
- Sinsheimer Labs, RNA Center for Molecular Biology, Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - W. Samuel Fagg
- Transplant Division, Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
3
|
Zhou J, Song Q, Li H, Han Y, Pu Y, Li L, Rong W, Liu X, Wang Z, Sun J, Song Y, Hu X, Zhu G, Zhu H, Yang L, Ge G, Li H, Ji Q. Targeting circ-0034880-enriched tumor extracellular vesicles to impede SPP1 highCD206 + pro-tumor macrophages mediated pre-metastatic niche formation in colorectal cancer liver metastasis. Mol Cancer 2024; 23:168. [PMID: 39164758 PMCID: PMC11334400 DOI: 10.1186/s12943-024-02086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Information transmission between primary tumor cells and immunocytes or stromal cells in distal organs is a critical factor in the formation of pre-metastatic niche (PMN). Understanding this mechanism is essential for developing effective therapeutic strategy against tumor metastasis. Our study aims to prove the hypothesis that circ-0034880-enriched tumor-derived extracellular vesicles (TEVs) mediate the formation of PMN and colorectal cancer liver metastasis (CRLM), and targeting circ-0034880-enriched TEVs might be an effective therapeutic strategy against PMN formation and CRLM. METHODS We utilized qPCR and FISH to measure circRNAs expression levels in human CRC plasma, primary CRC tissues, and liver metastatic tissues. Additionally, we employed immunofluorescence, RNA sequencing, and in vivo experiments to assess the effect mechanism of circ-0034880-enriched TEVs on PMN formation and CRC metastasis. DARTS, CETSA and computational docking modeling were applied to explore the pharmacological effects of Ginsenoside Rb1 in impeding PMN formation. RESULTS We found that circ-0034880 was highly enriched in plasma extracellular vesicles (EVs) derived from CRC patients and closely associated with CRLM. Functionally, circ-0034880-enriched TEVs entered the liver tissues and were absorbed by macrophages in the liver through bloodstream. Mechanically, TEVs-released circ-0034880 enhanced the activation of SPP1highCD206+ pro-tumor macrophages, reshaping the metastasis-supportive host stromal microenvironment and promoting overt metastasis. Importantly, our mechanistic findings led us to discover that the natural product Ginsenoside Rb1 impeded the activation of SPP1highCD206+ pro-tumor macrophages by reducing circ-0034880 biogenesis, thereby suppressing PMN formation and inhibiting CRLM. CONCLUSIONS Circ-0034880-enriched TEVs facilitate strong interaction between primary tumor cells and SPP1highCD206+ pro-tumor macrophages, promoting PMN formation and CRLM. These findings suggest the potential of using Ginsenoside Rb1 as an alternative therapeutic agent to reshape PMN formation and prevent CRLM.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China
| | - Qing Song
- Department of Medical Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, 215007, China
| | - Haoze Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yicun Han
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yunzhou Pu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ling Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenqing Rong
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaodie Liu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ziyuan Wang
- Department of Pathology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jian Sun
- Department of Peripheral Vascular Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuqing Song
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xueyan Hu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guanghao Zhu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huirong Zhu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liu Yang
- Department of Oncology, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hongshan Li
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China.
| | - Qing Ji
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
4
|
Montañés-Agudo P, van der Made I, Aufiero S, Tijsen AJ, Pinto YM, Creemers EE. Quaking regulates circular RNA production in cardiomyocytes. J Cell Sci 2023; 136:jcs261120. [PMID: 37272356 PMCID: PMC10323251 DOI: 10.1242/jcs.261120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/25/2023] [Indexed: 06/06/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNA molecules that are gaining increasing attention for their roles in various pathophysiological processes. The RNA-binding protein quaking (QKI) has been identified as a regulator of circRNA formation. In this study, we investigate the role of QKI in the formation of circRNAs in the heart by performing RNA-sequencing on Qki-knockout mice. Loss of QKI resulted in the differential expression of 17% of the circRNAs in adult mouse hearts. Interestingly, the majority of the QKI-regulated circRNAs (58%) were derived from genes undergoing QKI-dependent splicing, indicating a relationship between back-splicing and linear splicing. We compared these QKI-dependent circRNAs with those regulated by RBM20, another cardiac splicing factor essential for circRNA formation. We found that QKI and RBM20 regulate the formation of a distinct, but partially overlapping set of circRNAs in the heart. Strikingly, many shared circRNAs were derived from the Ttn gene, and they were regulated in an opposite manner. Our findings indicate that QKI not only regulates alternative splicing in the heart but also the formation of circRNAs.
Collapse
Affiliation(s)
- Pablo Montañés-Agudo
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location University of Amsterdam, 1105AZ, Amsterdam, The Netherlands
| | - Ingeborg van der Made
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location University of Amsterdam, 1105AZ, Amsterdam, The Netherlands
| | - Simona Aufiero
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location University of Amsterdam, 1105AZ, Amsterdam, The Netherlands
| | - Anke J. Tijsen
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location University of Amsterdam, 1105AZ, Amsterdam, The Netherlands
| | - Yigal M. Pinto
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location University of Amsterdam, 1105AZ, Amsterdam, The Netherlands
| | - Esther E. Creemers
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location University of Amsterdam, 1105AZ, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Dominici C, Richard S. Muscle stem cell polarity requires QKI-mediated alternative splicing of Integrin Alpha-7 (Itga7). Life Sci Alliance 2022; 5:5/5/e202101192. [PMID: 35165120 PMCID: PMC8860092 DOI: 10.26508/lsa.202101192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/30/2022] Open
Abstract
The RNA-binding protein Quaking (QKI) is a post-transcriptional regulator of genes encoding polarity proteins in muscle stem cells. Loss of QKI in MuSCs results in reduced myogenic progenitors and a striking muscle regeneration defect. Muscle stem cells (MuSCs) have the ability to carry out the specialized function of cell polarization, which is required for the production of one repopulating cell and one myogenic progenitor cell with muscle regeneration capabilities. The mechanisms which regulate proteins involved in establishing MuSC polarity such as Dmd and Itga7 are currently not well understood. Herein, we define the RNA-binding protein Quaking (QKI) as a major regulator alternative splicing of key MuSC polarity factors including Dmd, Itga7, Mark2, and Numb. We generate a conditional QKI knockout mouse, and for the first time it is shown in vivo that deficiency of QKI in MuSCs results in reduced asymmetric cell divisions, leading to a loss of the myogenic progenitor cell population and striking muscle regeneration defects. Transcriptomic analysis of QKI-deficient MuSCs identifies QKI as a regulator of the splicing events which give rise to the mutually exclusive Itga7-X1 and -X2 isoforms. We observe increased X1 expression in QKI-deficient MuSCs and recapitulate this splicing event using antisense oligonucleotide directed against a quaking binding site within the Itga7 mRNA. Interestingly, recreating this single splicing event is detrimental to the polarization of Itga7 and Dmd proteins, and leads to a drastic reduction of the myogenic progenitor population, highlighting the significance of QKI-mediated alternative splicing of Itga7 in maintaining MuSC polarity. Altogether, these findings define a novel role for QKI as a post-transcriptional regulator of MuSC polarity.
