1
|
Dias C, Ballout N, Morla G, Alileche K, Santiago C, Guerrera IC, Chaubet A, Ausseil J, Trudel S. Extracellular vesicles from microglial cells activated by abnormal heparan sulfate oligosaccharides from Sanfilippo patients impair neuronal dendritic arborization. Mol Med 2024; 30:197. [PMID: 39497064 PMCID: PMC11536927 DOI: 10.1186/s10020-024-00953-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/07/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND In mucopolysaccharidosis type III (MPS III, also known as Sanfilippo syndrome), a pediatric neurodegenerative disorder, accumulation of abnormal glycosaminoglycans (GAGs) induces severe neuroinflammation by triggering the microglial pro-inflammatory cytokines production via a TLR4-dependent pathway. But the extent of the microglia contribution to the MPS III neuropathology remains unclear. Extracellular vesicles (EVs) mediate intercellular communication and are known to participate in the pathogenesis of adult neurodegenerative diseases. However, characterization of the molecular profiles of EVs released by MPS III microglia and their effects on neuronal functions have not been described. METHODS Here, we isolated EVs secreted by the microglial cells after treatment with GAGs purified from urines of Sanfilippo patients (sfGAGs-EVs) or from age-matched healthy subjects (nGAGs-EVs) to explore the EVs' proteins and small RNA profiles using LC-MS/MS and RNA sequencing. We next performed a functional assay by immunofluorescence following nGAGs- or sfGAGs-EVs uptake by WT primary cortical neurons and analyzed their extensions metrics after staining of βIII-tubulin and MAP2 by confocal microscopy. RESULTS Functional enrichment analysis for both proteomics and RNA sequencing data from sfGAGs-EVs revealed a specific content involved in neuroinflammation and neurodevelopment pathways. Treatment of cortical neurons with sfGAGs-EVs induced a disease-associated phenotype demonstrated by a lower total neurite surface area, an impaired somatodendritic compartment, and a higher number of immature dendritic spines. CONCLUSIONS This study shows, for the first time, that GAGs from patients with Sanfilippo syndrome can induce microglial secretion of EVs that deliver a specific molecular message to recipient naive neurons, while promoting the neuroinflammation, and depriving neurons of neurodevelopmental factors. This work provides a framework for further studies of biomarkers to evaluate efficiency of emerging therapies.
Collapse
Affiliation(s)
- Chloé Dias
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm U1291, CNRS U5051, University of Toulouse, Toulouse, France
| | - Nissrine Ballout
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm U1291, CNRS U5051, University of Toulouse, Toulouse, France
| | - Guillaume Morla
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm U1291, CNRS U5051, University of Toulouse, Toulouse, France
| | - Katia Alileche
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm U1291, CNRS U5051, University of Toulouse, Toulouse, France
| | - Christophe Santiago
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm U1291, CNRS U5051, University of Toulouse, Toulouse, France
| | - Ida Chiara Guerrera
- Necker Proteomics Platform, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Université Paris Cité, 75015, Paris, France
| | - Adeline Chaubet
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm U1291, CNRS U5051, University of Toulouse, Toulouse, France
| | - Jerome Ausseil
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm U1291, CNRS U5051, University of Toulouse, Toulouse, France
- Laboratoire de Biochimie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Stephanie Trudel
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm U1291, CNRS U5051, University of Toulouse, Toulouse, France.
- Laboratoire de Biochimie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.
| |
Collapse
|
2
|
Muenzer J, Ho C, Lau H, Dant M, Fuller M, Boulos N, Dickson P, Ellinwood NM, Jones SA, Zanelli E, O'Neill C. Community consensus for Heparan sulfate as a biomarker to support accelerated approval in Neuronopathic Mucopolysaccharidoses. Mol Genet Metab 2024; 142:108535. [PMID: 39018614 DOI: 10.1016/j.ymgme.2024.108535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
Mucopolysaccharidoses (MPS) disorders are a group of ultra-rare, inherited, lysosomal storage diseases caused by enzyme deficiencies that result in accumulation of glycosaminoglycans (GAGs) in cells throughout the body including the brain, typically leading to early death. Current treatments do not address the progressive cognitive impairment observed in patients with neuronopathic MPS disease. The rarity and clinical heterogeneity of these disorders as well as pre-existing brain disease in clinically diagnosed patients make the development of new therapeutics utilizing a traditional regulatory framework extremely challenging. Children with neuronopathic MPS disorders will likely sustain irreversible brain damage if randomized to a placebo or standard-of-care treatment arm that does not address brain disease. The United States Food and Drug Administration (FDA) recognized these challenges, and, in 2020, issued final guidance for industry on slowly progressive, low-prevalence, rare diseases with substrate deposition that result from single enzyme defects, outlining a path for generating evidence of effectiveness to support accelerated approval based on reduction of substrate accumulation [1]. Neuronopathic MPS disorders, which are characterized by the accumulation of the GAG heparan sulfate (HS) in the brain, fit the intended disease characteristics for which this guidance was written, but to date, this guidance has not yet been applied to any therapeutic candidate for MPS. In February 2024, the Reagan-Udall Foundation for the FDA convened a public workshop for representatives from the FDA, patient advocacy groups, clinical and basic science research, and industry to explore a case study of using cerebrospinal fluid (CSF) HS as a relevant biomarker to support accelerated approval of new therapeutics for neuronopathic MPS disorders. This review provides a summary of the MPS presentations at the workshop and perspective on the path forward for neuronopathic MPS disorders.
Collapse
Affiliation(s)
- Joseph Muenzer
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Carole Ho
- Denali Therapeutics, 161 Oyster Point Boulevard, South San Francisco, CA 94080, USA.
| | - Heather Lau
- Ultragenyx Pharmaceutical, Inc., 60 Leveroni Court, Novato, CA 94949. USA.
| | - Mark Dant
- The Ryan Foundation, Inc., 5309 McPherson Blvd. 105 #284, Fort Worth, Texas 76123, USA
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital and Adelaide Medical School and School of Biological Sciences, University of Adelaide, Adelaide, 5005, SA, Australia.
| | | | - Patricia Dickson
- Washington University School of Medicine, 4444 Forest Park, Suite 5400, St. Louis, MO 63108, USA.
| | | | - Simon A Jones
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK.
| | - Eric Zanelli
- Allievex Corp., PO Box 1056, Marblehead, MA 01945, USA.
| | - Cara O'Neill
- Cure Sanfilippo Foundation, PO Box 6901, Columbia, SC 29260, USA.
| |
Collapse
|
3
|
Scarcella M, Scerra G, Ciampa M, Caterino M, Costanzo M, Rinaldi L, Feliciello A, Anzilotti S, Fiorentino C, Renna M, Ruoppolo M, Pavone LM, D’Agostino M, De Pasquale V. Metabolic rewiring and autophagy inhibition correct lysosomal storage disease in mucopolysaccharidosis IIIB. iScience 2024; 27:108959. [PMID: 38361619 PMCID: PMC10864807 DOI: 10.1016/j.isci.2024.108959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/28/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Mucopolysaccharidoses (MPSs) are lysosomal disorders with neurological involvement for which no cure exists. Here, we show that recombinant NK1 fragment of hepatocyte growth factor rescues substrate accumulation and lysosomal defects in MPS I, IIIA and IIIB patient fibroblasts. We investigated PI3K/Akt pathway, which is of crucial importance for neuronal function and survival, and demonstrate that PI3K inhibition abolishes NK1 therapeutic effects. We identified that autophagy inhibition, by Beclin1 silencing, reduces MPS IIIB phenotype and that NK1 downregulates autophagic-lysosome (ALP) gene expression, suggesting a possible contribution of autophagosome biogenesis in MPS. Indeed, metabolomic analyses revealed defects of mitochondrial activity accompanied by anaerobic metabolism and inhibition of AMP-activated protein kinase (AMPK), which acts on metabolism and autophagy, rescues lysosomal defects. These results provide insights into the molecular mechanisms of MPS IIIB physiopathology, supporting the development of new promising approaches based on autophagy inhibition and metabolic rewiring to correct lysosomal pathology in MPSs.
