1
|
Blander JM, Yee Mon KJ, Jha A, Roycroft D. The show and tell of cross-presentation. Adv Immunol 2023; 159:33-114. [PMID: 37996207 DOI: 10.1016/bs.ai.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cross-presentation is the culmination of complex subcellular processes that allow the processing of exogenous proteins and the presentation of resultant peptides on major histocompatibility class I (MHC-I) molecules to CD8 T cells. Dendritic cells (DCs) are a cell type that uniquely specializes in cross-presentation, mainly in the context of viral or non-viral infection and cancer. DCs have an extensive network of endovesicular pathways that orchestrate the biogenesis of an ideal cross-presentation compartment where processed antigen, MHC-I molecules, and the MHC-I peptide loading machinery all meet. As a central conveyor of information to CD8 T cells, cross-presentation allows cross-priming of T cells which carry out robust adaptive immune responses for tumor and viral clearance. Cross-presentation can be canonical or noncanonical depending on the functional status of the transporter associated with antigen processing (TAP), which in turn influences the vesicular route of MHC-I delivery to internalized antigen and the cross-presented repertoire of peptides. Because TAP is a central node in MHC-I presentation, it is targeted by immune evasive viruses and cancers. Thus, understanding the differences between canonical and noncanonical cross-presentation may inform new therapeutic avenues against cancer and infectious disease. Defects in cross-presentation on a cellular and genetic level lead to immune-related disease progression, recurrent infection, and cancer progression. In this chapter, we review the process of cross-presentation beginning with the DC subsets that conduct cross-presentation, the signals that regulate cross-presentation, the vesicular trafficking pathways that orchestrate cross-presentation, the modes of cross-presentation, and ending with disease contexts where cross-presentation plays a role.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, United States; Immunology and Microbial Pathogenesis Programs, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, United States.
| | - Kristel Joy Yee Mon
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Atimukta Jha
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Dylan Roycroft
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
2
|
Yee Mon KJ, Blander JM. TAP-ing into the cross-presentation secrets of dendritic cells. Curr Opin Immunol 2023; 83:102327. [PMID: 37116384 DOI: 10.1016/j.coi.2023.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/30/2023]
Abstract
Viral blockade of the transporter associated with antigen processing (TAP) diminishes surface and endosomal recycling compartment levels of major histocompatibility complex class-I (MHC-I) in dendritic cells (DCs), and compromises both classical MHC-I presentation and canonical cross-presentation during infection to impair CD8 T-cell immunity. Virus-specific CD8 T cells are thought to be cross-primed mostly by uninfected TAP-sufficient DCs through cross-presentation of viral peptides from internalized virus-infected dying cells. The dilemma is that CD8 T cells primed to TAP-dependent viral peptides are mismatched to the TAP-independent epitopes presented on tissues infected with immune-evasive viruses. Noncanonical cross-presentation in DCs overcomes cell-intrinsic TAP blockade to nevertheless prime protective TAP-independent CD8 T cells best-matched against the infection. Exploitation of noncanonical cross-presentation may prevent chronic infections with immune-evasive viruses. It may also control immune-evasive cancers that have downmodulated TAP expression.
Collapse
Affiliation(s)
- Kristel Joy Yee Mon
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, USA
| | - J Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, USA; Department of Microbiology and Immunology, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
3
|
Li S, Chen Y. Epitopes screening and vaccine molecular design of SADS-CoV based on immunoinformatics. Front Vet Sci 2023; 9:1080927. [PMID: 36937700 PMCID: PMC10017982 DOI: 10.3389/fvets.2022.1080927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/14/2022] [Indexed: 03/06/2023] Open
Abstract
The regional outbreak of the Swine acute diarrhea syndrome coronavirus (SADS-CoV) has seriously threatened the swine industry. There is an urgent need to discover safe and effective vaccines to contain them quickly. The coronavirus spike protein mediates virus entry into host cells, one of the most important antigenic determinants and a potential vaccine target. Therefore, this study aims to conduct a predictive analysis of the epitope of S protein B cells and T cells (MHC class I and class II) by immunoinformatics methods by screening and identifying protective antigenic epitopes that induce major neutralized antibodies and activate immune responses to construct epitope vaccines. The study explored primary, secondary, and tertiary structures, disulfide bonds, protein docking, immune response simulation, and seamless cloning of epitope vaccines. The results show that the spike protein dominant epitope of the screening has a high conservativeness and coverage of IFN-γ, IL-4-positive Th epitope, and CTL epitope. The constructed epitope vaccine interacts stably with TLR-3 receptors, and the immune response simulation shows good immunogenicity, which could effectively activate humoral and cellular immunity. After codon optimization, it was highly likely to be efficiently and stably expressed in the Escherichia coli K12 expression system. Therefore, the constructed epitope vaccine will provide a new theoretical basis for the design of SADS-CoV antiviral drugs and related research on coronaviruses such as SARS-CoV-2.
