1
|
Anand A, Gautam G, Yadav S, Ramalingam K, Kumar Haldar A, Goyal N. Epsilon subunit of T-complex protein-1 from Leishmania donovani: A tetrameric chaperonin. Gene 2024; 926:148637. [PMID: 38844270 DOI: 10.1016/j.gene.2024.148637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
The cytosolic T-complex protein-1 ring complex (TRiC), also referred as chaperonin containing TCP-1(CCT), comprising eight different subunits stacked in double toroidal rings, binds to around 10 % of newly synthesized polypeptides and facilitates their folding in ATP dependent manner. In Leishmania, among five subunits of TCP1 complex, identified either by transcriptome or by proteome analysis, only LdTCP1γ has been well characterized. It forms biologically active homo-oligomeric complex and plays role in protein folding and parasite survival. Lack of information regarding rest of the TCP1 subunits and its structural configuration laid down the necessity to study individual subunits and their role in parasite pathogenicity. The present study involves the cloning, expression and biochemical characterization of TCP1ε subunit (LdTCP1ε) of Leishmania donovani, the causative agent of visceral leishmaniasis. LdTCP1ε exhibited significant difference in primary structure as compared to LdTCP1γ and was evolutionary close to LdTCP1 zeta subunit. Recombinant protein (rLdTCP1ε) exhibited two major bands of 132 kDa and 240 kDa on native-PAGE that corresponds to the dimeric and tetrameric assembly of the epsilon subunit, which showed the chaperonin activity (ATPase and luciferase refolding activity). LdTCP1ε also displayed an increased expression upto 2.7- and 1.8-fold in the late log phase and stationary phase promastigotes and exhibited majorly vesicular localization. The study, thus for the first time, provides an insight for the presence of highly diverge but functionally active dimeric/tetrameric TCP1 epsilon subunit in Leishmania parasite.
Collapse
Affiliation(s)
- Apeksha Anand
- Division of Biochemistry and Structural Biology, CSIR- Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Gaziabaad 201002, India
| | - Gunjan Gautam
- Division of Biochemistry and Structural Biology, CSIR- Central Drug Research Institute, Lucknow 226031, India
| | - Shailendra Yadav
- Division of Biochemistry and Structural Biology, CSIR- Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Gaziabaad 201002, India
| | - Karthik Ramalingam
- Division of Biochemistry and Structural Biology, CSIR- Central Drug Research Institute, Lucknow 226031, India
| | - Arun Kumar Haldar
- Division of Biochemistry and Structural Biology, CSIR- Central Drug Research Institute, Lucknow 226031, India
| | - Neena Goyal
- Division of Biochemistry and Structural Biology, CSIR- Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
2
|
Anand A, Gautam G, Srivastava G, Yadav S, Ramalingam K, Siddiqi MI, Goyal N. Molecular, structural, and functional characterization of delta subunit of T-complex protein-1 from Leishmania donovani. Infect Immun 2024; 92:e0023424. [PMID: 39248465 PMCID: PMC11475657 DOI: 10.1128/iai.00234-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 09/10/2024] Open
Abstract
Chaperonins/Heat shock protein 60 are ubiquitous multimeric protein complexes that assist in the folding of partially and/or misfolded proteins using metabolic energy into their native stage. The eukaryotic group II chaperonin, also referred as T-complex protein-1 ring complex (TRiC)/T-complex protein-1 (TCP1)/chaperonin containing T-complex protein (CCT), contains 8-9 paralogous subunits, arranged in each of the two rings of hetero-oligomeric complex. In Leishmania, till date, only one subunit, LdTCP1γ, has been well studied. Here, we report the molecular, structural, and functional characterization of TCP1δ subunit of Leishmania donovani (LdTCP1δ), the causative agent of Indian kala-azar. LdTCP1δ gene exhibited only 27.9% identity with LdTCP1γ and clustered in a separate branch in the phylogenic tree of LdTCP1 subunits. The purified recombinant protein formed a high molecular weight complex (0.75 MDa), arranged into 16-mer assembly, and performed in vitro chaperonin activity as assayed by ATP-dependent luciferase folding. LdTCP1δ exhibits 1.8-fold upregulated expression in metabolically active, rapidly dividing log phase promastigotes. Over-expression of LdTCP1δ in promastigotes results in increased infectivity and rate of multiplication of intracellular amastigotes. The study thus establishes the existence of an individual functionally active homo-oligomeric complex of LdTCP1δ chaperonin with its role in parasite infectivity and multiplication.
Collapse
Affiliation(s)
- Apeksha Anand
- Division of Biochemistry and Structural Biology, CSIR—Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Gunjan Gautam
- Division of Biochemistry and Structural Biology, CSIR—Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Gaurava Srivastava
- Division of Biochemistry and Structural Biology, CSIR—Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Shailendra Yadav
- Division of Biochemistry and Structural Biology, CSIR—Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Karthik Ramalingam
- Division of Biochemistry and Structural Biology, CSIR—Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Mohammad Imran Siddiqi
- Division of Biochemistry and Structural Biology, CSIR—Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Neena Goyal
- Division of Biochemistry and Structural Biology, CSIR—Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Elaswad MT, Gao M, Tice VE, Bright CG, Thomas GM, Munderloh C, Trombley NJ, Haddad CN, Johnson UG, Cichon AN, Schisa JA. The CCT chaperonin and actin modulate the ER and RNA-binding protein condensation during oogenesis and maintain translational repression of maternal mRNA and oocyte quality. Mol Biol Cell 2024; 35:ar131. [PMID: 39167497 PMCID: PMC11481691 DOI: 10.1091/mbc.e24-05-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
The regulation of maternal mRNAs is essential for proper oogenesis, the production of viable gametes, and to avoid birth defects and infertility. Many oogenic RNA-binding proteins have been identified with roles in mRNA metabolism, some of which localize to dynamic ribonucleoprotein granules and others that appear dispersed. Here, we use a combination of in vitro condensation assays and the in vivo Caenorhabditis elegans oogenesis model to characterize the properties of the conserved KH-domain MEX-3 protein and to identify novel regulators of MEX-3 and three other translational regulators. We demonstrate that MEX-3 undergoes phase separation and appears to have intrinsic gel-like properties in vitro. We also identify novel roles for the chaperonin-containing tailless complex polypeptide 1 (CCT) chaperonin and actin in preventing ectopic RNA-binding protein condensates in maturing oocytes that appear to be independent of MEX-3 folding. The CCT chaperonin and actin also oppose the expansion of endoplasmic reticulum sheets that may promote ectopic condensation of RNA-binding proteins. These novel regulators of condensation are also required for the translational repression of maternal mRNA which is essential for oocyte quality and fertility. The identification of this regulatory network may also have implications for understanding the role of hMex3 phase transitions in cancer.
