1
|
Zhong X, D’Antona AM, Rouse JC. Mechanistic and Therapeutic Implications of Protein and Lipid Sialylation in Human Diseases. Int J Mol Sci 2024; 25:11962. [PMID: 39596031 PMCID: PMC11594235 DOI: 10.3390/ijms252211962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Glycan structures of glycoproteins and glycolipids on the surface glycocalyx and luminal sugar layers of intracellular membrane compartments in human cells constitute a key interface between intracellular biological processes and external environments. Sialic acids, a class of alpha-keto acid sugars with a nine-carbon backbone, are frequently found as the terminal residues of these glycoconjugates, forming the critical components of these sugar layers. Changes in the status and content of cellular sialic acids are closely linked to many human diseases such as cancer, cardiovascular, neurological, inflammatory, infectious, and lysosomal storage diseases. The molecular machineries responsible for the biosynthesis of the sialylated glycans, along with their biological interacting partners, are important therapeutic strategies and targets for drug development. The purpose of this article is to comprehensively review the recent literature and provide new scientific insights into the mechanisms and therapeutic implications of sialylation in glycoproteins and glycolipids across various human diseases. Recent advances in the clinical developments of sialic acid-related therapies are also summarized and discussed.
Collapse
Affiliation(s)
- Xiaotian Zhong
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA;
| | - Aaron M. D’Antona
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA;
| | - Jason C. Rouse
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA 01810, USA;
| |
Collapse
|
2
|
Young AM, Miller JA, Ednie AR, Bennett ES. Cardiomyocyte Reduction of Hybrid/Complex N-Glycosylation in the Adult Causes Heart Failure With Reduced Ejection Fraction in the Absence of Cellular Remodeling. J Am Heart Assoc 2024; 13:e036626. [PMID: 39392134 DOI: 10.1161/jaha.124.036626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Heart failure (HF) presents a massive burden to health care with a complex pathophysiology that results in HF with reduced left ventricle ejection fraction (EF) or HF with preserved EF. It has been shown that relatively modest changes in protein glycosylation, an essential posttranslational modification, are associated with clinical presentations of HF. We and others previously showed that such aberrant protein glycosylation in animal models can lead to HF. METHODS AND RESULTS We develop and characterize a novel, tamoxifen-inducible, cardiomyocyte Mgat1 knockout mouse strain, achieved through deletion of Mgat1, alpha-1,3-mannosyl-glycoproten 2-beta-N-acetlyglucosaminyltransferase, which encodes N-acetylglucosaminyltransferase I. We investigate the role of hybrid/complex N-glycosylation in adult HFrEF pathogenesis at the ion channel, cardiomyocyte, tissue, and gross cardiac level. The data demonstrate successful reduction of N-acetylglucosaminyltransferase I activity and confirm that hybrid/complex N-glycans modulate gating of cardiomyocyte voltage-gated calcium channels. A longitudinal study shows that the tamoxifen-inducible, cardiomyocyte Mgat1 knockout mice present with significantly reduced systolic function by 28 days post induction that progresses into HFrEF by 8 weeks post induction, without significant ventricular dilation or hypertrophy. Further, there was minimal, if any, physiologic or pathophysiologic cardiomyocyte electromechanical remodeling or fibrosis observed before (10-21 days post induction) or after (90-130 days post induction) HFrEF development. CONCLUSIONS The tamoxifen-inducible, cardiomyocyte Mgat1 knockout mouse strain created and characterized here provides a model to describe novel mechanisms and causes responsible for HFrEF onset in the adult, likely occurring primarily through tissue-level reductions in electromechanical activity in the absence of (or at least before) cardiomyocyte remodeling and fibrosis.
Collapse
Affiliation(s)
- Anthony M Young
- Department of Neuroscience, Cell Biology & Physiology Boonshoft School of Medicine and College of Science and Mathematics, Wright State University Dayton OH
| | - John A Miller
- Department of Neuroscience, Cell Biology & Physiology Boonshoft School of Medicine and College of Science and Mathematics, Wright State University Dayton OH
| | - Andrew R Ednie
- Department of Neuroscience, Cell Biology & Physiology Boonshoft School of Medicine and College of Science and Mathematics, Wright State University Dayton OH
| | - Eric S Bennett
- Department of Neuroscience, Cell Biology & Physiology Boonshoft School of Medicine and College of Science and Mathematics, Wright State University Dayton OH
| |
Collapse
|
3
|
Holland SH, Carmona-Martinez R, O’Connor K, O’Neil D, Roos A, Spendiff S, Lochmüller H. A Deficiency in Glutamine-Fructose-6-Phosphate Transaminase 1 (Gfpt1) in Skeletal Muscle Results in Reduced Glycosylation of the Delta Subunit of the Nicotinic Acetylcholine Receptor (AChRδ). Biomolecules 2024; 14:1252. [PMID: 39456185 PMCID: PMC11506803 DOI: 10.3390/biom14101252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
The neuromuscular junction (NMJ) is the site where the motor neuron innervates skeletal muscle, enabling muscular contraction. Congenital myasthenic syndromes (CMS) arise when mutations in any of the approximately 35 known causative genes cause impaired neuromuscular transmission at the NMJ, resulting in fatigable muscle weakness. A subset of five of these CMS-causative genes are associated with protein glycosylation. Glutamine-fructose-6-phosphate transaminase 1 (Gfpt1) is the rate-limiting enzyme within the hexosamine biosynthetic pathway (HBP), a metabolic pathway that produces the precursors for glycosylation. We hypothesized that deficiency in Gfpt1 expression results in aberrant or reduced glycosylation, impairing the proper assembly and stability of key NMJ-associated proteins. Using both in vitro and in vivo Gfpt1-deficient models, we determined that the acetylcholine receptor delta subunit (AChRδ) has reduced expression and is hypo-glycosylated. Using laser capture microdissection, NMJs were harvested from Gfpt1 knockout mouse muscle. A lower-molecular-weight species of AChRδ was identified at the NMJ that was not detected in controls. Furthermore, Gfpt1-deficient muscle lysates showed impairment in protein O-GlcNAcylation and sialylation, suggesting that multiple glycan chains are impacted. Other key NMJ-associated proteins, in addition to AChRδ, may also be differentially glycosylated in Gfpt1-deficient muscle.
Collapse
Affiliation(s)
- Stephen Henry Holland
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Dr. Eric Poulin Center for Neuromuscular Disorders, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | - Kaela O’Connor
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Daniel O’Neil
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Andreas Roos
- Dr. Eric Poulin Center for Neuromuscular Disorders, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Pediatric Neurology, Center for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147 Essen, Germany
- Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sally Spendiff
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Hanns Lochmüller
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Dr. Eric Poulin Center for Neuromuscular Disorders, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Faculty of Medicine, Medical Center, University of Freiburg, 79085 Freiburg, Germany
- Centro Nacional de Analisis Genomico (CNAG), 08028 Barcelona, Spain
| |
Collapse
|
4
|
Stanley P. Genetics of glycosylation in mammalian development and disease. Nat Rev Genet 2024; 25:715-729. [PMID: 38724711 DOI: 10.1038/s41576-024-00725-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 09/19/2024]
Abstract
Glycosylation of proteins and lipids in mammals is essential for embryogenesis and the development of all tissues. Analyses of glycosylation mutants in cultured mammalian cells and model organisms have been key to defining glycosylation pathways and the biological functions of glycans. More recently, applications of genome sequencing have revealed the breadth of rare congenital disorders of glycosylation in humans and the influence of genetics on the synthesis of glycans relevant to infectious diseases, cancer progression and diseases of the immune system. This improved understanding of glycan synthesis and functions is paving the way for advances in the diagnosis and treatment of glycosylation-related diseases, including the development of glycoprotein therapeutics through glycosylation engineering.
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Miura A, Manabe Y, Suzuki KGN, Shomura H, Okamura S, Shirakawa A, Yano K, Miyake S, Mayusumi K, Lin CC, Morimoto K, Ishitobi J, Nakase I, Arai K, Kobayashi S, Ishikawa U, Kanoh H, Miyoshi E, Yamaji T, Kabayama K, Fukase K. De Novo Glycan Display on Cell Surfaces Using HaloTag: Visualizing the Effect of the Galectin Lattice on the Lateral Diffusion and Extracellular Vesicle Loading of Glycosylated Membrane Proteins. J Am Chem Soc 2024; 146:22193-22207. [PMID: 38963258 DOI: 10.1021/jacs.4c02040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Glycans cover the cell surface to form the glycocalyx, which governs a myriad of biological phenomena. However, understanding and regulating glycan functions is extremely challenging due to the large number of heterogeneous glycans that engage in intricate interaction networks with diverse biomolecules. Glycocalyx-editing techniques offer potent tools to probe their functions. In this study, we devised a HaloTag-based technique for glycan manipulation, which enables the introduction of chemically synthesized glycans onto a specific protein (protein of interest, POI) and concurrently incorporates fluorescent units to attach homogeneous, well-defined glycans to the fluorescence-labeled POIs. Leveraging this HaloTag-based glycan-display system, we investigated the influence of the interactions between Gal-3 and various N-glycans on protein dynamics. Our analyses revealed that glycosylation modulates the lateral diffusion of the membrane proteins in a structure-dependent manner through interaction with Gal-3, particularly in the context of the Gal-3-induced formation of the glycan network (galectin lattice). Furthermore, N-glycan attachment was also revealed to have a significant impact on the extracellular vesicle-loading of membrane proteins. Notably, our POI-specific glycan introduction does not disrupt intact glycan structures, thereby enabling a functional analysis of glycans in the presence of native glycan networks. This approach complements conventional glycan-editing methods and provides a means for uncovering the molecular underpinnings of glycan functions on the cell surface.
Collapse
Affiliation(s)
- Ayane Miura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kenichi G N Suzuki
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
- National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Hiroki Shomura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Soichiro Okamura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Asuka Shirakawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kumpei Yano
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shuto Miyake
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Koki Mayusumi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kenta Morimoto
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Jojiro Ishitobi
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Ikuhiko Nakase
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Department of Biological Chemistry, School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kenta Arai
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, Hyogo 651-2492, Japan
| | - Shouhei Kobayashi
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, Hyogo 651-2492, Japan
| | - Ushio Ishikawa
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba Ward, Sendai, Miyagi 981-8558, Japan
| | - Hirotaka Kanoh
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba Ward, Sendai, Miyagi 981-8558, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Interdisciplinary Research Center for Radiation Sciences, Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Center for Advanced Modalities and DDS, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Zuo B, Yang F, Huang L, Han J, Li T, Ma Z, Cao L, Li Y, Bai X, Jiang M, He Y, Xia L. Endothelial Slc35a1 Deficiency Causes Loss of LSEC Identity and Exacerbates Neonatal Lipid Deposition in the Liver in Mice. Cell Mol Gastroenterol Hepatol 2024; 17:1039-1061. [PMID: 38467191 PMCID: PMC11061248 DOI: 10.1016/j.jcmgh.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND & AIMS The functional maturation of the liver largely occurs after birth. In the early stages of life, the liver of a newborn encounters enormous high-fat metabolic stress caused by the consumption of breast milk. It is unclear how the maturing liver adapts to high lipid metabolism. Liver sinusoidal endothelial cells (LSECs) play a fundamental role in establishing liver vasculature and are decorated with many glycoproteins on their surface. The Slc35a1 gene encodes a cytidine-5'-monophosphate (CMP)-sialic acid transporter responsible for transporting CMP-sialic acids between the cytoplasm and the Golgi apparatus for protein sialylation. This study aimed to determine whether endothelial sialylation plays a role in hepatic vasculogenesis and functional maturation. METHODS Endothelial-specific Slc35a1 knockout mice were generated. Liver tissues were collected for histologic analysis, lipidomic profiling, RNA sequencing, confocal immunofluorescence, and immunoblot analyses. RESULTS Endothelial Slc35a1-deficient mice exhibited excessive neonatal hepatic lipid deposition, severe liver damage, and high mortality. Endothelial deletion of Slc35a1 led to sinusoidal capillarization and disrupted hepatic zonation. Mechanistically, vascular endothelial growth factor receptor 2 (VEGFR2) in LSECs was desialylated and VEGFR2 signaling was enhanced in Slc35a1-deficient mice. Inhibition of VEGFR2 signaling by SU5416 alleviated lipid deposition and restored hepatic vasculature in Slc35a1-deficient mice. CONCLUSIONS Our findings suggest that sialylation of LSECs is critical for maintaining hepatic vascular development and lipid homeostasis. Targeting VEGFR2 signaling may be a new strategy to prevent liver disorders associated with abnormal vasculature and lipid deposition.