Collapse
Affiliation(s)
| | - Yaping Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| |
Collapse
|
4
|
Molecular characterization, expression patterns, and subcellular localization of a classical and a novel nonclassical MHC class I α molecules from Japanese eel Anguilla japonica. AQUACULTURE AND FISHERIES 2023. [DOI: 10.1016/j.aaf.2021.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Blander JM. Different routes of MHC-I delivery to phagosomes and their consequences to CD8 T cell immunity. Semin Immunol 2023; 66:101713. [PMID: 36706521 PMCID: PMC10023361 DOI: 10.1016/j.smim.2023.101713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/27/2023]
Abstract
Dendritic cells (DCs) present internalized antigens to CD8 T cells through cross-presentation by major histocompatibility complex class I (MHC-I) molecules. While conventional cDC1 excel at cross-presentation, cDC2 can be licensed to cross-present during infection by signals from inflammatory receptors, most prominently Toll-like receptors (TLRs). At the core of the regulation of cross-presentation by TLRs is the control of subcellular MHC-I traffic. Within DCs, MHC-I are enriched within endosomal recycling compartments (ERC) and traffic to microbe-carrying phagosomes under the control of phagosome-compartmentalized TLR signals to favor CD8 T cell cross-priming to microbial antigens. Viral blockade of the transporter associated with antigen processing (TAP), known to inhibit the classic MHC-I presentation of cytoplasmic protein-derived peptides, depletes the ERC stores of MHC-I to simultaneously also block TLR-regulated cross-presentation. DCs counter this impairment in the two major pathways of MHC-I presentation to CD8 T cells by mobilizing noncanonical cross-presentation, which delivers MHC-I to phagosomes from a new location in the ER-Golgi intermediate compartment (ERGIC) where MHC-I abnormally accumulate upon TAP blockade. Noncanonical cross-presentation thus rescues MHC-I presentation and cross-primes TAP-independent CD8 T cells best-matched against target cells infected with immune evasive viruses. Because noncanonical cross-presentation relies on a phagosome delivery route of MHC-I that is not under TLR control, it risks potential cross-presentation of self-antigens during infection. Here I review these findings to illustrate how the subcellular route of MHC-I to phagosomes critically impacts the regulation of cross-presentation and the nature of the CD8 T cell response to infection and cancer. I highlight important and novel implications to CD8 T cell vaccines and immunotherapy.
Collapse
Affiliation(s)
- J Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, USA; Joan and Sanford I. Weill Department of Medicine, USA; Department of Microbiology and Immunology, USA; Sandra and Edward Meyer Cancer Center, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
6
|
Tao Y, Han X, Liu N, Shi L, Shi L, Liu S, Yao Y. Association study of TAP and HLA-I gene combination with chronic hepatitis C virus infection in a Han population in China. Int J Immunogenet 2022; 49:169-180. [PMID: 35485366 DOI: 10.1111/iji.12574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/08/2022] [Accepted: 04/03/2022] [Indexed: 11/28/2022]
Abstract
Host immune system genes play key roles in the progression of chronic hepatitis C virus (HCV) infection. Transporters associated with antigen processing (TAP) play an important role in the loading of viral peptides onto MHC class I molecules. This study aimed to investigate the association between TAP gene polymorphisms and chronic HCV in a Chinese Han population. A total of 232 chronic hepatitis C (CHC) patients and 362 healthy individuals were recruited from the Han population in Yunnan province in southwest China, and a TaqMan SNP genotyping assay was used to detect six single nucleotide polymorphisms (SNPs) of TAP1 and three SNPs of TAP2 genes. The association of the TAP gene with CHC was analysed at the allele, genotype, and haplotype levels. There were no significant differences in the allele and genotype frequencies of these SNPs in the TAP gene between CHC patients and controls after Bonferroni correction. A novel TAP1 allele (TAP1*unknown_1: rs41555220-rs41549617-rs1057141-rs1135216-rs1057149-rs41551515: G-G-A-G-G-G) was only present in the CHC group, and this allele significantly increased susceptibility to CHC (p = .005, odds ratio [OR] = 11.105. 95% confidence interval [CI]: 1.362-90.558). Homozygous TAP1*03:01/TAP1*03:01 was observed only in the CHC group that exhibited an obvious risk for CHC (p = .002, OR = 9.637, 95% CI: 1.153-80.574). And the haplotype TAP1*unknown_1-TAP2*01:01 was only present in the CHC group and indicated a significant risk for CHC (p = .002, OR = 9.498, 95% CI: 1.140-79.149). We observed significant interactions among HLA-A, -B,C, TAP1, and TAP2 alleles, and combination analysis revealed that the combination of TAP1*01:01-TAP2*01:01-HLA-B*35:01 was only present in the control group (2.2%) and resulted in significantly increased resistance to CHC (p = .002, OR = 0.096, 95% CI: 0.012-0.759). Whereas, the combination of TAP1*01:01-TAP2*01:01-HLA-C*07:02 and TAP1*03:01-TAP2*01:01-HLA-C*01:02 increased the susceptibility to CHC significantly (p = .001, OR = 2.016, 95% CI: 1.309-3.106 and p = .002, OR = 8.070, 95% CI: 1.018-63.997, respectively). Our results indicated that TAP and HLA-I may exert a combined effect on CHC susceptibility in the Chinese Han population.