Collapse
Affiliation(s)
- Mohamed T. Elaswad
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| | - Mingze Gao
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| | - Victoria E. Tice
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| | - Cora G. Bright
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Grace M. Thomas
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Chloe Munderloh
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | | | - Christya N. Haddad
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Ulysses G. Johnson
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859
| | - Ashley N. Cichon
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
| | - Jennifer A. Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859
- Biochemistry Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859
| |
Collapse
|
4
|
Córdoba-Beldad CM, Grantham J. The CCTδ subunit of the molecular chaperone CCT is required for correct localisation of p150 Glued to spindle poles during mitosis. Eur J Cell Biol 2024; 103:151430. [PMID: 38897036 DOI: 10.1016/j.ejcb.2024.151430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Chaperonin Containing Tailless complex polypeptide 1 (CCT) is a molecular chaperone composed of eight distinct subunits that can exist as individual monomers or as components of a double oligomeric ring, which is essential for the folding of actin and tubulin and other substrates. Here we assess the role of CCT subunits in the context of cell cycle progression by individual subunit depletions upon siRNA treatment in mammalian cells. The depletion of individual CCT subunits leads to variation in the distribution of cell cycle phases and changes in mitotic index. Mitotic defects, such as unaligned chromosomes occur when CCTδ is depleted, concurrent with a reduction in spindle pole-localised p150Glued, a component of the dynactin complex and a binding partner of monomeric CCTδ. In CCTδ-depleted cells, changes in the elution profile of p150Glued are observed consistent with altered conformations and or assembly states with the dynactin complex. Addition of monomeric CCTδ, in the form of GFP-CCTδ, restores correct p150Glued localisation to the spindle poles and rescues the mitotic segregation defects that occur when CCTδ is depleted. This study demonstrates a requirement for CCTδ in its monomeric form for correct chromosome segregation via a mechanism that promotes the correct localisation of p150Glued, thus revealing further complexities to the interplay between CCT, tubulin folding and microtubule dynamics.
Collapse
Affiliation(s)
- Carmen M Córdoba-Beldad
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Julie Grantham
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden.
| |
Collapse
|
5
|
Elaswad MT, Gao M, Tice VE, Bright CG, Thomas GM, Munderloh C, Trombley NJ, Haddad CN, Johnson UG, Cichon AN, Schisa JA. The CCT chaperonin and actin modulate the ER and RNA-binding protein condensation during oogenesis to maintain translational repression of maternal mRNA and oocyte quality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601596. [PMID: 39005301 PMCID: PMC11244991 DOI: 10.1101/2024.07.01.601596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The regulation of maternal mRNAs is essential for proper oogenesis, the production of viable gametes, and to avoid birth defects and infertility. Many oogenic RNA-binding proteins have been identified with roles in mRNA metabolism, some of which localize to dynamic ribonucleoprotein granules and others that appear dispersed. Here, we use a combination of in vitro condensation assays and the in vivo C. elegans oogenesis model to determine the intrinsic properties of the conserved KH-domain MEX-3 protein and to identify novel regulators of MEX-3 and the Lsm protein, CAR-1. We demonstrate that MEX-3 undergoes liquid-liquid phase separation and appears to have intrinsic gel-like properties in vitro . We also identify novel roles for the CCT chaperonin and actin in preventing ectopic RNA-binding protein condensates in maturing oocytes that appear to be independent of MEX-3 folding. CCT and actin also oppose the expansion of ER sheets that may promote ectopic condensation of RNA-binding proteins that are associated with de-repression of maternal mRNA. This regulatory network is essential to preserve oocyte quality, prevent infertility, and may have implications for understanding the role of hMex3 phase transitions in cancer. Significance statement The molecular mechanisms that regulate phase transitions of oogenic RNA-binding proteins are critical to elucidate but are not fully understood.We identify novel regulators of RNA-binding protein phase transitions in maturing oocytes that are required to maintain translational repression of maternal mRNAs and oocyte quality.This study is the first to elucidate a regulatory network involving the CCT chaperonin, actin, and the ER for phase transitions of RNA-binding proteins during oogenesis. Our findings for the conserved MEX-3 protein may also be applicable to better understanding the role of hMex3 phase transitions in cancer.
Collapse
|
6
|
Ng QY, Mahendran V, Lim ZQ, Tan JHY, Wong JJF, Chu JJH, Chow VTK, Sze NSK, Alonso S. Enterovirus-A71 exploits RAB11 to recruit chaperones for virus morphogenesis. J Biomed Sci 2024; 31:65. [PMID: 38943128 PMCID: PMC11212238 DOI: 10.1186/s12929-024-01053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Enterovirus 71 (EV-A71) causes Hand, Foot and Mouth Disease (HFMD) in children and has been associated with neurological complications. The molecular mechanisms involved in EV-A71 pathogenesis have remained elusive. METHODS A siRNA screen in EV-A71 infected-motor neurons was performed targeting 112 genes involved in intracellular membrane trafficking, followed by validation of the top four hits using deconvoluted siRNA. Downstream approaches including viral entry by-pass, intracellular viral genome quantification by qPCR, Western blot analyses, and Luciferase reporter assays allowed determine the stage of the infection cycle the top candidate, RAB11A was involved in. Proximity ligation assay, co-immunoprecipitation and multiplex confocal imaging were employed to study interactions between viral components and RAB11A. Dominant negative and constitutively active RAB11A constructs were used to determine the importance of the protein's GTPase activity during EV-A71 infection. Mass spectrometry and protein interaction analyses were employed for the identification of RAB11A's host interacting partners during infection. RESULTS Small GTPase RAB11A was identified as a novel pro-viral host factor during EV-A71 infection. RAB11A and RAB11B isoforms were interchangeably exploited by strains from major EV-A71 genogroups and by Coxsackievirus A16, another major causative agent of HFMD. We showed that RAB11A was not involved in viral entry, IRES-mediated protein translation, viral genome replication, and virus exit. RAB11A co-localized with replication organelles where it interacted with structural and non-structural viral components. Over-expression of dominant negative (S25N; GDP-bound) and constitutively active (Q70L; GTP-bound) RAB11A mutants had no effect on EV-A71 infection outcome, ruling out RAB11A's involvement in intracellular trafficking of viral or host components. Instead, decreased ratio of intracellular mature viral particles to viral RNA copies and increased VP0:VP2 ratio in siRAB11-treated cells supported a role in provirion maturation hallmarked by VP0 cleavage into VP2 and VP4. Finally, chaperones, not trafficking and transporter proteins, were found to be RAB11A's top interacting partners during EV-A71 infection. Among which, CCT8 subunit from the chaperone complex TRiC/CCT was further validated and shown to interact with viral structural proteins specifically, representing yet another novel pro-viral host factor during EV-A71 infection. CONCLUSIONS This study describes a novel, unconventional role for RAB11A during viral infection where it participates in the complex process of virus morphogenesis by recruiting essential chaperone proteins.