Collapse
Affiliation(s)
- Claudia Dominici
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Medicine, Human Genetics and Biochemistry, McGill University, Montréal, Québec, Canada
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Medicine, Human Genetics and Biochemistry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
6
|
Lee JS, Lamarche-Vane N, Richard S. Microexon alternative splicing of small GTPase regulators: Implication in central nervous system diseases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1678. [PMID: 34155820 DOI: 10.1002/wrna.1678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
Microexons are small sized (≤51 bp) exons which undergo extensive alternative splicing in neurons, microglia, embryonic stem cells, and cancer cells, giving rise to cell type specific protein isoforms. Due to their small sizes, microexons provide a unique challenge for the splicing machinery. They frequently lack exon splicer enhancers/repressors and require specialized neighboring trans-regulatory and cis-regulatory elements bound by RNA binding proteins (RBPs) for their inclusion. The functional consequences of including microexons within mRNAs have been extensively documented in the central nervous system (CNS) and aberrations in their inclusion have been observed to lead to abnormal processes. Despite the increasing evidence for microexons impacting cellular physiology within CNS, mechanistic details illustrating their functional importance in diseases of the CNS is still limited. In this review, we discuss the unique characteristics of microexons, and how RBPs participate in regulating their inclusion and exclusion during splicing. We consider recent findings of microexon alternative splicing and their implication for regulating the function of small GTPases in the context of the microglia, and we extrapolate these findings to what is known in neurons. We further discuss the emerging evidence for dysregulation of the Rho GTPase pathway in CNS diseases and the consequences contributed by the mis-splicing of microexons. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Jee-San Lee
- Segal Cancer Center, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Nathalie Lamarche-Vane
- Research Institute of the McGill University Health Centre, Cancer Research Program, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Chen X, Yin J, Cao D, Xiao D, Zhou Z, Liu Y, Shou W. The Emerging Roles of the RNA Binding Protein QKI in Cardiovascular Development and Function. Front Cell Dev Biol 2021; 9:668659. [PMID: 34222237 PMCID: PMC8242579 DOI: 10.3389/fcell.2021.668659] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/10/2021] [Indexed: 12/30/2022] Open
Abstract
RNA binding proteins (RBPs) have a broad biological and physiological function and are critical in regulating pre-mRNA posttranscriptional processing, intracellular migration, and mRNA stability. QKI, also known as Quaking, is a member of the signal transduction and activation of RNA (STAR) family, which also belongs to the heterogeneous nuclear ribonucleoprotein K- (hnRNP K-) homology domain protein family. There are three major alternatively spliced isoforms, QKI-5, QKI-6, and QKI-7, differing in carboxy-terminal domains. They share a common RNA binding property, but each isoform can regulate pre-mRNA splicing, transportation or stability differently in a unique cell type-specific manner. Previously, QKI has been known for its important role in contributing to neurological disorders. A series of recent work has further demonstrated that QKI has important roles in much broader biological systems, such as cardiovascular development, monocyte to macrophage differentiation, bone metabolism, and cancer progression. In this mini-review, we will focus on discussing the emerging roles of QKI in regulating cardiac and vascular development and function and its potential link to cardiovascular pathophysiology.
Collapse
Affiliation(s)
- Xinyun Chen
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Jianwen Yin
- Department of Foot, Ankle and Hand Surgery, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Dayan Cao
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Deyong Xiao
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Zhongjun Zhou
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Ying Liu
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Weinian Shou
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
8
|
Chen X, Liu Y, Xu C, Ba L, Liu Z, Li X, Huang J, Simpson E, Gao H, Cao D, Sheng W, Qi H, Ji H, Sanderson M, Cai CL, Li X, Yang L, Na J, Yamamura K, Liu Y, Huang G, Shou W, Sun N. QKI is a critical pre-mRNA alternative splicing regulator of cardiac myofibrillogenesis and contractile function. Nat Commun 2021; 12:89. [PMID: 33397958 PMCID: PMC7782589 DOI: 10.1038/s41467-020-20327-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 11/27/2020] [Indexed: 01/29/2023] Open
Abstract
The RNA-binding protein QKI belongs to the hnRNP K-homology domain protein family, a well-known regulator of pre-mRNA alternative splicing and is associated with several neurodevelopmental disorders. Qki is found highly expressed in developing and adult hearts. By employing the human embryonic stem cell (hESC) to cardiomyocyte differentiation system and generating QKI-deficient hESCs (hESCs-QKIdel) using CRISPR/Cas9 gene editing technology, we analyze the physiological role of QKI in cardiomyocyte differentiation, maturation, and contractile function. hESCs-QKIdel largely maintain normal pluripotency and normal differentiation potential for the generation of early cardiogenic progenitors, but they fail to transition into functional cardiomyocytes. In this work, by using a series of transcriptomic, cell and biochemical analyses, and the Qki-deficient mouse model, we demonstrate that QKI is indispensable to cardiac sarcomerogenesis and cardiac function through its regulation of alternative splicing in genes involved in Z-disc formation and contractile physiology, suggesting that QKI is associated with the pathogenesis of certain forms of cardiomyopathies.
