1
|
Mishra D, Shekhar S, Subba P, Prasad TSK, Chakraborty S, Chakraborty N. Wheat TaNACα18 functions as a positive regulator of high-temperature adaptive responses and improves cell defense machinery. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2217-2235. [PMID: 38961633 DOI: 10.1111/tpj.16913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
Global wheat production amounted to >780 MMT during 2022-2023 whose market size are valued at >$128 billion. Wheat is highly susceptible to high-temperature stress (HTS) throughout the life cycle and its yield declines 5-7% with the rise in each degree of temperature. Previously, we reported an array of HTS-response markers from a resilient wheat cv. Unnat Halna and described their putative role in heat acclimation. To complement our previous results and identify the key determinants of thermotolerance, here we examined the cytoplasmic proteome of a sensitive cv. PBW343. The HTS-triggered metabolite reprograming highlighted how proteostasis defects influence the formation of an integrated stress-adaptive response. The proteomic analysis identified several promising HTS-responsive proteins, including a NACα18 protein, designated TaNACα18, whose role in thermotolerance remains unknown. Dual localization of TaNACα18 suggests its crucial functions in the cytoplasm and nucleus. The homodimerization of TaNACα18 anticipated its function as a transcriptional coactivator. The complementation of TaNACα18 in yeast and overexpression in wheat demonstrated its role in thermotolerance across the kingdom. Altogether, our results suggest that TaNACα18 imparts tolerance through tight regulation of gene expression, cell wall remodeling and activation of cell defense responses.
Collapse
Affiliation(s)
- Divya Mishra
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shubhendu Shekhar
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya, Mangalore, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya, Mangalore, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
2
|
Structure and Mechanism of Plant DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:137-157. [PMID: 36350509 PMCID: PMC10112988 DOI: 10.1007/978-3-031-11454-0_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
DNA methylation is an important epigenetic mark conserved in eukaryotes from fungi to animals and plants, where it plays a crucial role in regulating gene expression and transposon silencing. Once the methylation mark is established by de novo DNA methyltransferases, specific regulatory mechanisms are required to maintain the methylation state during chromatin replication, both during meiosis and mitosis. Plant DNA methylation is found in three contexts; CG, CHG, and CHH (H = A, T, C), which are established and maintained by a unique set of DNA methyltransferases and are regulated by plant-specific pathways. DNA methylation in plants is often associated with other epigenetic modifications, such as noncoding RNA and histone modifications. This chapter focuses on the structure, function, and regulatory mechanism of plant DNA methyltransferases and their crosstalk with other epigenetic pathways.
Collapse
|
3
|
Jiang J, Liu J, Sanders D, Qian S, Ren W, Song J, Liu F, Zhong X. UVR8 interacts with de novo DNA methyltransferase and suppresses DNA methylation in Arabidopsis. NATURE PLANTS 2021; 7:184-197. [PMID: 33495557 PMCID: PMC7889724 DOI: 10.1038/s41477-020-00843-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 12/17/2020] [Indexed: 05/03/2023]
Abstract
DNA methylation is an important epigenetic gene regulatory mechanism conserved in eukaryotes. Emerging evidence shows DNA methylation alterations in response to environmental cues. However, the mechanism of how cells sense these signals and reprogramme the methylation landscape is poorly understood. Here, we uncovered a connection between ultraviolet B (UVB) signalling and DNA methylation involving UVB photoreceptor (UV RESISTANCE LOCUS 8 (UVR8)) and a de novo DNA methyltransferase (DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2)) in Arabidopsis. We demonstrated that UVB acts through UVR8 to inhibit DRM2-mediated DNA methylation and transcriptional de-repression. Interestingly, DNA transposons with high DNA methylation are more sensitive to UVB irradiation. Mechanistically, UVR8 interacts with and negatively regulates DRM2 by preventing its chromatin association and inhibiting the methyltransferase activity. Collectively, this study identifies UVB as a potent inhibitor of DNA methylation and provides mechanistic insights into how signalling transduction cascades intertwine with chromatin to guide genome functions.
