1
|
Harding RJ, Xie Y, Caron NS, Findlay-Black H, Lyu C, Potluri N, Chandrasekaran R, Hayden MR, Leavitt BR, Langbehn DR, Southwell AL. Challenges and advances for huntingtin detection in cerebrospinal fluid: in support of relative quantification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614766. [PMID: 39386513 PMCID: PMC11463412 DOI: 10.1101/2024.09.25.614766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Huntington disease (HD) is a progressive and devastating neurodegenerative disease caused by expansion of a glutamine-coding CAG tract in the huntingtin (HTT) gene above a critical threshold of ~35 repeats resulting in expression of mutant HTT (mHTT). A promising treatment approach being tested in clinical trials is HTT lowering, which aims to reduce levels of the mHTT protein. Target engagement of these therapies in the brain are inferred using antibody-based assays to measure mHTT levels in the cerebrospinal fluid (CSF), which is frequently reported as absolute mHTT concentration based on a monomeric protein standard used to generate a standard curve. However, patient biofluids are a complex milieu of different mHTT protein species, suggesting that absolute quantitation is challenging, and a single, recombinant protein standard may not be sufficient to interpret assay signal as molar mHTT concentration. In this study, we used immunoprecipitation and flow cytometry (IP-FCM) to investigate different factors that influence mHTT detection assay signal. Our results show that HTT protein fragmentation, protein-protein interactions, affinity tag positioning, oligomerization and polyglutamine tract length affect assay signal intensity, indicating that absolute HTT quantitation in heterogeneous biological samples is not possible with current technologies using a single standard protein. We also explore the binding specificity of the MW1 anti-polyglutamine antibody, commonly used in these assays as a mHTT-selective reagent and demonstrate that mHTT binding is preferred but not specific. Furthermore, we find that MW1 depletion is not only incomplete, leaving residual mHTT, but also non-specific, resulting in pull down of some wildtype HTT protein. Based on these observations, we recommend that mHTT detection assays report only relative mHTT quantitation using normalized arbitrary units of assay signal intensity, rather than molar concentrations, in the assessment of central nervous system HTT lowering in ongoing clinical and preclinical studies, and that MW1-depletion not be used a method for quantifying wildtype HTT protein.
Collapse
Affiliation(s)
- Rachel J. Harding
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yuanyun Xie
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA
| | - Nicholas S. Caron
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V5Z 4H4 Canada
| | - Hailey Findlay-Black
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V5Z 4H4 Canada
| | - Caroline Lyu
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Nalini Potluri
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA
| | - Renu Chandrasekaran
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Michael R. Hayden
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V5Z 4H4 Canada
| | - Blair R. Leavitt
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V5Z 4H4 Canada
| | - Douglas R. Langbehn
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Amber L. Southwell
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA
| |
Collapse
|
2
|
Mohanty P, Phan TM, Mittal J. Transient interdomain interactions modulate the monomeric structural ensemble and oligomerization landscape of Huntingtin Exon 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592468. [PMID: 38766024 PMCID: PMC11100600 DOI: 10.1101/2024.05.03.592468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Polyglutamine expansion (≥ 36 residues) within the N-terminal exon-1 of Huntingtin (Httex1) leads to Huntington's disease, a neurogenerative condition marked by the presence of intranuclear Htt inclusions. Notably, the polyglutamine tract in Httex1 is flanked by an N-terminal coiled-coil domain - N17 (17 amino acids), which undergoes self-association to promote the formation of soluble Httex1 oligomers and brings the aggregation-prone polyQ tracts in close spatial proximity. However, the mechanisms underlying the subsequent conversion of soluble oligomers into insoluble β-rich aggregates with increasing polyQ length, remain unclear. Current knowledge suggests that expansion of the polyQ tract increases its helicity, and this favors its oligomerization and aggregation. In addition, studies utilizing conformation-specific antibodies and a stable coiled-coil heterotetrametric system fused to polyQ indicate that domain "cross-talk" (i.e., interdomain interactions) may be necessary to efficiently promote the emergence of toxic conformations (in monomers and oligomers) and fibrillar aggregation. Here, we performed extensive atomistic molecular dynamics (MD) simulations (aggregate time ∼ 0.7 ms) of N17-polyQ fragments to uncover the interplay between structural transformation and domain "cross-talk" on the monomeric structural ensemble and oligomerization landscape of Httex1. Our simulation ensembles of N17-polyQ monomers validated against 13 C NMR chemical shifts indicated that in addition to elevated α-helicity, polyQ expansion also favors transient, interdomain (N17-polyQ) interactions which result in the emergence of β-conformations. Further, interdomain interactions decreased the overall stability of N17-mediated dimers by counteracting the stabilizing effect of increased α-helicity and promoted a heterogenous oligomerization landscape on the sub-microsecond timescale. Overall, our study uncovers the significance of domain "cross-talk" in modulating the monomeric conformational ensemble and oligomerization landscape of Httex1 to favor the formation of amyloid aggregates.
Collapse
|
3
|
Bravo-Arredondo JM, Venkataraman R, Varkey J, Isas JM, Situ AJ, Xu H, Chen J, Ulmer TS, Langen R. Molecular basis of Q-length selectivity for the MW1 antibody-huntingtin interaction. J Biol Chem 2023; 299:104616. [PMID: 36931390 PMCID: PMC10124945 DOI: 10.1016/j.jbc.2023.104616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Huntington's disease is caused by a polyglutamine (polyQ) expansion in the huntingtin protein. Huntingtin exon 1 (Httex1), as well as other naturally occurring N-terminal huntingtin fragments with expanded polyQ are prone to aggregation, forming potentially cytotoxic oligomers and fibrils. Antibodies and other N-terminal huntingtin binders are widely explored as biomarkers and possible aggregation-inhibiting therapeutics. A monoclonal antibody, MW1, is known to preferentially bind to huntingtin fragments with expanded polyQ lengths, but the molecular basis of the polyQ length specificity remains poorly understood. Using solution NMR, EPR, and other biophysical methods, we investigated the structural features of the Httex1-MW1 interaction. Rather than recognizing residual α-helical structure, which is promoted by expanded Q-lengths, MW1 caused the formation of a new, non-native, conformation in which the entire polyQ is largely extended. This non-native polyQ structure allowed the formation of large mixed Httex1-MW1 multimers (600-2900 kD), when Httex1 with pathogenic Q-length (Q46) was used. We propose that these multivalent, entropically favored interactions, are available only to proteins with longer Q-lengths and represent a major factor governing the Q-length preference of MW1. The present study reveals that it is possible to target proteins with longer Q-lengths without having to stabilize a natively favored conformation. Such mechanisms could be exploited in the design of other Q-length specific binders.
