1
|
Sharma V, Pal J, Dashora V, Chattopadhyay S, Kapoor Y, Singha B, Arimbasseri GA, Saha S. The SET29 and SET7 proteins of Leishmania donovani exercise non-redundant convergent as well as collaborative functions in moderating the parasite's response to oxidative stress. J Biol Chem 2025:108208. [PMID: 39842664 DOI: 10.1016/j.jbc.2025.108208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
SET proteins are lysine methyltransferases. In investigating Leishmania donovani SET29, we found depletion of LdSET29 by two-thirds did not affect promastigote growth, nor alter the parasite's response to UV-induced or HU-induced stress, but made it more tolerant to H2O2-induced oxidizing environment. The deviant response to oxidative stress was coupled to lowered accumulation of reactive oxygen species, which was linked to enhanced scavenging activity. The set29 mutants' response to H2O2 exposure was similar to that of set7 mutants, prompting an investigation into genetic and physical interactions between the two proteins. While neither protein could rescue the aberrant phenotypes of the other set mutant, the two proteins interacted physically in vitro and in vivo. Transcriptome analyses revealed that neither protein regulated global gene expression, but LdSET7 controlled transcript levels of a limited number of genes, including several peroxidases. In working towards identifying targets through which SET7/SET29 mediate the cell's response to an oxidative milieu, we found HSP60/CNP60 and TCP1 to be possible candidates. LdHSP60 has earlier been implicated in the regulation of the response of virulent promastigotes to H2O2 exposure, and LdTCP1 has previously been found to have a protective effect against oxidative stress. set7 and set29 mutants survived more proficiently in host macrophages as well. The data suggest an alliance between LdSET29 and LdSET7 in mounting the parasite's response to oxidative stress, each protein playing its own distinctive role. They ensure the parasite not only establishes infection, but also maintains the balance with host cells to enable the persistence of infection.
Collapse
Affiliation(s)
- Varshni Sharma
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Jyoti Pal
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Vishal Dashora
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | | | - Yogita Kapoor
- Centre for Cellular and Molecular Biology, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Biplab Singha
- National Institute of Immunology, New Delhi, India; Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Swati Saha
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
2
|
Shi Y, Shen Q, Long R, Mao Y, Tong S, Yang Y, Gao J, Zhou H, Chen Y, Zhou B. Discovery of Potent and Selective G9a Degraders for the Treatment of Pancreatic Cancer. J Med Chem 2024. [PMID: 39041067 DOI: 10.1021/acs.jmedchem.4c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
G9a, which was initially identified as a histone H3 Lys9 (H3K9) methyltransferase, is potentially an attractive therapeutic target for human cancers. Despite its importance, there is no available selective G9a chemical probe because its homologous protein GLP shares approximately 80% of its sequence with G9a. The development of G9a chemical probes with high selectivity for G9a over GLP is a big challenge but is extremely valuable for understanding G9a-related biology. Herein, we developed a first-in-class selective G9a degrader G9D-4, which induced a dose- and time-dependent G9a degradation without degradation of GLP. G9D-4 exhibited effective antiproliferative activities in a panel of pancreatic cancer cell lines and was able to sensitize KRASG12D mutant pancreatic cancer cells to KRASG12D inhibitor MRTX1133. These data clearly demonstrated the practicality and importance of a selective G9a degrader as a preliminary chemical probe suitable for understanding G9a-related biology and a promising strategy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yunkai Shi
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Qianqian Shen
- Division of Antitumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ruikai Long
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yiwen Mao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Shuaihang Tong
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yaxi Yang
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Hu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yi Chen
- Division of Antitumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Bing Zhou
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
3
|
Pollin G, De Assuncao T, Doria Jorge S, Chi YI, Charlesworth M, Madden B, Iovanna J, Zimmermann M, Urrutia R, Lomberk G. Writers and readers of H3K9me2 form distinct protein networks during the cell cycle that include candidates for H3K9 mimicry. Biosci Rep 2023; 43:BSR20231093. [PMID: 37782747 PMCID: PMC10611923 DOI: 10.1042/bsr20231093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/15/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023] Open
Abstract
Histone H3 lysine 9 methylation (H3K9me), which is written by the Euchromatic Histone Lysine Methyltransferases EHMT1 and EHMT2 and read by the heterochromatin protein 1 (HP1) chromobox (CBX) protein family, is dysregulated in many types of cancers. Approaches to inhibit regulators of this pathway are currently being evaluated for therapeutic purposes. Thus, knowledge of the complexes supporting the function of these writers and readers during the process of cell proliferation is critical for our understanding of their role in carcinogenesis. Here, we immunopurified each of these proteins and used mass spectrometry to define their associated non-histone proteins, individually and at two different phases of the cell cycle, namely G1/S and G2/M. Our findings identify novel binding proteins for these writers and readers, as well as corroborate known interactors, to show the formation of distinct protein complex networks in a cell cycle phase-specific manner. Furthermore, there is an organizational switch between cell cycle phases for interactions among specific writer-reader pairs. Through a multi-tiered bioinformatics-based approach, we reveal that many interacting proteins exhibit histone mimicry, based on an H3K9-like linear motif. Gene ontology analyses, pathway enrichment, and network reconstruction inferred that these comprehensive EHMT and CBX-associated interacting protein networks participate in various functions, including transcription, DNA repair, splicing, and membrane disassembly. Combined, our data reveals novel complexes that provide insight into key functions of cell cycle-associated epigenomic processes that are highly relevant for better understanding these chromatin-modifying proteins during cell cycle and carcinogenesis.