Collapse
Affiliation(s)
- Xinyun Chen
- grid.8547.e0000 0001 0125 2443Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China ,grid.411333.70000 0004 0407 2968Shanghai Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, Shanghai, China ,grid.257413.60000 0001 2287 3919Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Ying Liu
- grid.257413.60000 0001 2287 3919Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Chen Xu
- grid.8547.e0000 0001 0125 2443Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China ,grid.257413.60000 0001 2287 3919Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Lina Ba
- grid.257413.60000 0001 2287 3919Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Zhuo Liu
- grid.257413.60000 0001 2287 3919Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Xiuya Li
- grid.8547.e0000 0001 0125 2443Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jie Huang
- grid.8547.e0000 0001 0125 2443Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ed Simpson
- grid.257413.60000 0001 2287 3919Department of Bioinformatics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Hongyu Gao
- grid.257413.60000 0001 2287 3919Department of Bioinformatics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Dayan Cao
- Institute of Materia Medica and Center of Translational Medicine, College of Pharmacy, Army Medical University, Chongqing, China
| | - Wei Sheng
- grid.411333.70000 0004 0407 2968Shanghai Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, Shanghai, China ,grid.257413.60000 0001 2287 3919Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Hanping Qi
- grid.257413.60000 0001 2287 3919Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Hongrui Ji
- grid.257413.60000 0001 2287 3919Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Maria Sanderson
- grid.257413.60000 0001 2287 3919Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Chen-Leng Cai
- grid.257413.60000 0001 2287 3919Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Xiaohui Li
- Institute of Materia Medica and Center of Translational Medicine, College of Pharmacy, Army Medical University, Chongqing, China
| | - Lei Yang
- grid.257413.60000 0001 2287 3919Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Jie Na
- grid.12527.330000 0001 0662 3178Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Kenichi Yamamura
- Institute of Resource Development and Analysis, Kumanoto University, Kumanoto, Japan
| | - Yunlong Liu
- grid.257413.60000 0001 2287 3919Department of Bioinformatics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Guoying Huang
- grid.411333.70000 0004 0407 2968Shanghai Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, Shanghai, China
| | - Weinian Shou
- grid.257413.60000 0001 2287 3919Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Ning Sun
- grid.8547.e0000 0001 0125 2443Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China ,grid.411333.70000 0004 0407 2968Shanghai Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, Shanghai, China
| |
Collapse
|
9
|
Wang JZ, Fu X, Fang Z, Liu H, Zong FY, Zhu H, Yu YF, Zhang XY, Wang SF, Huang Y, Hui J. QKI-5 regulates the alternative splicing of cytoskeletal gene ADD3 in lung cancer. J Mol Cell Biol 2020; 13:347-360. [PMID: 33196842 PMCID: PMC8373271 DOI: 10.1093/jmcb/mjaa063] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence indicates that the alternative splicing program undergoes extensive changes during cancer development and progression. The RNA-binding protein QKI-5 is frequently downregulated and exhibits anti-tumor activity in lung cancer. Howeve-r, little is known about the functional targets and regulatory mechanism of QKI-5. Here, we report that upregulation of exon 14 inclusion of cytoskeletal gene Adducin 3 (ADD3) significantly correlates with a poor prognosis in lung cancer. QKI-5 inhibits cell proliferation and migration in part through suppressing the splicing of ADD3 exon 14. Through genome-wide mapping of QKI-5 binding sites in vivo at nucleotide resolution by iCLIP-seq analysis, we found that QKI-5 regulates alternative splicing of its target mRNAs in a binding position-dependent manner. By binding to multiple sites in an upstream intron region, QKI-5 represses the splicing of ADD3 exon 14. We also identified several QKI mutations in tumors, which cause dysregulation of the splicing of QKI targets ADD3 and NUMB. Taken together, our results reveal that QKI-mediated alternative splicing of ADD3 is a key lung cancer-associated splicing event, which underlies in part the tumor suppressor function of QKI.
Collapse
Affiliation(s)
- Jin-Zhu Wang
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xing Fu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Zhaoyuan Fang
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Liu
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Feng-Yang Zong
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong Zhu
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan-Fei Yu
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Ying Zhang
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shen-Fei Wang
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Huang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jingyi Hui
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
10
|
Stability and flexibility of full-length human oligodendrocytic QKI6. BMC Res Notes 2019; 12:609. [PMID: 31547849 PMCID: PMC6757426 DOI: 10.1186/s13104-019-4629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/10/2019] [Indexed: 11/15/2022] Open
Abstract
Objective Oligodendrocytes account for myelination in the central nervous system. During myelin compaction, key proteins are translated in the vicinity of the myelin membrane, requiring targeted mRNA transport. Quaking isoform 6 (QKI6) is a STAR domain-containing RNA transport protein, which binds a conserved motif in the 3′-UTR of certain mRNAs, affecting the translation of myelination-involved proteins. RNA binding has been earlier structurally characterized, but information about full-length QKI6 conformation is lacking. Based on known domains and structure predicitons, we expected full-length QKI6 to be flexible and carry disordered regions. Hence, we carried out biophysical and structural characterization of human QKI6. Results We expressed and purified full-length QKI6 and characterized it using mass spectrometry, light scattering, small-angle X-ray scattering, and circular dichroism spectroscopy. QKI6 was monodisperse, folded, and mostly dimeric, being oxidation-sensitive. The C-terminal tail was intrinsically disordered, as predicted. In the absence of RNA, the RNA-binding subdomain is likely to present major flexibility. In thermal stability assays, a double sequential unfolding behaviour was observed in the presence of phosphate, which may interact with the RNA-binding domain. The results confirm the flexibility and partial disorder of QKI6, which may be functionally relevant.
Collapse
|
11
|
Groves JA, Gillman C, DeLay CN, Kroll TT. Identification of Novel Binding Partners for Transcription Factor Emx2. Protein J 2019; 38:2-11. [PMID: 30628007 DOI: 10.1007/s10930-019-09810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mammalian homolog of Drosophila empty spiracles 2 (Emx2) is a homeobox transcription factor that plays central roles in early development of the inner ear, pelvic and shoulder girdles, cerebral cortex, and urogenital organs. The role for Emx2 is best understood within the context of the development of the neocortical region of the cortex, where Emx2 is expressed in a high posterior-medial to low anterior-lateral gradient that regulates the partitioning of the neocortex into different functional fields that perform discrete computational tasks. Despite several lines of evidence demonstrating an Emx2 concentration-dependent mechanism for establishing functional areas within the developing neocortex, little is known about how Emx2 physically carries out this role. Although several binding partners for Emx2 have been identified (including Sp8, eIF4E, and Pbx1), no screens have been used to identify potential protein binding partners for this protein. We utilized a yeast two-hybrid screen using a library constructed from embryonic mouse cDNA in an attempt to identify novel binding partners for Emx2. This initial screen isolated two potential Emx2-binding partner proteins, Cnot6l and QkI-7. These novel Emx2-binding proteins are involved in multiple levels of mRNA metabolism that including splicing, mRNA export, translation, and destruction, thus making them interesting targets for further study.