Collapse
Affiliation(s)
- Bin Zuo
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China; Engineering Center of Hematological Disease of Ministry of Education, Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Fei Yang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lulu Huang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingjing Han
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tianyi Li
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhenni Ma
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lijuan Cao
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yun Li
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xia Bai
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Miao Jiang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang He
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China; Engineering Center of Hematological Disease of Ministry of Education, Cyrus Tang Hematology Center, Soochow University, Suzhou, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Lijun Xia
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma.
| |
Collapse
|
7
|
Corcoran E, Olayinka A, di Luca M, Gusti Y, Hakimjavadi R, O'Connor B, Redmond EM, Cahill PA. N-Glycans on the extracellular domain of the Notch1 receptor control Jagged-1 induced Notch signalling and myogenic differentiation of S100β resident vascular stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567576. [PMID: 38014317 PMCID: PMC10680845 DOI: 10.1101/2023.11.17.567576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Notch signalling, critical for development and postnatal homeostasis of the vascular system, is highly regulated by several mechanisms including glycosylation. While the importance of O-linked glycosylation is widely accepted, the structure and function of N-glycans has yet to be defined. Here, we take advantage of lectin binding assays in combination with pharmacological, molecular, and site-directed mutagenetic approaches to study N-glycosylation of the Notch1 receptor. We find that several key oligosaccharides containing bisecting or core fucosylated structures decorate the receptor, control expression and receptor trafficking, and dictate Jagged-1 activation of Notch target genes and myogenic differentiation of multipotent S100β vascular stem cells. N-glycans at asparagine (N) 1241 and 1587 protect the receptor from accelerated degradation, while the oligosaccharide at N888 directly affects signal transduction. Conversely, N-linked glycans at N959, N1179, N1489 do not impact canonical signalling but inhibit differentiation. Our work highlights a novel functional role for N-glycans in controlling Notch1 signalling and differentiation of vascular stem cells.
Collapse
Affiliation(s)
- Eoin Corcoran
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Abidemi Olayinka
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Mariana di Luca
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Yusof Gusti
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Roya Hakimjavadi
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Brendan O'Connor
- School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Eileen M Redmond
- Department of Surgery, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - Paul A Cahill
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| |
Collapse
|
8
|
Kas SM, Mundra PA, Smith DL, Marais R. Functional classification of DDOST variants of uncertain clinical significance in congenital disorders of glycosylation. Sci Rep 2023; 13:17648. [PMID: 37848450 PMCID: PMC10582084 DOI: 10.1038/s41598-023-42178-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023] Open
Abstract
Congenital disorders of glycosylation (CDG) are rare genetic disorders with a spectrum of clinical manifestations caused by abnormal N-glycosylation of secreted and cell surface proteins. Over 130 genes are implicated and next generation sequencing further identifies potential disease drivers in affected individuals. However, functional testing of these variants is challenging, making it difficult to distinguish pathogenic from non-pathogenic events. Using proximity labelling, we identified OST48 as a protein that transiently interacts with lysyl oxidase (LOX), a secreted enzyme that cross-links the fibrous extracellular matrix. OST48 is a non-catalytic component of the oligosaccharyltransferase (OST) complex, which transfers glycans to substrate proteins. OST48 is encoded by DDOST, and 43 variants of DDOST are described in CDG patients, of which 34 are classified as variants of uncertain clinical significance (VUS). We developed an assay based on LOX N-glycosylation that confirmed two previously characterised DDOST variants as pathogenic. Notably, 39 of the 41 remaining variants did not have impaired activity, but we demonstrated that p.S243F and p.E286del were functionally impaired, consistent with a role in driving CDG in those patients. Thus, we describe a rapid assay for functional testing of clinically relevant CDG variants to complement genome sequencing and support clinical diagnosis of affected individuals.
Collapse
Affiliation(s)
- Sjors M Kas
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK.
| | - Piyushkumar A Mundra
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Duncan L Smith
- Biological Mass Spectrometry Unit, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Richard Marais
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK.
- Oncodrug Ltd, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK.
| |
Collapse
|
9
|
Milawati H, Manabe Y, Matsumoto T, Tsutsui M, Ueda Y, Miura A, Kabayama K, Fukase K. Practical Antibody Recruiting by Metabolic Labeling with Caged Glycans. Angew Chem Int Ed Engl 2023; 62:e202303750. [PMID: 37042088 DOI: 10.1002/anie.202303750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/13/2023]
Abstract
We propose a de novo glycan display approach that combines metabolic labeling and a glycan-caging strategy as a facile editing method for cell-surface glycans. This method enables the introduction of antigen glycans onto cancer cells to induce immune responses through antibody recruiting. The caging strategy prevents the capture of α-rhamnose (an antigen glycan) by endogenous antibodies during the introduction of the glycan to the targeted cell surface, and subsequent uncaging successfully induces immune responses. Therefore, this study proposes a practical method for editing the cell-surface glycocalyx under promiscuous conditions, such as those in vivo, which paves the way for the development of glycan function analysis and regulation.
Collapse
Affiliation(s)
- Hersa Milawati
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Takuya Matsumoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Masato Tsutsui
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yoshihiro Ueda
- Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Ayane Miura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
10
|
Fonseca LMD, Diniz-Lima I, da Costa Santos MAR, Franklim TN, da Costa KM, Santos ACD, Morrot A, Decote-Ricardo D, Valente RDC, Freire-de-Lima CG, Dos Reis JS, Freire-de-Lima L. Bittersweet Sugars: How Unusual Glycan Structures May Connect Epithelial-to-Mesenchymal Transition and Multidrug Resistance in Cancer. MEDICINES (BASEL, SWITZERLAND) 2023; 10:36. [PMID: 37367731 DOI: 10.3390/medicines10060036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
Cancer cells are characterized by metabolic reprogramming, which enables their survival in of-ten inhospitable conditions. A very well-documented example that has gained attraction in re-cent years and is already considered a hallmark of transformed cells is the reprogramming of carbohydrate metabolism. Such a feature, in association with the differential expression of en-zymes involved in the biosynthesis of glycoconjugates, generically known as glycosyltransfer-ases, contributes to the expression of structurally atypical glycans when compared to those ex-pressed in healthy tissues. The latest studies have demonstrated that glycophenotypic alterations are capable of modulating multifactorial events essential for the development and/or progres-sion of the disease. Herein, we will address the importance of glycobiology in modern medi-cine, focusing on the ability of unusual/truncated O-linked glycans to modulate two complex and essential phenomena for cancer progression: the acquisition of the multidrug resistance (MDR) phenotype and the activation of molecular pathways associated with the epithelial-mesenchymal transition (EMT) process, an event deeply linked with cancer metastasis.
Collapse
Affiliation(s)
- Leonardo Marques da Fonseca
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Israel Diniz-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | - Tatiany Nunes Franklim
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Kelli Monteiro da Costa
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ariely Costa Dos Santos
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Alexandre Morrot
- Instituto Oswaldo Cruz, Fiocruz, Laboratório de Imunoparasitologia, Rio de Janeiro 21040-360, Brazil
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Debora Decote-Ricardo
- Instituto de Veterinária, Departamento de Microbiologia e Imunologia Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-000, Brazil
| | - Raphael do Carmo Valente
- Núcleo Multidisciplinar de Pesquisa em Biologia, Universidade Federal do Rio de Janeiro, Campus Duque de Caxias, Rio de Janeiro 25250-470, Brazil
| | - Celio Geraldo Freire-de-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Jhenifer Santos Dos Reis
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Freire-de-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
11
|
Tang X, Tena J, Di Lucente J, Maezawa I, Harvey DJ, Jin LW, Lebrilla CB, Zivkovic AM. Transcriptomic and glycomic analyses highlight pathway-specific glycosylation alterations unique to Alzheimer's disease. Sci Rep 2023; 13:7816. [PMID: 37188790 PMCID: PMC10185676 DOI: 10.1038/s41598-023-34787-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023] Open
Abstract
Glycosylation has been found to be altered in the brains of individuals with Alzheimer's disease (AD). However, it is unknown which specific glycosylation-related pathways are altered in AD dementia. Using publicly available RNA-seq datasets covering seven brain regions and including 1724 samples, we identified glycosylation-related genes ubiquitously changed in individuals with AD. Several differentially expressed glycosyltransferases found by RNA-seq were confirmed by qPCR in a different set of human medial temporal cortex (MTC) samples (n = 20 AD vs. 20 controls). N-glycan-related changes predicted by expression changes in these glycosyltransferases were confirmed by mass spectrometry (MS)-based N-glycan analysis in the MTC (n = 9 AD vs. 6 controls). About 80% of glycosylation-related genes were differentially expressed in at least one brain region of AD participants (adjusted p-values < 0.05). Upregulation of MGAT1 and B4GALT1 involved in complex N-linked glycan formation and galactosylation, respectively, were reflected by increased concentrations of corresponding N-glycans. Isozyme-specific changes were observed in expression of the polypeptide N-acetylgalactosaminyltransferase (GALNT) family and the alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase (ST6GALNAC) family of enzymes. Several glycolipid-specific genes (UGT8, PIGM) were upregulated. The critical transcription factors regulating the expression of N-glycosylation and elongation genes were predicted and found to include STAT1 and HSF5. The miRNA predicted to be involved in regulating N-glycosylation and elongation glycosyltransferases were has-miR-1-3p and has-miR-16-5p, respectively. Our findings provide an overview of glycosylation pathways affected by AD and potential regulators of glycosyltransferase expression that deserve further validation and suggest that glycosylation changes occurring in the brains of AD dementia individuals are highly pathway-specific and unique to AD.
Collapse
Affiliation(s)
- Xinyu Tang
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Jennyfer Tena
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Jacopo Di Lucente
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
- UC Davis MIND Institute, Sacramento, CA, USA
| | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
- UC Davis MIND Institute, Sacramento, CA, USA
| | - Danielle J Harvey
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
- UC Davis MIND Institute, Sacramento, CA, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
12
|
Hunter C, Gao Z, Chen HM, Thompson N, Wakarchuk W, Nitz M, Withers SG, Willis LM. Attenuation of Polysialic Acid Biosynthesis in Cells by the Small Molecule Inhibitor 8-Keto-sialic acid. ACS Chem Biol 2023; 18:41-48. [PMID: 36577399 DOI: 10.1021/acschembio.2c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sialic acids are key mediators of cell function, particularly with regard to cellular interactions with the surrounding environment. Reagents that modulate the display of specific sialyl glycoforms at the cell surface would be useful biochemical tools and potentially allow for therapeutic intervention in numerous challenging chronic diseases. While multiple strategies are being explored for the control of cell surface sialosides, none that shows high selectivity between sialyltransferases or that targets a specific sialyl glycoform has yet to emerge. Here, we describe a strategy to block the formation of α2,8-linked sialic acid chains (oligo- and polysialic acid) through the use of 8-keto-sialic acid as a chain-terminating metabolic inhibitor that, if incorporated, cannot be elongated. 8-Keto-sialic acid is nontoxic at effective concentrations and serves to block polysialic acid synthesis in cancer cell lines and primary immune cells, with minimal effects on other sialyl glycoforms.