Collapse
Affiliation(s)
- Melania Scarcella
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Gianluca Scerra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Mariangela Ciampa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80131 Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80131 Naples, Italy
| | - Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Serenella Anzilotti
- Department of Science and Technology, University of Sannio, Via F. de Sanctis, 82100 Benevento, Italy
| | - Chiara Fiorentino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Maurizio Renna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80131 Naples, Italy
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Massimo D’Agostino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Valeria De Pasquale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy
| |
Collapse
|
4
|
Bratkovic D, Gravance C, Ketteridge D, Krishnan R, Navuru D, Sheehan M, Skerrett D, Imperiale M. Open-label, single-center, clinical study evaluating the safety, tolerability and clinical effects of pentosan polysulfate sodium in subjects with mucopolysaccharidosis I. J Inherit Metab Dis 2024; 47:355-365. [PMID: 38467596 DOI: 10.1002/jimd.12715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/01/2023] [Accepted: 01/05/2024] [Indexed: 03/13/2024]
Abstract
Lysosomal enzyme deficiency in mucopolysaccharidosis (MPS) I results in glycosaminoglycan (GAG) accumulation leading to pain and limited physical function. Disease-modifying treatments for MPS I, enzyme replacement, and hematopoietic stem cell therapy (HSCT), do not completely resolve MPS I symptoms, particularly skeletal manifestations. The GAG reduction, anti-inflammatory, analgesic, and tissue remodeling properties of pentosan polysulfate sodium (PPS) may provide disease-modifying treatment for musculoskeletal symptoms and joint inflammation in MPS I following ERT and/or HSCT. The safety and efficacy of PPS were evaluated in four subjects with MPS I aged 14-19 years, previously treated with ERT and/or HSCT. Subjects received doses of 0.75 mg/kg or 1.5 mg/kg PPS via subcutaneous injections weekly for 12 weeks, then every 2 weeks for up to 72 weeks. PPS was well tolerated at both doses with no serious adverse events. MPS I GAG fragment (UA-HNAc [1S]) levels decreased at 73 weeks. Cartilage degradation biomarkers serum C-telopeptide of crosslinked collagen (CTX) type I (CTX-I) and type II (CTX-II) and urine CTX-II decreased in all subjects through 73 weeks. PROMIS scores for pain interference, pain behavior, and fatigue decreased in all subjects through 73 weeks. Physical function, measured by walking distance and dominant hand function, improved at 49 and 73 weeks. Decreased GAG fragments and cartilage degradation biomarkers, and positive PROMIS outcomes support continued study of PPS as a potential disease-modifying treatment for MPS I with improved pain and function outcomes.
Collapse
Affiliation(s)
- Drago Bratkovic
- Metabolic Unit, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Curtis Gravance
- Paradigm Biopharmaceuticals Ltd., North Adelaide, Victoria, Australia
| | - David Ketteridge
- Metabolic Unit, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Ravi Krishnan
- Paradigm Biopharmaceuticals Ltd., North Adelaide, Victoria, Australia
| | - Divya Navuru
- Paradigm Biopharmaceuticals Ltd., North Adelaide, Victoria, Australia
| | - Michael Sheehan
- Paradigm Biopharmaceuticals Ltd., North Adelaide, Victoria, Australia
| | - Donna Skerrett
- Paradigm Biopharmaceuticals Ltd., North Adelaide, Victoria, Australia
| | - Michael Imperiale
- Paradigm Biopharmaceuticals Ltd., North Adelaide, Victoria, Australia
| |
Collapse
|
5
|
Ago Y, Rintz E, Musini KS, Ma Z, Tomatsu S. Molecular Mechanisms in Pathophysiology of Mucopolysaccharidosis and Prospects for Innovative Therapy. Int J Mol Sci 2024; 25:1113. [PMID: 38256186 PMCID: PMC10816168 DOI: 10.3390/ijms25021113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Mucopolysaccharidoses (MPSs) are a group of inborn errors of the metabolism caused by a deficiency in the lysosomal enzymes required to break down molecules called glycosaminoglycans (GAGs). These GAGs accumulate over time in various tissues and disrupt multiple biological systems, including catabolism of other substances, autophagy, and mitochondrial function. These pathological changes ultimately increase oxidative stress and activate innate immunity and inflammation. We have described the pathophysiology of MPS and activated inflammation in this paper, starting with accumulating the primary storage materials, GAGs. At the initial stage of GAG accumulation, affected tissues/cells are reversibly affected but progress irreversibly to: (1) disruption of substrate degradation with pathogenic changes in lysosomal function, (2) cellular dysfunction, secondary/tertiary accumulation (toxins such as GM2 or GM3 ganglioside, etc.), and inflammatory process, and (3) progressive tissue/organ damage and cell death (e.g., skeletal dysplasia, CNS impairment, etc.). For current and future treatment, several potential treatments for MPS that can penetrate the blood-brain barrier and bone have been proposed and/or are in clinical trials, including targeting peptides and molecular Trojan horses such as monoclonal antibodies attached to enzymes via receptor-mediated transport. Gene therapy trials with AAV, ex vivo LV, and Sleeping Beauty transposon system for MPS are proposed and/or underway as innovative therapeutic options. In addition, possible immunomodulatory reagents that can suppress MPS symptoms have been summarized in this review.
Collapse
Affiliation(s)
- Yasuhiko Ago
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland;
| | - Krishna Sai Musini
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Zhengyu Ma
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
| | - Shunji Tomatsu
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1112, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
6
|
Veraldi N, Quadri ID, van de Looij Y, Modernell LM, Sinquin C, Zykwinska A, Tournier BB, Dalonneau F, Li H, Li JP, Millet P, Vives R, Colliec-Jouault S, de Agostini A, Sanches EF, Sizonenko SV. Low-molecular weight sulfated marine polysaccharides: Promising molecules to prevent neurodegeneration in mucopolysaccharidosis IIIA? Carbohydr Polym 2023; 320:121214. [PMID: 37659814 DOI: 10.1016/j.carbpol.2023.121214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 09/04/2023]
Abstract
Mucopolysaccharidosis IIIA is a hereditary disease caused by mutations in the sulfamidase enzyme that participates in catabolism of heparan sulfate (HS), leading to HS fragment accumulation and multisystemic failure. No cure exists and death occurs around the second decade of life. Two low molecular weight highly sulfated compounds derived from marine diabolican and infernan exopolysaccharides (A5_3 and A5_4, respectively) with heparanase inhibiting properties were tested in a MPSIIIA cell line model, resulting in limited degradation of intracellular HS. Next, we observed the effects of intraperitoneal injections of the diabolican derivative A5_3 from 4 to 12 weeks of age on MPSIIIA mice. Brain metabolism and microstructure, levels of proteins and genes involved in MPSIIIA brain pathophysiology were also investigated. 1H-Magnetic Resonance Spectroscopy (MRS) indicated deficits in energetic metabolism, tissue integrity and neurotransmission at both 4 and 12 weeks in MPSIIIA mice, with partial protective effects of A5_3. Ex-vivo Diffusion Tensor Imaging (DTI) showed white matter microstructural damage in MPSIIIA, with noticeable protective effects of A5_3. Protein and gene expression assessments displayed both pro-inflammatory and pro-apoptotic profiles in MPSIIIA mice, with benefits of A5_3 counteracting neuroinflammation. Overall, derivative A5_3 was well tolerated and was shown to be efficient in preventing brain metabolism failure and inflammation, resulting in preserved brain microstructure in the context of MPSIIIA.
Collapse
Affiliation(s)
- Noemi Veraldi
- Division of Clinical Pathology, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland.
| | - Isabelle Dentand Quadri
- Department of Pathology and Immunology, Faculty of Medicine, Geneva University, Geneva, Switzerland.
| | - Yohan van de Looij
- Center for Biomedical Imaging, Animal Imaging Technology section, Federal Polytechnic School of Lausanne, Lausanne, Switzerland; Division of Development and Growth, Department of Pediatrics & Gynecology & Obstetrics, Children's Hospital, Geneva University Hospitals, Geneva, Switzerland.
| | - Laura Malaguti Modernell
- Division of Development and Growth, Department of Pediatrics & Gynecology & Obstetrics, Children's Hospital, Geneva University Hospitals, Geneva, Switzerland
| | | | | | - Benjamin B Tournier
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland.
| | | | - Honglian Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden.