Collapse
Affiliation(s)
- Jennifer A Groves
- Department of Chemistry, Central Washington University, 400 E. University Way, Ellensburg, WA, 98929-7539, USA
| | - Cody Gillman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 157 Broad Center, M/C, Pasadena, USA
| | - Cierra N DeLay
- Department of Chemistry, Central Washington University, 400 E. University Way, Ellensburg, WA, 98929-7539, USA
| | - Todd T Kroll
- Department of Chemistry, Central Washington University, 400 E. University Way, Ellensburg, WA, 98929-7539, USA.
| |
Collapse
|
12
|
Shi HJ, Liu WB, Xu C, Zhang DD, Wang BK, Zhang L, Li XF. Molecular Characterization of the RNA-Binding Protein Quaking-a in Megalobrama amblycephala: Response to High-Carbohydrate Feeding and Glucose/Insulin/Glucagon Treatment. Front Physiol 2018; 9:434. [PMID: 29740344 PMCID: PMC5928497 DOI: 10.3389/fphys.2018.00434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/06/2018] [Indexed: 11/13/2022] Open
Abstract
The RNA-binding protein quaking-a (Qkia) was cloned from the liver of blunt snout bream Megalobrama amblycephala through the rapid amplification of cDNA ends method, with its potential role in glucose metabolism investigated. The full-length cDNA of qkia covered 1,718 bp, with an open reading frame of 1,572 bp, which encodes 383 AA. Sequence alignment and phylogenetic analysis revealed a high degree of conservation (97–99%) among most fish and other higher vertebrates. The mRNA of qkia was detected in all examined organs/tissues. Then, the plasma glucose levels and tissue qkia expressions were determined in fish intraperitoneally injected with glucose [1.67 g per kg body weight (BW)], insulin (0.052 mg/kg BW), and glucagon (0.075 mg/kg BW) respectively, as well as in fish fed two dietary carbohydrate levels (31 and 41%) for 12 weeks. Glucose administration induced a remarkable increase of plasma glucose with the highest value being recorded at 1 h. Thereafter, it reduced to the basal value. After glucose administration, qkia expressions significantly decreased with the lowest value being recorded at 1 h in liver and muscle and 8 h in brain, respectively. Then they gradually returned to the basal value. The insulin injection induced a significant decrease of plasma glucose with the lowest value being recorded at 1 h, whereas the opposite was true after glucagon load (the highest value was gained at 4 h). Subsequently, glucose levels gradually returned to the basal value. After insulin administration, the qkia expressions significantly decreased with the lowest value being attained at 2 h in brain and muscle and 1 h in liver, respectively. However, glucagon significantly stimulated the expressions of qkia in tissues with the highest value being gained at 6 h. Moreover, high dietary carbohydrate levels remarkably increased plasma glucose levels, but down-regulated the transcriptions of qkia in tissues. These results indicated that the gene of blunt snout bream shared a high similarity with that of the other vertebrates. Glucose and insulin administration, as well as high-carbohydrate feeding, remarkably down-regulated its transcriptions in brain, muscle and liver, whereas the opposite was true after the glucagon load.
Collapse
Affiliation(s)
- Hua-Juan Shi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chao Xu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ding-Dong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Bing-Ke Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Li Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Fagg WS, Liu N, Fair JH, Shiue L, Katzman S, Donohue JP, Ares M. Autogenous cross-regulation of Quaking mRNA processing and translation balances Quaking functions in splicing and translation. Genes Dev 2017; 31:1894-1909. [PMID: 29021242 PMCID: PMC5695090 DOI: 10.1101/gad.302059.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/11/2017] [Indexed: 12/18/2022]
Abstract
Quaking protein isoforms arise from a single Quaking gene and bind the same RNA motif to regulate splicing, translation, decay, and localization of a large set of RNAs. However, the mechanisms by which Quaking expression is controlled to ensure that appropriate amounts of each isoform are available for such disparate gene expression processes are unknown. Here we explore how levels of two isoforms, nuclear Quaking-5 (Qk5) and cytoplasmic Qk6, are regulated in mouse myoblasts. We found that Qk5 and Qk6 proteins have distinct functions in splicing and translation, respectively, enforced through differential subcellular localization. We show that Qk5 and Qk6 regulate distinct target mRNAs in the cell and act in distinct ways on their own and each other's transcripts to create a network of autoregulatory and cross-regulatory feedback controls. Morpholino-mediated inhibition of Qk translation confirms that Qk5 controls Qk RNA levels by promoting accumulation and alternative splicing of Qk RNA, whereas Qk6 promotes its own translation while repressing Qk5. This Qk isoform cross-regulatory network responds to additional cell type and developmental controls to generate a spectrum of Qk5/Qk6 ratios, where they likely contribute to the wide range of functions of Quaking in development and cancer.