Collapse
Affiliation(s)
- Gareth Pollin
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI Center, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Thiago M. De Assuncao
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI Center, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Salomao Doria Jorge
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Young-In Chi
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI Center, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | | | - Benjamin Madden
- Medical Genome Facility, Proteomics Core, Mayo Clinic, Rochester, MN, U.S.A
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Michael T. Zimmermann
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Raul Urrutia
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI Center, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Gwen Lomberk
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI Center, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| |
Collapse
|
4
|
Li L, Wu Y, Dai K, Wang Q, Ye S, Shi Q, Chen Z, Huang YC, Zhao W, Li L. The CHCHD2/Sirt1 corepressors involve in G9a-mediated regulation of RNase H1 expression to control R-loop. CELL INSIGHT 2023; 2:100112. [PMID: 37388553 PMCID: PMC10300302 DOI: 10.1016/j.cellin.2023.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 07/01/2023]
Abstract
R-loops are regulators of many cellular processes and are threats to genome integrity. Therefore, understanding the mechanisms underlying the regulation of R-loops is important. Inspired by the findings on RNase H1-mediated R-loop degradation or accumulation, we focused our interest on the regulation of RNase H1 expression. In the present study, we report that G9a positively regulates RNase H1 expression to boost R-loop degradation. CHCHD2 acts as a repressive transcription factor that inhibits the expression of RNase H1 to promote R-loop accumulation. Sirt1 interacts with CHCHD2 and deacetylates it, which functions as a corepressor that suppresses the expression of downstream target gene RNase H1. We also found that G9a methylated the promoter of RNase H1, inhibiting the binding of CHCHD2 and Sirt1. In contrast, when G9a was knocked down, recruitment of CHCHD2 and Sirt1 to the RNase H1 promoter increased, which co-inhibited RNase H1 transcription. Furthermore, knockdown of Sirt1 led to binding of G9a to the RNase H1 promoter. In summary, we demonstrated that G9a regulates RNase H1 expression to maintain the steady-state balance of R-loops by suppressing the recruitment of CHCHD2/Sirt1 corepressors to the target gene promoter.
Collapse
|
5
|
Chen J, Wang Y, Yang Z, Liu D, Jin Y, Li X, Deng Y, Wang B, Zhang Z, Ma Y. Identification and validation of the reference genes in the echiuran worm Urechis unicinctus based on transcriptome data. BMC Genomics 2023; 24:248. [PMID: 37165306 PMCID: PMC10170059 DOI: 10.1186/s12864-023-09358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Real-time quantitative PCR (RT-qPCR) is a crucial and widely used method for gene expression analysis. Selecting suitable reference genes is extremely important for the accuracy of RT-qPCR results. Commonly used reference genes are not always stable in various organisms or under different environmental conditions. With the increasing application of high-throughput sequencing, transcriptome analysis has become an effective method for identifying novel stable reference genes. RESULTS In this study, we identified candidate reference genes based on transcriptome data covering embryos and larvae of early development, normal adult tissues, and the hindgut under sulfide stress using the coefficient of variation (CV) method in the echiuran Urechis unicinctus, resulting in 6834 (15.82%), 7110 (16.85%) and 13880 (35.87%) candidate reference genes, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the candidate reference genes were significantly enriched in cellular metabolic process, protein metabolic process and ribosome in early development and normal adult tissues as well as in cellular localization and endocytosis in the hindgut under sulfide stress. Subsequently, ten genes including five new candidate reference genes and five commonly used reference genes, were validated by RT-qPCR. The expression stability of the ten genes was analyzed using four methods (geNorm, NormFinder, BestKeeper, and ∆Ct). The comprehensive results indicated that the new candidate reference genes were more stable than most commonly used reference genes. The commonly used ACTB was the most unstable gene. The candidate reference genes STX12, EHMT1, and LYAG were the most stable genes in early development, normal adult tissues, and hindgut under sulfide stress, respectively. The log2(TPM) of the transcriptome data was significantly negatively correlated with the Ct values of RT-qPCR (Ct = - 0.5405 log2(TPM) + 34.51), which made it possible to estimate the Ct value before RT-qPCR using transcriptome data. CONCLUSION Our study is the first to select reference genes for RT-qPCR from transcriptome data in Echiura and provides important information for future gene expression studies in U. unicinctus.