Collapse
Affiliation(s)
- Yufen Tao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Xue Han
- Department of Immunogenetics, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Nannan Liu
- Department of Immunogenetics, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Lei Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Li Shi
- Department of Immunogenetics, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Shuyuan Liu
- Department of Immunogenetics, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| |
Collapse
|
7
|
Sethumadhavan S, Barth M, Spaapen RM, Schmidt C, Trowitzsch S, Tampé R. Viral immune evasins impact antigen presentation by allele-specific trapping of MHC I at the peptide-loading complex. Sci Rep 2022; 12:1516. [PMID: 35087068 PMCID: PMC8795405 DOI: 10.1038/s41598-022-05000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022] Open
Abstract
Major histocompatibility complex class I (MHC I) molecules present antigenic peptides to cytotoxic T cells to eliminate infected or cancerous cells. The transporter associated with antigen processing (TAP) shuttles proteasomally generated peptides into the ER for MHC I loading. As central part of the peptide-loading complex (PLC), TAP is targeted by viral factors, which inhibit peptide supply and thereby impact MHC I-mediated immune responses. However, it is still poorly understood how antigen presentation via different MHC I allotypes is affected by TAP inhibition. Here, we show that conditional expression of herpes simplex viral ICP47 suppresses surface presentation of HLA-A and HLA-C, but not of HLA-B, while the human cytomegaloviral US6 reduces surface levels of all MHC I allotypes. This marked difference in HLA-B antigen presentation is echoed by an enrichment of HLA-B allomorphs at US6-arrested PLC in comparison to ICP47-PLC. Although both viral factors prevent TAP-mediated peptide supply, our data imply that MHC I allomorphs favor different conformationally arrested states of the PLC, leading to differential downregulation of MHC I surface presentation. These findings will help understand MHC I biology in general and will even advance the targeted treatment of infections depending on patients' allotypes.
Collapse
Affiliation(s)
- Sunesh Sethumadhavan
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Marie Barth
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle, Germany
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany.
| |
Collapse
|
8
|
Padariya M, Kote S, Mayordomo M, Dapic I, Alfaro J, Hupp T, Fahraeus R, Kalathiya U. Structural determinants of peptide-dependent TAP1-TAP2 transit passage targeted by viral proteins and altered by cancer-associated mutations. Comput Struct Biotechnol J 2021; 19:5072-5091. [PMID: 34589184 PMCID: PMC8453138 DOI: 10.1016/j.csbj.2021.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 01/20/2023] Open
Abstract
The TAP1-TAP2 complex transports antigenic peptide substrates into the endoplasmic reticulum (ER). In ER, the peptides are further processed and loaded on the major histocompatibility class (MHC) I molecules by the peptide loading complex (PLC). The TAP transporters are linked with the PLC; a target for cancers and viral immune evasion. But the mechanisms whereby the cancer-derived mutations in TAP1-TAP2 or viral factors targeting the PLC, interfere peptide transport are only emerging. This study describes that transit of peptides through TAP can take place via two different channels (4 or 8 helices) depending on peptide length and sequence. Molecular dynamics and binding affinity predictions of peptide-transporters demonstrated that smaller peptides (8-10 mers; e.g. AAGIGILTV, SIINFEKL) can transport quickly through the transport tunnel compared to longer peptides (15-mer; e.g. ENPVVHFFKNIVTPR). In line with a regulated and selective peptide transport by TAPs, the immunopeptidome upon IFN-γ treatment in melanoma cells induced the shorter length (9-mer) peptide presentation over MHC-I that exhibit a relatively weak binding affinity with TAP. A conserved distance between N and C terminus residues of the studied peptides in the transport tunnel were reported. Furthermore, by adversely interacting with the TAP transport passage or affecting TAPNBD domains tilt movement, the viral proteins and cancer-derived mutations in TAP1-TAP2 may induce allosteric effects in TAP that block conformation of the tunnel (closed towards ER lumen). Interestingly, some cancer-associated mutations (e.g. TAP1R372Q and TAP2R373H) can specifically interfere with selective transport channels (i.e. for longer-peptides). These results provide a model for how viruses and cancer-associated mutations targeting TAP interfaces can affect MHC-I antigen presentation, and how the IFN-γ pathway alters MHC-I antigen presentation via the kinetics of peptide transport.
Collapse
Affiliation(s)
- Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Marcos Mayordomo
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Irena Dapic
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Javier Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland EH4 2XR, United Kingdom
| | - Ted Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland EH4 2XR, United Kingdom
| | - Robin Fahraeus
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- Department of Medical Biosciences, Building 6M, Umeå University, 901 85 Umeå, Sweden
- RECAMO, Masaryk Memorial Cancer Institute, Zlutykopec 7, 65653 Brno, Czech Republic
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
9
|
Abstract
ATP-binding cassette (ABC) transporters constitute one of the largest and most ancient protein superfamilies found in all living organisms. They function as molecular machines by coupling ATP binding, hydrolysis, and phosphate release to translocation of diverse substrates across membranes. The substrates range from vitamins, steroids, lipids, and ions to peptides, proteins, polysaccharides, and xenobiotics. ABC transporters undergo substantial conformational changes during substrate translocation. A comprehensive understanding of their inner workings thus requires linking these structural rearrangements to the different functional state transitions. Recent advances in single-particle cryogenic electron microscopy have not only delivered crucial information on the architecture of several medically relevant ABC transporters and their supramolecular assemblies, including the ATP-sensitive potassium channel and the peptide-loading complex, but also made it possible to explore the entire conformational space of these nanomachines under turnover conditions and thereby gain detailed mechanistic insights into their mode of action.