Collapse
Affiliation(s)
- W Samuel Fagg
- Sinsheimer Laboratories, Department of Molecular, Cell, and Developmental Biology, Center for Molecular Biology of RNA, University of California at Santa Cruz. Santa Cruz, California 95064, USA.,Department of Surgery, Transplant Division, Shriners Hospital for Children, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Naiyou Liu
- Department of Surgery, Transplant Division, Shriners Hospital for Children, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Jeffrey Haskell Fair
- Department of Surgery, Transplant Division, Shriners Hospital for Children, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Lily Shiue
- Sinsheimer Laboratories, Department of Molecular, Cell, and Developmental Biology, Center for Molecular Biology of RNA, University of California at Santa Cruz. Santa Cruz, California 95064, USA
| | - Sol Katzman
- Sinsheimer Laboratories, Department of Molecular, Cell, and Developmental Biology, Center for Molecular Biology of RNA, University of California at Santa Cruz. Santa Cruz, California 95064, USA
| | - John Paul Donohue
- Sinsheimer Laboratories, Department of Molecular, Cell, and Developmental Biology, Center for Molecular Biology of RNA, University of California at Santa Cruz. Santa Cruz, California 95064, USA
| | - Manuel Ares
- Sinsheimer Laboratories, Department of Molecular, Cell, and Developmental Biology, Center for Molecular Biology of RNA, University of California at Santa Cruz. Santa Cruz, California 95064, USA
| |
Collapse
|
14
|
Jain P, Fierst TM, Han HJ, Smith TE, Vakil A, Storm PB, Resnick AC, Waanders AJ. CRAF gene fusions in pediatric low-grade gliomas define a distinct drug response based on dimerization profiles. Oncogene 2017; 36:6348-6358. [PMID: 28806393 PMCID: PMC5680138 DOI: 10.1038/onc.2017.276] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/26/2017] [Accepted: 07/05/2017] [Indexed: 01/07/2023]
Abstract
Pediatric low-grade gliomas (PLGGs) are commonly associated with BRAF gene fusions that aberrantly activate the mitogen-activated protein kinase (MAPK) signaling pathway. This has led to PLGG clinical trials utilizing RAF- and MAPK pathway-targeted therapeutics. Whole-genome profiling of PLGGs has also identified rare gene fusions involving another RAF isoform, CRAF/RAF1, in PLGGs and cancers occuring in adults. Whereas BRAF fusions primarily dysregulate MAPK signaling, the CRAF fusions QKI-RAF1 and SRGAP3-RAF1 aberrantly activate both the MAPK and phosphoinositide-3 kinase/mammalian target of rapamycin (PI3K/mTOR) signaling pathways. Although ATP-competitive, first-generation RAF inhibitors (vemurafenib/PLX4720, RAFi) cause paradoxical activation of the MAPK pathway in BRAF-fusion tumors, inhibition can be achieved with ‘paradox breaker’ RAFi, such as PLX8394. Here we report that, unlike BRAF fusions, CRAF fusions are unresponsive to both generations of RAFi, vemurafenib and PLX8394, highlighting a distinct responsiveness of CRAF fusions to clinically relevant RAFi. Whereas PLX8394 decreased BRAF-fusion dimerization, CRAF-fusion dimerization is unaffected primarily because of robust protein–protein interactions mediated by the N-terminal non-kinase fusion partner, such as QKI. The pan-RAF dimer inhibitor, LY3009120, could suppress CRAF-fusion oncogenicity by inhibiting dimer-mediated signaling. In addition, as CRAF fusions activate both the MAPK and PI3K/mTOR signaling pathways, we identify combinatorial inhibition of the MAPK/mTOR pathway as a potential therapeutic strategy for CRAF-fusion-driven tumors. Overall, we define a mechanistic distinction between PLGG-associated BRAF- and CRAF/RAF1 fusions in response to RAFi, highlighting the importance of molecularly classifying PLGG patients for targeted therapy. Furthermore, our study uncovers an important contribution of the non-kinase fusion partner to oncogenesis and potential therapeutic strategies against PLGG-associated CRAF fusions and possibly pan-cancer CRAF fusions.
Collapse
Affiliation(s)
- P Jain
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.,Cell and Molecular Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - T M Fierst
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Neurosurgery, Temple University School of Medicine, Philadelphia, PA, USA
| | - H J Han
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.,Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - T E Smith
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - A Vakil
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - P B Storm
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.,Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Center of Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Center for Data Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - A C Resnick
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.,Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Center of Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Center for Data Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - A J Waanders
- Center of Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Center for Data Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Abstract
STAR (signal transduction and activation of RNA) proteins regulate splicing of target genes that have roles in neural connectivity, survival and myelination in the vertebrate nervous system. These regulated splicing targets include mRNAs such as the Neurexins (Nrxn), SMN2 (survival of motor neuron) and MAG (myelin-associated glycoprotein). Recent work has made it possible to identify and validate STAR protein splicing targets in vivo by using genetically modified mouse models. In this review, we will discuss the importance of STAR protein splicing targets in the CNS (central nervous system).
Collapse
|
16
|
Thangaraj MP, Furber KL, Gan JK, Ji S, Sobchishin L, Doucette JR, Nazarali AJ. RNA-binding Protein Quaking Stabilizes Sirt2 mRNA during Oligodendroglial Differentiation. J Biol Chem 2017; 292:5166-5182. [PMID: 28188285 DOI: 10.1074/jbc.m117.775544] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Indexed: 11/06/2022] Open
Abstract
Myelination is controlled by timely expression of genes involved in the differentiation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes (OLs). Sirtuin 2 (SIRT2), a NAD+-dependent deacetylase, plays a critical role in OL differentiation by promoting both arborization and downstream expression of myelin-specific genes. However, the mechanisms involved in regulating SIRT2 expression during OL development are largely unknown. The RNA-binding protein quaking (QKI) plays an important role in myelination by post-transcriptionally regulating the expression of several myelin specific genes. In quaking viable (qkv/qkv ) mutant mice, SIRT2 protein is severely reduced; however, it is not known whether these genes interact to regulate OL differentiation. Here, we report for the first time that QKI directly binds to Sirt2 mRNA via a common quaking response element (QRE) located in the 3' untranslated region (UTR) to control SIRT2 expression in OL lineage cells. This interaction is associated with increased stability and longer half-lives of Sirt2.1 and Sirt2.2 transcripts leading to increased accumulation of Sirt2 transcripts. Consistent with this, overexpression of qkI promoted the expression of Sirt2 mRNA and protein. However, overexpression of the nuclear isoform qkI-5 promoted the expression of Sirt2 mRNA, but not SIRT2 protein, and delayed OL differentiation. These results suggest that the balance in the subcellular distribution and temporal expression of QKI isoforms control the availability of Sirt2 mRNA for translation. Collectively, our study demonstrates that QKI directly plays a crucial role in the post-transcriptional regulation and expression of Sirt2 to facilitate OL differentiation.