Collapse
Affiliation(s)
- Jianjun Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Jie Liu
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Dean Sanders
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Shuiming Qian
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Wendan Ren
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China.
| | - Xuehua Zhong
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Tyagi V, Parihar V, Singh D, Kapoor S, Kapoor M. The DEAD-box RNA helicase eIF4A1 interacts with the SWI2/SNF2-related chromatin remodelling ATPase DDM1 in the moss Physcomitrella. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140592. [PMID: 33359411 DOI: 10.1016/j.bbapap.2020.140592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/27/2022]
Abstract
eIF4A is a DEAD box containing RNA helicase that plays crucial roles in regulating translation initiation, growth and abiotic stress tolerance in plants. It also functions as an ATP-dependent RNA binding protein to curb granule formation by limiting RNA-RNA interactions that promote RNA condensation and formation of ribonucleoprotein particles in vivo. Helicase activity of eIF4A is known to be dictated by its binding partners. Proteins interacting with eIF4A have been identified across land plants. In monocots a close link between eIF4A regulated processes and DNA methylation in epigenetic regulation of plant development is inferred from interaction between OseIF4A and the de novo methyltransferase OsDRM2 and loss-of-function studies of these genes in Oryza sativa and Brachypodium distachyon. In the moss Physcomitrella patens, eIF4A1 encoded by Pp3c6_1080V3.1 interacts with the heterogeneous nuclear ribonucleoprotein (hnRNP) PpLIF2L1, homolog of which in Arabidopsis regulates transcription of stress-responsive genes. In this study, using different protein-protein interaction methods, targeted gene knockout strategy and quantitative expression analysis we show genetic interaction between PpeIF4A1 and the putative nucleosome remodeler protein PpDDM1 and between PpDDM1 and PpLIF2L1 in vivo. Stress-induced co-expression of PpeIF4A1, PpDDM1 and PpLIF2L1, their roles in salt stress tolerance and differences in subnuclear distribution of PpLIF2L1 in ppeif4a1 cells in comparison to wild type suggest existence of a regulatory network comprising of RNA helicases, chromatin remodelling proteins and hnRNP active in stress-responsive biological processes in P. patens.
Collapse
Affiliation(s)
- Vidhi Tyagi
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078, India
| | - Vimala Parihar
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078, India
| | - Darshika Singh
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus Benito Juarez Road, New Delhi 110021, India
| | - Meenu Kapoor
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078, India.
| |
Collapse
|
5
|
Zhang S, Wu XQ, Xie HT, Zhao SS, Wu JG. Multifaceted roles of RNA polymerase IV in plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5725-5732. [PMID: 32969476 PMCID: PMC7541909 DOI: 10.1093/jxb/eraa346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We discuss the latest findings on RNA polymerase IV (Pol IV) in plant growth and development, providing new insights and expanding on new ideas for further, more in-depth research on Pol IV.
Collapse
Affiliation(s)
- Shuai Zhang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Qing Wu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui-Ting Xie
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shan-Shan Zhao
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jian-Guo Wu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Dangwal M, Das S. Identification and Analysis of OVATE Family Members from Genome of the Early Land Plants Provide Insights into Evolutionary History of OFP Family and Function. J Mol Evol 2018; 86:511-530. [PMID: 30206666 DOI: 10.1007/s00239-018-9863-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/05/2018] [Indexed: 01/11/2023]
Abstract
Mosses, liverworts, hornworts and lycophytes represent transition stages between the aquatic to terrestrial/land plants. Several morphological and adaptive novelties driven by genomic components including emergence and expansion of new or existing gene families have played a critical role during and after the transition, and contributed towards successful colonization of terrestrial ecosystems. It is crucial to decipher the evolutionary transitions and natural selection on the gene structure and function to understand the emergence of phenotypic and adaptive diversity. Plants at the "transition zone", between aquatic and terrestrial ecosystem, are also the most vulnerable because of climate change and may contain clues for successful mitigation of the challenges of climate change. Identification and comparative analyses of such genetic elements and gene families are few in mosses, liverworts, hornworts and lycophytes. Ovate family proteins (OFPs) are plant-specific transcriptional repressors and are acknowledged for their roles in important growth and developmental processes in land plants, and information about the functional aspects of OFPs in early land plants is fragmentary. As a first step towards addressing this gap, a comprehensive in silico analysis was carried out utilizing publicly available genome sequences of Marchantia polymorpha (Mp), Physcomitrella patens (Pp), Selaginella moellendorffii (Sm) and Sphagnum fallax (Sf). Our analysis led to the identification of 4 MpOFPs, 19 PpOFPs, 6 SmOFPs and 3 SfOFPs. Cross-genera analysis revealed a drastic change in the structure and physiochemical properties in OFPs suggesting functional diversification and genomic plasticity during the evolutionary course. Knowledge gained from this comparative analysis will form the framework towards deciphering and dissection of their developmental and adaptive role/s in early land plants and could provide insights into evolutionary strategies adapted by land plants.