Collapse
Affiliation(s)
- Jose M Bravo-Arredondo
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Rajashree Venkataraman
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jobin Varkey
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jose Mario Isas
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Alan J Situ
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hui Xu
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jeannie Chen
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Tobias S Ulmer
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ralf Langen
- Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
4
|
Elena-Real CA, Sagar A, Urbanek A, Popovic M, Morató A, Estaña A, Fournet A, Doucet C, Lund XL, Shi ZD, Costa L, Thureau A, Allemand F, Swenson RE, Milhiet PE, Crehuet R, Barducci A, Cortés J, Sinnaeve D, Sibille N, Bernadó P. The structure of pathogenic huntingtin exon 1 defines the bases of its aggregation propensity. Nat Struct Mol Biol 2023; 30:309-320. [PMID: 36864173 DOI: 10.1038/s41594-023-00920-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/05/2023] [Indexed: 03/04/2023]
Abstract
Huntington's disease is a neurodegenerative disorder caused by a CAG expansion in the first exon of the HTT gene, resulting in an extended polyglutamine (poly-Q) tract in huntingtin (httex1). The structural changes occurring to the poly-Q when increasing its length remain poorly understood due to its intrinsic flexibility and the strong compositional bias. The systematic application of site-specific isotopic labeling has enabled residue-specific NMR investigations of the poly-Q tract of pathogenic httex1 variants with 46 and 66 consecutive glutamines. Integrative data analysis reveals that the poly-Q tract adopts long α-helical conformations propagated and stabilized by glutamine side chain to backbone hydrogen bonds. We show that α-helical stability is a stronger signature in defining aggregation kinetics and the structure of the resulting fibrils than the number of glutamines. Our observations provide a structural perspective of the pathogenicity of expanded httex1 and pave the way to a deeper understanding of poly-Q-related diseases.
Collapse
Affiliation(s)
- Carlos A Elena-Real
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Amin Sagar
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Annika Urbanek
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Matija Popovic
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Anna Morató
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Alejandro Estaña
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
- LAAS-CNRS, University of Toulouse, CNRS, Toulouse, France
| | - Aurélie Fournet
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Christine Doucet
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Xamuel L Lund
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
- Institute of Laue Langevin, Grenoble, France
| | - Zhen-Dan Shi
- The Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Luca Costa
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | | | - Frédéric Allemand
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Rolf E Swenson
- The Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | | | - Ramon Crehuet
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Barcelona, Spain
| | - Alessandro Barducci
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Juan Cortés
- LAAS-CNRS, University of Toulouse, CNRS, Toulouse, France
| | - Davy Sinnaeve
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS, EMR9002, Integrative Structural Biology, Lille, France
| | - Nathalie Sibille
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Pau Bernadó
- Centre for Structural Biology, University of Montpellier, INSERM, CNRS, Montpellier, France.
| |
Collapse
|
5
|
Parkin GM, Corey-Bloom J, Snell C, Smith H, Laurenza A, Daldin M, Bresciani A, Thomas EA. Salivary Huntingtin protein is uniquely associated with clinical features of Huntington's disease. Sci Rep 2023; 13:1034. [PMID: 36658243 PMCID: PMC9852574 DOI: 10.1038/s41598-023-28019-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Measuring Huntingtin (HTT) protein in peripheral cells represents an essential step in biomarker discovery for Huntington's Disease (HD), however to date, investigations into the salivary expression of HTT has been lacking. In the current study, we quantified total HTT (tHTT) and mutant HTT (mHTT) protein in matched blood and saliva samples using single molecule counting (SMC) immunoassays: 2B7-D7F7 (tHTT) and 2B7-MW1 (mHTT). Matched samples, and clinical data, were collected from 95 subjects: n = 19 manifest HD, n = 34 premanifest HD (PM), and n = 42 normal controls (NC). Total HTT and mHTT levels were not correlated in blood and saliva. Plasma tHTT was significantly associated with age, and participant sex; whereas salivary mHTT was significantly correlated with age, CAG repeat length and CAP score. Plasma and salivary tHTT did not differ across cohorts. Salivary and plasma mHTT were significantly increased in PM compared to NC; salivary mHTT was also significantly increased in HD compared to NC. Only salivary tHTT and mHTT were significantly correlated with clinical measures. Salivary HTT is uniquely associated with clinical measures of HD and offers significant promise as a relevant, non-invasive HD biomarker. Its use could be immediately implemented into both translational and clinical research applications.
Collapse
Affiliation(s)
- Georgia M Parkin
- Department of Epidemiology, University of California Irvine, Irvine, CA, USA.
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA, USA.
| | - Jody Corey-Bloom
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Chase Snell
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Haileigh Smith
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Angela Laurenza
- Department of Translational Biology, IRBM S.p.A., via Pontina Km 30, 600, Pomezia, Rome, Italy
- Menarini Ricerche S.p.A., via Tito Speri 10, Pomezia, Rome, Italy
| | - Manuel Daldin
- Department of Translational Biology, IRBM S.p.A., via Pontina Km 30, 600, Pomezia, Rome, Italy
| | - Alberto Bresciani
- Department of Translational Biology, IRBM S.p.A., via Pontina Km 30, 600, Pomezia, Rome, Italy
- Exscientia, Oxford Science Park, Oxford, UK
| | - Elizabeth A Thomas
- Department of Epidemiology, University of California Irvine, Irvine, CA, USA
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
6
|
Seefelder M, Klein FAC, Landwehrmeyer B, Fernández-Busnadiego R, Kochanek S. Huntingtin and Its Partner Huntingtin-Associated Protein 40: Structural and Functional Considerations in Health and Disease. J Huntingtons Dis 2022; 11:227-242. [PMID: 35871360 PMCID: PMC9484127 DOI: 10.3233/jhd-220543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the discovery of the mutation causing Huntington’s disease (HD) in 1993, it has been debated whether an expanded polyglutamine (polyQ) stretch affects the properties of the huntingtin (HTT) protein and thus contributes to the pathological mechanisms responsible for HD. Here we review the current knowledge about the structure of HTT, alone (apo-HTT) or in a complex with Huntingtin-Associated Protein 40 (HAP40), the influence of polyQ-length variation on apo-HTT and the HTT-HAP40 complex, and the biology of HAP40. Phylogenetic analyses suggest that HAP40 performs essential functions. Highlighting the relevance of its interaction with HTT, HAP40 is one of the most abundant partners copurifying with HTT and is rapidly degraded, when HTT levels are reduced. As the levels of both proteins decrease during disease progression, HAP40 could also be a biomarker for HD. Whether declining HAP40 levels contribute to disease etiology is an open question. Structural studies have shown that the conformation of apo-HTT is less constrained but resembles that adopted in the HTT-HAP40 complex, which is exceptionally stable because of extensive interactions between HAP40 and the three domains of HTT. The complex— and to some extent apo-HTT— resists fragmentation after limited proteolysis. Unresolved regions of apo-HTT, constituting about 25% of the protein, are the main sites of post-translational modifications and likely have major regulatory functions. PolyQ elongation does not substantially alter the structure of HTT, alone or when associated with HAP40. Particularly, polyQ above the disease length threshold does not induce drastic conformational changes in full-length HTT. Therefore, models of HD pathogenesis stating that polyQ expansion drastically alters HTT properties should be reconsidered.