Collapse
Affiliation(s)
- Carmanah Hunter
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Zhizeng Gao
- Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z1, Canada
| | - Hong-Ming Chen
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, Canada
| | - Nicole Thompson
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Warren Wakarchuk
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z1, Canada
| | - Lisa M Willis
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| |
Collapse
|
13
|
Effects of the genetic knockout of the β-1,3-galactosyltransferase 2 on spatial learning and neurons in the adult mouse hippocampus and somatosensory cortex. Neuroreport 2023; 34:46-55. [PMID: 36504040 DOI: 10.1097/wnr.0000000000001857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Glycosyltransferases contribute to the biosynthesis of glycoproteins, proteoglycans and glycolipids and play essential roles in various processes in the brain, such as learning and memory, brain development, neuronal survival and neurodegeneration. β-1,3-galactosyltransferase 2 (B3galt2) belongs to the β-1,3-galactosyltransferase gene family and is highly expressed in the brain. Recent studies have indicated that B3galt2 plays a vital role in ischemic stroke through several signaling pathways in a mouse model. However, the function of B3galt2 in the brain remains poorly understood. METHODS The genotypes of mice were determined by PCR. To verify B3galt2 expression in an adult mouse brain, X-gal staining was performed in 6-month-old B3galt2 heterozygous (B3galt2+/-) mice. Using adult B3galt2 homozygous (B3galt2-/-), heterozygous and wild-type (WT) littermates, spatial learning and memory were determined by the Morris Water Maze test, and neurotoxicity and synaptic plasticity were examined by immunofluorescence. RESULTS B3galt2 was highly expressed in the adult mouse hippocampus and cortex, especially in the hippocampal dentate gyrus. Compared to that of WT mice, the spatial learning ability of adult B3galt2-/- mice was impaired. B3galt2 mutations also caused neuronal loss and synaptic dysfunction in the hippocampus and somatosensory cortex, and these changes were more obvious in B3galt2-/- mice than in B3galt2+/- mice. CONCLUSIONS The findings indicate that B3galt2 plays an important role in cognitive function, neuronal maintenance and synaptic plasticity in the adult mouse brain. This study suggests that genetic and/or pharmacological manipulation of glycosyltransferases may be a novel strategy for elucidating the mechanism of and managing various brain disorders.
Collapse
|
14
|
Knizkova D, Pribikova M, Draberova H, Semberova T, Trivic T, Synackova A, Ujevic A, Stefanovic J, Drobek A, Huranova M, Niederlova V, Tsyklauri O, Neuwirth A, Tureckova J, Stepanek O, Draber P. CMTM4 is a subunit of the IL-17 receptor and mediates autoimmune pathology. Nat Immunol 2022; 23:1644-1652. [PMID: 36271145 DOI: 10.1038/s41590-022-01325-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/07/2022] [Indexed: 11/09/2022]
Abstract
Interleukin-17A (IL-17A) is a key mediator of protective immunity to yeast and bacterial infections but also drives the pathogenesis of several autoimmune diseases, such as psoriasis or psoriatic arthritis. Here we show that the tetra-transmembrane protein CMTM4 is a subunit of the IL-17 receptor (IL-17R). CMTM4 constitutively associated with IL-17R subunit C to mediate its stability, glycosylation and plasma membrane localization. Both mouse and human cell lines deficient in CMTM4 were largely unresponsive to IL-17A, due to their inability to assemble the IL-17R signaling complex. Accordingly, CMTM4-deficient mice had a severe defect in the recruitment of immune cells following IL-17A administration and were largely resistant to experimental psoriasis, but not to experimental autoimmune encephalomyelitis. Collectively, our data identified CMTM4 as an essential component of IL-17R and a potential therapeutic target for treating IL-17-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Daniela Knizkova
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.,Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Pribikova
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Helena Draberova
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Tereza Semberova
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Tijana Trivic
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Alzbeta Synackova
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Andrea Ujevic
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Jana Stefanovic
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Ales Drobek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Huranova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Veronika Niederlova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Oksana Tsyklauri
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ales Neuwirth
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jolana Tureckova
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Peter Draber
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic. .,Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
15
|
Griffin ME, Hsieh-Wilson LC. Tools for mammalian glycoscience research. Cell 2022; 185:2657-2677. [PMID: 35809571 PMCID: PMC9339253 DOI: 10.1016/j.cell.2022.06.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
Cellular carbohydrates or glycans are critical mediators of biological function. Their remarkably diverse structures and varied activities present exciting opportunities for understanding many areas of biology. In this primer, we discuss key methods and recent breakthrough technologies for identifying, monitoring, and manipulating glycans in mammalian systems.
Collapse
Affiliation(s)
- Matthew E Griffin
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Microbiology and Immunology, Scripps Research, La Jolla, CA 92037, USA
| | - Linda C Hsieh-Wilson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
16
|
Gabius H, Cudic M, Diercks T, Kaltner H, Kopitz J, Mayo KH, Murphy PV, Oscarson S, Roy R, Schedlbauer A, Toegel S, Romero A. What is the Sugar Code? Chembiochem 2022; 23:e202100327. [PMID: 34496130 PMCID: PMC8901795 DOI: 10.1002/cbic.202100327] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Indexed: 12/18/2022]
Abstract
A code is defined by the nature of the symbols, which are used to generate information-storing combinations (e. g. oligo- and polymers). Like nucleic acids and proteins, oligo- and polysaccharides are ubiquitous, and they are a biochemical platform for establishing molecular messages. Of note, the letters of the sugar code system (third alphabet of life) excel in coding capacity by making an unsurpassed versatility for isomer (code word) formation possible by variability in anomery and linkage position of the glycosidic bond, ring size and branching. The enzymatic machinery for glycan biosynthesis (writers) realizes this enormous potential for building a large vocabulary. It includes possibilities for dynamic editing/erasing as known from nucleic acids and proteins. Matching the glycome diversity, a large panel of sugar receptors (lectins) has developed based on more than a dozen folds. Lectins 'read' the glycan-encoded information. Hydrogen/coordination bonding and ionic pairing together with stacking and C-H/π-interactions as well as modes of spatial glycan presentation underlie the selectivity and specificity of glycan-lectin recognition. Modular design of lectins together with glycan display and the nature of the cognate glycoconjugate account for the large number of post-binding events. They give an entry to the glycan vocabulary its functional, often context-dependent meaning(s), hereby building the dictionary of the sugar code.
Collapse
Affiliation(s)
- Hans‐Joachim Gabius
- Institute of Physiological ChemistryFaculty of Veterinary MedicineLudwig-Maximilians-University MunichVeterinärstr. 1380539MunichGermany
| | - Maré Cudic
- Department of Chemistry and BiochemistryCharles E. Schmidt College of ScienceFlorida Atlantic University777 Glades RoadBoca RatonFlorida33431USA
| | - Tammo Diercks
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Bizkaia Technology Park, Building 801 A48160DerioBizkaiaSpain
| | - Herbert Kaltner
- Institute of Physiological ChemistryFaculty of Veterinary MedicineLudwig-Maximilians-University MunichVeterinärstr. 1380539MunichGermany
| | - Jürgen Kopitz
- Institute of PathologyDepartment of Applied Tumor BiologyFaculty of MedicineRuprecht-Karls-University HeidelbergIm Neuenheimer Feld 22469120HeidelbergGermany
| | - Kevin H. Mayo
- Department of BiochemistryMolecular Biology & BiophysicsUniversity of MinnesotaMinneapolisMN 55455USA
| | - Paul V. Murphy
- CÚRAM – SFI Research Centre for Medical Devices and theSchool of ChemistryNational University of Ireland GalwayUniversity RoadGalwayH91 TK33Ireland
| | - Stefan Oscarson
- Centre for Synthesis and Chemical BiologyUniversity College DublinBelfieldDublin 4Ireland
| | - René Roy
- Département de Chimie et BiochimieUniversité du Québec à MontréalCase Postale 888Succ. Centre-Ville MontréalQuébecH3C 3P8Canada
| | - Andreas Schedlbauer
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Bizkaia Technology Park, Building 801 A48160DerioBizkaiaSpain
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
| | - Antonio Romero
- Department of Structural and Chemical BiologyCIB Margarita Salas, CSICRamiro de Maeztu 928040MadridSpain
| |
Collapse
|
17
|
Dworkin LA, Clausen H, Joshi HJ. Applying transcriptomics to studyglycosylation at the cell type level. iScience 2022; 25:104419. [PMID: 35663018 PMCID: PMC9156939 DOI: 10.1016/j.isci.2022.104419] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/30/2022] [Accepted: 05/12/2022] [Indexed: 11/22/2022] Open
Abstract
The complex multi-step process of glycosylation occurs in a single cell, yet current analytics generally cannot measure the output (the glycome) of a single cell. Here, we addressed this discordance by investigating how single cell RNA-seq data can be used to characterize the state of the glycosylation machinery and metabolic network in a single cell. The metabolic network involves 214 glycosylation and modification enzymes outlined in our previously built atlas of cellular glycosylation pathways. We studied differential mRNA regulation of enzymes at the organ and single cell level, finding that most of the general protein and lipid oligosaccharide scaffolds are produced by enzymes exhibiting limited transcriptional regulation among cells. We predict key enzymes within different glycosylation pathways to be highly transcriptionally regulated as regulatable hotspots of the cellular glycome. We designed the Glycopacity software that enables investigators to extract and interpret glycosylation information from transcriptome data and define hotspots of regulation. RNA-seq can provide information on the glycosylation metabolic network state It is possible to readout glycosylation capacity from single cell RNA-seq data Genes regulating the biosynthesis of common glycan scaffolds show little regulation Key enzymes in the glycosylation network are predicted to be regulatable hotspots
Collapse
Affiliation(s)
- Leo Alexander Dworkin
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Hiren Jitendra Joshi
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Corresponding author
| |
Collapse
|
18
|
Furukawa K, Ohmi Y, Hamamura K, Kondo Y, Ohkawa Y, Kaneko K, Hashimoto N, Yesmin F, Bhuiyan RH, Tajima O, Furukawa K. Signaling domains of cancer-associated glycolipids. Glycoconj J 2022; 39:145-155. [PMID: 35315508 DOI: 10.1007/s10719-022-10051-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022]
Abstract
Immunotherapy of malignant cancers is now becoming one of representative approaches to overcome cancers. To construct strategies for immunotherapy, presence of tumor-specific antigens should be a major promise. A number of cancer specific- or cancer-associated antigens have been reported based on various experimental sets and various animal systems. The most reasonable strategy to define tumor-specific antigens might be "autologous typing" performed by Old's group, proposing three classes of tumor-antigens recognized by host immune systems of cancer patients. Namely, class 1, individual antigens that is present only in the patient's sample analyzed; class 2, shared antigens that can be found only in some group of cancers in some patients, but not in normal cells and tissues; class 3, universal antigens that are present in some cancers but also in normal cells and tissues with different densities. Sen Hakomori reported there were novel carbohydrates in cancers that could not be detected in normal cells mainly by biochemical approaches. Consequently, many of class 2 cancer-specific antigens have been revealed to be carbohydrate antigens, and been used for cancer diagnosis and treatment. Not only as cancer markers, but roles of those cancer-associated carbohydrates have also been recognized as functional molecules in cancer cells. In particular, roles of complex carbohydrates in the regulation of cell signaling on the cell surface microdomains, glycolipid-enriched microdomain (GEM)/rafts have been reported by Hakomori and many other researchers including us. The processes and present status of these studies on cancer-associated glycolipids were summarized.