Collapse
Affiliation(s)
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
7
|
Banerjee A, Roychoudhury A. The gymnastics of epigenomics in rice. PLANT CELL REPORTS 2018; 37:25-49. [PMID: 28866772 DOI: 10.1007/s00299-017-2192-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/01/2017] [Indexed: 05/21/2023]
Abstract
Epigenomics is represented by the high-throughput investigations of genome-wide epigenetic alterations, which ultimately dictate genomic, transcriptomic, proteomic and metabolomic dynamism. Rice has been accepted as the global staple crop. As a result, this model crop deserves significant importance in the rapidly emerging field of plant epigenomics. A large number of recently available data reveal the immense flexibility and potential of variable epigenomic landscapes. Such epigenomic impacts and variability are determined by a number of epigenetic regulators and several crucial inheritable epialleles, respectively. This article highlights the correlation of the epigenomic landscape with growth, flowering, reproduction, non-coding RNA-mediated post-transcriptional regulation, transposon mobility and even heterosis in rice. We have also discussed the drastic epigenetic alterations which are reported in rice plants grown from seeds exposed to the extraterrestrial environment. Such abiotic conditions impose stress on the plants leading to epigenomic modifications in a genotype-specific manner. Some significant bioinformatic databases and in silico approaches have also been explained in this article. These softwares provide important interfaces for comparative epigenomics. The discussion concludes with a unified goal of developing epigenome editing to promote biological hacking of the rice epigenome. Such a cutting-edge technology if properly standardized, can integrate genomics and epigenomics together with the generation of high-yielding trait in several cultivars of rice.
Collapse
Affiliation(s)
- Aditya Banerjee
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India.
| |
Collapse
|
8
|
|
9
|
Du J. Structure and Mechanism of Plant DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 945:173-192. [PMID: 27826839 DOI: 10.1007/978-3-319-43624-1_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
DNA methylation is an important epigenetic mark that functions in eukaryotes from fungi to animals and plants, where it plays a crucial role in the regulation of epigenetic silencing. Once the methylation mark is established by the de novo DNA methyltransferase (MTase), it requires specific regulatory mechanisms to maintain the methylation state during chromatin replication, both during meiosis and mitosis. Plants have distinct DNA methylation patterns that are both established and maintained by unique DNA MTases and are regulated by plant-specific pathways. This chapter focuses on the exceptional structural and functional features of plant DNA MTases that provide insights into these regulatory mechanisms.
Collapse
Affiliation(s)
- Jiamu Du
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
10
|
Comparison of proteomic and metabolomic profiles of two contrasting ecotypes of sweetpotato ( Ipomoea batata L.). J Proteomics 2016; 143:306-317. [DOI: 10.1016/j.jprot.2016.03.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/23/2016] [Accepted: 03/16/2016] [Indexed: 11/20/2022]
|
11
|
Lu YC, Feng SJ, Zhang JJ, Luo F, Zhang S, Yang H. Genome-wide identification of DNA methylation provides insights into the association of gene expression in rice exposed to pesticide atrazine. Sci Rep 2016; 6:18985. [PMID: 26739616 PMCID: PMC4704053 DOI: 10.1038/srep18985] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/01/2015] [Indexed: 01/20/2023] Open
Abstract
Atrazine (ATR) is a pesticide widely used for controlling weeds for crop production. Crop contamination with ATR negatively affects crop growth and development. This study presents the first genome-wide single-base-resolution maps of DNA methylation in ATR-exposed rice. Widespread differences were identified in CG and non-CG methylation marks between the ATR-exposed and ATR-free (control) rice. Most of DNA methyltransferases, histone methyltransferases and DNA demethylase were differentially regulated by ATR. We found more genes hypermethylated than those hypomethylated in the regions of upstream, genebody and downstream under ATR exposure. A stringent group of 674 genes (p < 0.05, two-fold change) with a strong preference of differential expression in ATR-exposed rice was identified. Some of the genes were identified in a subset of loss of function mutants defective in DNA methylation/demethylation. Provision of 5-azacytidine (AZA, inhibitor of DNA methylation) promoted the rice growth and reduced ATR content. By UPLC/Q-TOF-MS/MS, 8 degraded products and 9 conjugates of ATR in AZA-treated rice were characterized. Two of them has been newly identified in this study. Our data show that ATR-induced changes in DNA methylation marks are possibly involved in an epigenetic mechanism associated with activation of specific genes responsible for ATR degradation and detoxification.