Collapse
Affiliation(s)
- Christoph Thomas
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; ,
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; ,
| |
Collapse
|
10
|
Barbet G, Nair-Gupta P, Schotsaert M, Yeung ST, Moretti J, Seyffer F, Metreveli G, Gardner T, Choi A, Tortorella D, Tampé R, Khanna KM, García-Sastre A, Blander JM. TAP dysfunction in dendritic cells enables noncanonical cross-presentation for T cell priming. Nat Immunol 2021; 22:497-509. [PMID: 33790474 PMCID: PMC8981674 DOI: 10.1038/s41590-021-00903-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 02/22/2021] [Indexed: 02/01/2023]
Abstract
Classic major histocompatibility complex class I (MHC-I) presentation relies on shuttling cytosolic peptides into the endoplasmic reticulum (ER) by the transporter associated with antigen processing (TAP). Viruses disable TAP to block MHC-I presentation and evade cytotoxic CD8+ T cells. Priming CD8+ T cells against these viruses is thought to rely solely on cross-presentation by uninfected TAP-functional dendritic cells. We found that protective CD8+ T cells could be mobilized during viral infection even when TAP was absent in all hematopoietic cells. TAP blockade depleted the endosomal recycling compartment of MHC-I molecules and, as such, impaired Toll-like receptor-regulated cross-presentation. Instead, MHC-I molecules accumulated in the ER-Golgi intermediate compartment (ERGIC), sequestered away from Toll-like receptor control, and coopted ER-SNARE Sec22b-mediated vesicular traffic to intersect with internalized antigen and rescue cross-presentation. Thus, when classic MHC-I presentation and endosomal recycling compartment-dependent cross-presentation are impaired in dendritic cells, cell-autonomous noncanonical cross-presentation relying on ERGIC-derived MHC-I counters TAP dysfunction to nevertheless mediate CD8+ T cell priming.
Collapse
Affiliation(s)
- Gaëtan Barbet
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- The Child Health Institute of New Jersey, and Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Priyanka Nair-Gupta
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Janssen Research and Development LLC, Spring House, PA, USA
| | - Michael Schotsaert
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen T Yeung
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Disease, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Julien Moretti
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Fabian Seyffer
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Giorgi Metreveli
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Gardner
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, New York, NY, USA
- ArsenalBio, San Francisco, CA, USA
| | - Angela Choi
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Moderna Inc., Cambridge, MA, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Kamal M Khanna
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Trowitzsch S, Tampé R. Multifunctional Chaperone and Quality Control Complexes in Adaptive Immunity. Annu Rev Biophys 2020; 49:135-161. [PMID: 32004089 DOI: 10.1146/annurev-biophys-121219-081643] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The fundamental process of adaptive immunity relies on the differentiation of self from nonself. Nucleated cells are continuously monitored by effector cells of the immune system, which police the peptide status presented via cell surface molecules. Recent integrative structural approaches have provided insights toward our understanding of how sophisticated cellular machineries shape such hierarchical immune surveillance. Biophysical and structural achievements were invaluable for defining the interconnection of many key factors during antigen processing and presentation, and helped to solve several conundrums that persisted for many years. In this review, we illuminate the numerous quality control machineries involved in different steps during the maturation of major histocompatibility complex class I (MHC I) proteins, from their synthesis in the endoplasmic reticulum to folding and trafficking via the secretory pathway, optimization of antigenic cargo, final release to the cell surface, and engagement with their cognate receptors on cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; ,
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; ,
| |
Collapse
|
12
|
Praest P, Liaci AM, Förster F, Wiertz EJ. New insights into the structure of the MHC class I peptide-loading complex and mechanisms of TAP inhibition by viral immune evasion proteins. Mol Immunol 2019; 113:103-114. [DOI: 10.1016/j.molimm.2018.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
|
13
|
Holland IB. Rise and rise of the ABC transporter families. Res Microbiol 2019; 170:304-320. [PMID: 31442613 DOI: 10.1016/j.resmic.2019.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/30/2019] [Accepted: 08/13/2019] [Indexed: 01/15/2023]
Abstract
This review will inevitably be influenced by my personal experience and personal view of the progression of this amazing family of proteins. This has generated a huge literature in over nearly five decades, some ideas have bloomed and faded while others have persisted, other contributions simply become redundant, overtaken by better techniques. At the outset, the pioneers had no idea of the magnitude of the topic they were working on, then a very rough idea of the significance emerged and, progressively, the picture becomes sharper and finally extraordinary. I have tried to produce at least an outline of that progression. My apologies for the also inevitable omissions, especially relating to the mass of biochemical and spectroscopy and genetical studies. I decided to prioritise structural biology because structures when successful are definitive and of course provide a 'visual' image. However, I tried to limit the structural aspects to the proteins that reflected the main advances.
Collapse
Affiliation(s)
- I Barry Holland
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Sud, Orsay, France.
| |
Collapse
|
14
|
Thomas C, Tampé R. MHC I chaperone complexes shaping immunity. Curr Opin Immunol 2019; 58:9-15. [DOI: 10.1016/j.coi.2019.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/16/2018] [Accepted: 01/04/2019] [Indexed: 01/21/2023]
|
15
|
Liu R, Ma Y, Chen X. Quantitative assessment of the association between TAP2 rs241447 polymorphism and cancer risk. J Cell Biochem 2019; 120:15867-15873. [PMID: 31074096 DOI: 10.1002/jcb.28857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/05/2019] [Accepted: 02/14/2019] [Indexed: 12/24/2022]
Abstract
The findings regarding the relation of transporter associated with antigen processing (TAP) to cancer risk have been inconsistent. The aim of this study was to comprehensively evaluate the association between TAP2 rs241447 polymorphism and cancer susceptibility. A meta-analysis of nine investigations with 2800 cases and 1620 controls was conducted to gain a better understanding of the effect of TAP2 rs241447 polymorphism on cancer risk. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate the strength of the correlation between TAP2 gene polymorphism and cancer susceptibility. The pooled results from TAP2 rs241447 polymorphism showed a decreased risk of cancer in two dominant genetic models (GG + AG vs AA: OR = 0.86, 95% CI, 0.75-0.99; AG vs AA: OR = 0.85, 95% CI, 0.73-0.99). From the subgroup analysis, decreased cancer susceptibility was found in Caucasians (GG + AG vs AA: OR = 0.82, 95% CI, 0.68-0.99), especially among the subgroup of cervical carcinoma (GG + AG vs AA: OR = 0.82, 95% CI, 0.69-0.96; AG vs AA: OR = 0.83, 95% CI, 0.70-0.99). Overall, the results suggest that TAP2 rs241447 polymorphism contributes to decreased cancer susceptibility.