Collapse
Affiliation(s)
| | | | | | - Rubén Fernández-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
7
|
Hübener-Schmid J, Kuhlbrodt K, Peladan J, Rieß O. Reply to: "Comment on: Polyglutamine-Expanded Ataxin-3: A Target Engagement Marker for Spinocerebellar Ataxia Type 3 in Peripheral Blood". Mov Disord 2022; 37:1121-1122. [PMID: 35587632 DOI: 10.1002/mds.29003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jeannette Hübener-Schmid
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | | | | | | | - Olaf Rieß
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Expression, Purification, Characterization and Cellular Uptake of MeCP2 Variants. Protein J 2022; 41:345-359. [PMID: 35546650 PMCID: PMC9122891 DOI: 10.1007/s10930-022-10054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 11/05/2022]
Abstract
The transcriptional regulator Methyl-CpG-binding protein 2 (MeCP2) is an intrinsically disordered protein, mutations in which, are implicated in the onset of Rett Syndrome, a severe and debilitating neurodevelopmental disorder. Delivery of this protein fused to the cell-penetrating peptide TAT could allow for the intracellular replenishment of functional MeCP2 and hence potentially serve as a prospective Rett Syndrome therapy. This work outlines the expression, purification and characterization of various TAT-MeCP2 constructs as well as their full-length and shortened eGFP fusion variants. The latter two constructs were used for intracellular uptake studies with subsequent analysis via western blotting and live-cell imaging. All purified MeCP2 samples exhibited high degree of stability and very little aggregation propensity. Full length and minimal TAT-MeCP2-eGFP were found to efficiently transduce into human dermal and murine fibroblasts and localize to cell nuclei. These findings clearly support the utility of MeCP2-based protein replacement therapy as a potential Rett Syndrome treatment option.
Collapse
|
9
|
Clark K, Lee C, Gillette R, Sweedler JV. Characterization of Neuronal RNA Modifications during Non-associative Learning in Aplysia Reveals Key Roles for tRNAs in Behavioral Sensitization. ACS CENTRAL SCIENCE 2021; 7:1183-1190. [PMID: 34345669 PMCID: PMC8323240 DOI: 10.1021/acscentsci.1c00351] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 05/12/2023]
Abstract
Subtle changes in the landscape of post-transcriptional modifications have emerged as putative regulators of central nervous system plasticity and activity-induced protein synthesis. However, simultaneous characterization of multiple RNA modifications and their covariation during learning and memory paradigms has been impeded by the complexity of animal models and lack of untargeted approaches for identifying pathway-relevant RNA modifications in small-volume samples. Here, we used mass spectrometry to profile spatiotemporal changes in dozens of neuronal RNA modifications in Aplysia californica during behavioral sensitization of a simple defensive reflex. Unique RNA modification patterns were observed in the major ganglia of trained and naı̇ve animals, with two tRNA modifications, namely, 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) and 1-methyladenosine (m1A), at significantly higher levels in trained subjects. We report that tRNAs, and their modifications, correlate with increased polyglutamine synthesis and excitability in neurons, characterizing the first link between noncoding RNA modifications and non-associative learning.
Collapse
Affiliation(s)
- Kevin
D. Clark
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Colin Lee
- Neuroscience
Program, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Rhanor Gillette
- Neuroscience
Program, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Molecular and Integrative Physiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Neuroscience
Program, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Molecular and Integrative Physiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Zeng J, Santos AF, Mukadam AS, Osswald M, Jacques DA, Dickson CF, McLaughlin SH, Johnson CM, Kiss L, Luptak J, Renner N, Vaysburd M, McEwan WA, Morais-de-Sá E, Clift D, James LC. Target-induced clustering activates Trim-Away of pathogens and proteins. Nat Struct Mol Biol 2021; 28:278-289. [PMID: 33633400 PMCID: PMC7611929 DOI: 10.1038/s41594-021-00560-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/13/2021] [Indexed: 01/31/2023]
Abstract
Trim-Away is a recently developed technology that exploits off-the-shelf antibodies and the RING E3 ligase and cytosolic antibody receptor TRIM21 to carry out rapid protein depletion. How TRIM21 is catalytically activated upon target engagement, either during its normal immune function or when repurposed for targeted protein degradation, is unknown. Here we show that a mechanism of target-induced clustering triggers intermolecular dimerization of the RING domain to switch on the ubiquitination activity of TRIM21 and induce virus neutralization or drive Trim-Away. We harness this mechanism for selective degradation of disease-causing huntingtin protein containing long polyglutamine tracts and expand the Trim-Away toolbox with highly active TRIM21-nanobody chimeras that can also be controlled optogenetically. This work provides a mechanism for cellular activation of TRIM RING ligases and has implications for targeted protein degradation technologies.
Collapse
Affiliation(s)
- Jingwei Zeng
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | - Ana Filipa Santos
- i3S - Instituto de Investigação e Inovação em Saúde and IBMC Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Aamir S. Mukadam
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mariana Osswald
- i3S - Instituto de Investigação e Inovação em Saúde and IBMC Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - David A. Jacques
- EMBL Australia Node, Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Claire F. Dickson
- EMBL Australia Node, Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | | | - Leo Kiss
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | - Jakub Luptak
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | - Nadine Renner
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | - Marina Vaysburd
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | - William A. McEwan
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,Correspondence: William McEwan (); Eurico Morais-de-Sá (); Dean Clift (); Leo C. James ()
| | - Eurico Morais-de-Sá
- i3S - Instituto de Investigação e Inovação em Saúde and IBMC Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal,Correspondence: William McEwan (); Eurico Morais-de-Sá (); Dean Clift (); Leo C. James ()
| | - Dean Clift
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK,Correspondence: William McEwan (); Eurico Morais-de-Sá (); Dean Clift (); Leo C. James ()
| | - Leo C. James
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK,Correspondence: William McEwan (); Eurico Morais-de-Sá (); Dean Clift (); Leo C. James ()
| |
Collapse
|
11
|
Mutant Huntingtin Is Cleared from the Brain via Active Mechanisms in Huntington Disease. J Neurosci 2020; 41:780-796. [PMID: 33310753 DOI: 10.1523/jneurosci.1865-20.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Huntington disease (HD) is a neurodegenerative disease caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene. Therapeutics that lower HTT have shown preclinical promise and are being evaluated in clinical trials. However, clinical assessment of brain HTT lowering presents challenges. We have reported that mutant HTT (mHTT) in the CSF of HD patients correlates with clinical measures, including disease burden as well as motor and cognitive performance. We have also shown that lowering HTT in the brains of HD mice results in correlative reduction of mHTT in the CSF, prompting the use of this measure as an exploratory marker of target engagement in clinical trials. In this study, we investigate the mechanisms of mHTT clearance from the brain in adult mice of both sexes to elucidate the significance of therapy-induced CSF mHTT changes. We demonstrate that, although neurodegeneration increases CSF mHTT concentrations, mHTT is also present in the CSF of mice in the absence of neurodegeneration. Importantly, we show that secretion of mHTT from cells in the CNS followed by glymphatic clearance from the extracellular space contributes to mHTT in the CSF. Furthermore, we observe secretion of wild type HTT from healthy control neurons, suggesting that HTT secretion is a normal process occurring in the absence of pathogenesis. Overall, our data support both passive release and active clearance of mHTT into CSF, suggesting that its treatment-induced changes may represent a combination of target engagement and preservation of neurons.SIGNIFICANCE STATEMENT: Changes in CSF mutant huntingtin (mHTT) are being used as an exploratory endpoint in HTT lowering clinical trials for the treatment of Huntington disease (HD). Recently, it was demonstrated that intrathecal administration of a HTT lowering agent leads to dose-dependent reduction of CSF mHTT in HD patients. However, little is known about how HTT, an intracellular protein, reaches the extracellular space and ultimately the CSF. Our findings that HTT enters CSF by both passive release and active secretion followed by glymphatic clearance may have significant implications for interpretation of treatment-induced changes of CSF mHTT in clinical trials for HD.