Collapse
Affiliation(s)
- Yi Chen Lu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.,Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Sheng Jun Feng
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Jing Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.,Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Fang Luo
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.,Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Shuang Zhang
- State key laboratory of food science and technology, Jiangnan University, Wuxi 214122, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Wang P, Gao C, Bian X, Zhao S, Zhao C, Xia H, Song H, Hou L, Wan S, Wang X. Genome-Wide Identification and Comparative Analysis of Cytosine-5 DNA Methyltransferase and Demethylase Families in Wild and Cultivated Peanut. FRONTIERS IN PLANT SCIENCE 2016; 7:7. [PMID: 26870046 PMCID: PMC4737905 DOI: 10.3389/fpls.2016.00007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/06/2016] [Indexed: 05/04/2023]
Abstract
DNA methylation plays important roles in genome protection, regulation of gene expression and is associated with plants development. Plant DNA methylation pattern was mediated by cytosine-5 DNA methyltransferase and demethylase. Although the genomes of AA and BB wild peanuts have been fully sequenced, these two gene families have not been studied. In this study we report the identification and analysis of putative cytosine-5 DNA methyltransferases (C5-MTases) and demethylases in AA and BB wild peanuts. Cytosine-5 DNA methyltransferases in AA and BB wild peanuts could be classified in MET, CMT, and DRM2 groups based on their domain organization. This result was supported by the gene and protein structural characteristics and phylogenetic analysis. We found that some wild peanut DRM2 members didn't contain UBA domain which was different from other plants such as Arabidopsis, maize and soybean. Five DNA demethylase encoding genes were found in AA genome and five in BB genome. The selective pressure analysis showed that wild peanut C5-MTase genes mainly underwent purifying selection but many positive selection sites can be detected. Conversely, DNA demethylase genes mainly underwent positive selection during evolution. Additionally, the expression dynamic of cytosine-5 DNA methyltransferase and demethylase genes in different cultivated peanut tissues were analyzed. Expression result showed that cold, heat or PEG stress could influence the expression level of C5-MTase and DNA demethylase genes in cultivated peanut. These results are useful for better understanding the complexity of these two gene families, and will facilitate epigenetic studies in peanut in the future.
Collapse
|
13
|
Histone H3K4me3 and H3K27me3 regulatory genes control stable transmission of an epimutation in rice. Sci Rep 2015; 5:13251. [PMID: 26285801 PMCID: PMC4541256 DOI: 10.1038/srep13251] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/22/2015] [Indexed: 11/08/2022] Open
Abstract
DNA methylation loss can produce inheritable active epialleles in plants. The mechanism involved in the stable transmission of hypomethylated epimuations is presently not clear. Here we show that maintenance of a stably hypomethylated active epiallele in rice required a CHD3 protein (CHR729) and that over-expression of an H3K4me3 demethylase (JMJ703) or H3K27me3 methyltransferase (SDG711) could stably resilence the epiallele. CHR729 and JMJ703 have antagonistic function in H3K4me3 in maintaining the active state of the epiallele, whereas SDG711-mediated H3K27me3 was sufficient to stably repress the locus. The data suggest that H3K4me3 and H3K27me3 controlled by these chromatin regulators may be involved in stable transmission/resetting of epigenetic variation in rice.