Collapse
Affiliation(s)
- Rongzeng Liu
- Department of Immunology, Medical College, Henan University of Science and Technology, Luoyang, China
| | - Yan Ma
- Network Information Center, Children's Hospital of Kaifeng City, Kaifeng, China
| | - Xiafei Chen
- Network Information Center, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
16
|
Trowitzsch S, Tampé R. ABC Transporters in Dynamic Macromolecular Assemblies. J Mol Biol 2018; 430:4481-4495. [DOI: 10.1016/j.jmb.2018.07.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 12/28/2022]
|
17
|
Diederichs T, Nguyen QH, Urban M, Tampé R, Tornow M. Transparent Nanopore Cavity Arrays Enable Highly Parallelized Optical Studies of Single Membrane Proteins on Chip. NANO LETTERS 2018; 18:3901-3910. [PMID: 29741381 DOI: 10.1021/acs.nanolett.8b01252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Membrane proteins involved in transport processes are key targets for pharmaceutical research and industry. Despite continuous improvements and new developments in the field of electrical readouts for the analysis of transport kinetics, a well-suited methodology for high-throughput characterization of single transporters with nonionic substrates and slow turnover rates is still lacking. Here, we report on a novel architecture of silicon chips with embedded nanopore microcavities, based on a silicon-on-insulator technology for high-throughput optical readouts. Arrays containing more than 14 000 inverted-pyramidal cavities of 50 femtoliter volumes and 80 nm circular pore openings were constructed via high-resolution electron-beam lithography in combination with reactive ion etching and anisotropic wet etching. These cavities feature both, an optically transparent bottom and top cap. Atomic force microscopy analysis reveals an overall extremely smooth chip surface, particularly in the vicinity of the nanopores, which exhibits well-defined edges. Our unprecedented transparent chip design provides parallel and independent fluorescent readout of both cavities and buffer reservoir for unbiased single-transporter recordings. Spreading of large unilamellar vesicles with efficiencies up to 96% created nanopore-supported lipid bilayers, which are stable for more than 1 day. A high lipid mobility in the supported membrane was determined by fluorescent recovery after photobleaching. Flux kinetics of α-hemolysin were characterized at single-pore resolution with a rate constant of 0.96 ± 0.06 × 10-3 s-1. Here, we deliver an ideal chip platform for pharmaceutical research, which features high parallelism and throughput, synergistically combined with single-transporter resolution.
Collapse
Affiliation(s)
- Tim Diederichs
- Institute of Biochemistry, Biocenter , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/M. , Germany
| | - Quoc Hung Nguyen
- Molecular Electronics , Technical University of Munich , Theresienstrasse 90 , 80333 Munich , Germany
| | - Michael Urban
- Institute of Biochemistry, Biocenter , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/M. , Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/M. , Germany
- Cluster of Excellence Frankfurt (CEF) Macromolecular Complexes ; Goethe University Frankfurt , Max-von-Laue-Strasse 9 , 60438 Frankfurt/M. , Germany
| | - Marc Tornow
- Molecular Electronics , Technical University of Munich , Theresienstrasse 90 , 80333 Munich , Germany
- Fraunhofer Research Institution for Microsystems and Solid State Technologies (EMFT) , Hansastrasse 27d , 80686 Munich , Germany
- Center for NanoScience (CeNS) , Ludwig-Maximilians-University , Geschwister-Scholl Platz 1 , 80539 Munich , Germany
| |
Collapse
|
18
|
Abele R, Tampé R. Moving the Cellular Peptidome by Transporters. Front Cell Dev Biol 2018; 6:43. [PMID: 29761100 PMCID: PMC5937356 DOI: 10.3389/fcell.2018.00043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022] Open
Abstract
Living matter is defined by metastability, implying a tightly balanced synthesis and turnover of cellular components. The first step of eukaryotic protein degradation via the ubiquitin-proteasome system (UPS) leads to peptides, which are subsequently degraded to single amino acids by an armada of proteases. A small fraction of peptides, however, escapes further cytosolic destruction and is transported by ATP-binding cassette (ABC) transporters into the endoplasmic reticulum (ER) and lysosomes. The ER-resident heterodimeric transporter associated with antigen processing (TAP) is a crucial component in adaptive immunity for the transport and loading of peptides onto major histocompatibility complex class I (MHC I) molecules. Although the function of the lysosomal resident homodimeric TAPL-like (TAPL) remains, until today, only loosely defined, an involvement in immune defense is anticipated since it is highly expressed in dendritic cells and macrophages. Here, we compare the gene organization and the function of single domains of both peptide transporters. We highlight the structural organization, the modes of substrate binding and translocation as well as physiological functions of both organellar transporters.