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden.
| | - Philippe Millet
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland.
| | - Romain Vives
- University of Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France.
| | | | - Ariane de Agostini
- Division of Clinical Pathology, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, Geneva University, Geneva, Switzerland.
| | - Eduardo Farias Sanches
- Division of Development and Growth, Department of Pediatrics & Gynecology & Obstetrics, Children's Hospital, Geneva University Hospitals, Geneva, Switzerland.
| | - Stéphane V Sizonenko
- Division of Development and Growth, Department of Pediatrics & Gynecology & Obstetrics, Children's Hospital, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
7
|
Gaffke L, Rintz E, Pierzynowska K, Węgrzyn G. Actin Cytoskeleton Polymerization and Focal Adhesion as Important Factors in the Pathomechanism and Potential Targets of Mucopolysaccharidosis Treatment. Cells 2023; 12:1782. [PMID: 37443816 PMCID: PMC10341097 DOI: 10.3390/cells12131782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
The main approach used in the current therapy of mucopolysaccharidosis (MPS) is to reduce the levels of glycosaminoglycans (GAGs) in cells, the deposits considered to be the main cause of the disease. Previous studies have revealed significant differences in the expression of genes encoding proteins involved in many processes, like those related to actin filaments, in MPS cells. Since the regulation of actin filaments is essential for the intracellular transport of specific molecules, the process which may affect the course of MPSs, the aim of this study was to evaluate the changes that occur in the actin cytoskeleton and focal adhesion in cells derived from patients with this disease, as well as in the MPS I mouse model, and to assess whether they could be potential therapeutic targets for different MPS types. Western-blotting, flow cytometry and transcriptomic analyses were employed to address these issues. The levels of the key proteins involved in the studied processes, before and after specific treatment, were assessed. We have also analyzed transcripts whose levels were significantly altered in MPS cells. We identified genes whose expressions were changed in the majority of MPS types and those with particularly highly altered expression. For the first time, significant changes in the expression of genes involved in the actin cytoskeleton structure/functions were revealed which may be considered as an additional element in the pathogenesis of MPSs. Our results suggest the possibility of using the actin cytoskeleton as a potential target in therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Lidia Gaffke
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (E.R.); (K.P.); (G.W.)
| | | | | | | |
Collapse
|
8
|
Carvalho S, Santos JI, Moreira L, Gonçalves M, David H, Matos L, Encarnação M, Alves S, Coutinho MF. Neurological Disease Modeling Using Pluripotent and Multipotent Stem Cells: A Key Step towards Understanding and Treating Mucopolysaccharidoses. Biomedicines 2023; 11:biomedicines11041234. [PMID: 37189853 DOI: 10.3390/biomedicines11041234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Despite extensive research, the links between the accumulation of glycosaminoglycans (GAGs) and the clinical features seen in patients suffering from various forms of mucopolysaccharidoses (MPSs) have yet to be further elucidated. This is particularly true for the neuropathology of these disorders; the neurological symptoms are currently incurable, even in the cases where a disease-specific therapeutic approach does exist. One of the best ways to get insights on the molecular mechanisms driving that pathogenesis is the analysis of patient-derived cells. Yet, not every patient-derived cell recapitulates relevant disease features. For the neuronopathic forms of MPSs, for example, this is particularly evident because of the obvious inability to access live neurons. This scenario changed significantly with the advent of induced pluripotent stem cell (iPSC) technologies. From then on, a series of differentiation protocols to generate neurons from iPSC was developed and extensively used for disease modeling. Currently, human iPSC and iPSC-derived cell models have been generated for several MPSs and numerous lessons were learnt from their analysis. Here we review most of those studies, not only listing the currently available MPS iPSC lines and their derived models, but also summarizing how they were generated and the major information different groups have gathered from their analyses. Finally, and taking into account that iPSC generation is a laborious/expensive protocol that holds significant limitations, we also hypothesize on a tempting alternative to establish MPS patient-derived neuronal cells in a much more expedite way, by taking advantage of the existence of a population of multipotent stem cells in human dental pulp to establish mixed neuronal and glial cultures.
Collapse
Affiliation(s)
- Sofia Carvalho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de SantaComba, 3000-548 Coimbra, Portugal
| | - Juliana Inês Santos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Luciana Moreira
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Mariana Gonçalves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Hugo David
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Liliana Matos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Marisa Encarnação
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Maria Francisca Coutinho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
9
|
Cyske Z, Anikiej-Wiczenbach P, Wisniewska K, Gaffke L, Pierzynowska K, Mański A, Wegrzyn G. Sanfilippo Syndrome: Optimizing Care with a Multidisciplinary Approach. J Multidiscip Healthc 2022; 15:2097-2110. [PMID: 36158637 PMCID: PMC9505362 DOI: 10.2147/jmdh.s362994] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/06/2022] [Indexed: 12/16/2022] Open
Abstract
Sanfilippo syndrome, or mucopolysaccharidosis type III (MPS III), is a disease grouping five genetic disorders, four of them occurring in humans and one known to date only in a mouse model. In every subtype of MPS III (designed A, B, C, D or E), a lack or drastically decreased activity of an enzyme involved in the degradation of heparan sulfate (HS) (a compound from the group of glycosaminoglycans (GAGs)) arises from a genetic defect. This leads to primary accumulation of HS, and secondary storage of other compounds, combined with changes in expressions of hundreds of genes and many defects in organelles and various biochemical processes in the cell. As a result, dysfunctions of tissues and organs occur, leading to severe symptoms in patients. Although changes in somatic organs are considerable, the central nervous system is especially severely affected, and neurological, cognitive and behavioral disorders are the most significant changes, making the disease enormously burdensome for patients and their families. In the light of the current lack of any registered therapy for Sanfilippo syndrome (despite various attempts of many research groups to develop effective treatment, still no specific drug or procedure is available for MPS III), optimizing care with a multidisciplinary approach is crucial for managing this disease and making quality of patients’ life passable. This includes efforts to make/organize (i) accurate diagnosis as early as possible (which is not easy due to various possible misdiagnosis events caused by similarity of MPS III symptoms to those of other diseases and variability of patients), (ii) optimized symptomatic treatment (which is challenging because of complexity of symptoms and often untypical responses of MPS III patients to various drugs), and (iii) psychological care (for both patients and family members and/or caregivers). In this review article, we focus on these approaches, summarizing and discussing them.
Collapse
Affiliation(s)
- Zuzanna Cyske
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | | | - Karolina Wisniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| | - Arkadiusz Mański
- Psychological Counselling Centre of Rare Genetic Diseases, University of Gdansk, Gdansk, 80-309, Poland
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, 80-308, Poland
| |
Collapse
|
10
|
Corrêa T, Poswar F, Santos-Rebouças CB. Convergent molecular mechanisms underlying cognitive impairment in mucopolysaccharidosis type II. Metab Brain Dis 2022; 37:2089-2102. [PMID: 34797484 DOI: 10.1007/s11011-021-00872-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/02/2021] [Indexed: 11/26/2022]
Abstract
Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder caused by pathogenic variants in the iduronate-2-sulfatase gene (IDS), responsible for the degradation of glycosaminoglycans (GAGs) heparan and dermatan sulfate. IDS enzyme deficiency results in the accumulation of GAGs within cells and tissues, including the central nervous system (CNS). The progressive neurological outcome in a representative number of MPSII patients (neuronopathic form) involves cognitive impairment, behavioral difficulties, and regression in developmental milestones. In an attempt to dissect part of the influence of axon guidance instability over the cognitive impairment presentation in MPS II, we used brain expression data, network propagation, and clustering algorithm to prioritize in the human interactome a disease module associated with the MPS II context. We identified new candidate genes and pathways that act in focal adhesion, integrin cell surface, laminin interactions, ECM proteoglycans, cytoskeleton, and phagosome that converge into functional mechanisms involved in early neural circuit formation defects and could indicate clues about cognitive impairment in patients with MPSII. Such molecular changes during neurodevelopment may precede the morphological and clinical evidence, emphasizing the importance of an early diagnosis and directing the development of potential drug leads. Furthermore, our data also support previous hypotheses pointing to shared pathogenic mechanisms in some neurodegenerative diseases.