Collapse
Affiliation(s)
- Qing Yong Ng
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Vikneswari Mahendran
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Ze Qin Lim
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Jasmine Hwee Yee Tan
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Joel Jie Feng Wong
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Justin Jang Hann Chu
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vincent T K Chow
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Newman Siu Kwan Sze
- Proteomics and Mass Spectrometry Services Core Facility, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St Catharines, ON, L2S 3A1, Canada
| | - Sylvie Alonso
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Betancourt Moreira K, Collier MP, Leitner A, Li KH, Lachapel ILS, McCarthy F, Opoku-Nsiah KA, Morales-Polanco F, Barbosa N, Gestaut D, Samant RS, Roh SH, Frydman J. A hierarchical assembly pathway directs the unique subunit arrangement of TRiC/CCT. Mol Cell 2023; 83:3123-3139.e8. [PMID: 37625406 PMCID: PMC11209756 DOI: 10.1016/j.molcel.2023.07.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/07/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
How the essential eukaryotic chaperonin TRiC/CCT assembles from eight distinct subunits into a unique double-ring architecture remains undefined. We show TRiC assembly involves a hierarchical pathway that segregates subunits with distinct functional properties until holocomplex (HC) completion. A stable, likely early intermediate arises from small oligomers containing CCT2, CCT4, CCT5, and CCT7, contiguous subunits that constitute the negatively charged hemisphere of the TRiC chamber, which has weak affinity for unfolded actin. The remaining subunits CCT8, CCT1, CCT3, and CCT6, which comprise the positively charged chamber hemisphere that binds unfolded actin more strongly, join the ring individually. Unincorporated late-assembling subunits are highly labile in cells, which prevents their accumulation and premature substrate binding. Recapitulation of assembly in a recombinant system demonstrates that the subunits in each hemisphere readily form stable, noncanonical TRiC-like HCs with aberrant functional properties. Thus, regulation of TRiC assembly along a biochemical axis disfavors the formation of stable alternative chaperonin complexes.
Collapse
Affiliation(s)
| | | | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Kathy H Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | | | | - Natália Barbosa
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Daniel Gestaut
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Rahul S Samant
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Soung-Hun Roh
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Chaperonin TRiC/CCT Participates in Mammarenavirus Multiplication in Human Cells via Interaction with the Viral Nucleoprotein. J Virol 2023; 97:e0168822. [PMID: 36656012 PMCID: PMC9973018 DOI: 10.1128/jvi.01688-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The eukaryotic chaperonin containing tailless complex polypeptide 1 ring complex (CCT, also known as TCP-1 Ring Complex, TRiC/CCT) participates in the folding of 5% to 10% of the cellular proteome and has been involved in the life cycle of several viruses, including dengue, Zika, and influenza viruses, but the mechanisms by which the TRiC/CCT complex contributes to virus multiplication remain poorly understood. Here, we document that the nucleoprotein (NP) of the mammarenavirus lymphocytic choriomeningitis virus (LCMV) is a substrate of the human TRiC/CCT complex, and that pharmacological inhibition of TRiC/CCT complex function, or RNAi-mediated knockdown of TRiC/CCT complex subunits, inhibited LCMV multiplication in human cells. We obtained evidence that the TRiC/CCT complex is required for the production of NP-containing virus-like particles (VLPs), and the activity of the virus ribonucleoprotein (vRNP) responsible for directing replication and transcription of the viral genome. Pharmacological inhibition of the TRIC/CCT complex also restricted multiplication of the live-attenuated vaccine candidates Candid#1 and ML29 of the hemorrhagic fever causing Junin (JUNV) and Lassa (LASV) mammarenaviruses, respectively. Our findings indicate that the TRiC/CCT complex is required for mammarenavirus multiplication and is an attractive candidate for the development of host directed antivirals against human-pathogenic mammarenaviruses. IMPORTANCE Host-directed antivirals have gained great interest as an antiviral strategy to counteract the rapid emergence of drug-resistant viruses. The chaperonin TRiC/CCT complex has been involved in the life cycle of several viruses, including dengue, Zika, and influenza viruses. Here, we have provided evidence that the chaperonin TRiC/CCT complex participates in mammarenavirus infection via its interaction with the viral NP. Importantly, pharmacological inhibition of TRiC/CCT function significantly inhibited multiplication of LCMV and the distantly related mammarenavirus JUNV in human cells. Our findings support that the TRiC/CCT complex is required for multiplication of mammarenaviruses and that the TRiC/CCT complex is an attractive host target for the development of antivirals against human-pathogenic mammarenaviruses.
Collapse
|
9
|
Søndergaard JN, Sommerauer C, Atanasoai I, Hinte LC, Geng K, Guiducci G, Bräutigam L, Aouadi M, Stojic L, Barragan I, Kutter C. CCT3- LINC00326 axis regulates hepatocarcinogenic lipid metabolism. Gut 2022; 71:gutjnl-2021-325109. [PMID: 35022268 PMCID: PMC9484377 DOI: 10.1136/gutjnl-2021-325109] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To better comprehend transcriptional phenotypes of cancer cells, we globally characterised RNA-binding proteins (RBPs) to identify altered RNAs, including long non-coding RNAs (lncRNAs). DESIGN To unravel RBP-lncRNA interactions in cancer, we curated a list of ~2300 highly expressed RBPs in human cells, tested effects of RBPs and lncRNAs on patient survival in multiple cohorts, altered expression levels, integrated various sequencing, molecular and cell-based data. RESULTS High expression of RBPs negatively affected patient survival in 21 cancer types, especially hepatocellular carcinoma (HCC). After knockdown of the top 10 upregulated RBPs and subsequent transcriptome analysis, we identified 88 differentially expressed lncRNAs, including 34 novel transcripts. CRISPRa-mediated overexpression of four lncRNAs had major effects on the HCC cell phenotype and transcriptome. Further investigation of four RBP-lncRNA pairs revealed involvement in distinct regulatory processes. The most noticeable RBP-lncRNA connection affected lipid metabolism, whereby the non-canonical RBP CCT3 regulated LINC00326 in a chaperonin-independent manner. Perturbation of the CCT3-LINC00326 regulatory network led to decreased lipid accumulation and increased lipid degradation in cellulo as well as diminished tumour growth in vivo. CONCLUSIONS We revealed that RBP gene expression is perturbed in HCC and identified that RBPs exerted additional functions beyond their tasks under normal physiological conditions, which can be stimulated or intensified via lncRNAs and affected tumour growth.
Collapse
Affiliation(s)
- Jonas Nørskov Søndergaard
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Christian Sommerauer
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Ionut Atanasoai
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Laura C Hinte
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Keyi Geng
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Giulia Guiducci
- Barts Cancer Institute, Centre for Cancer Cell and Molecular Biology, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Lars Bräutigam
- Comparative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Myriam Aouadi
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Lovorka Stojic
- Barts Cancer Institute, Centre for Cancer Cell and Molecular Biology, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Isabel Barragan
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
10
|
Cuellar J, Vallin J, Svanström A, Maestro-López M, Teresa Bueno-Carrasco M, Grant Ludlam W, Willardson BM, Valpuesta JM, Grantham J. The molecular chaperone CCT sequesters gelsolin and protects it from cleavage by caspase-3. J Mol Biol 2021; 434:167399. [PMID: 34896365 DOI: 10.1016/j.jmb.2021.167399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/19/2021] [Accepted: 12/03/2021] [Indexed: 11/27/2022]
Abstract
The actin filament severing and capping protein gelsolin plays an important role in modulation of actin filament dynamics by influencing the number of actin filament ends. During apoptosis, gelsolin becomes constitutively active due to cleavage by caspase-3. In non-apoptotic cells gelsolin is activated by the binding of Ca2+. This activated form of gelsolin binds to, but is not a folding substrate of the molecular chaperone CCT/TRiC. Here we demonstrate that in vitro, gelsolin is protected from cleavage by caspase-3 in the presence of CCT. Cryoelectron microscopy and single particle 3D reconstruction of the CCT:gelsolin complex reveals that gelsolin is located in the interior of the chaperonin cavity, with a placement distinct from that of the obligate CCT folding substrates actin and tubulin. In cultured mouse melanoma B16F1 cells, gelsolin co-localises with CCT upon stimulation of actin dynamics at peripheral regions during lamellipodia formation. These data indicate that localised sequestration of gelsolin by CCT may provide spatial control of actin filament dynamics.