Collapse
Affiliation(s)
- Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan. .,Department of Molecular and Cellular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Yuhsuke Ohmi
- Department of Clinical Engineering, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Kazunori Hamamura
- Department of Pharmacology, Aichi Gakuin University School of Dentistry, Nisshin, Japan
| | - Yuji Kondo
- Department of Molecular and Cellular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Institute, Osaka, Japan
| | - Kei Kaneko
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Noboru Hashimoto
- Department of Tissue Regeneration, Tokushima University Graduate School Institute of Biomedical Sciences, Tokushima, Japan
| | - Farhana Yesmin
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan.,Department of Molecular and Cellular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Robiul H Bhuiyan
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Orie Tajima
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| |
Collapse
|
19
|
Resistance to cisplatin in human lung adenocarcinoma cells: effects on the glycophenotype and epithelial to mesenchymal transition markers. Glycoconj J 2022; 39:247-259. [DOI: 10.1007/s10719-022-10042-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
|
20
|
OUP accepted manuscript. Glycobiology 2022; 32:380-390. [DOI: 10.1093/glycob/cwac003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
|
21
|
Conroy LR, Hawkinson TR, Young LEA, Gentry MS, Sun RC. Emerging roles of N-linked glycosylation in brain physiology and disorders. Trends Endocrinol Metab 2021; 32:980-993. [PMID: 34756776 PMCID: PMC8589112 DOI: 10.1016/j.tem.2021.09.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022]
Abstract
N-linked glycosylation is a complex, co- and post-translational series of events that connects metabolism to signaling in almost all cells. Metabolic assembly of N-linked glycans spans multiple cellular compartments, and early N-linked glycan biosynthesis is a central mediator of protein folding and the unfolded protein response (UPR). In the brain, N-linked glycosylated proteins participate in a myriad of processes, from electrical gradients to neurotransmission. However, it is less clear how perturbations in N-linked glycosylation impact and even potentially drive aspects of neurological disorders. In this review, we discuss our current understanding of the metabolic origins of N-linked glycans in the brain, their role in modulating neuronal function, and how aberrant N-linked glycosylation can drive neurological disorders.
Collapse
Affiliation(s)
- Lindsey R Conroy
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA; Markey Cancer Center, Lexington, KY 40508-0536, USA
| | - Tara R Hawkinson
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Ramon C Sun
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA; Markey Cancer Center, Lexington, KY 40508-0536, USA; Sanders Brown Center for Aging, Lexington, KY 40508-0536, USA.
| |
Collapse
|
22
|
Disease-specific glycosaminoglycan patterns in the extracellular matrix of human lung and brain. Carbohydr Res 2021; 511:108480. [PMID: 34837849 DOI: 10.1016/j.carres.2021.108480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/24/2022]
Abstract
A wide variety of diseases throughout the mammalian organism is characterized by abnormal deposition of various components of the extracellular matrix (ECM), including the heterogeneous family of glycosaminoglycans (GAGs), which contribute considerably to the ECM architecture as part of the so-called proteoglycans. The GAG's unique sulfation pattern, derived from highly dynamic and specific modification processes, has a massive impact on critical mediators such as cytokines and growth factors. Due to the strong connection between the specific sulfation pattern and GAG function, slight alterations of this pattern are often associated with enormous changes at the cell as well as at the organ level. This review aims to investigate the connection between modifications of GAG sulfation patterns and the wide range of pathological conditions, mainly focusing on a range of chronic diseases of the central nervous system (CNS) as well as the respiratory tract.
Collapse
|
23
|
Zhou Q, Xie Y, Lam M, Lebrilla CB. N-Glycomic Analysis of the Cell Shows Specific Effects of Glycosyl Transferase Inhibitors. Cells 2021; 10:cells10092318. [PMID: 34571967 PMCID: PMC8465854 DOI: 10.3390/cells10092318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Glycomic profiling methods were used to determine the effect of metabolic inhibitors on glycan production. These inhibitors are commonly used to alter the cell surface glycosylation. However, structural analysis of the released glycans has been limited. In this research, the cell membranes were enriched and the glycans were released to obtain the N-glycans of the glycocalyx. Glycomic analysis using liquid chromatography–mass spectrometry (LC–MS) with a PGC chip column was used to profile the structures in the cell membrane. Glycans of untreated cells were compared to glycans of cells treated with inhibitors, including kifunensine, which inhibits the formation of complex- and hybrid-type structures, 2,4,7,8,9-Penta-O-acetyl-N-acetyl-3-fluoro-b-d-neuraminic acid methyl ester for sialylated glycans, 2-deoxy-2-fluorofucose, and 6-alkynyl fucose for fucosylated glycans. Kifunensine was the most effective, converting nearly 95% of glycans to high mannose types. The compound 6-alkynyl fucose inhibited some fucosylation but also incorporated into the glycan structure. Proteomic analysis of the enriched membrane for the four inhibitors showed only small changes in the proteome accompanied by large changes in the N-glycome for Caco-2. Future works may use these inhibitors to study the cellular behavior associated with the alteration of glycosylation in various biological systems, e.g., viral and bacterial infection, drug binding, and cell–cell interactions.
Collapse
Affiliation(s)
- Qingwen Zhou
- Department of Chemistry, University of California, Davis, CA 95616, USA; (Q.Z.); (Y.X.); (M.L.)
| | - Yixuan Xie
- Department of Chemistry, University of California, Davis, CA 95616, USA; (Q.Z.); (Y.X.); (M.L.)
| | - Matthew Lam
- Department of Chemistry, University of California, Davis, CA 95616, USA; (Q.Z.); (Y.X.); (M.L.)
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, CA 95616, USA; (Q.Z.); (Y.X.); (M.L.)
- Department of Biochemistry, University of California, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
24
|
Peptide Sequence Mapping around Bisecting GlcNAc-Bearing N-Glycans in Mouse Brain. Int J Mol Sci 2021; 22:ijms22168579. [PMID: 34445285 PMCID: PMC8395275 DOI: 10.3390/ijms22168579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023] Open
Abstract
N-glycosylation is essential for many biological processes in mammals. A variety of N-glycan structures exist, of which, the formation of bisecting N-acetylglucosamine (GlcNAc) is catalyzed by N-acetylglucosaminyltransferase-III (GnT-III, encoded by the Mgat3 gene). We previously identified various bisecting GlcNAc-modified proteins involved in Alzheimer's disease and cancer. However, the mechanisms by which GnT-III acts on the target proteins are unknown. Here, we performed comparative glycoproteomic analyses using brain membranes of wild type (WT) and Mgat3-deficient mice. Target glycoproteins of GnT-III were enriched with E4-phytohemagglutinin (PHA) lectin, which recognizes bisecting GlcNAc, and analyzed by liquid chromatograph-mass spectrometry. We identified 32 N-glycosylation sites (Asn-Xaa-Ser/Thr, Xaa ≠ Pro) that were modified with bisecting GlcNAc. Sequence alignment of identified N-glycosylation sites that displayed bisecting GlcNAc suggested that GnT-III does not recognize a specific primary amino acid sequence. The molecular modeling of GluA1 as one of the good cell surface substrates for GnT-III in the brain, indicated that GnT-III acts on N-glycosylation sites located in a highly flexible and mobile loop of GluA1. These results suggest that the action of GnT-III is partially affected by the tertiary structure of target proteins, which can accommodate bisecting GlcNAc that generates a bulky flipped-back conformation of the modified glycans.
Collapse
|
25
|
Wandall HH, Nielsen MAI, King-Smith S, de Haan N, Bagdonaite I. Global functions of O-glycosylation: promises and challenges in O-glycobiology. FEBS J 2021; 288:7183-7212. [PMID: 34346177 DOI: 10.1111/febs.16148] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Mucin type O-glycosylation is one of the most diverse types of glycosylation, playing essential roles in tissue development and homeostasis. In complex organisms, O-GalNAc glycans comprise a substantial proportion of the glycocalyx, with defined functions in hemostatic, gastrointestinal, and respiratory systems. Furthermore, O-GalNAc glycans are important players in host-microbe interactions, and changes in O-glycan composition are associated with certain diseases and metabolic conditions, which in some instances can be used for diagnosis or therapeutic intervention. Breakthroughs in O-glycobiology have gone hand in hand with the development of new technologies, such as advancements in mass spectrometry, as well as facilitation of genetic engineering in mammalian cell lines. High-throughput O-glycoproteomics have enabled us to draw a comprehensive map of O-glycosylation, and mining this information has supported the definition and confirmation of functions related to site-specific O-glycans. This includes protection from proteolytic cleavage, as well as modulation of binding affinity or receptor function. Yet, there is still much to discover, and among the important next challenges will be to define the context-dependent functions of O-glycans in different stages of cellular differentiation, cellular metabolism, host-microbiome interactions, and in disease. In this review, we present the achievements and the promises in O-GalNAc glycobiology driven by technological advances in analytical methods, genetic engineering, and systems biology.
Collapse
Affiliation(s)
- Hans H Wandall
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Mathias A I Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Sarah King-Smith
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Noortje de Haan
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Ieva Bagdonaite
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Hayes AJ, Melrose J. Neural Tissue Homeostasis and Repair Is Regulated via CS and DS Proteoglycan Motifs. Front Cell Dev Biol 2021; 9:696640. [PMID: 34409033 PMCID: PMC8365427 DOI: 10.3389/fcell.2021.696640] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/13/2021] [Indexed: 01/04/2023] Open
Abstract
Chondroitin sulfate (CS) is the most abundant and widely distributed glycosaminoglycan (GAG) in the human body. As a component of proteoglycans (PGs) it has numerous roles in matrix stabilization and cellular regulation. This chapter highlights the roles of CS and CS-PGs in the central and peripheral nervous systems (CNS/PNS). CS has specific cell regulatory roles that control tissue function and homeostasis. The CNS/PNS contains a diverse range of CS-PGs which direct the development of embryonic neural axonal networks, and the responses of neural cell populations in mature tissues to traumatic injury. Following brain trauma and spinal cord injury, a stabilizing CS-PG-rich scar tissue is laid down at the defect site to protect neural tissues, which are amongst the softest tissues of the human body. Unfortunately, the CS concentrated in gliotic scars also inhibits neural outgrowth and functional recovery. CS has well known inhibitory properties over neural behavior, and animal models of CNS/PNS injury have demonstrated that selective degradation of CS using chondroitinase improves neuronal functional recovery. CS-PGs are present diffusely in the CNS but also form denser regions of extracellular matrix termed perineuronal nets which surround neurons. Hyaluronan is immobilized in hyalectan CS-PG aggregates in these perineural structures, which provide neural protection, synapse, and neural plasticity, and have roles in memory and cognitive learning. Despite the generally inhibitory cues delivered by CS-A and CS-C, some CS-PGs containing highly charged CS disaccharides (CS-D, CS-E) or dermatan sulfate (DS) disaccharides that promote neural outgrowth and functional recovery. CS/DS thus has varied cell regulatory properties and structural ECM supportive roles in the CNS/PNS depending on the glycoform present and its location in tissue niches and specific cellular contexts. Studies on the fruit fly, Drosophila melanogaster and the nematode Caenorhabditis elegans have provided insightful information on neural interconnectivity and the role of the ECM and its PGs in neural development and in tissue morphogenesis in a whole organism environment.