Collapse
|
14
|
Wang J, Qi M, Liu J, Zhang Y. CARMO: a comprehensive annotation platform for functional exploration of rice multi-omics data. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:359-74. [PMID: 26040787 DOI: 10.1111/tpj.12894] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/14/2015] [Accepted: 05/19/2015] [Indexed: 05/05/2023]
Abstract
High-throughput technology is gradually becoming a powerful tool for routine research in rice. Interpretation of biological significance from the huge amount of data is a critical but non-trivial task, especially for rice, for which gene annotations rely heavily on sequence similarity rather than direct experimental evidence. Here we describe the annotation platform for comprehensive annotation of rice multi-omics data (CARMO), which provides multiple web-based analysis tools for in-depth data mining and visualization. The central idea involves systematic integration of 1819 samples from omics studies and diverse sources of functional evidence (15 401 terms), which are further organized into gene sets and higher-level gene modules. In this way, the high-throughput data may easily be compared across studies and platforms, and integration of multiple types of evidence allows biological interpretation from the level of gene functional modules with high confidence. In addition, the functions and pathways for thousands of genes lacking description or validation may be deduced based on concerted expression of genes within the constructed co-expression networks or gene modules. Overall, CARMO provides comprehensive annotations for transcriptomic datasets, epi-genomic modification sites, single nucleotide polymorphisms identified from genome re-sequencing, and the large gene lists derived from these omics studies. Well-organized results, as well as multiple tools for interactive visualization, are available through a user-friendly web interface. Finally, we illustrate how CARMO enables biological insights using four examples, demonstrating that CARMO is a highly useful resource for intensive data mining and hypothesis generation based on rice multi-omics data. CARMO is freely available online (http://bioinfo.sibs.ac.cn/carmo).
Collapse
Affiliation(s)
- Jiawei Wang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Meifang Qi
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Jian Liu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Yijing Zhang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| |
Collapse
|
15
|
Watts FZ, Baldock R, Jongjitwimol J, Morley SJ. Weighing up the possibilities: Controlling translation by ubiquitylation and sumoylation. ACTA ACUST UNITED AC 2014; 2:e959366. [PMID: 26779408 DOI: 10.4161/2169074x.2014.959366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/01/2014] [Accepted: 05/12/2014] [Indexed: 12/15/2022]
Abstract
Regulation of protein synthesis is of fundamental importance to cells. It has a critical role in the control of gene expression, and consequently cell growth and proliferation. The importance of this control is supported by the fact that protein synthesis is frequently upregulated in tumor cells. The major point at which regulation occurs is the initiation stage. Initiation of translation involves the interaction of several proteins to form the eIF4F complex, the recognition of the mRNA by this complex, and the subsequent recruitment of the 40S ribosomal subunit to the mRNA. This results in the formation of the 48S complex that then scans the mRNA for the start codon, engages the methionyl-tRNA and eventually forms the mature 80S ribosome which is elongation-competent. Formation of the 48S complex is regulated by the availability of individual initiation factors and through specific protein-protein interactions. Both of these events can be regulated by post-translational modification by ubiquitin or Ubls (ubiquitin-like modifiers) such as SUMO or ISG15. We provide here a summary of translation initiation factors that are modified by ubiquitin or Ubls and, where they have been studied in detail, describe the role of these modifications and their effects on regulating protein synthesis.
Collapse
Affiliation(s)
- Felicity Z Watts
- Genome Damage and Stability Center; School of Life Sciences; University of Sussex ; Falmer, Brighton, UK
| | - Robert Baldock
- Genome Damage and Stability Center; School of Life Sciences; University of Sussex ; Falmer, Brighton, UK
| | - Jirapas Jongjitwimol
- Genome Damage and Stability Center; School of Life Sciences; University of Sussex ; Falmer, Brighton, UK
| | - Simon J Morley
- Department of Biochemistry and Biomedical Science; School of Life Sciences; University of Sussex ; Brighton, UK
| |
Collapse
|
16
|
Garg R, Kumari R, Tiwari S, Goyal S. Genomic survey, gene expression analysis and structural modeling suggest diverse roles of DNA methyltransferases in legumes. PLoS One 2014; 9:e88947. [PMID: 24586452 PMCID: PMC3934875 DOI: 10.1371/journal.pone.0088947] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022] Open
Abstract
DNA methylation plays a crucial role in development through inheritable gene silencing. Plants possess three types of DNA methyltransferases (MTases), namely Methyltransferase (MET), Chromomethylase (CMT) and Domains Rearranged Methyltransferase (DRM), which maintain methylation at CG, CHG and CHH sites. DNA MTases have not been studied in legumes so far. Here, we report the identification and analysis of putative DNA MTases in five legumes, including chickpea, soybean, pigeonpea, Medicago and Lotus. MTases in legumes could be classified in known MET, CMT, DRM and DNA nucleotide methyltransferases (DNMT2) subfamilies based on their domain organization. First three MTases represent DNA MTases, whereas DNMT2 represents a transfer RNA (tRNA) MTase. Structural comparison of all the MTases in plants with known MTases in mammalian and plant systems have been reported to assign structural features in context of biological functions of these proteins. The structure analysis clearly specified regions crucial for protein-protein interactions and regions important for nucleosome binding in various domains of CMT and MET proteins. In addition, structural model of DRM suggested that circular permutation of motifs does not have any effect on overall structure of DNA methyltransferase domain. These results provide valuable insights into role of various domains in molecular recognition and should facilitate mechanistic understanding of their function in mediating specific methylation patterns. Further, the comprehensive gene expression analyses of MTases in legumes provided evidence of their role in various developmental processes throughout the plant life cycle and response to various abiotic stresses. Overall, our study will be very helpful in establishing the specific functions of DNA MTases in legumes.