Collapse
Affiliation(s)
- Thiago Corrêa
- Department of Genetics, Institute of Biosciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil.
| | - Fabiano Poswar
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Cíntia B Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Dincã DM, Lallemant L, González-Barriga A, Cresto N, Braz SO, Sicot G, Pillet LE, Polvèche H, Magneron P, Huguet-Lachon A, Benyamine H, Azotla-Vilchis CN, Agonizantes-Juárez LE, Tahraoui-Boris J, Martinat C, Hernández-Hernández O, Auboeuf D, Rouach N, Bourgeois CF, Gourdon G, Gomes-Pereira M. Myotonic dystrophy RNA toxicity alters morphology, adhesion and migration of mouse and human astrocytes. Nat Commun 2022; 13:3841. [PMID: 35789154 PMCID: PMC9253038 DOI: 10.1038/s41467-022-31594-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
Brain dysfunction in myotonic dystrophy type 1 (DM1), the prototype of toxic RNA disorders, has been mainly attributed to neuronal RNA misprocessing, while little attention has been given to non-neuronal brain cells. Here, using a transgenic mouse model of DM1 that expresses mutant RNA in various brain cell types (neurons, astroglia, and oligodendroglia), we demonstrate that astrocytes exhibit impaired ramification and polarization in vivo and defects in adhesion, spreading, and migration. RNA-dependent toxicity and phenotypes are also found in human transfected glial cells. In line with the cell phenotypes, molecular analyses reveal extensive expression and accumulation of toxic RNA in astrocytes, which result in RNA spliceopathy that is more severe than in neurons. Astrocyte missplicing affects primarily transcripts that regulate cell adhesion, cytoskeleton, and morphogenesis, and it is confirmed in human brain tissue. Our findings demonstrate that DM1 impacts astrocyte cell biology, possibly compromising their support and regulation of synaptic function. Myotonic dystrophy type 1 (DM1) is characterized by debilitating neurological symptoms. Dinca et al. demonstrate the pronounced impact of DM1 on the morphology and RNA metabolism of astrocytes. Their findings suggest astroglial pathology in DM1 brain dysfunction.
Collapse
Affiliation(s)
- Diana M Dincã
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Louison Lallemant
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | | | - Noémie Cresto
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, 75005, Paris, France
| | - Sandra O Braz
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France.,Inserm UMR1163, Institut Imagine, Université Paris Cite, 75015, Paris, France
| | - Géraldine Sicot
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Laure-Elise Pillet
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, 75005, Paris, France.,Doctoral School N°562, Paris Descartes University, Paris, 75006, France
| | - Hélène Polvèche
- Inserm/UEVE UMR861, Université Paris Saclay I-STEM, 91110, Corbeil-Essonnes, France
| | - Paul Magneron
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Aline Huguet-Lachon
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Hélène Benyamine
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Cuauhtli N Azotla-Vilchis
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City, Mexico
| | - Luis E Agonizantes-Juárez
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City, Mexico
| | - Julie Tahraoui-Boris
- Inserm/UEVE UMR861, Université Paris Saclay I-STEM, 91110, Corbeil-Essonnes, France
| | - Cécile Martinat
- Inserm/UEVE UMR861, Université Paris Saclay I-STEM, 91110, Corbeil-Essonnes, France
| | - Oscar Hernández-Hernández
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City, Mexico
| | - Didier Auboeuf
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allée d'Italie, 69364, Lyon, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, 75005, Paris, France
| | - Cyril F Bourgeois
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allée d'Italie, 69364, Lyon, France
| | - Geneviève Gourdon
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France.
| | - Mário Gomes-Pereira
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France.
| |
Collapse
|
12
|
De Pasquale V, Scerra G, Scarcella M, D'Agostino M, Pavone LM. Competitive binding of extracellular accumulated heparan sulfate reduces lysosomal storage defects and triggers neuronal differentiation in a model of Mucopolysaccharidosis IIIB. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119113. [PMID: 34329663 DOI: 10.1016/j.bbamcr.2021.119113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022]
Abstract
Mucopolysaccharidoses (MPSs) are a group of inherited lysosomal storage disorders associated with the deficiency of lysosomal enzymes involved in glycosaminoglycan (GAG) degradation. The resulting cellular accumulation of GAGs is responsible for widespread tissue and organ dysfunctions. The MPS III, caused by mutations in the genes responsible for the degradation of heparan sulfate (HS), includes four subtypes (A, B, C, and D) that present significant neurological manifestations such as progressive cognitive decline and behavioral disorders. The established treatments for the MPS III do not cure the disease but only ameliorate non-neurological clinical symptoms. We previously demonstrated that the natural variant of the hepatocyte growth factor NK1 reduces the lysosomal pathology and reactivates impaired growth factor signaling in fibroblasts from MPS IIIB patients. Here, we show that the recombinant NK1 is effective in rescuing the morphological and functional dysfunctions of lysosomes in a neuronal cellular model of the MPS IIIB. More importantly, NK1 treatment is able to stimulate neuronal differentiation of neuroblastoma SK-NBE cells stable silenced for the NAGLU gene causative of the MPS IIIB. These results provide the basis for the development of a novel approach to possibly correct the neurological phenotypes of the MPS IIIB as well as of other MPSs characterized by the accumulation of HS and progressive neurodegeneration.
Collapse
Affiliation(s)
- Valeria De Pasquale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80127 Naples, Italy
| | - Gianluca Scerra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Melania Scarcella
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
13
|
Seker Yilmaz B, Davison J, Jones SA, Baruteau J. Novel therapies for mucopolysaccharidosis type III. J Inherit Metab Dis 2021; 44:129-147. [PMID: 32944950 PMCID: PMC8436764 DOI: 10.1002/jimd.12316] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Mucopolysaccharidosis type III (MPS III) or Sanfilippo disease is an orphan inherited lysosomal storage disease and one of the most common MPS subtypes. The classical presentation is an infantile-onset neurodegenerative disease characterised by intellectual regression, behavioural and sleep disturbances, loss of ambulation, and early death. Unlike other MPS, no disease-modifying therapy has yet been approved. Here, we review the numerous approaches of curative therapy developed for MPS III from historical ineffective haematopoietic stem cell transplantation and substrate reduction therapy to the promising ongoing clinical trials based on enzyme replacement therapy or adeno-associated or lentiviral vectors mediated gene therapy. Preclinical studies are presented alongside the most recent translational first-in-man trials. In addition, we present experimental research with preclinical mRNA and gene editing strategies. Lessons from animal studies and clinical trials have highlighted the importance of an early therapy before extensive neuronal loss. A disease-modifying therapy for MPS III will undoubtedly mandate development of new strategies for early diagnosis.
Collapse
Affiliation(s)
- Berna Seker Yilmaz
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Department of Paediatric Metabolic MedicineMersin UniversityMersinTurkey
| | - James Davison
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Simon A. Jones
- Metabolic MedicineManchester University NHS Foundation TrustManchesterUK
| | - Julien Baruteau
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- National Institute of Health Research Great Ormond Street Hospital Biomedical Research CentreLondonUK
| |
Collapse
|
14
|
Induced Pluripotent Stem Cells to Understand Mucopolysaccharidosis. I: Demonstration of a Migration Defect in Neural Precursors. Cells 2020; 9:cells9122593. [PMID: 33287330 PMCID: PMC7761689 DOI: 10.3390/cells9122593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Mucopolysaccharidosis type I-Hurler (MPS1-H) is a severe genetic lysosomal storage disorder due to loss-of-function mutations in the IDUA gene. The subsequent complete deficiency of alpha l-iduronidase enzyme is directly responsible of a progressive accumulation of glycosaminoglycans (GAG) in lysosomes which affects the functions of many tissues. Consequently, MPS1 is characterized by systemic symptoms (multiorgan dysfunction) including respiratory and cardiac dysfunctions, skeletal abnormalities and early fatal neurodegeneration. Methods: To understand mechanisms underlying MPS1 neuropathology, we generated induced pluripotent stem cells (iPSC) from a MPS1-H patient with loss-of-function mutations in both IDUA alleles. To avoid variability due to different genetic background of iPSC, we established an isogenic control iPSC line by rescuing IDUA expression by a lentivectoral approach. Results: Marked differences between MPS1-H and IDUA-corrected isogenic controls were observed upon neural differentiation. A scratch assay revealed a strong migration defect of MPS1-H cells. Also, there was a massive impact of IDUA deficiency on gene expression (340 genes with an FDR <0.05). Conclusions: Our results demonstrate a hitherto unknown connection between lysosomal degradation, gene expression and neural motility, which might account at least in part for the phenotype of MPS1-H patients.