Collapse
Affiliation(s)
- Merlin P Thangaraj
- From the Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition and.,the Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Kendra L Furber
- From the Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition and.,the Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Jotham K Gan
- From the Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition and.,the Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Shaoping Ji
- From the Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition and.,the Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.,the Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng 475004, China
| | - Larhonda Sobchishin
- From the Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition and.,the Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - J Ronald Doucette
- the Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.,Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.,the Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital, Saskatoon, Saskatchewan S7K 0M7, Canada, and
| | - Adil J Nazarali
- From the Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition and .,the Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.,the Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital, Saskatoon, Saskatchewan S7K 0M7, Canada, and
| |
Collapse
|
17
|
Quaking Regulates Neurofascin 155 Expression for Myelin and Axoglial Junction Maintenance. J Neurosci 2016; 36:4106-20. [PMID: 27053216 DOI: 10.1523/jneurosci.3529-15.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/25/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED RNA binding proteins required for the maintenance of myelin and axoglial junctions are unknown. Herein, we report that deletion of the Quaking (QKI) RNA binding proteins in oligodendrocytes (OLs) using Olig2-Cre results in mice displaying rapid tremors at postnatal day 10, followed by death at postnatal week 3. Extensive CNS hypomyelination was observed as a result of OL differentiation defects during development. The QKI proteins were also required for adult myelin maintenance, because their ablation using PLP-CreERT resulted in hindlimb paralysis with immobility at ∼30 d after 4-hydroxytamoxifen injection. Moreover, deterioration of axoglial junctions of the spinal cord was observed and is consistent with a loss of Neurofascin 155 (Nfasc155) isoform that we confirmed as an alternative splice target of the QKI proteins. Our findings define roles for the QKI RNA binding proteins in myelin development and maintenance, as well as in the generation of Nfasc155 to maintain healthy axoglial junctions. SIGNIFICANCE STATEMENT Neurofascin 155 is responsible for axoglial junction formation and maintenance. Using a genetic mouse model to delete Quaking (QKI) RNA-binding proteins in oligodendrocytes, we identify QKI as the long-sought regulator of Neurofascin alternative splicing, further establishing the role of QKI in oligodendrocyte development and myelination. We establish a new role for QKI in myelin and axoglial junction maintenance using an inducible genetic mouse model that deletes QKI in mature oligodendrocytes. Loss of QKI in adult oligodendrocytes leads to phenotypes reminiscent of the experimental autoimmune encephalomyelitis mouse model with complete hindlimb paralysis and death by 30 d after induction of QKI deletion.
Collapse
|
18
|
Darbelli L, Richard S. Emerging functions of the Quaking RNA-binding proteins and link to human diseases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:399-412. [PMID: 26991871 DOI: 10.1002/wrna.1344] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/23/2016] [Accepted: 02/01/2016] [Indexed: 01/16/2023]
Abstract
RNA-binding proteins (RBPs) are essential players in RNA metabolism including key cellular processes from pre-mRNA splicing to mRNA translation. The K homology-type QUAKING RBP is emerging as a vital factor for oligodendrocytes, monocytes/macrophages, endothelial cell, and myocyte function. Interestingly, the qkI gene has now been identified as the culprit gene for a patient with intellectual disabilities and is translocated in a pediatric ganglioglioma as a fusion protein with MYB. In this review, we will focus on the emerging discoveries of the QKI proteins as well as highlight the recent advances in understanding the role of QKI in human disease pathology including myelin disorders, schizophrenia and cancer. WIREs RNA 2016, 7:399-412. doi: 10.1002/wrna.1344 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Lama Darbelli
- Terry Fox Molecular Oncology Group, Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research and Departments of Oncology and Medicine, McGill University, Montréal, Canada, H3T 1E2
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group, Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research and Departments of Oncology and Medicine, McGill University, Montréal, Canada, H3T 1E2
| |
Collapse
|
19
|
de Bruin RG, van der Veer EP, Prins J, Lee DH, Dane MJC, Zhang H, Roeten MK, Bijkerk R, de Boer HC, Rabelink TJ, van Zonneveld AJ, van Gils JM. The RNA-binding protein quaking maintains endothelial barrier function and affects VE-cadherin and β-catenin protein expression. Sci Rep 2016; 6:21643. [PMID: 26905650 PMCID: PMC4764852 DOI: 10.1038/srep21643] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/26/2016] [Indexed: 01/12/2023] Open
Abstract
Proper regulation of endothelial cell-cell contacts is essential for physiological functioning of the endothelium. Interendothelial junctions are actively involved in the control of vascular leakage, leukocyte diapedesis, and the initiation and progression of angiogenesis. We found that the RNA-binding protein quaking is highly expressed by endothelial cells, and that its expression was augmented by prolonged culture under laminar flow and the transcription factor KLF2 binding to the promoter. Moreover, we demonstrated that quaking directly binds to the mRNA of VE-cadherin and β-catenin and can induce mRNA translation mediated by the 3′UTR of these genes. Reduced quaking levels attenuated VE-cadherin and β-catenin expression and endothelial barrier function in vitro and resulted in increased bradykinin-induced vascular leakage in vivo. Taken together, we report that quaking is essential in maintaining endothelial barrier function. Our results provide novel insight into the importance of post-transcriptional regulation in controlling vascular integrity.