Collapse
|
12
|
Urbanek A, Popovic M, Morató A, Estaña A, Elena-Real CA, Mier P, Fournet A, Allemand F, Delbecq S, Andrade-Navarro MA, Cortés J, Sibille N, Bernadó P. Flanking Regions Determine the Structure of the Poly-Glutamine in Huntingtin through Mechanisms Common among Glutamine-Rich Human Proteins. Structure 2020; 28:733-746.e5. [PMID: 32402249 DOI: 10.1016/j.str.2020.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/18/2020] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
Abstract
The causative agent of Huntington's disease, the poly-Q homo-repeat in the N-terminal region of huntingtin (httex1), is flanked by a 17-residue-long fragment (N17) and a proline-rich region (PRR), which promote and inhibit the aggregation propensity of the protein, respectively, by poorly understood mechanisms. Based on experimental data obtained from site-specifically labeled NMR samples, we derived an ensemble model of httex1 that identified both flanking regions as opposing poly-Q secondary structure promoters. While N17 triggers helicity through a promiscuous hydrogen bond network involving the side chains of the first glutamines in the poly-Q tract, the PRR promotes extended conformations in neighboring glutamines. Furthermore, a bioinformatics analysis of the human proteome showed that these structural traits are present in many human glutamine-rich proteins and that they are more prevalent in proteins with longer poly-Q tracts. Taken together, these observations provide the structural bases to understand previous biophysical and functional data on httex1.
Collapse
Affiliation(s)
- Annika Urbanek
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Matija Popovic
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Anna Morató
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Alejandro Estaña
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France; LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Carlos A Elena-Real
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Pablo Mier
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Aurélie Fournet
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Frédéric Allemand
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Stephane Delbecq
- Laboratoire de Biologie Cellulaire et Moléculaire (LBCM-EA4558 Vaccination Antiparasitaire), UFR Pharmacie, Université de Montpellier, 34090 Montpellier, France
| | - Miguel A Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Nathalie Sibille
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Pau Bernadó
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France.
| |
Collapse
|
13
|
Assessing average somatic CAG repeat instability at the protein level. Sci Rep 2019; 9:19152. [PMID: 31844074 PMCID: PMC6915696 DOI: 10.1038/s41598-019-55202-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022] Open
Abstract
Sandwich ELISA-based methods use Abs that target the expanded polyglutamine (polyQ) tract to quantify mutant huntingtin (mHTT). Using Meso Scale Discovery (MSD) assay, the mHTT signal detected with MW1 Ab correlated with polyQ length and doubled with a difference of only 7 glutamine residues between equivalent amounts of purified mHTTexon1 proteins. Similar polyQ length-dependent effects on MSD signals were confirmed using endogenous full length mHTT from brains of Huntington’s disease (HD) knock-in (KI) mice. We used this avidity bias to devise a method to assess average CAG repeat instability at the protein level in a mixed population of HTT proteins present in tissues. Signal detected for average polyQ length quantification at the protein level by our method exhibited a strong correlation with average CAG repeat length at the genomic DNA level determined by PCR method in striatal tissue homogenates from HdhQ140 KI mice and in human HD postmortem cortex. This work establishes that CAG repeat instability in mutant HTT is reflected at the protein level.
Collapse
|
14
|
Ko J, Isas JM, Sabbaugh A, Yoo JH, Pandey NK, Chongtham A, Ladinsky M, Wu WL, Rohweder H, Weiss A, Macdonald D, Munoz-Sanjuan I, Langen R, Patterson PH, Khoshnan A. Identification of distinct conformations associated with monomers and fibril assemblies of mutant huntingtin. Hum Mol Genet 2019; 27:2330-2343. [PMID: 29912367 DOI: 10.1093/hmg/ddy141] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 11/14/2022] Open
Abstract
The N-terminal fragments of mutant huntingtin (mHTT) misfold and assemble into oligomers, which ultimately bundle into insoluble fibrils. Conformations unique to various assemblies of mHTT remain unknown. Knowledge on the half-life of various multimeric structures of mHTT is also scarce. Using a panel of four new antibodies named PHP1-4, we have identified new conformations in monomers and assembled structures of mHTT. PHP1 and PHP2 bind to epitopes within the proline-rich domain (PRD), whereas PHP3 and PHP4 interact with motifs formed at the junction of polyglutamine (polyQ) and polyproline (polyP) repeats of HTT. The PHP1- and PHP2-reactive epitopes are exposed in fibrils of mHTT exon1 (mHTTx1) generated from recombinant proteins and mHTT assemblies, which progressively accumulate in the nuclei, cell bodies and neuropils in the brains of HD mouse models. Notably, electron microscopic examination of brain sections of HD mice revealed that PHP1- and PHP2-reactive mHTT assemblies are present in myelin sheath and in vesicle-like structures. Moreover, PHP1 and PHP2 antibodies block seeding and subsequent fibril assembly of mHTTx1 in vitro and in a cell culture model of HD. PHP3 and PHP4 bind to epitopes in full-length and N-terminal fragments of monomeric mHTT and binding diminishes as the mHTTx1 assembles into fibrils. Interestingly, PHP3 and PHP4 also prevent the aggregation of mHTTx1 in vitro highlighting a regulatory function for the polyQ-polyP motifs. These newly detected conformations may affect fibril assembly, stability and intercellular transport of mHTT.
Collapse
Affiliation(s)
- Jan Ko
- Biology and Bioengineering, Caltech, Pasadena, CA 91125, USA
| | - J Mario Isas
- Zilka Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA 90089, USA
| | - Adam Sabbaugh
- Biology and Bioengineering, Caltech, Pasadena, CA 91125, USA
| | - Jung Hyun Yoo
- Biology and Bioengineering, Caltech, Pasadena, CA 91125, USA
| | - Nitin K Pandey
- Zilka Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA 90089, USA
| | | | - Mark Ladinsky
- Biology and Bioengineering, Caltech, Pasadena, CA 91125, USA
| | - Wei-Li Wu
- Biology and Bioengineering, Caltech, Pasadena, CA 91125, USA
| | | | - Andreas Weiss
- Evotec, Manfred Eigen Campus, Hamburg 22419, Germany
| | | | | | - Ralf Langen
- Zilka Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA 90089, USA
| | | | - Ali Khoshnan
- Biology and Bioengineering, Caltech, Pasadena, CA 91125, USA
| |
Collapse
|
15
|
Bravo-Arredondo JM, Kegulian NC, Schmidt T, Pandey NK, Situ AJ, Ulmer TS, Langen R. The folding equilibrium of huntingtin exon 1 monomer depends on its polyglutamine tract. J Biol Chem 2018; 293:19613-19623. [PMID: 30315108 DOI: 10.1074/jbc.ra118.004808] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/05/2018] [Indexed: 11/06/2022] Open
Abstract
Expansion of the polyglutamine (polyQ) tract in exon 1 of the huntingtin protein (Httex1) leads to Huntington's disease resulting in fatal neurodegeneration. However, it remains poorly understood how polyQ expansions alter protein structure and cause toxicity. Using CD, EPR, and NMR spectroscopy, we found here that monomeric Httex1 consists of two co-existing structural states whose ratio is determined by polyQ tract length. We observed that short Q-lengths favor a largely random-coil state, whereas long Q-lengths increase the proportion of a predominantly α-helical state. We also note that by following a mobility gradient, Httex1 α-helical conformation is restricted to the N-terminal N17 region and to the N-terminal portion of the adjoining polyQ tract. Structuring in both regions was interdependent and likely stabilized by tertiary contacts. Although little helicity was present in N17 alone, each Gln residue in Httex1 enhanced helix stability by 0.03-0.05 kcal/mol, causing a pronounced preference for the α-helical state at pathological Q-lengths. The Q-length-dependent structuring and rigidification could be mimicked in proteins with shorter Q-lengths by a decrease in temperature, indicating that lower temperatures similarly stabilize N17 and polyQ intramolecular contacts. The more rigid α-helical state of Httex1 with an expanded polyQ tract is expected to alter interactions with cellular proteins and modulate the toxic Httex1 misfolding process. We propose that the polyQ-dependent shift in the structural equilibrium may enable future therapeutic strategies that specifically target Httex1 with toxic Q-lengths.