Collapse
Affiliation(s)
- Jiao Chen
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yunjian Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhi Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Danwen Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yao Jin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xixi Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yuhang Deng
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Boya Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| |
Collapse
|
6
|
Marano N, Holaska JM. Emerin interacts with histone methyltransferases to regulate repressive chromatin at the nuclear periphery. Front Cell Dev Biol 2022; 10:1007120. [PMID: 36274837 PMCID: PMC9583931 DOI: 10.3389/fcell.2022.1007120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
X-Linked Emery-Dreifuss muscular dystrophy is caused by mutations in the gene encoding emerin. Emerin is an inner nuclear membrane protein important for repressive chromatin organization at the nuclear periphery. Myogenic differentiation is a tightly regulated process characterized by genomic reorganization leading to coordinated temporal expression of key transcription factors, including MyoD, Pax7, and Myf5. Emerin was shown to interact with repressive histone modification machinery, including HDAC3 and EZH2. Using emerin-null myogenic progenitor cells we established several EDMD-causing emerin mutant lines in the effort to understand how the functional interaction of emerin with HDAC3 regulates histone methyltransferase localization or function to organize repressive chromatin at the nuclear periphery. We found that, in addition to its interaction with HDAC3, emerin interacts with the histone methyltransferases EZH2 and G9a in myogenic progenitor cells. Further, we show enhanced binding of emerin HDAC3-binding mutants S54F and Q133H to EZH2 and G9a. Treatment with small molecule inhibitors of EZH2 and G9a reduced H3K9me2 or H3K27me3 throughout differentiation. EZH2 and G9a inhibitors impaired cell cycle withdrawal, differentiation commitment, and myotube formation in wildtype progenitors, while they had no effect on emerin-null progenitors. Interestingly, these inhibitors exacerbated the impaired differentiation of emerin S54F and Q133H mutant progenitors. Collectively, these results suggest the functional interaction between emerin and HDAC3, EZH2, and G9a are important for myogenic differentiation.
Collapse
Affiliation(s)
| | - James M. Holaska
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
7
|
Yang N, Das D, Shankar SR, Goy PA, Guccione E, Taneja R. An interplay between BRD4 and G9a regulates skeletal myogenesis. Front Cell Dev Biol 2022; 10:978931. [PMID: 36158208 PMCID: PMC9489841 DOI: 10.3389/fcell.2022.978931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Histone acetylation and methylation are epigenetic modifications that are dynamically regulated by chromatin modifiers to precisely regulate gene expression. However, the interplay by which histone modifications are synchronized to coordinate cellular differentiation is not fully understood. In this study, we demonstrate a relationship between BRD4, a reader of acetylation marks, and G9a, a writer of methylation marks in the regulation of myogenic differentiation. Using loss- and gain-of-function studies, as well as a pharmacological inhibition of its activity, we examined the mechanism by which BRD4 regulates myogenesis. Transcriptomic analysis using RNA sequencing revealed that a number of myogenic differentiation genes are downregulated in Brd4-depleted cells. Interestingly, some of these genes were upregulated upon G9a knockdown, indicating that BRD4 and G9a play opposing roles in the control of myogenic gene expression. Remarkably, the differentiation defect caused by Brd4 knockdown was rescued by inhibition of G9a methyltransferase activity. These findings demonstrate that the absence of BRD4 results in the upregulation of G9a activity and consequently impaired myogenic differentiation. Collectively, our study identifies an interdependence between BRD4 and G9a for the precise control of transcriptional outputs to regulate myogenesis.