Collapse
|
15
|
Schneeberger PE, von Elsner L, Barker EL, Meinecke P, Marquardt I, Alawi M, Steindl K, Joset P, Rauch A, Zwijnenburg PJ, Weiss MM, Merry CL, Kutsche K. Bi-allelic Pathogenic Variants in HS2ST1 Cause a Syndrome Characterized by Developmental Delay and Corpus Callosum, Skeletal, and Renal Abnormalities. Am J Hum Genet 2020; 107:1044-1061. [PMID: 33159882 DOI: 10.1016/j.ajhg.2020.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Heparan sulfate belongs to the group of glycosaminoglycans (GAGs), highly sulfated linear polysaccharides. Heparan sulfate 2-O-sulfotransferase 1 (HS2ST1) is one of several specialized enzymes required for heparan sulfate synthesis and catalyzes the transfer of the sulfate groups to the sugar moiety of heparan sulfate. We report bi-allelic pathogenic variants in HS2ST1 in four individuals from three unrelated families. Affected individuals showed facial dysmorphism with coarse face, upslanted palpebral fissures, broad nasal tip, and wide mouth, developmental delay and/or intellectual disability, corpus callosum agenesis or hypoplasia, flexion contractures, brachydactyly of hands and feet with broad fingertips and toes, and uni- or bilateral renal agenesis in three individuals. HS2ST1 variants cause a reduction in HS2ST1 mRNA and decreased or absent heparan sulfate 2-O-sulfotransferase 1 in two of three fibroblast cell lines derived from affected individuals. The heparan sulfate synthesized by the individual 1 cell line lacks 2-O-sulfated domains but had an increase in N- and 6-O-sulfated domains demonstrating functional impairment of the HS2ST1. As heparan sulfate modulates FGF-mediated signaling, we found a significantly decreased activation of the MAP kinases ERK1/2 in FGF-2-stimulated cell lines of affected individuals that could be restored by addition of heparin, a GAG similar to heparan sulfate. Focal adhesions in FGF-2-stimulated fibroblasts of affected individuals concentrated at the cell periphery. Our data demonstrate that a heparan sulfate synthesis deficit causes a recognizable syndrome and emphasize a role for 2-O-sulfated heparan sulfate in human neuronal, skeletal, and renal development.
Collapse
|
16
|
Benetó N, Vilageliu L, Grinberg D, Canals I. Sanfilippo Syndrome: Molecular Basis, Disease Models and Therapeutic Approaches. Int J Mol Sci 2020; 21:E7819. [PMID: 33105639 PMCID: PMC7659972 DOI: 10.3390/ijms21217819] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
Sanfilippo syndrome or mucopolysaccharidosis III is a lysosomal storage disorder caused by mutations in genes responsible for the degradation of heparan sulfate, a glycosaminoglycan located in the extracellular membrane. Undegraded heparan sulfate molecules accumulate within lysosomes leading to cellular dysfunction and pathology in several organs, with severe central nervous system degeneration as the main phenotypical feature. The exact molecular and cellular mechanisms by which impaired degradation and storage lead to cellular dysfunction and neuronal degeneration are still not fully understood. Here, we compile the knowledge on this issue and review all available animal and cellular models that can be used to contribute to increase our understanding of Sanfilippo syndrome disease mechanisms. Moreover, we provide an update in advances regarding the different and most successful therapeutic approaches that are currently under study to treat Sanfilippo syndrome patients and discuss the potential of new tools such as induced pluripotent stem cells to be used for disease modeling and therapy development.
Collapse
Affiliation(s)
- Noelia Benetó
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, CIBERER, IBUB, IRSJD, E-08028 Barcelona, Spain; (N.B.); (L.V.); (D.G.)
| | - Lluïsa Vilageliu
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, CIBERER, IBUB, IRSJD, E-08028 Barcelona, Spain; (N.B.); (L.V.); (D.G.)
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, CIBERER, IBUB, IRSJD, E-08028 Barcelona, Spain; (N.B.); (L.V.); (D.G.)
| | - Isaac Canals
- Stem Cells, Aging and Neurodegeneration Group, Department of Clinical Sciences, Neurology, Lund Stem Cell Center, Lund University, SE-22184 Lund, Sweden
| |
Collapse
|
17
|
Bruyère J, Abada YS, Vitet H, Fontaine G, Deloulme JC, Cès A, Denarier E, Pernet-Gallay K, Andrieux A, Humbert S, Potier MC, Delatour B, Saudou F. Presynaptic APP levels and synaptic homeostasis are regulated by Akt phosphorylation of huntingtin. eLife 2020; 9:56371. [PMID: 32452382 PMCID: PMC7269668 DOI: 10.7554/elife.56371] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Studies have suggested that amyloid precursor protein (APP) regulates synaptic homeostasis, but the evidence has not been consistent. In particular, signaling pathways controlling APP transport to the synapse in axons and dendrites remain to be identified. Having previously shown that Huntingtin (HTT), the scaffolding protein involved in Huntington’s disease, regulates neuritic transport of APP, we used a microfluidic corticocortical neuronal network-on-a-chip to examine APP transport and localization to the pre- and post-synaptic compartments. We found that HTT, upon phosphorylation by the Ser/Thr kinase Akt, regulates APP transport in axons but not dendrites. Expression of an unphosphorylatable HTT decreased axonal anterograde transport of APP, reduced presynaptic APP levels, and increased synaptic density. Ablating in vivo HTT phosphorylation in APPPS1 mice, which overexpress APP, reduced presynaptic APP levels, restored synapse number and improved learning and memory. The Akt-HTT pathway and axonal transport of APP thus regulate APP presynaptic levels and synapse homeostasis.
Collapse
Affiliation(s)
- Julie Bruyère
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Yah-Se Abada
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Hélène Vitet
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Gaëlle Fontaine
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Jean-Christophe Deloulme
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Aurélia Cès
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Eric Denarier
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Karin Pernet-Gallay
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Annie Andrieux
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Sandrine Humbert
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Marie-Claude Potier
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Benoît Delatour
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Frédéric Saudou
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, CEA, Grenoble Institut Neurosciences, Grenoble, France
| |
Collapse
|
18
|
Neuropathophysiology of Lysosomal Storage Diseases: Synaptic Dysfunction as a Starting Point for Disease Progression. J Clin Med 2020; 9:jcm9030616. [PMID: 32106459 PMCID: PMC7141115 DOI: 10.3390/jcm9030616] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
About two thirds of the patients affected with lysosomal storage diseases (LSD) experience neurological manifestations, such as developmental delay, seizures, or psychiatric problems. In order to develop efficient therapies, it is crucial to understand the neuropathophysiology underlying these symptoms. How exactly lysosomal storage affects biogenesis and function of neurons is still under investigation however recent research highlights a substantial role played by synaptic defects, such as alterations in synaptic spines, synaptic proteins, postsynaptic densities, and synaptic vesicles that might lead to functional impairments in synaptic transmission and neurodegeneration, finally culminating in massive neuronal death and manifestation of cognitive symptoms. Unveiling how the synaptic components are affected in neurological LSD will thus enable a better understanding of the complexity of disease progression as well as identify crucial targets of therapeutic relevance and optimal time windows for targeted intervention.
Collapse
|
19
|
Heon-Roberts R, Nguyen ALA, Pshezhetsky AV. Molecular Bases of Neurodegeneration and Cognitive Decline, the Major Burden of Sanfilippo Disease. J Clin Med 2020; 9:jcm9020344. [PMID: 32012694 PMCID: PMC7074161 DOI: 10.3390/jcm9020344] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
The mucopolysaccharidoses (MPS) are a group of diseases caused by the lysosomal accumulation of glycosaminoglycans, due to genetic deficiencies of enzymes involved in their degradation. MPS III or Sanfilippo disease, in particular, is characterized by early-onset severe, progressive neurodegeneration but mild somatic involvement, with patients losing milestones and previously acquired skills as the disease progresses. Despite being the focus of extensive research over the past years, the links between accumulation of the primary molecule, the glycosaminoglycan heparan sulfate, and the neurodegeneration seen in patients have yet to be fully elucidated. This review summarizes the current knowledge on the molecular bases of neurological decline in Sanfilippo disease. It emerges that this deterioration results from the dysregulation of multiple cellular pathways, leading to neuroinflammation, oxidative stress, impaired autophagy and defects in cellular signaling. However, many important questions about the neuropathological mechanisms of the disease remain unanswered, highlighting the need for further research in this area.