Collapse
Affiliation(s)
- Jose M Bravo-Arredondo
- From the Departments of Physiology and Neuroscience and.,the Facultad de Ciencias Básicas, Ingeniería y Tecnología, Universidad Autónoma de Tlaxcala, Calzada Apizaquito S/N, 90300 Apizaco, Tlaxcala, Mexico
| | - Natalie C Kegulian
- Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 and
| | - Thomas Schmidt
- Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 and
| | | | - Alan J Situ
- From the Departments of Physiology and Neuroscience and
| | - Tobias S Ulmer
- From the Departments of Physiology and Neuroscience and.,Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 and
| | - Ralf Langen
- From the Departments of Physiology and Neuroscience and .,Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033 and
| |
Collapse
|
16
|
Drombosky KW, Rode S, Kodali R, Jacob TC, Palladino MJ, Wetzel R. Mutational analysis implicates the amyloid fibril as the toxic entity in Huntington's disease. Neurobiol Dis 2018; 120:126-138. [PMID: 30171891 DOI: 10.1016/j.nbd.2018.08.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022] Open
Abstract
In Huntington disease (HD), an expanded polyglutamine (polyQ > 37) sequence within huntingtin (htt) exon1 leads to enhanced disease risk. It has proved difficult, however, to determine whether the toxic form generated by polyQ expansion is a misfolded or avid-binding monomer, an α-helix-rich oligomer, or a β-sheet-rich amyloid fibril. Here we describe an engineered htt exon1 analog featuring a short polyQ sequence that nonetheless quickly forms amyloid fibrils and causes HD-like toxicity in rat neurons and Drosophila. Additional modifications within the polyQ segment produce htt exon1 analogs that populate only spherical oligomers and are non-toxic in cells and flies. Furthermore, in mixture with expanded-polyQ htt exon1, the latter analogs in vitro suppress amyloid formation and promote oligomer formation, and in vivo rescue neurons and flies expressing mhtt exon1 from dysfunction and death. Thus, in our experiments, while htt exon1 toxicity tracks with aggregation propensity, it does so in spite of the toxic construct's possessing polyQ tracts well below those normally considered to be disease-associated. That is, aggregation propensity proves to be a more accurate surrogate for toxicity than is polyQ repeat length itself, strongly supporting a major toxic role for htt exon1 aggregation in HD. In addition, the results suggest that the aggregates that are most toxic in these model systems are amyloid-related. These engineered analogs are novel tools for mapping properties of polyQ self-assembly intermediates and products that should similarly be useful in the analysis of other expanded polyQ diseases. Small molecules with similar amyloid inhibitory properties might be developed into effective therapeutic agents.
Collapse
Affiliation(s)
- Kenneth W Drombosky
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Graduate Program in Molecular Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sascha Rode
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ravi Kodali
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tija C Jacob
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael J Palladino
- Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ronald Wetzel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Conformation Polymorphism of Polyglutamine Proteins. Trends Biochem Sci 2018; 43:424-435. [PMID: 29636213 DOI: 10.1016/j.tibs.2018.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 01/29/2023]
Abstract
Expanded polyglutamine (polyQ) stretches within endogenous proteins cause at least nine human diseases. The structural basis of polyQ pathogenesis is the key to understanding fundamental mechanisms of these diseases, but it remains unclear and controversial due to a lack of polyQ protein structures at the single-atom level. Various hypotheses have been proposed to explain the structure-cytotoxicity relationship of pathogenic proteins with polyQ expansion, largely based on indirect evidence. Here we review these hypotheses and their supporting evidence, along with additional insights from recent structural biology and chemical biology studies, with a focus on Huntingtin (HTT), the most extensively studied polyQ disease protein. Lastly, we propose potential novel strategies that may further clarify the conformation-cytotoxicity relationship of polyQ proteins.
Collapse
|
18
|
Newcombe EA, Ruff KM, Sethi A, Ormsby AR, Ramdzan YM, Fox A, Purcell AW, Gooley PR, Pappu RV, Hatters DM. Tadpole-like Conformations of Huntingtin Exon 1 Are Characterized by Conformational Heterogeneity that Persists regardless of Polyglutamine Length. J Mol Biol 2018; 430:1442-1458. [PMID: 29627459 DOI: 10.1016/j.jmb.2018.03.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/21/2018] [Accepted: 03/25/2018] [Indexed: 11/30/2022]
Abstract
Soluble huntingtin exon 1 (Httex1) with expanded polyglutamine (polyQ) engenders neurotoxicity in Huntington's disease. To uncover the physical basis of this toxicity, we performed structural studies of soluble Httex1 for wild-type and mutant polyQ lengths. Nuclear magnetic resonance experiments show evidence for conformational rigidity across the polyQ region. In contrast, hydrogen-deuterium exchange shows absence of backbone amide protection, suggesting negligible persistence of hydrogen bonds. The seemingly conflicting results are explained by all-atom simulations, which show that Httex1 adopts tadpole-like structures with a globular head encompassing the N-terminal amphipathic and polyQ regions and the tail encompassing the C-terminal proline-rich region. The surface area of the globular domain increases monotonically with polyQ length. This stimulates sharp increases in gain-of-function interactions in cells for expanded polyQ, and one of these interactions is with the stress-granule protein Fus. Our results highlight plausible connections between Httex1 structure and routes to neurotoxicity.