Collapse
Affiliation(s)
- Jorge Cuellar
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain.
| | - Josefine Vallin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Andreas Svanström
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Moisés Maestro-López
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| | | | - W Grant Ludlam
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Barry M Willardson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - José M Valpuesta
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| | - Julie Grantham
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden.
| |
Collapse
|
11
|
Vallin J, Grantham J. Functional assessment of the V390F mutation in the CCTδ subunit of chaperonin containing tailless complex polypeptide 1. Cell Stress Chaperones 2021; 26:955-964. [PMID: 34655026 PMCID: PMC8578507 DOI: 10.1007/s12192-021-01237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/19/2021] [Accepted: 09/07/2021] [Indexed: 11/24/2022] Open
Abstract
The chaperonin containing tailless complex polypeptide 1 (CCT) is a multi-subunit molecular chaperone. It is found in the cytoplasm of all eukaryotic cells, where the oligomeric form plays an essential role in the folding of predominantly the cytoskeletal proteins actin and tubulin. Both the CCT oligomer and monomeric subunits also display functions that extend beyond folding, which are often associated with microtubules and actin filaments. Here, we assess the functional significance of the CCTδ V390F mutation, reported in several cancer cell lines. Upon transfection into B16F1 mouse melanoma cells, GFP-CCTδV390F incorporates into the CCT oligomer more readily than GFP-CCTδ. Furthermore, unlike GFP-CCTδ, GFP-CCTδV390F does not interact with the dynactin complex component, p150Glued. As CCTδ has previously been implicated in altered migration in wound healing assays, we assessed the behaviour of GFP-CCTδV390F and other mutants of CCTδ, previously used to assess functional interactions with p150Glued, in chemotaxis assays. We developed the assay system to incorporate a layer of the inert hydrogel GrowDex® to provide a 3D matrix for chemotaxis assessment and found subtle differences in the migration of B16F1 cells, depending on the presence of the hydrogel.
Collapse
Affiliation(s)
- Josefine Vallin
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Julie Grantham
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden.
| |
Collapse
|
12
|
CCTδ colocalizes with actin and β-tubulin: Insight into its involvement in the cytoskeleton formation of the intracellular parasite Nosema bombycis. J Invertebr Pathol 2021; 184:107646. [PMID: 34256048 DOI: 10.1016/j.jip.2021.107646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/27/2021] [Accepted: 07/05/2021] [Indexed: 11/22/2022]
Abstract
The chaperonin-containing t-complex polypeptide 1 (CCT) is a molecular chaperone protein that is widely present in eukaryotic cytoplasm and can assist in the folding of newly synthesized proteins. The CCT complex consists of eight completely different subunits, among which the δ subunit plays an extremely important role in the folding and assembly of cytoskeleton proteins as an individual or complex with other subunits. In this study, we identified the CCTδ in the microsporidian Nosema bombycis (NbCCTδ) for the first time. The NbCCTδ gene contains a complete ORF of 1497 bp in length that encodes a 498 amino acid polypeptide. NbCCTδ is expressed throughout the entire lifecycle of N. bombycis and rather higher in early stage of proliferation. Indirect immunofluorescence results showed that NbCCTδ was colocalized with actin and β-tubulin during the proliferative and sporogonic phases of N. bombycis. RNA interference down-regulated the expression of the NbCCTδ gene. These results imply that NbCCTδ may participate in cytoskeleton formation and proliferation of N. bombycis.
Collapse
|
13
|
Collier MP, Moreira KB, Li KH, Chen YC, Itzhak D, Samant R, Leitner A, Burlingame A, Frydman J. Native mass spectrometry analyses of chaperonin complex TRiC/CCT reveal subunit N-terminal processing and re-association patterns. Sci Rep 2021; 11:13084. [PMID: 34158536 PMCID: PMC8219831 DOI: 10.1038/s41598-021-91086-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/05/2021] [Indexed: 11/14/2022] Open
Abstract
The eukaryotic chaperonin TRiC/CCT is a large ATP-dependent complex essential for cellular protein folding. Its subunit arrangement into two stacked eight-membered hetero-oligomeric rings is conserved from yeast to man. A recent breakthrough enables production of functional human TRiC (hTRiC) from insect cells. Here, we apply a suite of mass spectrometry techniques to characterize recombinant hTRiC. We find all subunits CCT1-8 are N-terminally processed by combinations of methionine excision and acetylation observed in native human TRiC. Dissociation by organic solvents yields primarily monomeric subunits with a small population of CCT dimers. Notably, some dimers feature non-canonical inter-subunit contacts absent in the initial hTRiC. This indicates individual CCT monomers can promiscuously re-assemble into dimers, and lack the information to assume the specific interface pairings in the holocomplex. CCT5 is consistently the most stable subunit and engages in the greatest number of non-canonical dimer pairings. These findings confirm physiologically relevant post-translational processing and function of recombinant hTRiC and offer quantitative insight into the relative stabilities of TRiC subunits and interfaces, a key step toward reconstructing its assembly mechanism. Our results also highlight the importance of assigning contacts identified by native mass spectrometry after solution dissociation as canonical or non-canonical when investigating multimeric assemblies.
Collapse
Affiliation(s)
| | | | - Kathy H Li
- Department of Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Yu-Chan Chen
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Rahul Samant
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, Zurich, Switzerland
| | - Alma Burlingame
- Department of Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
14
|
Abstract
Human papillomavirus (HPV) infection is a multi-step process that implies complex interactions of the viral particles with cellular proteins. The HPV capsid includes the two structural proteins L1 and L2, that play crucial roles on infectious viral entry. L2 is particularly relevant for the intracellular trafficking of the viral DNA towards the nucleus. Here, using proteomic studies we identified CCT proteins as novel interaction partners of HPV-16 L2. The CCT multimeric complex is an essential chaperonin which interacts with a large number of protein targets. We analysed the binding of different components of the CCT complex to L2. We confirmed the interaction of this structural viral protein with the CCT subunit 3 (CCT3) and we found that this interaction requires the N-terminal region of L2. Defects in HPV-16 pseudoviral particle (PsVs) infection were revealed by siRNA-mediated knockdown of some CCT subunits. While a substantial drop in the viral infection was associated with the ablation of CCT component 2, even more pronounced effects on infectivity were observed upon depletion of CCT component 3. Using confocal immunofluorescence assays, CCT3 co-localised with HPV PsVs at early times after infection, with L2 being required for this to occur. Further analysis showed the colocalization of several other subunits of CCT with the PsVs. Moreover, we observed a defect in capsid uncoating and a change in PsVs intracellular normal processing when ablating CCT3. Taken together, these studies demonstrate the importance of CCT chaperonin during HPV infectious entry.ImportanceSeveral of the mechanisms that function during the infection of target cells by HPV particles have been previously described. However, many aspects of this process remain unknown. In particular, the role of cellular proteins functioning as molecular chaperones during HPV infections has been only partially investigated. To the best of our knowledge, we describe here for the first time, a requirement of the CCT chaperonin for HPV infection. The role of this cellular complex seems to be determined by the binding of its component 3 to the viral structural protein L2. However, CCT's effect on HPV infection most probably comprises the whole chaperonin complex. Altogether, these studies define an important role for the CCT chaperonin in the processing and intracellular trafficking of HPV particles and in subsequent viral infectious entry.