Collapse
Affiliation(s)
- Rachel Heon-Roberts
- Division of Medical Genetics, CHU Ste-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (R.H.-R.); (A.L.A.N.)
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Annie L. A. Nguyen
- Division of Medical Genetics, CHU Ste-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (R.H.-R.); (A.L.A.N.)
- Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Alexey V. Pshezhetsky
- Division of Medical Genetics, CHU Ste-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (R.H.-R.); (A.L.A.N.)
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
- Department of Paediatrics, University of Montreal, Montreal, QC H3T 1C5, Canada
- Correspondence: ; Tel.: +1-(514)-345-4931 (ext. 2736)
| |
Collapse
|
20
|
Bigger BW, Begley DJ, Virgintino D, Pshezhetsky AV. Anatomical changes and pathophysiology of the brain in mucopolysaccharidosis disorders. Mol Genet Metab 2018; 125:322-331. [PMID: 30145178 DOI: 10.1016/j.ymgme.2018.08.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 11/28/2022]
Abstract
Mucopolysaccharidosis (MPS) disorders are caused by deficiencies in lysosomal enzymes, leading to impaired glycosaminoglycan (GAG) degradation. The resulting GAG accumulation in cells and connective tissues ultimately results in widespread tissue and organ dysfunction. The seven MPS types currently described are heterogeneous and progressive disorders, with somatic and neurological manifestations depending on the type of accumulating GAG. Heparan sulfate (HS) is one of the GAGs stored in patients with MPS I, II, and VII and the main GAG stored in patients with MPS III. These disorders are associated with significant central nervous system (CNS) abnormalities that can manifest as impaired cognition, hyperactive and/or aggressive behavior, epilepsy, hydrocephalus, and sleeping problems. This review discusses the anatomical and pathophysiological CNS changes accompanying HS accumulation as well as the mechanisms believed to cause CNS abnormalities in MPS patients. The content of this review is based on presentations and discussions on these topics during a meeting on the brain in MPS attended by an international group of MPS experts.
Collapse
Affiliation(s)
- Brian W Bigger
- Stem Cell & Neurotherapies Laboratory, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK.
| | - David J Begley
- Drug Delivery Group, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Human Anatomy and Histology Unit, Bari University School of Medicine, Bari, Italy
| | - Alexey V Pshezhetsky
- Departments of Pediatrics and Biochemistry, CHU Sainte-Justine, Research Center, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
21
|
Sohn YB, Ko AR, Seong MR, Lee S, Kim MR, Cho SY, Kim JS, Sakaguchi M, Nakazawa T, Kosuga M, Seo JH, Okuyama T, Jin DK. The efficacy of intracerebroventricular idursulfase-beta enzyme replacement therapy in mucopolysaccharidosis II murine model: heparan sulfate in cerebrospinal fluid as a clinical biomarker of neuropathology. J Inherit Metab Dis 2018; 41:1235-1246. [PMID: 29978271 DOI: 10.1007/s10545-018-0221-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/25/2018] [Accepted: 06/12/2018] [Indexed: 11/28/2022]
Abstract
Mucopolysaccharidosis II (MPS II) is caused by a deficiency of iduronate-2-sulfatase that results in accumulation of glycosaminoglycans (GAG), including heparan sulfate (HS), which is considered to contribute to neuropathology. We examined the efficacy of intracerebroventricular (ICV) enzyme replacement therapy (ERT) of idursulfase-beta (IDS-β) and evaluated the usefulness of HS as a biomarker for neuropathology in MPS II mice. We first examined the efficacy of three different doses (3, 10, and 30 μg) of single ICV injections of IDS-β in MPS II mice. After the single-injection study, its long-term efficacy was elucidated with 30 μg of IDS-β ICV injections repeated every 4 weeks for 24 weeks. The efficacy was assessed by the HS content in the cerebrospinal fluid (CSF) and the brain of the animals along with histologic examinations and behavioral tests. In the single-injection study, the 30 μg of IDS-β ICV injection showed significant reductions of HS content in brain and CSF that were maintained for 28 days. Furthermore, HS content in CSF was significantly correlated with HS content in brain. In the long-term repeated-injection study, the HS content in the brain and CSF was also significantly reduced and correlated. The histologic examinations showed a reduction in lysosomal storage. A significant improvement in memory/learning function was observed in open-field and fear-conditioning tests. ICV ERT with 30 μg of IDS-β produced significant improvements in biochemical, histological, and functional parameters in MPS II mice. Furthermore, we demonstrate for the first time that the HS in the CSF had significant positive correlation with brain tissue HS and GAG levels, suggesting HS in CSF as a useful clinical biomarker for neuropathology.
Collapse
Affiliation(s)
- Young Bae Sohn
- Department of Medical Genetics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ah-Ra Ko
- Research Institute for Future Medicine, Samsung Biomedical Research Center, Seoul, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Mi-Ran Seong
- Research Institute for Future Medicine, Samsung Biomedical Research Center, Seoul, Republic of Korea
| | - Soyeon Lee
- Research Institute for Future Medicine, Samsung Biomedical Research Center, Seoul, Republic of Korea
| | - Mi Ra Kim
- Research Institute for Future Medicine, Samsung Biomedical Research Center, Seoul, Republic of Korea
| | - Sung Yoon Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Jung-Sun Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Sungkyunkwan University, SAIHST, Seoul, Republic of Korea
| | | | | | - Motomichi Kosuga
- Center for Lysosomal Storage Diseases, National Center for Child Health and Development, 2-10-1, Ohkura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Joo Hyun Seo
- Center for Lysosomal Storage Diseases, National Center for Child Health and Development, 2-10-1, Ohkura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Torayuki Okuyama
- Center for Lysosomal Storage Diseases, National Center for Child Health and Development, 2-10-1, Ohkura, Setagaya-ku, Tokyo, 157-8535, Japan.
| | - Dong-Kyu Jin
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
| |
Collapse
|
22
|
Puy V, Darwiche W, Trudel S, Gomila C, Lony C, Puy L, Lefebvre T, Vitry S, Boullier A, Karim Z, Ausseil J. Predominant role of microglia in brain iron retention in Sanfilippo syndrome, a pediatric neurodegenerative disease. Glia 2018; 66:1709-1723. [DOI: 10.1002/glia.23335] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/03/2018] [Accepted: 03/16/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Vincent Puy
- Unité INSERM U1088, CURS-Université de Picardie Jules Verne; Amiens F-80054 France
- Laboratoire de Biochimie Métabolique, CHU Amiens Picardie; Amiens F-80054 France
| | - Walaa Darwiche
- Unité INSERM U1088, CURS-Université de Picardie Jules Verne; Amiens F-80054 France
| | - Stéphanie Trudel
- Laboratoire d'Oncobiologie Moléculaire, CHU Amiens Picardie, F-80054 Amiens, France and EA4666 Lymphocyte Normal, Pathologique et Cancers (LNPC); CURS-Université de Picardie Jules Verne; Amiens F-80054 France
| | - Cathy Gomila
- Unité INSERM U1088, CURS-Université de Picardie Jules Verne; Amiens F-80054 France
- Laboratoire de Biochimie Métabolique, CHU Amiens Picardie; Amiens F-80054 France
| | - Christelle Lony
- Unité INSERM U1088, CURS-Université de Picardie Jules Verne; Amiens F-80054 France
| | - Laurent Puy
- Département de Neurologie et Laboratoire de Neuroscience Fonctionnelle EA-4559; CHU Amiens Picardie; Amiens F-80054, France
| | - Thibaud Lefebvre
- INSERM U1149, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, F-75018 Paris, France, DHU UNITY, Laboratory of Excellence, GR-Ex; Paris France
| | - Sandrine Vitry
- Unité de NeuroImmunologie Virale, Institut Pasteur; Paris F-75015 France
| | - Agnès Boullier
- Unité INSERM U1088, CURS-Université de Picardie Jules Verne; Amiens F-80054 France
- Laboratoire de Biochimie Métabolique, CHU Amiens Picardie; Amiens F-80054 France
| | - Zoubida Karim
- INSERM U1149, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, F-75018 Paris, France, DHU UNITY, Laboratory of Excellence, GR-Ex; Paris France
| | - Jérôme Ausseil
- Unité INSERM U1088, CURS-Université de Picardie Jules Verne; Amiens F-80054 France
- Laboratoire de Biochimie Métabolique, CHU Amiens Picardie; Amiens F-80054 France
| |
Collapse
|
23
|
Escolar ML, Jones SA, Shapiro EG, Horovitz DDG, Lampe C, Amartino H. Practical management of behavioral problems in mucopolysaccharidoses disorders. Mol Genet Metab 2017; 122S:35-40. [PMID: 29170079 DOI: 10.1016/j.ymgme.2017.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 01/11/2023]
Abstract
The mucopolysaccharidosis (MPS) disorders are caused by deficiencies of specific lysosomal enzymes, resulting in progressive glycosaminoglycan (GAG) accumulation in cells and tissues throughout the body. Excessive GAG storage can lead to a variety of somatic manifestations as well as primary and secondary neurological symptoms. Behavioral problems (like hyperactivity, attention difficulties, and severe frustration) and sleeping problems are typical primary neurological symptoms of MPS caused by GAG accumulation in neurons, and are frequently observed in patients with MPS I, II, III, and VII. As these problems often place a significant burden on the family, proper management is important. This review summarizes current insights into behavioral and sleeping problems in MPS disorders and the most optimal management approaches, as presented and discussed during a meeting of an international group of experts with extensive experience in managing and treating MPS.