Collapse
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Wales, United Kingdom
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and The Faculty of Medicine and Health, The University of Sydney, St. Leonard’s, NSW, Australia
| |
Collapse
|
27
|
Kostopoulos I, Aalvink S, Kovatcheva-Datchary P, Nijsse B, Bäckhed F, Knol J, de Vos WM, Belzer C. A Continuous Battle for Host-Derived Glycans Between a Mucus Specialist and a Glycan Generalist in vitro and in vivo. Front Microbiol 2021; 12:632454. [PMID: 34248864 PMCID: PMC8264420 DOI: 10.3389/fmicb.2021.632454] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/18/2021] [Indexed: 01/14/2023] Open
Abstract
The human gastrointestinal tract is colonized by a diverse microbial community, which plays a crucial role in human health. In the gut, a protective mucus layer that consists of glycan structures separates the bacteria from the host epithelial cells. These host-derived glycans are utilized by bacteria that have adapted to this specific compound in the gastrointestinal tract. Our study investigated the close interaction between two distinct gut microbiota members known to use mucus glycans, the generalist Bacteroides thetaiotaomicron and the specialist Akkermansia muciniphila in vitro and in vivo. The in vitro study, in which mucin was the only nutrient source, indicated that B. thetaiotaomicron significantly upregulated genes coding for Glycoside Hydrolases (GHs) and mucin degradation activity when cultured in the presence of A. muciniphila. Furthermore, B. thetaiotaomicron significantly upregulated the expression of a gene encoding for membrane attack complex/perforin (MACPF) domain in co-culture. The transcriptome analysis also indicated that A. muciniphila was less affected by the environmental changes and was able to sustain its abundance in the presence of B. thetaiotaomicron while increasing the expression of LPS core biosynthesis activity encoding genes (O-antigen ligase, Lipid A and Glycosyl transferases) as well as ABC transporters. Using germ-free mice colonized with B. thetaiotaomicron and/or A. muciniphila, we observed a more general glycan degrading profile in B. thetaiotaomicron while the expression profile of A. muciniphila was not significantly affected when colonizing together, indicating that two different nutritional niches were established in mice gut. Thus, our results indicate that a mucin degrading generalist adapts to its changing environment, depending on available carbohydrates while a mucin degrading specialist adapts by coping with competing microorganism through upregulation of defense related genes.
Collapse
Affiliation(s)
| | - Steven Aalvink
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Petia Kovatcheva-Datchary
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Bart Nijsse
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, Netherlands
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jan Knol
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands.,Danone Nutricia Research, Utrecht, Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands.,Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
28
|
Arumugam S, Schmieder S, Pezeshkian W, Becken U, Wunder C, Chinnapen D, Ipsen JH, Kenworthy AK, Lencer W, Mayor S, Johannes L. Ceramide structure dictates glycosphingolipid nanodomain assembly and function. Nat Commun 2021; 12:3675. [PMID: 34135326 PMCID: PMC8209009 DOI: 10.1038/s41467-021-23961-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/28/2021] [Indexed: 02/08/2023] Open
Abstract
Gangliosides in the outer leaflet of the plasma membrane of eukaryotic cells are essential for many cellular functions and pathogenic interactions. How gangliosides are dynamically organized and how they respond to ligand binding is poorly understood. Using fluorescence anisotropy imaging of synthetic, fluorescently labeled GM1 gangliosides incorporated into the plasma membrane of living cells, we found that GM1 with a fully saturated C16:0 acyl chain, but not with unsaturated C16:1 acyl chain, is actively clustered into nanodomains, which depends on membrane cholesterol, phosphatidylserine and actin. The binding of cholera toxin B-subunit (CTxB) leads to enlarged membrane domains for both C16:0 and C16:1, owing to binding of multiple GM1 under a toxin, and clustering of CTxB. The structure of the ceramide acyl chain still affects these domains, as co-clustering with the glycosylphosphatidylinositol (GPI)-anchored protein CD59 occurs only when GM1 contains the fully saturated C16:0 acyl chain, and not C16:1. Thus, different ceramide species of GM1 gangliosides dictate their assembly into nanodomains and affect nanodomain structure and function, which likely underlies many endogenous cellular processes.
Collapse
Affiliation(s)
- Senthil Arumugam
- Institut Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology unit, Paris, Cedex, France
- National Centre for Biological Sciences (NCBS), Bangalore, India
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, Australia
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/ Melbourne, VIC, Australia
| | - Stefanie Schmieder
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Weria Pezeshkian
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Ulrike Becken
- Institut Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology unit, Paris, Cedex, France
| | - Christian Wunder
- Institut Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology unit, Paris, Cedex, France
| | - Dan Chinnapen
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - John Hjort Ipsen
- MEMPHYS/PhyLife, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Anne K Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - Wayne Lencer
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard Digestive Diseases Center, Boston, MA, USA
| | - Satyajit Mayor
- National Centre for Biological Sciences (NCBS), Bangalore, India.
| | - Ludger Johannes
- Institut Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology unit, Paris, Cedex, France.
| |
Collapse
|
29
|
Burkholz R, Quackenbush J, Bojar D. Using graph convolutional neural networks to learn a representation for glycans. Cell Rep 2021; 35:109251. [PMID: 34133929 PMCID: PMC9208909 DOI: 10.1016/j.celrep.2021.109251] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/05/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
As the only nonlinear and the most diverse biological sequence, glycans offer substantial challenges for computational biology. These carbohydrates participate in nearly all biological processes—from protein folding to viral cell entry—yet are still not well understood. There are few computational methods to link glycan sequences to functions, and they do not fully leverage all available information about glycans. SweetNet is a graph convolutional neural network that uses graph representation learning to facilitate a computational understanding of glycobiology. SweetNet explicitly incorporates the nonlinear nature of glycans and establishes a framework to map any glycan sequence to a representation. We show that SweetNet outperforms other computational methods in predicting glycan properties on all reported tasks. More importantly, we show that glycan representations, learned by SweetNet, are predictive of organismal phenotypic and environmental properties. Finally, we use glycan-focused machine learning to predict viral glycan binding, which can be used to discover viral receptors. Burkholz et al. develop an analysis platform for glycans, using graph convolutional neural networks, that considers the branched nature of these carbohydrates. They demonstrate that glycan-focused machine learning can be employed for various purposes, such as to cluster species according to their glycomic similarity or to identify viral receptors.
Collapse
Affiliation(s)
- Rebekka Burkholz
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - John Quackenbush
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Daniel Bojar
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
30
|
Mutalik SP, Gupton SL. Glycosylation in Axonal Guidance. Int J Mol Sci 2021; 22:ijms22105143. [PMID: 34068002 PMCID: PMC8152249 DOI: 10.3390/ijms22105143] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/01/2021] [Accepted: 05/08/2021] [Indexed: 12/15/2022] Open
Abstract
How millions of axons navigate accurately toward synaptic targets during development is a long-standing question. Over decades, multiple studies have enriched our understanding of axonal pathfinding with discoveries of guidance molecules and morphogens, their receptors, and downstream signalling mechanisms. Interestingly, classification of attractive and repulsive cues can be fluid, as single guidance cues can act as both. Similarly, guidance cues can be secreted, chemotactic cues or anchored, adhesive cues. How a limited set of guidance cues generate the diversity of axonal guidance responses is not completely understood. Differential expression and surface localization of receptors, as well as crosstalk and spatiotemporal patterning of guidance cues, are extensively studied mechanisms that diversify axon guidance pathways. Posttranslational modification is a common, yet understudied mechanism of diversifying protein functions. Many proteins in axonal guidance pathways are glycoproteins and how glycosylation modulates their function to regulate axonal motility and guidance is an emerging field. In this review, we discuss major classes of glycosylation and their functions in axonal pathfinding. The glycosylation of guidance cues and guidance receptors and their functional implications in axonal outgrowth and pathfinding are discussed. New insights into current challenges and future perspectives of glycosylation pathways in neuronal development are discussed.
Collapse
|
31
|
Narimatsu Y, Büll C, Chen YH, Wandall HH, Yang Z, Clausen H. Genetic glycoengineering in mammalian cells. J Biol Chem 2021; 296:100448. [PMID: 33617880 PMCID: PMC8042171 DOI: 10.1016/j.jbc.2021.100448] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Advances in nuclease-based gene-editing technologies have enabled precise, stable, and systematic genetic engineering of glycosylation capacities in mammalian cells, opening up a plethora of opportunities for studying the glycome and exploiting glycans in biomedicine. Glycoengineering using chemical, enzymatic, and genetic approaches has a long history, and precise gene editing provides a nearly unlimited playground for stable engineering of glycosylation in mammalian cells to explore and dissect the glycome and its many biological functions. Genetic engineering of glycosylation in cells also brings studies of the glycome to the single cell level and opens up wider use and integration of data in traditional omics workflows in cell biology. The last few years have seen new applications of glycoengineering in mammalian cells with perspectives for wider use in basic and applied glycosciences, and these have already led to discoveries of functions of glycans and improved designs of glycoprotein therapeutics. Here, we review the current state of the art of genetic glycoengineering in mammalian cells and highlight emerging opportunities.
Collapse
Affiliation(s)
- Yoshiki Narimatsu
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark.
| | - Christian Büll
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.
| | | | - Hans H Wandall
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Zhang Yang
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark
| | - Henrik Clausen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
32
|
Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol 2020; 21:729-749. [PMID: 33087899 DOI: 10.1038/s41580-020-00294-x] [Citation(s) in RCA: 650] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Glycosylation is the most abundant and diverse form of post-translational modification of proteins that is common to all eukaryotic cells. Enzymatic glycosylation of proteins involves a complex metabolic network and different types of glycosylation pathways that orchestrate enormous amplification of the proteome in producing diversity of proteoforms and its biological functions. The tremendous structural diversity of glycans attached to proteins poses analytical challenges that limit exploration of specific functions of glycosylation. Major advances in quantitative transcriptomics, proteomics and nuclease-based gene editing are now opening new global ways to explore protein glycosylation through analysing and targeting enzymes involved in glycosylation processes. In silico models predicting cellular glycosylation capacities and glycosylation outcomes are emerging, and refined maps of the glycosylation pathways facilitate genetic approaches to address functions of the vast glycoproteome. These approaches apply commonly available cell biology tools, and we predict that use of (single-cell) transcriptomics, genetic screens, genetic engineering of cellular glycosylation capacities and custom design of glycoprotein therapeutics are advancements that will ignite wider integration of glycosylation in general cell biology.