Collapse
|
15
|
Martín-Cófreces NB, Valpuesta JM, Sánchez-Madrid F. Folding for the Immune Synapse: CCT Chaperonin and the Cytoskeleton. Front Cell Dev Biol 2021; 9:658460. [PMID: 33912568 PMCID: PMC8075050 DOI: 10.3389/fcell.2021.658460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Lymphocytes rearrange their shape, membrane receptors and organelles during cognate contacts with antigen-presenting cells (APCs). Activation of T cells by APCs through pMHC-TCR/CD3 interaction (peptide-major histocompatibility complex-T cell receptor/CD3 complexes) involves different steps that lead to the reorganization of the cytoskeleton and organelles and, eventually, activation of nuclear factors allowing transcription and ultimately, replication and cell division. Both the positioning of the lymphocyte centrosome in close proximity to the APC and the nucleation of a dense microtubule network beneath the plasma membrane from the centrosome support the T cell's intracellular polarity. Signaling from the TCR is facilitated by this traffic, which constitutes an important pathway for regulation of T cell activation. The coordinated enrichment upon T cell stimulation of the chaperonin CCT (chaperonin-containing tailless complex polypeptide 1; also termed TRiC) and tubulins at the centrosome area support polarized tubulin polymerization and T cell activation. The proteasome is also enriched in the centrosome of activated T cells, providing a mechanism to balance local protein synthesis and degradation. CCT assists the folding of proteins coming from de novo synthesis, therefore favoring mRNA translation. The functional role of this chaperonin in regulating cytoskeletal composition and dynamics at the immune synapse is discussed.
Collapse
Affiliation(s)
- Noa Beatriz Martín-Cófreces
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autonoma Madrid (UAM), Instituto Investigacion Sanitaria-Instituto Princesa (IIS-IP), Madrid, Spain.,Area of Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - Francisco Sánchez-Madrid
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autonoma Madrid (UAM), Instituto Investigacion Sanitaria-Instituto Princesa (IIS-IP), Madrid, Spain.,Area of Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
16
|
Liu Q, Qi Y, Kong X, Wang X, Zhang W, Zhai J, Yang Y, Fang Y, Wang J. Molecular and Clinical Characterization of CCT2 Expression and Prognosis via Large-Scale Transcriptome Profile of Breast Cancer. Front Oncol 2021; 11:614497. [PMID: 33869000 PMCID: PMC8050343 DOI: 10.3389/fonc.2021.614497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Molecular chaperones play important roles in regulating various cellular processes and malignant transformation. Expression of some subunits of molecular chaperone CCT/TRiC complex have been reported to be correlated with cancer development and patient survival. However, little is known about the expression and prognostic significance of Chaperonin Containing TCP1 Subunit 2 (CCT2). CCT2 is a gene encoding a molecular chaperone that is a member of the chaperonin containing TCP1 complex (CCT), also known as the TCP1 ring complex (TRiC). Through the Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) databases, we systematically reviewed a total of 2,994 cases with transcriptome data and analyzed the functional annotation of CCT2 by Gene ontology and KEGG analysis. Univariate and multivariate survival analysis were performed to investigate the prognostic value of CCT2 in breast cancer. We found CCT2 was significantly upregulated in various tumors. In breast cancer, CCT2 expression was significantly upregulated in HER2-positive (HER2+) group, and more malignant group. In addition, we investigated correlations between CCT2 and other CCT members. Interestingly, almost all CCTs expression were positively correlated with each other, but not CCT6B. Survival analysis suggested that CCT2 overexpression was independently associated with worse prognosis of patients with breast cancer, especially in luminal A subtype. In summary, our results revealed that CCT2 might be involved in regulating cell cycle pathway, and independently predicted worse prognosis in breast cancer patients. These findings may expand understanding of potential anti-CCT2 treatments. To our knowledge, this is the largest and most comprehensive study characterizing the expression pattern of CCT2 together with its prognostic values in breast cancer.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yihang Qi
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenxiang Zhang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Zhai
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yazhe Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Vallin J, Córdoba-Beldad CM, Grantham J. Sequestration of the Transcription Factor STAT3 by the Molecular Chaperone CCT: A Potential Mechanism for Modulation of STAT3 Phosphorylation. J Mol Biol 2021; 433:166958. [PMID: 33774038 DOI: 10.1016/j.jmb.2021.166958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/02/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Chaperonin Containing Tailless complex polypeptide 1 (CCT) is an essential molecular chaperone required for the folding of the abundant proteins actin and tubulin. The CCT oligomer also folds a range of other proteins and participates in non-folding activities such as providing assembly support for complexes of the von Hippel Lindau tumor suppressor protein and elongins. Here we show that the oncogenic transcription factor STAT3 binds to the CCT oligomer, but does not display the early binding upon translation in rabbit reticulocyte lysate typical of an obligate CCT folding substrate. Consistent with this, depletion of each of the CCT subunits by siRNA targeting indicates that loss of CCT oligomer does not suppress the activation steps of STAT3 upon stimulation with IL-6: phosphorylation, dimerisation and nuclear translocation. Furthermore, the transcriptional activity of STAT3 is not negatively affected by reduction in CCT levels. Instead, loss of CCT oligomer in MCF7 cells leads to an enhancement of STAT3 phosphorylation at Tyr705, implicating a role for the CCT oligomer in the sequestration of non-phosphorylated STAT3. Thus, as CCT is dynamic oligomer, the assembly state and also abundance of CCT oligomer may provide a means to modulate STAT3 phosphorylation.
Collapse
Affiliation(s)
- Josefine Vallin
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Carmen M Córdoba-Beldad
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Julie Grantham
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
18
|
Correlated fluorescence microscopy and multi-ion beam secondary ion mass spectrometry imaging reveals phosphatidylethanolamine increases in the membrane of cancer cells over-expressing the molecular chaperone subunit CCTδ. Anal Bioanal Chem 2020; 413:445-453. [PMID: 33130974 PMCID: PMC7806562 DOI: 10.1007/s00216-020-03013-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/14/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022]
Abstract
Changes in the membrane composition of sub-populations of cells can influence different properties with importance to tumour growth, metastasis and treatment efficacy. In this study, we use correlated fluorescence microscopy and ToF-SIMS with C60+ and (CO2)6k+ ion beams to identify and characterise sub-populations of cells based on successful transfection leading to over-expression of CCTδ, a component of the multi-subunit molecular chaperone named chaperonin-containing tailless complex polypeptide 1 (CCT). CCT has been linked to increased cell growth and proliferation and is known to affect cell morphology but corresponding changes in lipid composition of the membrane have not been measured until now. Multivariate analysis of the surface mass spectra from single cells, focused on the intact lipid ions, indicates an enrichment of phosphatidylethanolamine species in the transfected cells. While the lipid changes in this case are driven by the structural changes in the protein cytoskeleton, the consequence of phosphatidylethanolamine enrichment may have additional implications in cancer such as increased membrane fluidity, increased motility and an ability to adapt to a depletion of unsaturated lipids during cancer cell proliferation. This study demonstrates a successful fluorescence microscopy-guided cell by cell membrane lipid analysis with broad application to biological investigation.Graphical abstract.