Collapse
Affiliation(s)
- Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany.,Cluster of Excellence - Macromolecular Complexes, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
19
|
Spel L, Luteijn RD, Drijfhout JW, Nierkens S, Boes M, Wiertz EJH. Endocytosed soluble cowpox virus protein CPXV012 inhibits antigen cross-presentation in human monocyte-derived dendritic cells. Immunol Cell Biol 2018; 96:137-148. [PMID: 29363167 DOI: 10.1111/imcb.1024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/12/2017] [Accepted: 10/02/2017] [Indexed: 11/29/2022]
Abstract
Viruses may interfere with the MHC class I antigen presentation pathway in order to avoid CD8+ T cell-mediated immunity. A key target within this pathway is the peptide transporter TAP. This transporter plays a central role in MHC class I-mediated peptide presentation of endogenous antigens. In addition, TAP plays a role in antigen cross-presentation of exogenously derived antigens by dendritic cells (DCs). In this study, a soluble form of the cowpox virus TAP inhibitor CPXV012 is synthesized for exogenous delivery into the antigen cross-presentation route of human monocyte-derived (mo)DCs. We show that soluble CPXV012 localizes to TAP+ compartments that carry internalized antigen and is a potent inhibitor of antigen cross-presentation. CPXV012 stimulates the prolonged deposition of antigen fragments in storage compartments of moDCs, as a result of reduced endosomal acidification and reduced antigen proteolysis when soluble CPXV012 is present. Thus, a dual function can be proposed for CPXV012: inhibition of TAP-mediated peptide transport and inhibition of endosomal antigen degradation. We propose this second function for soluble CPXV012 can serve to interfere with antigen cross-presentation in a peptide transport-independent manner.
Collapse
Affiliation(s)
- Lotte Spel
- Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 EA, The Netherlands
| | - Rutger D Luteijn
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 EA, The Netherlands
| | - Jan W Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Stefan Nierkens
- Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 EA, The Netherlands
| | - Marianne Boes
- Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 EA, The Netherlands
| | - Emmanuel J H Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 EA, The Netherlands
| |
Collapse
|
20
|
Xia Z, Xu G, Yang X, Peng N, Zuo Q, Zhu S, Hao H, Liu S, Zhu Y. Inducible TAP1 Negatively Regulates the Antiviral Innate Immune Response by Targeting the TAK1 Complex. THE JOURNAL OF IMMUNOLOGY 2017; 198:3690-3704. [PMID: 28356387 DOI: 10.4049/jimmunol.1601588] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/03/2017] [Indexed: 12/17/2022]
Abstract
The innate immune response is critical for host defense and must be tightly controlled, but the molecular mechanisms responsible for its negative regulation are not yet completely understood. In this study, we report that transporter 1, ATP-binding cassette, subfamily B (TAP1), a virus-inducible endoplasmic reticulum-associated protein, negatively regulated the virus-triggered immune response. In this study, we observed upregulated expression of TAP1 following virus infection in human lung epithelial cells (A549), THP-1 monocytes, HeLa cells, and Vero cells. The overexpression of TAP1 enhanced virus replication by inhibiting the virus-triggered activation of NF-κB signaling and the production of IFNs, IFN-stimulated genes, and proinflammatory cytokines. TAP1 depletion had the opposite effect. In response to virus infection, TAP1 interacted with the TGF-β-activated kinase (TAK)1 complex and impaired the phosphorylation of TAK1, subsequently suppressing the phosphorylation of the IκB kinase complex and NF-κB inhibitor α (IκBα) as well as NF-κB nuclear translocation. Our findings collectively suggest that TAP1 plays a novel role in the negative regulation of virus-triggered NF-κB signaling and the innate immune response by targeting the TAK1 complex.
Collapse
Affiliation(s)
- Zhangchuan Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Gang Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaodan Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Nanfang Peng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qi Zuo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shengli Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hua Hao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shi Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
21
|
Thomas C, Tampé R. Proofreading of Peptide-MHC Complexes through Dynamic Multivalent Interactions. Front Immunol 2017; 8:65. [PMID: 28228754 PMCID: PMC5296336 DOI: 10.3389/fimmu.2017.00065] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/16/2017] [Indexed: 11/18/2022] Open
Abstract
The adaptive immune system is able to detect and destroy cells that are malignantly transformed or infected by intracellular pathogens. Specific immune responses against these cells are elicited by antigenic peptides that are presented on major histocompatibility complex class I (MHC I) molecules and recognized by cytotoxic T lymphocytes at the cell surface. Since these MHC I-presented peptides are generated in the cytosol by proteasomal protein degradation, they can be metaphorically described as a window providing immune cells with insights into the state of the cellular proteome. A crucial element of MHC I antigen presentation is the peptide-loading complex (PLC), a multisubunit machinery, which contains as key constituents the transporter associated with antigen processing (TAP) and the MHC I-specific chaperone tapasin (Tsn). While TAP recognizes and shuttles the cytosolic antigenic peptides into the endoplasmic reticulum (ER), Tsn samples peptides in the ER for their ability to form stable complexes with MHC I, a process called peptide proofreading or peptide editing. Through its selection of peptides that improve MHC I stability, Tsn contributes to the hierarchy of immunodominant peptide epitopes. Despite the fact that it concerns a key event in adaptive immunity, insights into the catalytic mechanism of peptide proofreading carried out by Tsn have only lately been gained via biochemical, biophysical, and structural studies. Furthermore, a Tsn homolog called TAP-binding protein-related (TAPBPR) has only recently been demonstrated to function as a second MHC I-specific chaperone and peptide proofreader. Although TAPBPR is PLC-independent and has a distinct allomorph specificity, it is likely to share a common catalytic mechanism with Tsn. This review focuses on the current knowledge of the multivalent protein–protein interactions and the concomitant dynamic molecular processes underlying peptide-proofreading catalysis. We do not only derive a model that highlights the common mechanistic principles shared by the MHC I editors Tsn and TAPBPR, and the MHC II editor HLA-DM, but also illustrate the distinct quality control strategies employed by these chaperones to sample epitopes. Unraveling the mechanistic underpinnings of catalyzed peptide proofreading will be crucial for a thorough understanding of many aspects of immune recognition, from infection control and tumor immunity to autoimmune diseases and transplant rejection.