Collapse
Affiliation(s)
- Estella A Newcombe
- Department of Biochemistry and Molecular Biology, and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - Kiersten M Ruff
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Ashish Sethi
- Department of Biochemistry and Molecular Biology, and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - Angelique R Ormsby
- Department of Biochemistry and Molecular Biology, and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - Yasmin M Ramdzan
- Department of Biochemistry and Molecular Biology, and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - Archa Fox
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, WA 6009, Australia
| | - Anthony W Purcell
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St Louis, MO 63130, USA.
| | - Danny M Hatters
- Department of Biochemistry and Molecular Biology, and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
19
|
Warner JB, Ruff KM, Tan PS, Lemke EA, Pappu RV, Lashuel HA. Monomeric Huntingtin Exon 1 Has Similar Overall Structural Features for Wild-Type and Pathological Polyglutamine Lengths. J Am Chem Soc 2017; 139:14456-14469. [PMID: 28937758 PMCID: PMC5677759 DOI: 10.1021/jacs.7b06659] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Indexed: 12/22/2022]
Abstract
Huntington's disease is caused by expansion of a polyglutamine (polyQ) domain within exon 1 of the huntingtin gene (Httex1). The prevailing hypothesis is that the monomeric Httex1 protein undergoes sharp conformational changes as the polyQ length exceeds a threshold of 36-37 residues. Here, we test this hypothesis by combining novel semi-synthesis strategies with state-of-the-art single-molecule Förster resonance energy transfer measurements on biologically relevant, monomeric Httex1 proteins of five different polyQ lengths. Our results, integrated with atomistic simulations, negate the hypothesis of a sharp, polyQ length-dependent change in the structure of monomeric Httex1. Instead, they support a continuous global compaction with increasing polyQ length that derives from increased prominence of the globular polyQ domain. Importantly, we show that monomeric Httex1 adopts tadpole-like architectures for polyQ lengths below and above the pathological threshold. Our results suggest that higher order homotypic and/or heterotypic interactions within distinct sub-populations of neurons, which are inevitable at finite cellular concentrations, are likely to be the main source of sharp polyQ length dependencies of HD.
Collapse
Affiliation(s)
- John B. Warner
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Brain Mind
Institute, Station 19, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Kiersten M. Ruff
- Department
of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Piau Siong Tan
- Structural
and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Edward A. Lemke
- Structural
and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Rohit V. Pappu
- Department
of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Hilal A. Lashuel
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Brain Mind
Institute, Station 19, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Fu Y, Wu P, Pan Y, Sun X, Yang H, Difiglia M, Lu B. A toxic mutant huntingtin species is resistant to selective autophagy. Nat Chem Biol 2017; 13:1152-1154. [PMID: 28869595 DOI: 10.1038/nchembio.2461] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/19/2017] [Indexed: 01/24/2023]
Abstract
Protein misfolding is a common theme in neurodegenerative disorders including Huntington's disease (HD). The HD-causing mutant huntingtin protein (mHTT) has an expanded polyglutamine (polyQ) stretch that may adopt multiple conformations, and the most toxic of these is the one recognized by antibody 3B5H10. Here we show that the 3B5H10-recognized mHTT species has a slower degradation rate due to its resistance to selective autophagy in human cells and brains, revealing mechanisms of its higher toxicity.
Collapse
Affiliation(s)
- Yuhua Fu
- State Key Laboratory of Medical Neurobiology, Neurology Department at Huashan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Peng Wu
- State Key Laboratory of Medical Neurobiology, Neurology Department at Huashan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuyin Pan
- State Key Laboratory of Medical Neurobiology, Neurology Department at Huashan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoli Sun
- State Key Laboratory of Medical Neurobiology, Neurology Department at Huashan Hospital, School of Life Sciences, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huiya Yang
- State Key Laboratory of Medical Neurobiology, Neurology Department at Huashan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Marian Difiglia
- MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Boston, USA
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology, Neurology Department at Huashan Hospital, School of Life Sciences, Fudan University, Shanghai, China.,Collaborative Innovation Center of Genetics and Development, Shanghai, China
| |
Collapse
|
21
|
Daldin M, Fodale V, Cariulo C, Azzollini L, Verani M, Martufi P, Spiezia MC, Deguire SM, Cherubini M, Macdonald D, Weiss A, Bresciani A, Vonsattel JPG, Petricca L, Marsh JL, Gines S, Santimone I, Marano M, Lashuel HA, Squitieri F, Caricasole A. Polyglutamine expansion affects huntingtin conformation in multiple Huntington's disease models. Sci Rep 2017; 7:5070. [PMID: 28698602 PMCID: PMC5505970 DOI: 10.1038/s41598-017-05336-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/14/2017] [Indexed: 12/29/2022] Open
Abstract
Conformational changes in disease-associated or mutant proteins represent a key pathological aspect of Huntington’s disease (HD) and other protein misfolding diseases. Using immunoassays and biophysical approaches, we and others have recently reported that polyglutamine expansion in purified or recombinantly expressed huntingtin (HTT) proteins affects their conformational properties in a manner dependent on both polyglutamine repeat length and temperature but independent of HTT protein fragment length. These findings are consistent with the HD mutation affecting structural aspects of the amino-terminal region of the protein, and support the concept that modulating mutant HTT conformation might provide novel therapeutic and diagnostic opportunities. We now report that the same conformational TR-FRET based immunoassay detects polyglutamine- and temperature-dependent changes on the endogenously expressed HTT protein in peripheral tissues and post-mortem HD brain tissue, as well as in tissues from HD animal models. We also find that these temperature- and polyglutamine-dependent conformational changes are sensitive to bona-fide phosphorylation on S13 and S16 within the N17 domain of HTT. These findings provide key clinical and preclinical relevance to the conformational immunoassay, and provide supportive evidence for its application in the development of therapeutics aimed at correcting the conformation of polyglutamine-expanded proteins as well as the pharmacodynamics readouts to monitor their efficacy in preclinical models and in HD patients.
Collapse
Affiliation(s)
- Manuel Daldin
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | - Valentina Fodale
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy.,IRBM Promidis, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | - Cristina Cariulo
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | - Lucia Azzollini
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy.,IRBM Promidis, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | - Margherita Verani
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy.,IRBM Promidis, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | - Paola Martufi
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | | | - Sean M Deguire
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Station 19, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Marta Cherubini
- Departamento de Ciencias Biomedicas, Facultat de Medicina, Instituto de Neurociencias, Universitat de Barcelona, Barcelona, Spain
| | | | - Andreas Weiss
- IRBM Promidis, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy.,Evotec AG, Manfred Eigen Campus, Hamburg, Germany
| | - Alberto Bresciani
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | - Jean-Paul Gerard Vonsattel
- Taub Institute for Research on Alzheimer's disease and the Aging Brain, Columbia University Medical Center, 710 West 168th Street, New York, NY, 10032, USA
| | - Lara Petricca
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy.,IRBM Promidis, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy
| | - J Lawrence Marsh
- Department of Developmental and Cell Biology, University of California, Irvine, 92697, USA
| | - Silvia Gines
- Departamento de Ciencias Biomedicas, Facultat de Medicina, Instituto de Neurociencias, Universitat de Barcelona, Barcelona, Spain
| | - Iolanda Santimone
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Massimo Marano
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Station 19, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Andrea Caricasole
- IRBM Science Park, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy. .,IRBM Promidis, Via Pontina km 30.600, 00071, Pomezia, Rome, Italy.
| |
Collapse
|
22
|
Adegbuyiro A, Sedighi F, Pilkington AW, Groover S, Legleiter J. Proteins Containing Expanded Polyglutamine Tracts and Neurodegenerative Disease. Biochemistry 2017; 56:1199-1217. [PMID: 28170216 DOI: 10.1021/acs.biochem.6b00936] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several hereditary neurological and neuromuscular diseases are caused by an abnormal expansion of trinucleotide repeats. To date, there have been 10 of these trinucleotide repeat disorders associated with an expansion of the codon CAG encoding glutamine (Q). For these polyglutamine (polyQ) diseases, there is a critical threshold length of the CAG repeat required for disease, and further expansion beyond this threshold is correlated with age of onset and symptom severity. PolyQ expansion in the translated proteins promotes their self-assembly into a variety of oligomeric and fibrillar aggregate species that accumulate into the hallmark proteinaceous inclusion bodies associated with each disease. Here, we review aggregation mechanisms of proteins with expanded polyQ-tracts, structural consequences of expanded polyQ ranging from monomers to fibrillar aggregates, the impact of protein context and post-translational modifications on aggregation, and a potential role for lipid membranes in aggregation. As the pathogenic mechanisms that underlie these disorders are often classified as either a gain of toxic function or loss of normal protein function, some toxic mechanisms associated with mutant polyQ tracts will also be discussed.