Collapse
|
19
|
McClatchy DB, Martínez-Bartolomé S, Gao Y, Lavallée-Adam M, Yates JR. Quantitative analysis of global protein stability rates in tissues. Sci Rep 2020; 10:15983. [PMID: 32994440 PMCID: PMC7524747 DOI: 10.1038/s41598-020-72410-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Protein degradation is an essential mechanism for maintaining proteostasis in response to internal and external perturbations. Disruption of this process is implicated in many human diseases. We present a new technique, QUAD (Quantification of Azidohomoalanine Degradation), to analyze the global degradation rates in tissues using a non-canonical amino acid and mass spectrometry. QUAD analysis reveals that protein stability varied within tissues, but discernible trends in the data suggest that cellular environment is a major factor dictating stability. Within a tissue, different organelles and protein functions were enriched with different stability patterns. QUAD analysis demonstrated that protein stability is enhanced with age in the brain but not in the liver. Overall, QUAD allows the first global quantitation of protein stability rates in tissues, which will allow new insights and hypotheses in basic and translational research.
Collapse
Affiliation(s)
- Daniel B McClatchy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Yu Gao
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Mathieu Lavallée-Adam
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
20
|
Dong Y, Lu S, Wang Z, Liu L. CCTs as new biomarkers for the prognosis of head and neck squamous cancer. Open Med (Wars) 2020; 15:672-688. [PMID: 33313411 PMCID: PMC7706129 DOI: 10.1515/med-2020-0114] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/30/2020] [Accepted: 06/18/2020] [Indexed: 12/23/2022] Open
Abstract
The chaperonin-containing T-complex protein 1 (CCT) subunits participate in diverse diseases. However, little is known about their expression and prognostic values in human head and neck squamous cancer (HNSC). This article aims to evaluate the effects of CCT subunits regarding their prognostic values for HNSC. We mined the transcriptional and survival data of CCTs in HNSC patients from online databases. A protein-protein interaction network was constructed and a functional enrichment analysis of target genes was performed. We observed that the mRNA expression levels of CCT1/2/3/4/5/6/7/8 were higher in HNSC tissues than in normal tissues. Survival analysis revealed that the high mRNA transcriptional levels of CCT3/4/5/6/7/8 were associated with a low overall survival. The expression levels of CCT4/7 were correlated with advanced tumor stage. And the overexpression of CCT4 was associated with higher N stage of patients. Validation of CCTs' differential expression and prognostic values was achieved by the Human Protein Atlas and GEO datasets. Mechanistic exploration of CCT subunits by the functional enrichment analysis suggests that these genes may influence the HNSC prognosis by regulating PI3K-Akt and other pathways. This study implies that CCT3/4/6/7/8 are promising biomarkers for the prognosis of HNSC.
Collapse
Affiliation(s)
- Yanbo Dong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, 95th Yong'an Road, Xicheng District, Beijing 100050, China
| | - Siyu Lu
- Department of Emergency, Aviation General Hospital, Beijing 100012, China
| | - Zhenxiao Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, 95th Yong'an Road, Xicheng District, Beijing 100050, China
| | - Liangfa Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, 95th Yong'an Road, Xicheng District, Beijing 100050, China
| |
Collapse
|
21
|
Grantham J. The Molecular Chaperone CCT/TRiC: An Essential Component of Proteostasis and a Potential Modulator of Protein Aggregation. Front Genet 2020; 11:172. [PMID: 32265978 PMCID: PMC7096549 DOI: 10.3389/fgene.2020.00172] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/13/2020] [Indexed: 12/15/2022] Open
Abstract
Chaperonin containing tailless complex polypeptide 1 (CCT) or tailless complex polypeptide 1 ring complex (TRiC) is an essential eukaryotic molecular chaperone. It is a multi-subunit oligomer of two rings of eight individual protein subunits. When assembled, each of the eight CCT subunits occupies a specific position within each chaperonin ring. Thus a geometrically defined binding interface is formed from the divergent sequences within the CCT subunit substrate binding domains. CCT is required for the folding of the abundant cytoskeletal proteins actin and tubulin, which in turn form assemblies of microfilaments and microtubules. CCT is also involved in the folding of some additional protein substrates and some CCT subunits have been shown to have functions when monomeric. Since observations were made in worms over a decade ago using an RNAi screen, which connected CCT subunits to the aggregation of polyglutamine tracts, a role for CCT as a potential modulator of protein aggregation has started to emerge. Here there will be a focus on how mechanistically CCT may be able to achieve this and if this potential function of CCT provides any insights and directions for developing future treatments for protein aggregation driven neurodegenerative diseases generally, many of which are associated with aging.
Collapse
Affiliation(s)
- Julie Grantham
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Investigating Chaperonin-Containing TCP-1 subunit 2 as an essential component of the chaperonin complex for tumorigenesis. Sci Rep 2020; 10:798. [PMID: 31964905 PMCID: PMC6972895 DOI: 10.1038/s41598-020-57602-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Chaperonin-containing TCP-1 (CCT or TRiC) is a multi-subunit complex that folds many of the proteins essential for cancer development. CCT is expressed in diverse cancers and could be an ideal therapeutic target if not for the fact that the complex is encoded by eight distinct genes, complicating the development of inhibitors. Few definitive studies addressed the role of specific subunits in promoting the chaperonin’s function in cancer. To this end, we investigated the activity of CCT2 (CCTβ) by overexpressing or depleting the subunit in breast epithelial and breast cancer cells. We found that increasing total CCT2 in cells by 1.3-1.8-fold using a lentiviral system, also caused CCT3, CCT4, and CCT5 levels to increase. Likewise, silencing cct2 gene expression by ~50% caused other CCT subunits to decrease. Cells expressing CCT2 were more invasive and had a higher proliferative index. CCT2 depletion in a syngeneic murine model of triple negative breast cancer (TNBC) prevented tumor growth. These results indicate that the CCT2 subunit is integral to the activity of the chaperonin and is needed for tumorigenesis. Hence CCT2 could be a viable target for therapeutic development in breast and other cancers.