Collapse
Affiliation(s)
- Christoph Thomas
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt , Frankfurt am Main , Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt , Frankfurt am Main , Germany
| |
Collapse
|
22
|
A dual inhibition mechanism of herpesviral ICP47 arresting a conformationally thermostable TAP complex. Sci Rep 2016; 6:36907. [PMID: 27845362 PMCID: PMC5109273 DOI: 10.1038/srep36907] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/24/2016] [Indexed: 11/09/2022] Open
Abstract
As a centerpiece of antigen processing, the ATP-binding cassette transporter associated with antigen processing (TAP) became a main target for viral immune evasion. The herpesviral ICP47 inhibits TAP function, thereby suppressing an adaptive immune response. Here, we report on a thermostable ICP47-TAP complex, generated by fusion of different ICP47 fragments. These fusion complexes allowed us to determine the direction and positioning in the central cavity of TAP. ICP47-TAP fusion complexes are arrested in a stable conformation, as demonstrated by MHC I surface expression, melting temperature, and the mutual exclusion of herpesviral TAP inhibitors. We unveiled a conserved region next to the active domain of ICP47 as essential for the complete stabilization of the TAP complex. Binding of the active domain of ICP47 arrests TAP in an open inward facing conformation rendering the complex inaccessible for other viral factors. Based on our findings, we propose a dual interaction mechanism for ICP47. A per se destabilizing active domain inhibits the function of TAP, whereas a conserved C-terminal region additionally stabilizes the transporter. These new insights into the ICP47 inhibition mechanism can be applied for future structural analyses of the TAP complex.
Collapse
|
23
|
Lehnert E, Mao J, Mehdipour AR, Hummer G, Abele R, Glaubitz C, Tampé R. Antigenic Peptide Recognition on the Human ABC Transporter TAP Resolved by DNP-Enhanced Solid-State NMR Spectroscopy. J Am Chem Soc 2016; 138:13967-13974. [DOI: 10.1021/jacs.6b07426] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | - Ahmad Reza Mehdipour
- Department
of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str.
3, 60438 Frankfurt
am Main, Germany
| | - Gerhard Hummer
- Department
of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str.
3, 60438 Frankfurt
am Main, Germany
| | | | | | | |
Collapse
|
24
|
Kollmannsperger A, Sharei A, Raulf A, Heilemann M, Langer R, Jensen KF, Wieneke R, Tampé R. Live-cell protein labelling with nanometre precision by cell squeezing. Nat Commun 2016; 7:10372. [PMID: 26822409 PMCID: PMC4740111 DOI: 10.1038/ncomms10372] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/30/2015] [Indexed: 11/08/2022] Open
Abstract
Live-cell labelling techniques to visualize proteins with minimal disturbance are important; however, the currently available methods are limited in their labelling efficiency, specificity and cell permeability. We describe high-throughput protein labelling facilitated by minimalistic probes delivered to mammalian cells by microfluidic cell squeezing. High-affinity and target-specific tracing of proteins in various subcellular compartments is demonstrated, culminating in photoinduced labelling within live cells. Both the fine-tuned delivery of subnanomolar concentrations and the minimal size of the probe allow for live-cell super-resolution imaging with very low background and nanometre precision. This method is fast in probe delivery (∼ 1,000,000 cells per second), versatile across cell types and can be readily transferred to a multitude of proteins. Moreover, the technique succeeds in combination with well-established methods to gain multiplexed labelling and has demonstrated potential to precisely trace target proteins, in live mammalian cells, by super-resolution microscopy.
Collapse
Affiliation(s)
- Alina Kollmannsperger
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt/Main, Germany
| | - Armon Sharei
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), 500 Main Street, Building 76-661, Cambridge, Massachusetts 02139, USA
| | - Anika Raulf
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue Strasse 7, 60438 Frankfurt/Main, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue Strasse 7, 60438 Frankfurt/Main, Germany
| | - Robert Langer
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), 500 Main Street, Building 76-661, Cambridge, Massachusetts 02139, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), 500 Main Street, Building 76-661, Cambridge, Massachusetts 02139, USA
| | - Ralph Wieneke
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt/Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt/Main, Germany
- Cluster of Excellence—Macromolecular Complexes, Goethe-University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt/Main, Germany
| |
Collapse
|
25
|
Raghavan M, Geng J. HLA-B polymorphisms and intracellular assembly modes. Mol Immunol 2015; 68:89-93. [PMID: 26239417 DOI: 10.1016/j.molimm.2015.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/29/2015] [Accepted: 07/07/2015] [Indexed: 02/08/2023]
Abstract
Human leukocyte antigen (HLA) class I molecules are ligands for antigen receptors of cytotoxic T cells (CTL) and inhibitory receptors of natural killer (NK) cells. The high degree of HLA class I polymorphism allows for the selection of distinct and diverse sets of antigenic peptide ligands for presentation to CTL. The extensive polymorphisms of the HLA class I genes also result in large variations in their intracellular folding and assembly characteristics. Recent findings indicate that North American HLA-B variants differ significantly in the stabilities of their peptide-deficient forms and in the requirements for the endoplasmic reticulum (ER)-resident factor tapasin for proper assembly. In HIV-infected individuals, the presence of tapasin-independent HLA-B allotypes links to more rapid progression to death. Further studies are important to better understand how the intrinsic structural characteristics of HLA class I folding intermediates affect immune responses mediated by CTL and NK cells.