Collapse
Affiliation(s)
- Adewale Adegbuyiro
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Faezeh Sedighi
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Albert W Pilkington
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Sharon Groover
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States.,Blanchette Rockefeller Neurosciences Institute, Robert C. Byrd Health Sciences Center, P.O. Box 9304, West Virginia University , Morgantown, West Virginia 26506, United States.,NanoSAFE, P.O. Box 6223, West Virginia University , Morgantown, West Virginia 26506, United States
| |
Collapse
|
23
|
Cordeiro TN, Herranz-Trillo F, Urbanek A, Estaña A, Cortés J, Sibille N, Bernadó P. Structural Characterization of Highly Flexible Proteins by Small-Angle Scattering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1009:107-129. [DOI: 10.1007/978-981-10-6038-0_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Cordeiro TN, Herranz-Trillo F, Urbanek A, Estaña A, Cortés J, Sibille N, Bernadó P. Small-angle scattering studies of intrinsically disordered proteins and their complexes. Curr Opin Struct Biol 2016; 42:15-23. [PMID: 27794210 DOI: 10.1016/j.sbi.2016.10.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 12/01/2022]
Abstract
Intrinsically Disordered Proteins (IDPs) perform a broad range of biological functions. Their relevance has motivated intense research activity seeking to characterize their sequence/structure/function relationships. However, the conformational plasticity of these molecules hampers the application of traditional structural approaches, and new tools and concepts are being developed to address the challenges they pose. Small-Angle Scattering (SAS) is a structural biology technique that probes the size and shape of disordered proteins and their complexes with other biomolecules. The low-resolution nature of SAS can be compensated with specially designed computational tools and its combined interpretation with complementary structural information. In this review, we describe recent advances in the application of SAS to disordered proteins and highly flexible complexes and discuss current challenges.
Collapse
Affiliation(s)
- Tiago N Cordeiro
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France
| | - Fátima Herranz-Trillo
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France; Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Annika Urbanek
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France
| | - Alejandro Estaña
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France; LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Nathalie Sibille
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France
| | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
25
|
Shen K, Calamini B, Fauerbach JA, Ma B, Shahmoradian SH, Serrano Lachapel IL, Chiu W, Lo DC, Frydman J. Control of the structural landscape and neuronal proteotoxicity of mutant Huntingtin by domains flanking the polyQ tract. eLife 2016; 5. [PMID: 27751235 PMCID: PMC5135392 DOI: 10.7554/elife.18065] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 10/17/2016] [Indexed: 12/29/2022] Open
Abstract
Many neurodegenerative diseases are linked to amyloid aggregation. In Huntington’s disease (HD), neurotoxicity correlates with an increased aggregation propensity of a polyglutamine (polyQ) expansion in exon 1 of mutant huntingtin protein (mHtt). Here we establish how the domains flanking the polyQ tract shape the mHtt conformational landscape in vitro and in neurons. In vitro, the flanking domains have opposing effects on the conformation and stabilities of oligomers and amyloid fibrils. The N-terminal N17 promotes amyloid fibril formation, while the C-terminal Proline Rich Domain destabilizes fibrils and enhances oligomer formation. However, in neurons both domains act synergistically to engage protective chaperone and degradation pathways promoting mHtt proteostasis. Surprisingly, when proteotoxicity was assessed in rat corticostriatal brain slices, either flanking region alone sufficed to generate a neurotoxic conformation, while the polyQ tract alone exhibited minimal toxicity. Linking mHtt structural properties to its neuronal proteostasis should inform new strategies for neuroprotection in polyQ-expansion diseases. DOI:http://dx.doi.org/10.7554/eLife.18065.001 Huntington’s disease is a neurodegenerative disorder in which misshapen proteins accumulate in the brain and kill neurons. The misshapen proteins form as a result of specific mutations in the gene that encodes a protein called huntingtin. These mutations result in a region of the protein called the polyQ tract being longer than normal. Other regions of huntingtin that are near to the polyQ tract can dramatically change the behavior of the mutant protein. Shen et al. investigated how these regions control the shape of mutant huntingtin and how this affects the toxicity of the mutant protein in neurons. The experiments found that the two regions on either side of the polyQ tract dramatically change the shape of mutant huntingtin proteins. In the absence of these flanking regions, the extended polyQ region is not very toxic, demonstrating that the flanking sequences play important roles in generating the toxic protein shapes. These flanking regions help mutant huntingtin to form a particular shape that was strongly linked with the death of neurons in rat brain slices. The flanking regions also change the way that the cellular machinery in neurons recognizes mutated huntingtin proteins and acts to prevent them from causing harm. Misshapen forms of other proteins are responsible for causing other neurodegenerative diseases, including Alzheimer’s and Parkinson’s diseases. Therefore, the findings of Shen et al. may help researchers to develop new drugs for these conditions, as well as for Huntingdon’s disease. DOI:http://dx.doi.org/10.7554/eLife.18065.002
Collapse
Affiliation(s)
- Koning Shen
- Department of Biology, Stanford University, Stanford, United States.,Department of Genetics, Stanford University, Stanford, United States
| | - Barbara Calamini
- Center for Drug Discovery, Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Jonathan A Fauerbach
- Department of Biology, Stanford University, Stanford, United States.,Department of Genetics, Stanford University, Stanford, United States
| | - Boxue Ma
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Sarah H Shahmoradian
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Ivana L Serrano Lachapel
- Department of Biology, Stanford University, Stanford, United States.,Department of Genetics, Stanford University, Stanford, United States
| | - Wah Chiu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Donald C Lo
- Center for Drug Discovery, Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, United States.,Department of Genetics, Stanford University, Stanford, United States
| |
Collapse
|
26
|
Owens GE, New DM, Olvera AI, Manzella JA, Macon BL, Dunn JC, Cooper DA, Rouleau RL, Connor DS, Bjorkman PJ. Comparative analysis of anti-polyglutamine Fab crystals grown on Earth and in microgravity. Acta Crystallogr F Struct Biol Commun 2016; 72:762-771. [PMID: 27710941 PMCID: PMC5053161 DOI: 10.1107/s2053230x16014011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/02/2016] [Indexed: 11/10/2022] Open
Abstract
Huntington's disease is one of nine neurodegenerative diseases caused by a polyglutamine (polyQ)-repeat expansion. An anti-polyQ antigen-binding fragment, MW1 Fab, was crystallized both on Earth and on the International Space Station, a microgravity environment where convection is limited. Once the crystals returned to Earth, the number, size and morphology of all crystals were recorded, and X-ray data were collected from representative crystals. The results generally agreed with previous microgravity crystallization studies. On average, microgravity-grown crystals were 20% larger than control crystals grown on Earth, and microgravity-grown crystals had a slightly improved mosaicity (decreased by 0.03°) and diffraction resolution (decreased by 0.2 Å) compared with control crystals grown on Earth. However, the highest resolution and lowest mosaicity crystals were formed on Earth, and the highest-quality crystal overall was formed on Earth after return from microgravity.