Collapse
|
23
|
Sergeeva OA, Haase-Pettingell C, King JA. Co-expression of CCT subunits hints at TRiC assembly. Cell Stress Chaperones 2019; 24:1055-1065. [PMID: 31410727 PMCID: PMC6882961 DOI: 10.1007/s12192-019-01028-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/05/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022] Open
Abstract
The eukaryotic cytosolic chaperonin, t-complex polypeptide 1 (TCP-1) ring complex or TRiC, is responsible for folding a tenth of the proteins in the cell. TRiC is a double-ringed barrel with each ring composed of eight different CCT (chaperonin containing TCP-1) subunits. In order for the subunits to assemble together into mature TRiC, which is believed to contain one and only one of each of these subunits per ring, they must be translated from different chromosomes, correctly folded and assembled. When expressed alone in Escherichia coli, the subunits CCT4 and CCT5, interestingly, form TRiC-like homo-oligomeric rings. To explore potential subunit-subunit interactions, we co-expressed these homo-oligomerizing CCT4 and CCT5 subunits or the archaeal chaperonin Mm-Cpn (Methanococcus maripaludis chaperonin) with CCT1-8, one at a time. We found that CCT5 shifted all of the CCT subunits, with the exception of CCT6, into double-barrel TRiC-like complexes, while CCT4 only interacted with CCT5 and CCT8 to form chaperonin rings. We hypothesize that these specific interactions may be due to the formation of hetero-oligomers in E. coli, although more work is needed for validation. We also observed the interaction of CCT5 and Mm-Cpn with smaller fragments of the CCT subunits, confirming their intrinsic chaperone activity. Based on this hetero-oligomer data, we propose that TRiC assembly relies on subunit exchange with some stable homo-oligomers, possibly CCT5, as base assembly units. Eventually, analysis of CCT arrangement in various tissues and at different developmental times is anticipated to provide additional insight on TRiC assembly and CCT subunit composition.
Collapse
Affiliation(s)
- Oksana A. Sergeeva
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA USA
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Cameron Haase-Pettingell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA USA
- Computer Science and Artificial Intelligence (CSAIL), Massachusetts Institute of Technology, Cambridge, MA USA
| | - Jonathan A. King
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA USA
| |
Collapse
|
24
|
Vallin J, Grantham J. The role of the molecular chaperone CCT in protein folding and mediation of cytoskeleton-associated processes: implications for cancer cell biology. Cell Stress Chaperones 2019; 24:17-27. [PMID: 30506376 PMCID: PMC6363620 DOI: 10.1007/s12192-018-0949-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 11/21/2022] Open
Abstract
The chaperonin-containing tailless complex polypeptide 1 (CCT) is required in vivo for the folding of newly synthesized tubulin and actin proteins and is thus intrinsically connected to all cellular processes that rely on the microtubule and actin filament components of the cytoskeleton, both of which are highly regulated and dynamic assemblies. In addition to CCT acting as a protein folding oligomer, further modes of CCT action mediated either by the CCT oligomer itself or via CCT subunits in their monomeric forms can influence processes associated with assembled actin filaments and microtubules. Thus, there is an extended functional role for CCT with regard to its major folding substrates with a complex interplay between CCT as folding machine for tubulin/actin and as a modulator of processes involving the assembled cytoskeleton. As cell division, directed cell migration, and invasion are major drivers of cancer development and rely on the microtubule and actin filament components of the cytoskeleton, CCT activity is fundamentally linked to cancer. Furthermore, the CCT oligomer also folds proteins connected to cell cycle progression and interacts with several other proteins that are linked to cancer such as tumor-suppressor proteins and regulators of the cytoskeleton, while CCT monomer function can influence cell migration. Thus, understanding CCT activity is important for many aspects of cancer cell biology and may reveal new ways to target tumor growth and invasion.
Collapse
Affiliation(s)
- Josefine Vallin
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Julie Grantham
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden.
| |
Collapse
|
25
|
Hodeify R, Nandakumar M, Own M, Courjaret RJ, Graumann J, Hubrack SZ, Machaca K. The CCT chaperonin is a novel regulator of Ca 2+ signaling through modulation of Orai1 trafficking. SCIENCE ADVANCES 2018; 4:eaau1935. [PMID: 30263962 PMCID: PMC6157965 DOI: 10.1126/sciadv.aau1935] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/14/2018] [Indexed: 05/23/2023]
Abstract
Store-operated Ca2+ entry (SOCE) encodes a range of cellular responses downstream of Ca2+ influx through the SOCE channel Orai1. Orai1 recycles at the plasma membrane (PM), with ~40% of the total Orai1 pool residing at the PM at steady state. The mechanisms regulating Orai1 recycling remain poorly understood. We map the domains in Orai1 that are required for its trafficking to and recycling at the PM. We further identify, using biochemical and proteomic approaches, the CCT [chaperonin-containing TCP-1 (T-complex protein 1)] chaperonin complex as a novel regulator of Orai1 recycling by primarily regulating Orai1 endocytosis. We show that Orai1 interacts with CCT through its intracellular loop and that inhibition of CCT-Orai1 interaction increases Orai1 PM residence. This increased residence is functionally significant as it results in prolonged Ca2+ signaling, early formation of STIM1-Orai1 puncta, and more rapid activation of NFAT (nuclear factor of activated T cells) downstream of SOCE. Therefore, the CCT chaperonin is a novel regulator of Orai1 trafficking and, as such, a modulator of Ca2+ signaling and effector activation kinetics.
Collapse
Affiliation(s)
- Rawad Hodeify
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Manjula Nandakumar
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Maryam Own
- Medical Program, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Raphael J. Courjaret
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Johannes Graumann
- Department of Biochemistry, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Satanay Z. Hubrack
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
26
|
Echbarthi M, Vallin J, Grantham J. Interactions between monomeric CCTδ and p150 Glued: A novel function for CCTδ at the cell periphery distinct from the protein folding activity of the molecular chaperone CCT. Exp Cell Res 2018; 370:137-149. [PMID: 29913154 DOI: 10.1016/j.yexcr.2018.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 01/08/2023]
Abstract
Chaperonin containing tailless complex polypeptide 1 (CCT) is a molecular chaperone consisting of eight distinct protein subunits, that when oligomeric is essential for the folding of newly synthesized tubulin and actin. In addition to folding, CCT activity includes functions of individual subunits in their monomeric form. For example, when CCTδ monomer levels are increased in cultured mammalian cells, numerous cell surface protrusions are formed from retraction fibres, indicating that an underlying function for the CCTδ monomer exists. Here, using a yeast two-hybrid screen we identify the dynactin complex component p150Glued as a binding partner for CCTδ and show by siRNA depletion that this interaction is required for the formation of CCTδ-induced cell surface protrusions. Intact microtubules are necessary for the formation of the protrusions, consistent with microtubule minus end transport driving the retraction fibre formation and depletion of either p150Glued or the dynactin complex-associated transmembrane protein dynAP prevents the previously observed localization of GFP-CCTδ to the plasma membrane. Wound healing assays reveal that CCTδ monomer levels influence directional cell migration and together our observations demonstrate that in addition to the folding activity of CCT in its oligomer form, a monomeric subunit is associated with events that involve the assembled cytoskeleton.
Collapse
Affiliation(s)
- Meriem Echbarthi
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Sweden
| | - Josefine Vallin
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Sweden
| | - Julie Grantham
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Sweden.
| |
Collapse
|
27
|
Cai L, Li Q, Du Y, Yun J, Xie Y, DeBerardinis RJ, Xiao G. Genomic regression analysis of coordinated expression. Nat Commun 2017; 8:2187. [PMID: 29259170 PMCID: PMC5736603 DOI: 10.1038/s41467-017-02181-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/13/2017] [Indexed: 01/06/2023] Open
Abstract
Co-expression analysis is widely used to predict gene function and to identify functionally related gene sets. However, co-expression analysis using human cancer transcriptomic data is confounded by somatic copy number alterations (SCNA), which produce co-expression signatures based on physical proximity rather than biological function. To better understand gene-gene co-expression based on biological regulation but not SCNA, we describe a method termed "Genomic Regression Analysis of Coordinated Expression" (GRACE) to adjust for the effect of SCNA in co-expression analysis. The results from analyses of TCGA, CCLE, and NCI60 data sets show that GRACE can improve our understanding of how a transcriptional network is re-wired in cancer. A user-friendly web database populated with data sets from The Cancer Genome Atlas (TCGA) is provided to allow customized query.