Collapse
|
33
|
Bombassaro A, Schneider GX, Costa FF, Leão ACR, Soley BS, Medeiros F, da Silva NM, Lima BJFS, Castro RJA, Bocca AL, Baura VA, Balsanelli E, Pankievicz VCS, Hrysay NMC, Scola RH, Moreno LF, Azevedo CMPS, Souza EM, Gomes RR, de Hoog S, Vicente VA. Genomics and Virulence of Fonsecaea pugnacius, Agent of Disseminated Chromoblastomycosis. Front Genet 2020; 11:822. [PMID: 32849816 PMCID: PMC7417343 DOI: 10.3389/fgene.2020.00822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/08/2020] [Indexed: 11/16/2022] Open
Abstract
Among agents of chromoblastomycosis, Fonsecaea pugnacius presents a unique type of infection because of its secondary neurotropic dissemination from a chronic cutaneous case in an immunocompetent patient. Neurotropism occurs with remarkable frequency in the fungal family Herpotrichiellaceae, possibly associated with the ability of some species to metabolize aromatic hydrocarbons. In an attempt to understand this new disease pattern, were conducted genomic analysis of Fonsecaea pugnacius (CBS 139214) performed with de novo assembly, gene prediction, annotation and mitochondrial genome assembly, supplemented with animal infection models performed with Tenebrio molitor in Mus musculus lineages BALB/c and C57BL/6. The genome draft of 34.8 Mb was assembled with a total of 12,217 protein-coding genes. Several proteins, enzymes and metabolic pathways related to extremotolerance and virulence were recognized. The enzyme profiles of black fungi involved in chromoblastomycosis and brain infection were analyzed with the Carbohydrate-Active Enzymes (CAZY) and peptidases database (MEROPS). The capacity of the fungus to survive inside Tenebrio molitor animal model was confirmed by histopathological analysis and by presence of melanin and hyphae in host tissue. Although F. pugnacius was isolated from brain in a murine model following intraperitoneal infection, cytokine levels were not statistically significant, indicating a profile of an opportunistic agent. A dual ecological ability can be concluded from presence of metabolic pathways for nutrient scavenging and extremotolerance, combined with a capacity to infect human hosts.
Collapse
Affiliation(s)
- Amanda Bombassaro
- Microbiology, Parasitology and Pathology Post-graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Gabriela X Schneider
- Microbiology, Parasitology and Pathology Post-graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Flávia F Costa
- Engineering Bioprocess and Biotechnology Post-graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Aniele C R Leão
- Engineering Bioprocess and Biotechnology Post-graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Bruna S Soley
- Pharmacology Post-graduation Program, Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil
| | - Fernanda Medeiros
- Graduation in Biology Sciences, Federal University of Paraná, Curitiba, Brazil
| | - Nickolas M da Silva
- Engineering Bioprocess and Biotechnology Post-graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Bruna J F S Lima
- Microbiology, Parasitology and Pathology Post-graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | | | - Anamélia L Bocca
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Valter A Baura
- Department of Biochemistry, Federal University of Paraná, Curitiba, Brazil
| | - Eduardo Balsanelli
- Department of Biochemistry, Federal University of Paraná, Curitiba, Brazil
| | | | - Nyvia M C Hrysay
- Service of Neuromuscular and Demyelinating Diseases, Complex Histochemistry-Immunity Laboratory, Hospital of Clinics, Federal University of Paraná, Curitiba, Brazil
| | - Rosana H Scola
- Service of Neuromuscular and Demyelinating Diseases, Complex Histochemistry-Immunity Laboratory, Hospital of Clinics, Federal University of Paraná, Curitiba, Brazil
| | - Leandro F Moreno
- Engineering Bioprocess and Biotechnology Post-graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | | | - Emanuel M Souza
- Department of Biochemistry, Federal University of Paraná, Curitiba, Brazil
| | - Renata R Gomes
- Microbiology, Parasitology and Pathology Post-graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Sybren de Hoog
- Microbiology, Parasitology and Pathology Post-graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil.,Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| | - Vânia A Vicente
- Microbiology, Parasitology and Pathology Post-graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil.,Engineering Bioprocess and Biotechnology Post-graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
34
|
Hansen L, Husein DM, Gericke B, Hansen T, Pedersen O, Tambe MA, Freeze HH, Naim HY, Henrissat B, Wandall HH, Clausen H, Bennett EP. A mutation map for human glycoside hydrolase genes. Glycobiology 2020; 30:500-515. [PMID: 32039448 PMCID: PMC7372926 DOI: 10.1093/glycob/cwaa010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Glycoside hydrolases (GHs) are found in all domains of life, and at least 87 distinct genes encoding proteins related to GHs are found in the human genome. GHs serve diverse functions from digestion of dietary polysaccharides to breakdown of intracellular oligosaccharides, glycoproteins, proteoglycans and glycolipids. Congenital disorders of GHs (CDGHs) represent more than 30 rare diseases caused by mutations in one of the GH genes. We previously used whole-exome sequencing of a homogenous Danish population of almost 2000 individuals to probe the incidence of deleterious mutations in the human glycosyltransferases (GTs) and developed a mutation map of human GT genes (GlyMAP-I). While deleterious disease-causing mutations in the GT genes were very rare, and in many cases lethal, we predicted deleterious mutations in GH genes to be less rare and less severe given the higher incidence of CDGHs reported worldwide. To probe the incidence of GH mutations, we constructed a mutation map of human GH-related genes (GlyMAP-II) using the Danish WES data, and correlating this with reported disease-causing mutations confirmed the higher prevalence of disease-causing mutations in several GH genes compared to GT genes. We identified 76 novel nonsynonymous single-nucleotide variations (nsSNVs) in 32 GH genes that have not been associated with a CDGH phenotype, and we experimentally validated two novel potentially damaging nsSNVs in the congenital sucrase-isomaltase deficiency gene, SI. Our study provides a global view of human GH genes and disease-causing mutations and serves as a discovery tool for novel damaging nsSNVs in CDGHs.
Collapse
Affiliation(s)
- Lars Hansen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Mærsk Building, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Diab M Husein
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Bünteweg 2, 30559 Hannover, Germany
| | - Birthe Gericke
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Bünteweg 2, 30559 Hannover, Germany
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Mærsk Building, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Mærsk Building, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Mitali A Tambe
- Human Genetics Program, Sanford-Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hudson H Freeze
- Human Genetics Program, Sanford-Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Bünteweg 2, 30559 Hannover, Germany
| | - Bernard Henrissat
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Mærsk Building, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille University Marseille, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Mærsk Building, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Mærsk Building, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Mærsk Building, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
- School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Nørre Allé 20, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
35
|
Li H, You L, Tian Y, Guo J, Fang X, Zhou C, Shi L, Su Y. DPAGT1-Mediated Protein N-Glycosylation Is Indispensable for Oocyte and Follicle Development in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000531. [PMID: 32714760 PMCID: PMC7375233 DOI: 10.1002/advs.202000531] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/29/2020] [Indexed: 05/11/2023]
Abstract
Post-translational modification of proteins by N-linked glycosylation is crucial for many life processes. However, the exact contribution of N-glycosylation to mammalian female reproduction remains largely undefined. Here, DPAGT1, the enzyme that catalyzes the first step of protein N-glycosylation, is identified to be indispensable for oocyte development in mice. Dpagt1 missense mutation (c. 497A>G; p. Asp166Gly) causes female subfertility without grossly affecting other functions. Mutant females ovulate fewer eggs owing to defective development of growing follicles. Mutant oocytes have a thin and fragile zona pellucida (ZP) due to the reduction in glycosylation of ZP proteins, and display poor developmental competence after fertilization in vitro. Moreover, completion of the first meiosis is accelerated in mutant oocytes, which is coincident with the elevation of aneuploidy. Mechanistically, transcriptomic analysis reveals the downregulation of a number of transcripts essential for oocyte meiotic progression and preimplantation development (e.g., Pttgt1, Esco2, Orc6, and Npm2) in mutant oocytes, which could account for the defects observed. Furthermore, conditional knockout of Dpagt1 in oocytes recapitulates the phenotypes observed in Dpagt1 mutant females, and causes complete infertility. Taken together, these data indicate that protein N-glycosylation in oocytes is essential for female fertility in mammals by specific control of oocyte development.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjing211166P. R. China
| | - Liji You
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjing211166P. R. China
| | - Yufeng Tian
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjing211166P. R. China
| | - Jing Guo
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjing211166P. R. China
| | - Xianbao Fang
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjing211166P. R. China
| | - Chenmin Zhou
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjing211166P. R. China
| | - Lanying Shi
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjing211166P. R. China
| | - You‐Qiang Su
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjing211166P. R. China
- Women's Hospital of Nanjing Medical UniversityNanjing Maternity and Child Health HospitalNanjing Medical UniversityNanjing211166P. R. China
- Collaborative Innovation Center of Genetics and DevelopmentFudan UniversityShanghai200433P. R. China
- Key Laboratory of Model Animal ResearchNanjing Medical UniversityNanjing211166P. R. China
| |
Collapse
|
36
|
Nagao-Kitamoto H, Leslie JL, Kitamoto S, Jin C, Thomsson KA, Gillilland MG, Kuffa P, Goto Y, Jenq RR, Ishii C, Hirayama A, Seekatz AM, Martens EC, Eaton KA, Kao JY, Fukuda S, Higgins PDR, Karlsson NG, Young VB, Kamada N. Interleukin-22-mediated host glycosylation prevents Clostridioides difficile infection by modulating the metabolic activity of the gut microbiota. Nat Med 2020; 26:608-617. [PMID: 32066975 PMCID: PMC7160049 DOI: 10.1038/s41591-020-0764-0] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
The involvement of host immunity in the gut microbiota-mediated colonization resistance to Clostridioides difficile infection (CDI) is incompletely understood. Here, we show that interleukin (IL)-22, induced by colonization of the gut microbiota, is crucial for the prevention of CDI in human microbiota-associated (HMA) mice. IL-22 signaling in HMA mice regulated host glycosylation, which enabled the growth of succinate-consuming bacteria Phascolarctobacterium spp. within the gut microbiome. Phascolarctobacterium reduced the availability of luminal succinate, a crucial metabolite for the growth of C. difficile, and therefore prevented the growth of C. difficile. IL-22-mediated host N-glycosylation is likely impaired in patients with ulcerative colitis (UC) and renders UC-HMA mice more susceptible to CDI. Transplantation of healthy human-derived microbiota or Phascolarctobacterium reduced luminal succinate levels and restored colonization resistance in UC-HMA mice. IL-22-mediated host glycosylation thus fosters the growth of commensal bacteria that compete with C. difficile for the nutritional niche.
Collapse
Affiliation(s)
- Hiroko Nagao-Kitamoto
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jhansi L Leslie
- Division of Infectious Disease, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
- The University of Virginia, Washington, VA, USA
| | - Sho Kitamoto
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chunsheng Jin
- Institute of Biomedicine, Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Kristina A Thomsson
- Institute of Biomedicine, Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Merritt G Gillilland
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter Kuffa
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yoshiyuki Goto
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
- Division of Mucosal Symbiosis, International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Robert R Jenq
- Department of Genomic Medicine, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston TX, USA
| | - Chiharu Ishii
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Anna M Seekatz
- Division of Infectious Disease, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Clemson University, Columbia, SC, USA
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kathryn A Eaton
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - John Y Kao
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Ebina, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Peter D R Higgins
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Niclas G Karlsson
- Institute of Biomedicine, Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Vincent B Young
- Division of Infectious Disease, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
37
|
CRISPR/Cas9-mediated mutation of asparagine-linked glycosylation 13 transcript variant 1 causes epilepsy in mice. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
38
|
Bärenwaldt A, Läubli H. The sialoglycan-Siglec glyco-immune checkpoint - a target for improving innate and adaptive anti-cancer immunity. Expert Opin Ther Targets 2019; 23:839-853. [PMID: 31524529 DOI: 10.1080/14728222.2019.1667977] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: During cancer progression, tumor cells develop several mechanisms to prevent killing and to shape the immune system into a tumor-promoting environment. One of such regulatory mechanism is the overexpression of sialic acid (Sia) on carbohydrates of proteins and lipids on tumor cells. Sia-containing glycans or sialoglycans were shown to inhibit immune effector functions of NK cells and T cells by engaging inhibitory Siglec receptors on the surface of these cells. They can also modulate the differentiation of myeloid cells into tumor-promoting M2 macrophages. Areas covered: We review the role of sialoglycans in cancer and introduce the Siglecs, their expression on different immune cells and their interaction with cancer-associated sialoglycans. The targeting of this sialoglycan-Siglec glyco-immune checkpoint is discussed along with potential therapeutic approaches. Pubmed was searched for publications on Siglecs, sialic acid, and cancer. Expert opinion: The targeting of sialoglycan-Siglec interactions has become a major focus in cancer research. New approaches have been developed that directly target sialic acids in tumor lesions. Targeted sialidases that cleave sialic acid specifically in the tumor, have already shown efficacy; efforts targeting the sialoglycan-Siglec pathway for improvement of CAR T cell therapy are ongoing. The sialoglycan-Siglec immune checkpoint is a promising new target for cancer immunotherapy.