Collapse
Affiliation(s)
- Maria L Escolar
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Simon A Jones
- Willink Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Sciences Centre, University of Manchester, CMFT, Manchester, UK
| | - Elsa G Shapiro
- Department of Pediatrics and Neurology, University of Minnesota, Minneapolis, MN, USA; Shapiro Neuropsychology Consultants, LLC, Portland, OR, USA
| | - Dafne D G Horovitz
- Department of Medical Genetics, National Institute for Women, Children and Adolescent Health Fernandes Figueira/Fiocruz, Rio de Janeiro, Brazil
| | - Christina Lampe
- Department of Paediatric and Adolescent Medicine, Center for Rare Diseases, Helios Dr. Horst Schmidt Kliniken, Wiesbaden, Germany
| | - Hernán Amartino
- Department of Child Neurology, Hospital Universitario Austral, Buenos Aires, Argentina
| |
Collapse
|
24
|
van der Meulen PM, Barendregt AM, Cuadrado E, Magro-Checa C, Steup-Beekman GM, Schonenberg-Meinema D, Van den Berg JM, Li QZ, Baars PA, Wouters D, Voskuyl AE, Ten Berge IRJM, Huizinga TWJ, Kuijpers TW. Protein array autoantibody profiles to determine diagnostic markers for neuropsychiatric systemic lupus erythematosus. Rheumatology (Oxford) 2017; 56:1407-1416. [PMID: 28460084 DOI: 10.1093/rheumatology/kex073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Indexed: 12/11/2022] Open
Abstract
Objective The aim was to investigate the association between autoantibodies (autoAbs) and neuropsychiatric (NP) involvement in patients with SLE and to evaluate whether any autoAb or a combination of these autoAbs could indicate the underlying pathogenic process. Methods Using a multiplexed protein array for 94 antigens, we compared the serum autoAb profiles of 69 NPSLE patients, 203 SLE patients without NP involvement (non-NPSLE) and 51 healthy controls. Furthermore, we compared the profiles of NPSLE patients with clinical inflammatory (n = 38) and ischaemic (n = 31) NP involvement. Results In total, 75 IgG and 47 IgM autoAbs were associated with SLE patients in comparison with healthy controls. Comparing NPSLE with non-NPSLE and healthy control sera, 9 IgG (amyloid, cardiolipin, glycoprotein 2, glycoprotein 210, heparin, heparan sulphate, histone H2A, prothrombin protein and vimentin) and 12 IgM (amyloid, cardiolipin, centromere protein A, collagen II, histones H2A and H2B, heparan sulphate, heparin, mitochondrial 2, nuclear Mi-2, nucleoporin 62 and vimentin) autoAbs were present at significantly different levels in NPSLE. The combination of IgG autoAbs against heparan sulphate, histone H2B and vimentin could differentiate NPSLE from non-NPSLE (area under the curve 0.845, 99.97% CI: 0.756, 0.933; P < 0.0001). Compared with non-NPSLE, four IgG and seven IgM autoAbs were significantly associated with inflammatory NPSLE. In ischaemic NPSLE, three IgG and three IgM autoAbs were significantly different from non-NPSLE patients. Conclusion In our cohort, the presence of high levels of anti-heparan sulphate and anti-histone H2B combined with low levels of anti-vimentin IgG autoAbs is highly suggestive of NPSLE. These results need to be validated in external cohorts.
Collapse
Affiliation(s)
- Pomme M van der Meulen
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital Academic Medical Center
| | - Anouk M Barendregt
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital Academic Medical Center
| | - Eloy Cuadrado
- Astrocyte Biology and Neurodegeneration Group, Netherlands Institute for Neuroscience, Amsterdam
| | - César Magro-Checa
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerda M Steup-Beekman
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dieneke Schonenberg-Meinema
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital Academic Medical Center
| | - J Merlijn Van den Berg
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital Academic Medical Center
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Paul A Baars
- Department of Experimental Immunology, Academic Medical Center, Amsterdam
| | | | | | - Ineke R J M Ten Berge
- Department of Internal Medicine, Clinical Immunology & Nephrology, Academic Medical Center, Amsterdam, The Netherlands
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital Academic Medical Center
| |
Collapse
|
25
|
Neurodevelopmental Changes in Excitatory Synaptic Structure and Function in the Cerebral Cortex of Sanfilippo Syndrome IIIA Mice. Sci Rep 2017; 7:46576. [PMID: 28418018 PMCID: PMC5394534 DOI: 10.1038/srep46576] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/17/2017] [Indexed: 12/22/2022] Open
Abstract
Sanfilippo syndrome, MPS IIIA-D, results from deficits in lysosomal enzymes that specifically degrade heparan sulfate, a sulfated glycosaminoglycan. The accumulation of heparan sulfate results in neurological symptoms, culminating in extensive neurodegeneration and early death. To study the impact of storage in postnatal neurodevelopment, we examined murine models of MPS IIIA, which lack the enzyme sulfamidase. We show that changes occur in excitatory postsynaptic structure and function in the somatosensory cortex prior to signs of neurodegeneration. These changes coincide with accumulation of heparan sulfate with characteristic non-reducing ends, which is present at birth in the mutant mice. Accumulation of heparan sulfate was also detected in primary cultures of cortical neural cells, especially astrocytes. Accumulation of heparan sulfate in cultured astrocytes corresponded with augmented extracellular heparan sulfate and glypican 4 levels. Heparan sulfate from the cerebral cortex of MPS IIIA mice showed enhanced ability to increase glutamate AMPA receptor subunits at the cell surface of wild type neurons. These data support the idea that abnormalities in heparan sulfate content and distribution contribute to alterations in postsynaptic function. Our findings identify a disease-induced developmental phenotype that temporally overlaps with the onset of behavioral changes in a mouse model of MPS IIIA.
Collapse
|
26
|
Immune-Mediated Inflammation May Contribute to the Pathogenesis of Cardiovascular Disease in Mucopolysaccharidosis Type I. PLoS One 2016; 11:e0150850. [PMID: 26986213 PMCID: PMC4795702 DOI: 10.1371/journal.pone.0150850] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/19/2016] [Indexed: 01/12/2023] Open
Abstract
Background Cardiovascular disease, a progressive manifestation of α-L-iduronidase deficiency or mucopolysaccharidosis type I, continues in patients both untreated and treated with hematopoietic stem cell transplantation or intravenous enzyme replacement. Few studies have examined the effects of α-L-iduronidase deficiency and subsequent glycosaminoglycan storage upon arterial gene expression to understand the pathogenesis of cardiovascular disease. Methods Gene expression in carotid artery, ascending, and descending aortas from four non-tolerized, non-enzyme treated 19 month-old mucopolysaccharidosis type I dogs was compared with expression in corresponding vascular segments from three normal, age-matched dogs. Data were analyzed using R and whole genome network correlation analysis, a bias-free method of categorizing expression level and significance into discrete modules. Genes were further categorized based on module-trait relationships. Expression of clusterin, a protein implicated in other etiologies of cardiovascular disease, was assessed in canine and murine mucopolysaccharidosis type I aortas via Western blot and in situ immunohistochemistry. Results Gene families with more than two-fold, significant increased expression involved lysosomal function, proteasome function, and immune regulation. Significantly downregulated genes were related to cellular adhesion, cytoskeletal elements, and calcium regulation. Clusterin gene overexpression (9-fold) and protein overexpression (1.3 to 1.62-fold) was confirmed and located specifically in arterial plaques of mucopolysaccharidosis-affected dogs and mice. Conclusions Overexpression of lysosomal and proteasomal-related genes are expected responses to cellular stress induced by lysosomal storage in mucopolysaccharidosis type I. Upregulation of immunity-related genes implicates the potential involvement of glycosaminoglycan-induced inflammation in the pathogenesis of mucopolysaccharidosis-related arterial disease, for which clusterin represents a potential biomarker.