Collapse
Affiliation(s)
- Gwen E. Owens
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
- Graduate Option in Biochemistry and Molecular Biophysics, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
- UCLA–Caltech Medical Scientist Training Program, Los Angeles, CA 90095, USA
| | - Danielle M. New
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Alejandra I. Olvera
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Julia Ashlyn Manzella
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, 1025 18th Street South, Birmingham, AL 35294, USA
| | - Brittney L. Macon
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, 1025 18th Street South, Birmingham, AL 35294, USA
| | - Joshua C. Dunn
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, 1025 18th Street South, Birmingham, AL 35294, USA
| | - David A. Cooper
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, 1025 18th Street South, Birmingham, AL 35294, USA
| | - Robyn L. Rouleau
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, 1025 18th Street South, Birmingham, AL 35294, USA
| | - Daniel S. Connor
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, 1025 18th Street South, Birmingham, AL 35294, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
27
|
Conformational modulation mediated by polyglutamine expansion in CAG repeat expansion disease-associated proteins. Biochem Biophys Res Commun 2016; 478:949-55. [PMID: 27520369 DOI: 10.1016/j.bbrc.2016.08.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 12/26/2022]
Abstract
We have previously reported TR-FRET based immunoassays to detect a conformational change imparted on huntingtin protein by the polyglutamine expansion, which we confirmed using biophysical methodologies. Using these immunoassays, we now report that polyglutamine expansion influences the conformational properties of other polyglutamine disease proteins, exemplified by the androgen receptor (associated with spinal bulbar muscular atrophy) and TATA binding protein (associated with spinocerebellar ataxia 17). Using artificial constructs bearing short or long polyglutamine expansions or a multimerized, unrelated epitope (mimicking the increase in anti-polyglutamine antibody epitopes present in polyglutamine repeats of increasing length) we confirmed that the conformational TR-FRET based immunoassay detects an intrinsic conformational property of polyglutamine repeats. The TR-FRET based conformational immunoassay may represent a rapid, scalable tool to identify modulators of polyglutamine-mediated conformational change in different proteins associated with CAG triplet repeat disorders.
Collapse
|
28
|
Sahoo B, Arduini I, Drombosky KW, Kodali R, Sanders LH, Greenamyre JT, Wetzel R. Folding Landscape of Mutant Huntingtin Exon1: Diffusible Multimers, Oligomers and Fibrils, and No Detectable Monomer. PLoS One 2016; 11:e0155747. [PMID: 27271685 PMCID: PMC4894636 DOI: 10.1371/journal.pone.0155747] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 05/03/2016] [Indexed: 12/19/2022] Open
Abstract
Expansion of the polyglutamine (polyQ) track of the Huntingtin (HTT) protein above 36 is associated with a sharply enhanced risk of Huntington’s disease (HD). Although there is general agreement that HTT toxicity resides primarily in N-terminal fragments such as the HTT exon1 protein, there is no consensus on the nature of the physical states of HTT exon1 that are induced by polyQ expansion, nor on which of these states might be responsible for toxicity. One hypothesis is that polyQ expansion induces an alternative, toxic conformation in the HTT exon1 monomer. Alternative hypotheses posit that the toxic species is one of several possible aggregated states. Defining the nature of the toxic species is particularly challenging because of facile interconversion between physical states as well as challenges to identifying these states, especially in vivo. Here we describe the use of fluorescence correlation spectroscopy (FCS) to characterize the detailed time and repeat length dependent self-association of HTT exon1-like fragments both with chemically synthesized peptides in vitro and with cell-produced proteins in extracts and in living cells. We find that, in vitro, mutant HTT exon1 peptides engage in polyQ repeat length dependent dimer and tetramer formation, followed by time dependent formation of diffusible spherical and fibrillar oligomers and finally by larger, sedimentable amyloid fibrils. For expanded polyQ HTT exon1 expressed in PC12 cells, monomers are absent, with tetramers being the smallest molecular form detected, followed in the incubation time course by small, diffusible aggregates at 6–9 hours and larger, sedimentable aggregates that begin to build up at 12 hrs. In these cell cultures, significant nuclear DNA damage appears by 6 hours, followed at later times by caspase 3 induction, mitochondrial dysfunction, and cell death. Our data thus defines limits on the sizes and concentrations of different physical states of HTT exon1 along the reaction profile in the context of emerging cellular distress. The data provide some new candidates for the toxic species and some new reservations about more well-established candidates. Compared to other known markers of HTT toxicity, nuclear DNA damage appears to be a relatively early pathological event.
Collapse
Affiliation(s)
- Bankanidhi Sahoo
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, United States of America
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, United States of America
| | - Irene Arduini
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, United States of America
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, United States of America
| | - Kenneth W. Drombosky
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, United States of America
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, United States of America
| | - Ravindra Kodali
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, United States of America
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, United States of America
| | - Laurie H. Sanders
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, United States of America
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, United States of America
| | - J. Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, United States of America
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, United States of America
| | - Ronald Wetzel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, United States of America
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, United States of America
- * E-mail:
| |
Collapse
|
29
|
Strømland Ø, Jakubec M, Furse S, Halskau Ø. Detection of misfolded protein aggregates from a clinical perspective. J Clin Transl Res 2016; 2:11-26. [PMID: 30873457 PMCID: PMC6410640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 11/29/2022] Open
Abstract
Neurodegenerative Protein Misfolding Diseases (PMDs), such as Alzheimer's (AD), Parkinson's (PD) and prion diseases, are generally difficult to diagnose before irreversible damage to the central nervous system damage has occurred. Detection of the misfolded proteins that ultimately lead to these conditions offers a means for providing early detection and diagnosis of this class of disease. In this review, we discuss recent developments surrounding protein misfolding diseases with emphasis on the cytotoxic oligomers implicated in their aetiology. We also discuss the relationship of misfolded proteins with biological membranes. Finally, we discuss how far techniques for providing early diagnoses for PMDs have advanced and describe promising clinical approaches. We conclude that antibodies with specificity towards oligomeric species of AD and PD and lectins with specificity for particular glycosylation, show promise. However, it is not clear which approach may yield a reliable clinical test first. Relevance for patients: Individuals suffering from protein misfolding diseases will likely benefit form earlier, less- or even non-invasive diagnosis techniques. The current state and possible future directions for these are subject of this review.
Collapse
Affiliation(s)
- Øyvind Strømland
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Martin Jakubec
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Samuel Furse
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Øyvind Halskau
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| |
Collapse
|