Collapse
Affiliation(s)
- Anne Bärenwaldt
- Division of Medical Oncology, and Laboratory for Cancer Immunotherapy, Department of Biomedicine, University Hospital Basel , Basel , Switzerland
| | - Heinz Läubli
- Division of Medical Oncology, and Laboratory for Cancer Immunotherapy, Department of Biomedicine, University Hospital Basel , Basel , Switzerland
| |
Collapse
|
39
|
Martins MDF, Martins P, Gonçalves CA. Presence of N-acetylgalactosamine/galactose residues on bronchioloalveolar cells during rat postnatal development. Eur J Histochem 2019; 63. [PMID: 31505925 PMCID: PMC6755261 DOI: 10.4081/ejh.2019.3040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 09/03/2019] [Indexed: 02/03/2023] Open
Abstract
In mammals, the alveolarization process develops predominantly after birth. Airway cells display a complex assemblage of glycans on their surface. These glycans, particularly terminal glycan extensions, are important effective carriers of information that change during the differentiation process. Nevertheless, few systematic data are reported about the cell surface sugar residue content during postnatal lung development. In the present work, we aimed to identify and semi-quantify N-acetylgalactosamine (GalNAc)/galactose (Gal) residues on the bronchioloalveolar cell surface in rat lung sections from 1-, 4-, 8- day old and adult animals and link these data with the lung glycocalyx composition. Horseradish peroxidase- conjugated lectin from Glycine max (soybean agglutinin, SBA) was used, and light microscopy methodologies were performed. SBA labelling intensity was studied before and after sialidase pre-treatment, in 1-, 4-, and 8-day-old animals and adult animals. For semi-quantitative evaluation of SBA binding intensity, two investigators performed the analysis independently, blinded to the type of experiment. Reactivity of the lectin was assessed in bronchiolar and respiratory portion/alveolar epithelial cell surfaces. We evidenced a stronger positive reaction when lung sections were pre-treated with neuraminidase before incubation with the lectin in 1- and 4-day-old animals and adult animals. These results were not so manifest in 8- day-old animals. This binding pattern, generally points towards the presence of terminal but mainly sub-terminal GalNAc/Gal residues probably capped by sialic acids on the rat bronchiolar/respiratory tract epithelial cells. As this glycan extension is common in Oand N-glycans, our results suggest that these glycan classes can be present in bronchioloalveolar cells immediately after birth and exist during the postnatal period. The results observed in eight-day-old rat lung sections may be due to the dramatic lung morphologic changes and the possible underlying biological mechanisms that occur during this age-moment.
Collapse
Affiliation(s)
- Maria de Fátima Martins
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Coimbra; Hospitais da Universidade de Coimbra .
| | | | | |
Collapse
|
40
|
Yu M, Qin H, Wang H, Liu J, Liu S, Yan Q. N-glycosylation of uterine endometrium determines its receptivity. J Cell Physiol 2019; 235:1076-1089. [PMID: 31276203 DOI: 10.1002/jcp.29022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/22/2019] [Indexed: 01/13/2023]
Abstract
Glycosylation alters the molecular and functional features of glycoproteins, which is closely related with many physiological processes and diseases. During "window of implantation", uterine endometrium transforms into a receptive status to accept the embryo, thereby establishing successful embryo implantation. In this article, we aimed at investigating the role of N-glycosylation, a major modification type of glycoproteins, in the process of endometrial receptivity establishment. Results found that human uterine endometrial tissues at mid-secretory phase exhibited Lectin PHA-E+L (recognizes the branched N-glycans) positive N-glycans as measured by the Lectin fluorescent staining analysis. By utilizing in vitro implantation model, we found that de-N-glycosylation of human endometrial Ishikawa and RL95-2 cells by tunicamycin (inhibitor of N-glycosylation) and peptide-N-glycosidase F (PNGase F) impaired their receptive ability to human trophoblastic JAR cells. Meanwhile, N-glycosylation of integrin αvβ3 and leukemia inhibitory factor receptor (LIFR) are found to play key roles in regulating the ECM-dependent FAK/Paxillin and LIF-induced STAT3 signaling pathways, respectively, thus affecting the receptive potentials of endometrial cells. Furthermore, in vivo experiments and primary mouse endometrial cells-embryos coculture model further verified that N-glycosylation of mouse endometrial cells contributed to the successful implantation. Our results provide new evidence to show that N-glycosylation of uterine endometrium is essential for maintaining the receptive functions, which gives a better understanding of the glycobiology of implantation.
Collapse
Affiliation(s)
- Ming Yu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, Liaoning, China
| | - Huamin Qin
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, Liaoning, China
| | - Jianwei Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, Liaoning, China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, Liaoning, China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, Liaoning, China
| |
Collapse
|
41
|
Akintayo A, Stanley P. Roles for Golgi Glycans in Oogenesis and Spermatogenesis. Front Cell Dev Biol 2019; 7:98. [PMID: 31231650 PMCID: PMC6566014 DOI: 10.3389/fcell.2019.00098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
Glycosylation of proteins by N- and O-glycans or glycosaminoglycans (GAGs) mostly begins in the endoplasmic reticulum and is further orchestrated in the Golgi compartment via the action of >100 glycosyltransferases that reside in this complex organelle. The synthesis of glycolipids occurs in the Golgi, also by resident glycosyltransferases. A defect in the glycosylation machinery may impair the functions of glycoproteins and other glycosylated molecules, and lead to a congenital disorder of glycosylation (CDG). Spermatogenesis in the male and oogenesis in the female are tightly regulated differentiation events leading to the production of functional gametes. Insights into roles for glycans in gamete production have been obtained from mutant mice following deletion or inactivation of genes that encode a glycosylation activity. In this review, we will summarize the effects of altering the synthesis of N-glycans, O-glycans, proteoglycans, glycophosphatidylinositol (GPI) anchored proteins, and glycolipids during gametogenesis in the mouse. Glycosylation genes whose deletion causes embryonic lethality have been investigated following conditional deletion using various Cre recombinase transgenes with a cell-type specific promoter. The potential effects of mutations in corresponding glycosylation genes of humans will be discussed in relation to consequences to fertility and potential for use in contraception.
Collapse
Affiliation(s)
- Ayodele Akintayo
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, United States
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
42
|
Reduced hybrid/complex N-glycosylation disrupts cardiac electrical signaling and calcium handling in a model of dilated cardiomyopathy. J Mol Cell Cardiol 2019; 132:13-23. [PMID: 31071333 DOI: 10.1016/j.yjmcc.2019.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/12/2019] [Accepted: 05/01/2019] [Indexed: 12/19/2022]
Abstract
Dilated cardiomyopathy (DCM) is the third most common cause of heart failure, with ~70% of DCM cases considered idiopathic. We showed recently, through genetic ablation of the MGAT1 gene, which encodes an essential glycosyltransferase (GlcNAcT1), that prevention of cardiomyocyte hybrid/complex N-glycosylation was sufficient to cause DCM that led to heart failure and early death. Our findings are consistent with increasing evidence suggesting a link between aberrant glycosylation and heart diseases of acquired and congenital etiologies. However, the mechanisms by which changes in glycosylation contribute to disease onset and progression remain largely unknown. Activity and gating of voltage-gated Na+ and K+ channels (Nav and Kv respectively) play pivotal roles in the initiation, shaping and conduction of cardiomyocyte action potentials (APs) and aberrant channel activity was shown to contribute to cardiac disease. We and others showed that glycosylation can impact Nav and Kv function; therefore, here, we investigated the effects of reduced cardiomyocyte hybrid/complex N-glycosylation on channel activity to investigate whether chronic aberrant channel function can contribute to DCM. Ventricular cardiomyocytes from MGAT1 deficient (MGAT1KO) mice display prolonged APs and pacing-induced aberrant early re-activation that can be attributed to, at least in part, a significant reduction in Kv expression and activity that worsens over time suggesting heart disease-related remodeling. MGAT1KO Nav demonstrate no change in expression or maximal conductance but show depolarizing shifts in voltage-dependent gating. Together, the changes in MGAT1KO Nav and Kv function likely contribute to observed anomalous electrocardiograms and Ca2+ handling. These findings provide insight into mechanisms by which altered glycosylation contributes to DCM through changes in Nav and Kv activity that impact conduction, Ca2+ handling and contraction. The MGAT1KO can also serve as a useful model to study the effects of aberrant electrical signaling on cardiac function and the remodeling events that can occur with heart disease progression.
Collapse
|
43
|
van Tol W, Wessels H, Lefeber DJ. O-glycosylation disorders pave the road for understanding the complex human O-glycosylation machinery. Curr Opin Struct Biol 2019; 56:107-118. [PMID: 30708323 DOI: 10.1016/j.sbi.2018.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 01/17/2023]
Abstract
Over 100 human Congenital Disorders of Glycosylation (CDG) have been described. Of these, about 30% reside in the O-glycosylation pathway. O-glycosylation disorders are characterized by a high phenotypic variability, reflecting the large diversity of O-glycan structures. In contrast to N-glycosylation disorders, a generic biochemical screening test is lacking, which limits the identification of novel O-glycosylation disorders. The emergence of next generation sequencing (NGS) and O-glycoproteomics technologies have changed this situation, resulting in significant progress to link disease phenotypes with underlying biochemical mechanisms. Here, we review the current knowledge on O-glycosylation disorders, and discuss the biochemical lessons that we can learn on 1) novel glycosyltransferases and metabolic pathways, 2) tissue-specific O-glycosylation mechanisms, 3) O-glycosylation targets and 4) structure-function relationships. Additionally, we provide an outlook on how genetic disorders, O-glycoproteomics and biochemical methods can be combined to answer fundamental questions regarding O-glycan synthesis, structure and function.