Collapse
Affiliation(s)
- Ruben G de Bruin
- Einthoven Laboratory of Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Eric P van der Veer
- Einthoven Laboratory of Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Jurriën Prins
- Einthoven Laboratory of Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Dae Hyun Lee
- Einthoven Laboratory of Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Martijn J C Dane
- Einthoven Laboratory of Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Huayu Zhang
- Einthoven Laboratory of Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Marko K Roeten
- Einthoven Laboratory of Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Roel Bijkerk
- Einthoven Laboratory of Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Hetty C de Boer
- Einthoven Laboratory of Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ton J Rabelink
- Einthoven Laboratory of Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Anton Jan van Zonneveld
- Einthoven Laboratory of Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Janine M van Gils
- Einthoven Laboratory of Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
20
|
Feracci M, Foot JN, Grellscheid SN, Danilenko M, Stehle R, Gonchar O, Kang HS, Dalgliesh C, Meyer NH, Liu Y, Lahat A, Sattler M, Eperon IC, Elliott DJ, Dominguez C. Structural basis of RNA recognition and dimerization by the STAR proteins T-STAR and Sam68. Nat Commun 2016; 7:10355. [PMID: 26758068 PMCID: PMC4735526 DOI: 10.1038/ncomms10355] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/01/2015] [Indexed: 11/13/2022] Open
Abstract
Sam68 and T-STAR are members of the STAR family of proteins that directly link signal transduction with post-transcriptional gene regulation. Sam68 controls the alternative splicing of many oncogenic proteins. T-STAR is a tissue-specific paralogue that regulates the alternative splicing of neuronal pre-mRNAs. STAR proteins differ from most splicing factors, in that they contain a single RNA-binding domain. Their specificity of RNA recognition is thought to arise from their property to homodimerize, but how dimerization influences their function remains unknown. Here, we establish at atomic resolution how T-STAR and Sam68 bind to RNA, revealing an unexpected mode of dimerization different from other members of the STAR family. We further demonstrate that this unique dimerization interface is crucial for their biological activity in splicing regulation, and suggest that the increased RNA affinity through dimer formation is a crucial parameter enabling these proteins to select their functional targets within the transcriptome. Sam68 and T-STAR are members of the STAR family of proteins, which regulate various aspects of RNA metabolism. Here, the authors reveal structural features required for alternative splicing regulation by these proteins.
Collapse
Affiliation(s)
- Mikael Feracci
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Jaelle N Foot
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Sushma N Grellscheid
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Marina Danilenko
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Ralf Stehle
- Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, DE-85747 Garching, Germany
| | - Oksana Gonchar
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Hyun-Seo Kang
- Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, DE-85747 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, DE-85764 Oberschleißheim, Germany
| | - Caroline Dalgliesh
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - N Helge Meyer
- Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, DE-85747 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, DE-85764 Oberschleißheim, Germany
| | - Yilei Liu
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Albert Lahat
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| | - Michael Sattler
- Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, DE-85747 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, DE-85764 Oberschleißheim, Germany
| | - Ian C Eperon
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Cyril Dominguez
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK
| |
Collapse
|
21
|
Nicastro G, Taylor IA, Ramos A. KH-RNA interactions: back in the groove. Curr Opin Struct Biol 2015; 30:63-70. [PMID: 25625331 DOI: 10.1016/j.sbi.2015.01.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/20/2014] [Accepted: 01/08/2015] [Indexed: 12/30/2022]
Abstract
The hnRNP K-homology (KH) domain is a single stranded nucleic acid binding domain that mediates RNA target recognition by a large group of gene regulators. The structure of the KH fold is well characterised and some initial rules for KH-RNA recognition have been drafted. However, recent findings have shown that these rules need to be revisited and have now provided a better understanding of how the domain can recognise a sequence landscape larger than previously thought as well as revealing the diversity of structural expansions to the KH domain. Finally, novel structural and functional data show how multiple KH domains act in a combinatorial fashion to both allow recognition of longer RNA motifs and remodelling of the RNA structure. These advances set the scene for a detailed molecular understanding of KH selection of the cellular targets.
Collapse
Affiliation(s)
- Giuseppe Nicastro
- Division of Molecular Structure, MRC National Institute for Medical Research, London, UK
| | - Ian A Taylor
- Division of Molecular Structure, MRC National Institute for Medical Research, London, UK
| | - Andres Ramos
- Research Department of Structural and Molecular Biology, University College London, London, UK; Division of Molecular Structure, MRC National Institute for Medical Research, London, UK.
| |
Collapse
|
22
|
Abstract
STAR (signal transduction and activation of RNA) proteins are a family of RNA-binding proteins that regulate post-transcriptional gene regulation events at various levels, such as pre-mRNA alternative splicing, RNA export, translation and stability. Most of these proteins are regulated by signalling pathways through post-translational modifications, such as phosphorylation and arginine methylation. These proteins share a highly conserved RNA-binding domain, denoted STAR domain. Structural investigations of this STAR domain in complex with RNA have highlighted how a subset of STAR proteins specifically recognizes its RNA targets. The present review focuses on the structural basis of RNA recognition by this family of proteins.
Collapse
|
23
|
Daubner GM, Brümmer A, Tocchini C, Gerhardy S, Ciosk R, Zavolan M, Allain FHT. Structural and functional implications of the QUA2 domain on RNA recognition by GLD-1. Nucleic Acids Res 2014; 42:8092-105. [PMID: 24838563 PMCID: PMC4081071 DOI: 10.1093/nar/gku445] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/04/2014] [Accepted: 05/06/2014] [Indexed: 01/13/2023] Open
Abstract
The STAR family comprises ribonucleic acid (RNA)-binding proteins that play key roles in RNA-regulatory processes. RNA recognition is achieved by a KH domain with an additional α-helix (QUA2) that seems to extend the RNA-binding surface to six nucleotides for SF1 (Homo sapiens) and seven nucleotides for GLD-1 (Caenorhabditis elegans). To understand the structural basis of this probable difference in specificity, we determined the solution structure of GLD-1 KH-QUA2 with the complete consensus sequence identified in the tra-2 gene. Compared to SF1, the GLD-1 KH-QUA2 interface adopts a different conformation resulting indeed in an additional sequence-specific binding pocket for a uracil at the 5'end. The functional relevance of this binding pocket is emphasized by our bioinformatics analysis showing that GLD-1 binding sites with this 5'end uracil are more predictive for the functional response of the messenger RNAs to gld-1 knockout. We further reveal the importance of the KH-QUA2 interface in vitro and that its alteration in vivo affects the level of translational repression dependent on the sequence of the GLD-1 binding motif. In conclusion, we demonstrate that the QUA2 domain distinguishes GLD-1 from other members of the STAR family and contributes more generally to the modulation of RNA-binding affinity and specificity of KH domain containing proteins.