Collapse
|
27
|
Coppa GV, Gabrielli O, Zampini L, Maccari F, Mantovani V, Galeazzi T, Santoro L, Padella L, Marchesiello RL, Galeotti F, Volpi N. Mental retardation in mucopolysaccharidoses correlates with high molecular weight urinary heparan sulphate derived glucosamine. Metab Brain Dis 2015; 30:1343-8. [PMID: 26016623 DOI: 10.1007/s11011-015-9684-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/13/2015] [Indexed: 10/23/2022]
Abstract
Mucopolysaccharidoses (MPS) are characterized by mental retardation constantly present in the severe forms of Hurler (MPS I), Hunter (MPS II) and Sanfilippo (MPS III) diseases. On the contrary, mental retardation is absent in Morquio (MPS IV) and Maroteaux-Lamy (MPS VI) diseases and absent or only minimal in the attenuated forms of MPS I, II and III. Considering that MPS patients affected by mental disease accumulate heparan sulfate (HS) due to specific enzymatic defects, we hypothesized a possible correlation between urinary HS-derived glucosamine (GlcN) accumulated in tissues and excreted in biological fluids and mental retardation. 83 healthy subjects were found to excrete HS in the form of fragments due to the activity of catabolic enzymes that are absent or impaired in MPS patients. On the contrary, urinary HS in 44 patients was observed to be composed of high molecular weight polymer and fragments of various lengths depending on MPS types. On this basis we correlated mental retardation with GlcN belonging to high and low molecular weight HS. We demonstrate a positive relationship between the accumulation of high molecular weight HS and mental retardation in MPS severe compared to attenuated forms. This is also supported by the consideration that accumulation of other GAGs different from HS, as in MPS IV and MPS VI, and low molecular weight HS fragments do not impact on central nervous system disease.
Collapse
Affiliation(s)
- G V Coppa
- Pediatric Division, Department of Clinical Sciences, Polytechnic University of the Marche, Ospedali Riuniti, Presidio Salesi, Ancona, Italy
| | - O Gabrielli
- Pediatric Division, Department of Clinical Sciences, Polytechnic University of the Marche, Ospedali Riuniti, Presidio Salesi, Ancona, Italy
| | - L Zampini
- Pediatric Division, Department of Clinical Sciences, Polytechnic University of the Marche, Ospedali Riuniti, Presidio Salesi, Ancona, Italy
| | - F Maccari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125, Modena, Italy
| | - V Mantovani
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125, Modena, Italy
| | - T Galeazzi
- Pediatric Division, Department of Clinical Sciences, Polytechnic University of the Marche, Ospedali Riuniti, Presidio Salesi, Ancona, Italy
| | - L Santoro
- Pediatric Division, Department of Clinical Sciences, Polytechnic University of the Marche, Ospedali Riuniti, Presidio Salesi, Ancona, Italy
| | - L Padella
- Pediatric Division, Department of Clinical Sciences, Polytechnic University of the Marche, Ospedali Riuniti, Presidio Salesi, Ancona, Italy
| | - R L Marchesiello
- Pediatric Division, Department of Clinical Sciences, Polytechnic University of the Marche, Ospedali Riuniti, Presidio Salesi, Ancona, Italy
| | - F Galeotti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125, Modena, Italy
| | - N Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125, Modena, Italy.
| |
Collapse
|
28
|
Martins C, Hůlková H, Dridi L, Dormoy-Raclet V, Grigoryeva L, Choi Y, Langford-Smith A, Wilkinson FL, Ohmi K, DiCristo G, Hamel E, Ausseil J, Cheillan D, Moreau A, Svobodová E, Hájková Z, Tesařová M, Hansíková H, Bigger BW, Hrebícek M, Pshezhetsky AV. Neuroinflammation, mitochondrial defects and neurodegeneration in mucopolysaccharidosis III type C mouse model. ACTA ACUST UNITED AC 2015; 138:336-55. [PMID: 25567323 DOI: 10.1093/brain/awu355] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Severe progressive neurological paediatric disease mucopolysaccharidosis III type C is caused by mutations in the HGSNAT gene leading to deficiency of acetyl-CoA: α-glucosaminide N-acetyltransferase involved in the lysosomal catabolism of heparan sulphate. To understand the pathophysiology of the disease we generated a mouse model of mucopolysaccharidosis III type C by germline inactivation of the Hgsnat gene. At 6-8 months mice showed hyperactivity, and reduced anxiety. Cognitive memory decline was detected at 10 months and at 12-13 months mice showed signs of unbalanced hesitant walk and urinary retention. Lysosomal accumulation of heparan sulphate was observed in hepatocytes, splenic sinus endothelium, cerebral microglia, liver Kupffer cells, fibroblasts and pericytes. Starting from 5 months, brain neurons showed enlarged, structurally abnormal mitochondria, impaired mitochondrial energy metabolism, and storage of densely packed autofluorescent material, gangliosides, lysozyme, phosphorylated tau, and amyloid-β. Taken together, our data demonstrate for the first time that deficiency of acetyl-CoA: α-glucosaminide N-acetyltransferase causes lysosomal accumulation of heparan sulphate in microglial cells followed by their activation and cytokine release. They also show mitochondrial dysfunction in the neurons and neuronal loss explaining why mucopolysaccharidosis III type C manifests primarily as a neurodegenerative disease.
Collapse
Affiliation(s)
- Carla Martins
- 1 CHU Ste-Justine, University of Montreal, Montreal, QC, Canada
| | - Helena Hůlková
- 2 Institute of Inherited Metabolic Disorders, First Faculty of Medicine and General University Hospital in Prague, Charles University, Prague, Czech Republic
| | - Larbi Dridi
- 1 CHU Ste-Justine, University of Montreal, Montreal, QC, Canada
| | | | | | - Yoo Choi
- 1 CHU Ste-Justine, University of Montreal, Montreal, QC, Canada
| | | | - Fiona L Wilkinson
- 3 Stem Cell and Neurotherapies, University of Manchester, Manchester, UK
| | - Kazuhiro Ohmi
- 4 Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | | | - Edith Hamel
- 5 Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Jerôme Ausseil
- 6 CHU Amiens, and Unité INSERM U1088, UFR de Médecine, Université de Picardie-Jules Verne, Amiens, France
| | - David Cheillan
- 7 Service des Maladies Héréditaires du Métabolisme et Dépistage Néonatal - Centre de Biologie Est, Hospices Civils de Lyon, Bron, France
| | - Alain Moreau
- 1 CHU Ste-Justine, University of Montreal, Montreal, QC, Canada
| | - Eva Svobodová
- 2 Institute of Inherited Metabolic Disorders, First Faculty of Medicine and General University Hospital in Prague, Charles University, Prague, Czech Republic
| | - Zuzana Hájková
- 8 Department of Paediatrics, First Faculty of Medicine and General University Hospital in Prague, Charles University, Prague, Czech Republic
| | - Markéta Tesařová
- 8 Department of Paediatrics, First Faculty of Medicine and General University Hospital in Prague, Charles University, Prague, Czech Republic
| | - Hana Hansíková
- 8 Department of Paediatrics, First Faculty of Medicine and General University Hospital in Prague, Charles University, Prague, Czech Republic
| | - Brian W Bigger
- 3 Stem Cell and Neurotherapies, University of Manchester, Manchester, UK
| | - Martin Hrebícek
- 2 Institute of Inherited Metabolic Disorders, First Faculty of Medicine and General University Hospital in Prague, Charles University, Prague, Czech Republic
| | | |
Collapse
|