Collapse
Affiliation(s)
- Walinka van Tol
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans Wessels
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
44
|
Bovine colostrum-driven modulation of intestinal epithelial cells for increased commensal colonisation. Appl Microbiol Biotechnol 2019; 103:2745-2758. [PMID: 30685814 DOI: 10.1007/s00253-019-09642-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/04/2019] [Accepted: 01/10/2019] [Indexed: 01/04/2023]
Abstract
Nutritional intake may influence the intestinal epithelial glycome and in turn the available attachment sites for bacteria. In this study, we tested the hypothesis that bovine colostrum may influence the intestinal cell surface and in turn the attachment of commensal organisms. Human HT-29 intestinal cells were exposed to a bovine colostrum fraction (BCF) rich in free oligosaccharides. The adherence of several commensal bacteria, comprising mainly bifidobacteria, to the intestinal cells was significantly enhanced (up to 52-fold) for all strains tested which spanned species that are found across the human lifespan. Importantly, the changes to the HT-29 cell surface did not support enhanced adhesion of the enteric pathogens tested. The gene expression profile of the HT-29 cells following treatment with the BCF was evaluated by microarray analysis. Many so called "glyco-genes" (glycosyltransferases and genes involved in the complex biosynthetic pathways of glycans) were found to be differentially regulated suggesting modulation of the enzymatic addition of sugars to glycoconjugate proteins. The microarray data was further validated by means of real-time PCR. The current findings provide an insight into how commensal microorganisms colonise the human gut and highlight the potential of colostrum and milk components as functional ingredients that can potentially increase commensal numbers in individuals with lower counts of health-promoting bacteria.
Collapse
|
45
|
Joshi HJ, Hansen L, Narimatsu Y, Freeze HH, Henrissat B, Bennett E, Wandall HH, Clausen H, Schjoldager KT. Glycosyltransferase genes that cause monogenic congenital disorders of glycosylation are distinct from glycosyltransferase genes associated with complex diseases. Glycobiology 2018; 28:284-294. [PMID: 29579191 DOI: 10.1093/glycob/cwy015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Indexed: 12/12/2022] Open
Abstract
Glycosylation of proteins, lipids and proteoglycans in human cells involves at least 167 identified glycosyltransferases (GTfs), and these orchestrate the biosynthesis of diverse types of glycoconjugates and glycan structures. Mutations in this part of the genome-the GTf-genome-cause more than 58 rare, monogenic congenital disorders of glycosylation (CDGs). They are also statistically associated with a large number of complex phenotypes, diseases or predispositions to complex diseases based on Genome-Wide Association Studies (GWAS). CDGs are extremely rare and often with severe medical consequences. In contrast, GWAS are likely to identify more common genetic variations and generally involve less severe and distinct traits. We recently confirmed that structural defects in GTf genes are extremely rare, which seemed at odds with the large number of GWAS pointing to GTf-genes. To resolve this issue, we surveyed the GTf-genome for reported CDGs and GWAS candidates; we found little overlap between the two groups of genes. Moreover, GTf-genes implicated by CDG or GWAS appear to constitute different classes with respect to their: (i) predicted roles in glycosylation pathways; (ii) potential for partial redundancy by closely homologous genes; and (iii) transcriptional regulation as evaluated by RNAseq data. Our analysis suggest that more complex traits are caused by dysregulation rather than structural deficiency of GTfs, which suggests that some glycosylation reactions may be predicted to be under tight regulation for fine-tuning of important biological functions.
Collapse
Affiliation(s)
- Hiren J Joshi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Lars Hansen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Bernard Henrissat
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.,Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University, F-13288 Marseille, France
| | - Eric Bennett
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
46
|
Nagashima Y, von Schaewen A, Koiwa H. Function of N-glycosylation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:70-79. [PMID: 30080642 DOI: 10.1016/j.plantsci.2018.05.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 05/20/2023]
Abstract
Protein N-glycosylation is one of the major post-translational modifications in eukaryotic cells. In lower unicellular eukaryotes, the known functions of N-glycans are predominantly in protein folding and quality control within the lumen of the endoplasmic reticulum (ER). In multicellular organisms, complex N-glycans are important for developmental programs and immune responses. However, little is known about the functions of complex N-glycans in plants. Formed in the Golgi apparatus, plant complex N-glycans have structures distinct from their animal counterparts due to a set of glycosyltransferases unique to plants. Severe basal underglycosylation in the ER lumen induces misfolding of newly synthesized proteins, which elicits the unfolded protein response (UPR) and ER protein quality control (ERQC) pathways. The former promotes higher capacity of proper protein folding and the latter degradation of misfolded proteins to clear the ER. Although our knowledge on plant complex N-glycan functions is limited, genetic studies revealed the importance of complex N-glycans in cellulose biosynthesis and growth under stress.
Collapse
Affiliation(s)
- Yukihiro Nagashima
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Antje von Schaewen
- Molekulare Physiologie der Pflanzen, Institut für Biologie & Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Hisashi Koiwa
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
47
|
Structure and mechanism of cancer-associated N-acetylglucosaminyltransferase-V. Nat Commun 2018; 9:3380. [PMID: 30140003 PMCID: PMC6107550 DOI: 10.1038/s41467-018-05931-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022] Open
Abstract
N-acetylglucosaminyltransferase-V (GnT-V) alters the structure of specific N-glycans by modifying α1-6-linked mannose with a β1-6-linked N-acetylglucosamine branch. β1-6 branch formation on cell surface receptors accelerates cancer metastasis, making GnT-V a promising target for drug development. However, the molecular basis of GnT-V's catalytic mechanism and substrate specificity are not fully understood. Here, we report crystal structures of human GnT-V luminal domain with a substrate analog. GnT-V luminal domain is composed of a GT-B fold and two accessary domains. Interestingly, two aromatic rings sandwich the α1-6 branch of the acceptor N-glycan and restrain the global conformation, partly explaining the fine branch specificity of GnT-V. In addition, interaction of the substrate N-glycoprotein with GnT-V likely contributes to protein-selective and site-specific glycan modification. In summary, the acceptor-GnT-V complex structure suggests a catalytic mechanism, explains the previously observed inhibition of GnT-V by branching enzyme GnT-III, and provides a basis for the rational design of drugs targeting N-glycan branching.
Collapse
|
48
|
Ednie AR, Deng W, Yip KP, Bennett ES. Reduced myocyte complex N-glycosylation causes dilated cardiomyopathy. FASEB J 2018; 33:1248-1261. [PMID: 30138037 DOI: 10.1096/fj.201801057r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Protein glycosylation is an essential posttranslational modification that affects a myriad of physiologic processes. Humans with genetic defects in glycosylation, which result in truncated glycans, often present with significant cardiac deficits. Acquired heart diseases and their associated risk factors were also linked to aberrant glycosylation, highlighting its importance in human cardiac disease. In both cases, the link between causation and corollary remains enigmatic. The glycosyltransferase gene, mannosyl (α-1,3-)-glycoprotein β-1,2- N-acetylglucosaminyltransferase (Mgat1), whose product, N-acetylglucosaminyltransferase 1 (GlcNAcT1) is necessary for the formation of hybrid and complex N-glycan structures in the medial Golgi, was shown to be at reduced levels in human end-stage cardiomyopathy, thus making Mgat1 an attractive target for investigating the role of hybrid/complex N-glycosylation in cardiac pathogenesis. Here, we created a cardiomyocyte-specific Mgat1 knockout (KO) mouse to establish a model useful in exploring the relationship between hybrid/complex N-glycosylation and cardiac function and disease. Biochemical and glycomic analyses showed that Mgat1KO cardiomyocytes produce predominately truncated N-glycan structures. All Mgat1KO mice died significantly younger than control mice and demonstrated chamber dilation and systolic dysfunction resembling human dilated cardiomyopathy (DCM). Data also indicate that a cardiomyocyte L-type voltage-gated Ca2+ channel (Cav) subunit (α2δ1) is a GlcNAcT1 target, and Mgat1KO Cav activity is shifted to more-depolarized membrane potentials. Consistently, Mgat1KO cardiomyocyte Ca2+ handling is altered and contraction is dyssynchronous compared with controls. The data demonstrate that reduced hybrid/complex N-glycosylation contributes to aberrant cardiac function at whole-heart and myocyte levels drawing a direct link between altered glycosylation and heart disease. Thus, the Mgat1KO provides a model for investigating the relationship between systemic reductions in glycosylation and cardiac disease, showing that clinically relevant changes in cardiomyocyte hybrid/complex N-glycosylation are sufficient to cause DCM and early death.-Ednie, A. R., Deng, W., Yip, K.-P., Bennett, E. S. Reduced myocyte complex N-glycosylation causes dilated cardiomyopathy.
Collapse
Affiliation(s)
- Andrew R Ednie
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.,College of Science and Mathematics, Wright State University, Dayton, Ohio, USA; and
| | - Wei Deng
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Kay-Pong Yip
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Eric S Bennett
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.,College of Science and Mathematics, Wright State University, Dayton, Ohio, USA; and
| |
Collapse
|
49
|
Sun X, Ju T, Cummings RD. Differential expression of Cosmc, T-synthase and mucins in Tn-positive colorectal cancers. BMC Cancer 2018; 18:827. [PMID: 30115016 PMCID: PMC6097208 DOI: 10.1186/s12885-018-4708-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/31/2018] [Indexed: 12/23/2022] Open
Abstract
Background The Tn neoantigen (GalNAcα1-O-Ser/Thr) is an O-glycan expressed in various types of human cancers. Studies in several Tn-expressing cancer cell lines and pancreatic tumors have identified loss of Cosmc expression caused by either mutations or promoter hypermethylation. In this study, we explored the mechanism(s) for Tn expression in human colorectal cancers (CRC). Methods Tn-expressing cell populations were isolated from CRC cell lines by Fluorescence-associated cell sorting (FACS). The expression of the Tn and sialylated Tn (STn) antigens, Cosmc, T-synthase, and mucins was characterized in paired specimens with CRC and in CRC cell lines by immunostaining, western blot, and qPCR. Results Using well-defined monoclonal antibodies, we confirmed prevalent Tn/STn expression in CRC samples. However, a majority of these tumors had elevated T-synthase activity and expression of both Cosmc and T-synthase proteins. Meanwhile, Tn antigen expression was not caused by mucin overproduction. In addition, we found that Tn-expressing CRC cell lines had either loss-of-function mutations in Cosmc or reversible Tn antigen expression, which was not caused by the deficiency of T-synthase activity. Conclusions Our results demonstrate multiple mechanisms for Tn expression in CRCs. Electronic supplementary material The online version of this article (10.1186/s12885-018-4708-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaodong Sun
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Room 11087, Boston, MA, 02115, USA.
| | - Tongzhong Ju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Office of Biotechnology Products (OBP), Center for Drug Evaluation and Research (CDER), U. S. Food and Drug Administration, Bldg 52/72, Room 2120, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Room 11087, Boston, MA, 02115, USA.
| |
Collapse
|
50
|
Editing N-Glycan Site Occupancy with Small-Molecule Oligosaccharyltransferase Inhibitors. Cell Chem Biol 2018; 25:1231-1241.e4. [PMID: 30078634 DOI: 10.1016/j.chembiol.2018.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/12/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022]
Abstract
The oligosaccharyltransferase (OST) is a multisubunit enzyme complex that N-glycosylates proteins in the secretory pathway and is considered to be constitutive and unregulated. However, small-molecule OST inhibitors such as NGI-1 provide a pharmacological approach for regulating N-linked glycosylation. Herein we design cell models with knockout of each OST catalytic subunit (STT3A or STT3B) to screen the activity of NGI-1 and its analogs. We show that NGI-1 targets the function of both STT3A and STT3B and use structure-activity relationships to guide synthesis of catalytic subunit-specific inhibitors. Using this approach, pharmacophores that increase STT3B selectivity are characterized and an STT3B-specific inhibitor is identified. This inhibitor has discrete biological effects on endogenous STT3B target proteins such as COX2 but does not activate the cellular unfolded protein response. Together this work demonstrates that subsets of glycoproteins can be regulated through pharmacologic inhibition of N-linked glycosylation.
Collapse
|