Collapse
Affiliation(s)
- Gerrit M Daubner
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Anneke Brümmer
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Cristina Tocchini
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland
| | - Stefan Gerhardy
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Rafal Ciosk
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland
| | | | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
24
|
Foot JN, Feracci M, Dominguez C. Screening protein--single stranded RNA complexes by NMR spectroscopy for structure determination. Methods 2014; 65:288-301. [PMID: 24096002 PMCID: PMC3959648 DOI: 10.1016/j.ymeth.2013.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/16/2013] [Accepted: 09/24/2013] [Indexed: 12/23/2022] Open
Abstract
In the past few years, RNA molecules have been revealed to be at the center of numerous biological processes. Long considered as passive molecules transferring genetic information from DNA to proteins, it is now well established that RNA molecules play important regulatory roles. Associated with that, the number of identified RNA binding proteins (RBPs) has increased considerably and mutations in RNA molecules or RBP have been shown to cause various diseases, such as cancers. It is therefore crucial to understand at the molecular level how these proteins specifically recognise their RNA targets in order to design new generation drug therapies targeting protein-RNA complexes. Nuclear magnetic resonance (NMR) is a particularly well-suited technique to study such protein-RNA complexes at the atomic level and can provide valuable information for new drug discovery programs. In this article, we describe the NMR strategy that we and other laboratories use for screening optimal conditions necessary for structural studies of protein-single stranded RNA complexes, using two proteins, Sam68 and T-STAR, as examples.
Collapse
Affiliation(s)
- Jaelle N Foot
- Department of Biochemistry, Henry Wellcome Laboratories of Structural Biology, University of Leicester, UK
| | - Mikael Feracci
- Department of Biochemistry, Henry Wellcome Laboratories of Structural Biology, University of Leicester, UK
| | - Cyril Dominguez
- Department of Biochemistry, Henry Wellcome Laboratories of Structural Biology, University of Leicester, UK.
| |
Collapse
|
25
|
Teplova M, Hafner M, Teplov D, Essig K, Tuschl T, Patel DJ. Structure-function studies of STAR family Quaking proteins bound to their in vivo RNA target sites. Genes Dev 2013; 27:928-40. [PMID: 23630077 DOI: 10.1101/gad.216531.113] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mammalian Quaking (QKI) and its Caenorhabditis elegans homolog, GLD-1 (defective in germ line development), are evolutionarily conserved RNA-binding proteins, which post-transcriptionally regulate target genes essential for developmental processes and myelination. We present X-ray structures of the STAR (signal transduction and activation of RNA) domain, composed of Qua1, K homology (KH), and Qua2 motifs of QKI and GLD-1 bound to high-affinity in vivo RNA targets containing YUAAY RNA recognition elements (RREs). The KH and Qua2 motifs of the STAR domain synergize to specifically interact with bases and sugar-phosphate backbones of the bound RRE. Qua1-mediated homodimerization generates a scaffold that enables concurrent recognition of two RREs, thereby plausibly targeting tandem RREs present in many QKI-targeted transcripts. Structure-guided mutations reduced QKI RNA-binding affinity in vitro and in vivo, and expression of QKI mutants in human embryonic kidney cells (HEK293) significantly decreased the abundance of QKI target mRNAs. Overall, our studies define principles underlying RNA target selection by STAR homodimers and provide insights into the post-transcriptional regulatory function of mammalian QKI proteins.
Collapse
Affiliation(s)
- Marianna Teplova
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
26
|
Hall MP, Nagel RJ, Fagg WS, Shiue L, Cline MS, Perriman RJ, Donohue JP, Ares M. Quaking and PTB control overlapping splicing regulatory networks during muscle cell differentiation. RNA (NEW YORK, N.Y.) 2013; 19:627-38. [PMID: 23525800 PMCID: PMC3677278 DOI: 10.1261/rna.038422.113] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/20/2013] [Indexed: 05/26/2023]
Abstract
Alternative splicing contributes to muscle development, but a complete set of muscle-splicing factors and their combinatorial interactions are unknown. Previous work identified ACUAA ("STAR" motif) as an enriched intron sequence near muscle-specific alternative exons such as Capzb exon 9. Mass spectrometry of myoblast proteins selected by the Capzb exon 9 intron via RNA affinity chromatography identifies Quaking (QK), a protein known to regulate mRNA function through ACUAA motifs in 3' UTRs. We find that QK promotes inclusion of Capzb exon 9 in opposition to repression by polypyrimidine tract-binding protein (PTB). QK depletion alters inclusion of 406 cassette exons whose adjacent intron sequences are also enriched in ACUAA motifs. During differentiation of myoblasts to myotubes, QK levels increase two- to threefold, suggesting a mechanism for QK-responsive exon regulation. Combined analysis of the PTB- and QK-splicing regulatory networks during myogenesis suggests that 39% of regulated exons are under the control of one or both of these splicing factors. This work provides the first evidence that QK is a global regulator of splicing during muscle development in vertebrates and shows how overlapping splicing regulatory networks contribute to gene expression programs during differentiation.
Collapse
|
27
|
Ali M, Broadhurst RW. Solution structure of the QUA1 dimerization domain of pXqua, the Xenopus ortholog of Quaking. PLoS One 2013; 8:e57345. [PMID: 23520467 PMCID: PMC3592866 DOI: 10.1371/journal.pone.0057345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/21/2013] [Indexed: 11/19/2022] Open
Abstract
The STAR protein family member Quaking is essential for early development in vertebrates. For example, in oligodendrocyte cells it regulates the splicing, localization, translation and lifetime of a set of mRNAs that code for crucial components of myelin. The Quaking protein contains three contiguous conserved regions: a QUA1 oligomerization element, followed by a single-stranded RNA binding motif comprising the KH and QUA2 domains. An embryonic lethal point mutation in the QUA1 domain, E48G, is known to affect both the aggregation state and RNA-binding properties of the murine Quaking ortholog (QKI). Here we report the NMR solution structure of the QUA1 domain from the Xenopus laevis Quaking ortholog (pXqua), which forms a dimer composed of two perpendicularly docked α-helical hairpin motifs. Size exclusion chromatography studies of a range of mutants demonstrate that the dimeric state of the pXqua QUA1 domain is stabilized by a network of interactions between side-chains, with significant roles played by an intra-molecular hydrogen bond between Y41 and E72 (the counterpart to QKI E48) and an inter-protomer salt bridge between E72 and R67. These results are compared with recent structural and mutagenesis studies of QUA1 domains from the STAR family members QKI, GLD-1 and Sam68.
Collapse
Affiliation(s)
- Muzaffar Ali
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - R. William Broadhurst
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|