Collapse
Affiliation(s)
- Ling Cai
- Children's Medical Center Research Institute at UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, 75235, USA.,Quantitative Biomedical Research Center at UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Qiwei Li
- Quantitative Biomedical Research Center at UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Yi Du
- Department of Bioinformatics at UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Jonghyun Yun
- Department of Mathematics at University of Texas at Arlington, 411S. Nedderman Drive, 478 Pickard Hall, Arlington, TX, 76019, USA
| | - Yang Xie
- Quantitative Biomedical Research Center at UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute at UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, 75235, USA.
| | - Guanghua Xiao
- Quantitative Biomedical Research Center at UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.
| |
Collapse
|
28
|
Zhao M, Spiess M, Johansson HJ, Olofsson H, Hu J, Lehtiö J, Strömblad S. Identification of the PAK4 interactome reveals PAK4 phosphorylation of N-WASP and promotion of Arp2/3-dependent actin polymerization. Oncotarget 2017; 8:77061-77074. [PMID: 29100370 PMCID: PMC5652764 DOI: 10.18632/oncotarget.20352] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022] Open
Abstract
p21-activated kinase 4 (PAK4) regulates cell proliferation, apoptosis, cell motility and F-actin remodeling, but the PAK4 interactome has not been systematically analyzed. Here, we comprehensively characterized the human PAK4 interactome by iTRAQ quantitative mass spectrometry of PAK4-immunoprecipitations. Consistent with its multiple reported functions, the PAK4 interactome was enriched in diverse protein networks, including the 14-3-3, proteasome, replication fork, CCT and Arp2/3 complexes. Because PAK4 co-immunoprecipitated most subunits of the Arp2/3 complex, we hypothesized that PAK4 may play a role in Arp2/3 dependent actin regulation. Indeed, we found that PAK4 interacts with and phosphorylates the nucleation promoting factor N-WASP at Ser484/Ser485 and promotes Arp2/3-dependent actin polymerization in vitro. Also, PAK4 ablation in vivo reduced N-WASP Ser484/Ser485 phosphorylation and altered the cellular balance between G- and F-actin as well as the actin organization. By presenting the PAK4 interactome, we here provide a powerful resource for further investigations and as proof of principle, we also indicate a novel mechanism by which PAK4 regulates actin cytoskeleton remodeling.
Collapse
Affiliation(s)
- Miao Zhao
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Matthias Spiess
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Henrik J Johansson
- Cancer Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Helene Olofsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Jianjiang Hu
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Janne Lehtiö
- Cancer Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Staffan Strömblad
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
29
|
Spillman NJ, Beck JR, Ganesan SM, Niles JC, Goldberg DE. The chaperonin TRiC forms an oligomeric complex in the malaria parasite cytosol. Cell Microbiol 2017; 19. [PMID: 28067475 DOI: 10.1111/cmi.12719] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023]
Abstract
The malaria parasite exports numerous proteins into its host red blood cell (RBC). The trafficking of these exported effectors is complex. Proteins are first routed through the secretory system, into the parasitophorous vacuole (PV), a membranous compartment enclosing the parasite. Proteins are then translocated across the PV membrane in a process requiring ATP and unfolding. Once in the RBC compartment the exported proteins are then refolded and further trafficked to their final localizations. Chaperones are important in the unfolding and refolding processes. Recently, it was suggested that the parasite TRiC chaperonin complex is exported, and that it is involved in trafficking of exported effectors. Using a parasite-specific antibody and epitope-tagged transgenic parasites we could observe no export of Plasmodium TRiC into the RBC. We tested the importance of the parasite TRiC by creating a regulatable knockdown line of the TRiC-θ subunit. Loss of the parasite TRiC-θ led to a severe growth defect in asexual development, but did not alter protein export into the RBC. These observations indicate that the TRiC proteins play a critical role in parasite biology, though their function, within the parasite, appears unrelated to protein trafficking in the RBC compartment.
Collapse
Affiliation(s)
- Natalie J Spillman
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| | - Josh R Beck
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| | - Suresh M Ganesan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Daniel E Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| |
Collapse
|
30
|
Bassiouni R, Nemec KN, Iketani A, Flores O, Showalter A, Khaled AS, Vishnubhotla P, Sprung RW, Kaittanis C, Perez JM, Khaled AR. Chaperonin Containing TCP-1 Protein Level in Breast Cancer Cells Predicts Therapeutic Application of a Cytotoxic Peptide. Clin Cancer Res 2016; 22:4366-79. [PMID: 27012814 DOI: 10.1158/1078-0432.ccr-15-2502] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/21/2016] [Indexed: 01/01/2023]
Abstract
PURPOSE Metastatic disease is a leading cause of death for patients with breast cancer, driving the need for new therapies. CT20p is a peptide previously discovered by our group that displays cancer-specific cytotoxicity. To design the optimal therapeutic use of the peptide, we identified the intracellular target of CT20p in breast cancer cells, correlating expression patterns of the target with susceptibility to CT20p. EXPERIMENTAL DESIGN Using polymeric nanoparticles to deliver CT20p, we assessed cytoskeletal changes, cell migration, adhesion, and viability in cells treated with the peptide. Protein pull-down experiments, coupled to mass spectrometry, enabled identification of the peptide's intracellular target. Biochemical and histologic techniques validated target identity in human cell lines and breast cancer tissue microarrays and revealed susceptibility patterns to CT20p. RESULTS Chaperonin containing TCP-1 (CCT) was identified as the intracellular target of CT20p. Cancer cells susceptible to CT20p had increased CCT, and overexpression of CCTβ, a subunit of the CCT complex, enhanced susceptibility to CT20p. Susceptible cells displayed reduced tubulin, a substrate of CCT, and inhibition of migration upon CT20p treatment. CCTβ levels were higher in invasive ductal carcinomas than in cancer adjacent tissues and increased with breast cancer stage. Decreased breast cancer patient survival correlated with genomic alternations in CCTβ and higher levels of the chaperone. CONCLUSIONS Increased CCT protein in breast cancer cells underlies the cytotoxicity of CT20p. CCT is thus a potential target for therapeutic intervention and serves as a companion diagnostic to personalize the therapeutic use of CT20p for breast cancer treatment. Clin Cancer Res; 22(17); 4366-79. ©2016 AACR.
Collapse
Affiliation(s)
- Rania Bassiouni
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, Florida
| | - Kathleen N Nemec
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, Florida
| | - Ashley Iketani
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, Florida
| | - Orielyz Flores
- Nanoscience Technology Center, University of Central Florida, Orlando, Florida
| | - Anne Showalter
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, Florida
| | | | | | | | - Charalambos Kaittanis
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jesus M Perez
- Cedars-Sinai Medical Center, Los Angeles, California
| | - Annette R Khaled
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, Florida.
| |
Collapse
|