Collapse
Affiliation(s)
- Rohini Garg
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| | - Romika Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Sneha Tiwari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Shweta Goyal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
17
|
Dangwal M, Kapoor S, Kapoor M. The PpCMT chromomethylase affects cell growth and interacts with the homolog of LIKE HETEROCHROMATIN PROTEIN 1 in the moss Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:589-603. [PMID: 24329971 DOI: 10.1111/tpj.12406] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/30/2013] [Accepted: 12/03/2013] [Indexed: 05/06/2023]
Abstract
Chromomethylases (CMTs) are plant-specific cytosine DNA methyltransferases that are involved in maintenance of CpNpG methylation. In seed plants, histone methylation and interaction of CMT with LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) is essential for recruitment of CMT to target sites. LHP1 has been characterized as a putative component of the POLYCOMB REPRESSIVE COMPLEX1 (PRC1) in plants, and functions downstream of PRC2 to maintain genes in repressed state for orchestrated development. In the present study, we show that targeted disruption of PpCMT results in an approximately 50% reduction in global cytosine methylation levels. This affects growth of apical cells, predominantly growth of side branch initials emerging from chloronema cells. In some places, these cells develop thick walls with plasmolyzed cellular contents. Transcript accumulation patterns of genes involved in apical cell extension and metabolism of hemicelluloses, such as xyloglucans, in the primary cell walls decreased many fold in ppcmt mutant lines, as determined by real-time PCR. Using yeast two-hybrid method and bimolecular fluorescence complementation assay, we show that PpCMT and PpLHP1 interact through their chromo domains, while PpLHP1 homodimerizes through its chromo shadow domain. The results presented in this study provide insight into the role of the single chromomethylase, PpCMT, in proliferation of protonema filaments, and shed light on the evolutionary conservation of proteins interacting with these methylases in the early land plant, Physcomitrella patens.
Collapse
Affiliation(s)
- Meenakshi Dangwal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India
| | | | | |
Collapse
|
18
|
Shi J, Dong A, Shen WH. Epigenetic regulation of rice flowering and reproduction. FRONTIERS IN PLANT SCIENCE 2014; 5:803. [PMID: 25674094 PMCID: PMC4309181 DOI: 10.3389/fpls.2014.00803] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/22/2014] [Indexed: 05/19/2023]
Abstract
Current understanding of the epigenetic regulator roles in plant growth and development has largely derived from studies in the dicotyledonous model plant Arabidopsis thaliana. Rice (Oryza sativa) is one of the most important food crops in the world and has more recently becoming a monocotyledonous model plant in functional genomics research. During the past few years, an increasing number of studies have reported the impact of DNA methylation, non-coding RNAs and histone modifications on transcription regulation, flowering time control, and reproduction in rice. Here, we review these studies to provide an updated complete view about chromatin modifiers characterized in rice and in particular on their roles in epigenetic regulation of flowering time, reproduction, and seed development.
Collapse
Affiliation(s)
- Jinlei Shi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan UniversityShanghai, China
- CNRS, Institut de Biologie Moléculaire des Plantes, Université de StrasbourgStrasbourg, France
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan UniversityShanghai, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan UniversityShanghai, China
- CNRS, Institut de Biologie Moléculaire des Plantes, Université de StrasbourgStrasbourg, France
- *Correspondence: Wen-Hui Shen, CNRS, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 12 Rue du Général Zimmer, 67084 Strasbourg Cédex, France e-mail:
| |
Collapse
|