Collapse
Affiliation(s)
- Malini Raghavan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Jie Geng
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
26
|
Verweij MC, Horst D, Griffin BD, Luteijn RD, Davison AJ, Ressing ME, Wiertz EJHJ. Viral inhibition of the transporter associated with antigen processing (TAP): a striking example of functional convergent evolution. PLoS Pathog 2015; 11:e1004743. [PMID: 25880312 PMCID: PMC4399834 DOI: 10.1371/journal.ppat.1004743] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Herpesviruses are large DNA viruses that are highly abundant within their host populations. Even in the presence of a healthy immune system, these viruses manage to cause lifelong infections. This persistence is partially mediated by the virus entering latency, a phase of infection characterized by limited viral protein expression. Moreover, herpesviruses have devoted a significant part of their coding capacity to immune evasion strategies. It is believed that the close coexistence of herpesviruses and their hosts has resulted in the evolution of viral proteins that specifically attack multiple arms of the host immune system. Cytotoxic T lymphocytes (CTLs) play an important role in antiviral immunity. CTLs recognize their target through viral peptides presented in the context of MHC molecules at the cell surface. Every herpesvirus studied to date encodes multiple immune evasion molecules that effectively interfere with specific steps of the MHC class I antigen presentation pathway. The transporter associated with antigen processing (TAP) plays a key role in the loading of viral peptides onto MHC class I molecules. This is reflected by the numerous ways herpesviruses have developed to block TAP function. In this review, we describe the characteristics and mechanisms of action of all known virus-encoded TAP inhibitors. Orthologs of these proteins encoded by related viruses are identified, and the conservation of TAP inhibition is discussed. A phylogenetic analysis of members of the family Herpesviridae is included to study the origin of these molecules. In addition, we discuss the characteristics of the first TAP inhibitor identified outside the herpesvirus family, namely, in cowpox virus. The strategies of TAP inhibition employed by viruses are very distinct and are likely to have been acquired independently during evolution. These findings and the recent discovery of a non-herpesvirus TAP inhibitor represent a striking example of functional convergent evolution.
Collapse
Affiliation(s)
- Marieke C. Verweij
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daniëlle Horst
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bryan D. Griffin
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rutger D. Luteijn
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Andrew J. Davison
- MRC—University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Maaike E. Ressing
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmanuel J. H. J. Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
27
|
Editorial Overview: Elucidation of Protein Translocation Pathways, Part I. J Mol Biol 2015; 427:997-8. [DOI: 10.1016/j.jmb.2015.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Fischbach H, Döring M, Nikles D, Lehnert E, Baldauf C, Kalinke U, Tampé R. Ultrasensitive quantification of TAP-dependent antigen compartmentalization in scarce primary immune cell subsets. Nat Commun 2015; 6:6199. [PMID: 25656091 PMCID: PMC4347055 DOI: 10.1038/ncomms7199] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/05/2015] [Indexed: 11/09/2022] Open
Abstract
Presentation of peptides on major histocompatibility complex class I (MHC I) is essential for the establishment and maintenance of self-tolerance, priming of antigen-specific CD8(+) T cells and the exertion of several T-cell effector functions. Cytosolic proteasomes continuously degrade proteins into peptides, which are actively transported across the endoplasmic reticulum (ER) membrane by the transporter associated with antigen processing (TAP). In the ER lumen antigenic peptides are loaded onto MHC I, which is displayed on the cell surface. Here we describe an innovative flow cytometric approach to monitor time-resolved ER compartmentalization of antigenic peptides. This assay allows the analysis of distinct primary human immune cell subsets at reporter peptide concentrations of 1 nM. Thus, this ultrasensitive method for the first time permits quantification of TAP activity under close to physiological conditions in scarce primary cell subsets such as antigen cross-presenting dendritic cells.
Collapse
Affiliation(s)
- Hanna Fischbach
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt/Main, Germany
| | - Marius Döring
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz-Centre for Infection Research and the Hannover Medical School, Feodor-Lynen Str. 7-9, 30625 Hannover, Germany
| | - Daphne Nikles
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt/Main, Germany
| | - Elisa Lehnert
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt/Main, Germany
| | - Christoph Baldauf
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt/Main, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz-Centre for Infection Research and the Hannover Medical School, Feodor-Lynen Str. 7-9, 30625 Hannover, Germany
| | - Robert Tampé
- 1] Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt/Main, Germany [2] Cluster of Excellence Frankfurt - Macromolecular Complexes, Goethe-University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt/Main, Germany
| |
Collapse
|