Collapse
Affiliation(s)
- Naidi Yang
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Dipanwita Das
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shilpa Rani Shankar
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Pierre-Alexis Goy
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ernesto Guccione
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Reshma Taneja,
| |
Collapse
|
8
|
Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat Rev Mol Cell Biol 2022; 23:623-640. [PMID: 35562425 PMCID: PMC9099300 DOI: 10.1038/s41580-022-00483-w] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 12/14/2022]
Abstract
Heterochromatin is characterized by dimethylated or trimethylated histone H3 Lys9 (H3K9me2 or H3K9me3, respectively) and is found at transposable elements, satellite repeats and genes, where it ensures their transcriptional silencing. The histone methyltransferases (HMTs) that methylate H3K9 — in mammals Suppressor of variegation 3–9 homologue 1 (SUV39H1), SUV39H2, SET domain bifurcated 1 (SETDB1), SETDB2, G9A and G9A-like protein (GLP) — and the ‘readers’ of H3K9me2 or H3K9me3 are highly conserved and show considerable redundancy. Despite their redundancy, genetic ablation or mistargeting of an individual H3K9 methyltransferase can correlate with impaired cell differentiation, loss of tissue identity, premature aging and/or cancer. In this Review, we discuss recent advances in understanding the roles of the known H3K9-specific HMTs in ensuring transcriptional homeostasis during tissue differentiation in mammals. We examine the effects of H3K9-methylation-dependent gene repression in haematopoiesis, muscle differentiation and neurogenesis in mammals, and compare them with mechanistic insights obtained from the study of model organisms, notably Caenorhabditis elegans and Drosophila melanogaster. In all these organisms, H3K9-specific HMTs have both unique and redundant roles that ensure the maintenance of tissue integrity by restricting the binding of transcription factors to lineage-specific promoters and enhancer elements. Histone H3 Lys9 (H3K9)-methylated heterochromatin ensures transcriptional silencing of repetitive elements and genes, and its deregulation leads to impaired cell and tissue identity, premature aging and cancer. Recent studies in mammals clarified the roles H3K9-specific histone methyltransferases in ensuring transcriptional homeostasis during tissue differentiation.
Collapse
|
9
|
Nachiyappan A, Soon JLJ, Lim HJ, Lee VK, Taneja R. EHMT1 promotes tumor progression and maintains stemness by regulating ALDH1A1 expression in alveolar rhabdomyosarcoma. J Pathol 2022; 256:349-362. [PMID: 34897678 DOI: 10.1002/path.5848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/16/2021] [Accepted: 12/09/2021] [Indexed: 11/06/2022]
Abstract
Alveolar rhabdomyosarcoma (ARMS) is an aggressive pediatric cancer with poor prognosis. Cancer stem cells (CSCs) are seeds for tumor relapse and metastasis. However, pathways that maintain stemness genes are not fully understood. Here, we report that the enzyme euchromatic histone lysine methyltransferase 1 (EHMT1) is expressed in primary and relapse ARMS tumors. EHMT1 suppression impaired motility and induced differentiation in ARMS cell lines and reduced tumor progression in a mouse xenograft model in vivo. RNA sequencing of EHMT1-depleted cells revealed downregulation of ALDH1A1 that is associated with CSCs. Consistent with this, inhibition of ALDH1A1 expression and activity mimicked EHMT1 depletion phenotypes and reduced tumorsphere formation. Mechanistically, we demonstrate that EHMT1 does not bind to the ALDH1A1 promoter but activates it by stabilizing C/EBPβ, a known regulator of ALDH1A1 expression. Our findings identify a role for EHMT1 in maintenance of stemness by regulating ALDH1A1 expression and suggest that targeting ALDH+ cells is a promising strategy in ARMS. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Alamelu Nachiyappan
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Joshua Ling Jun Soon
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Huey Jin Lim
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Victor Km Lee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
10
|
Zheng H, Dai Q, Yuan Z, Fan T, Zhang C, Liu Z, Chu B, Sun Q, Chen Y, Jiang Y. Quinazoline-based hydroxamic acid derivatives as dual histone methylation and deacetylation inhibitors for potential anticancer agents. Bioorg Med Chem 2022; 53:116524. [PMID: 34847495 DOI: 10.1016/j.bmc.2021.116524] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022]
Abstract
Cancer is a common malignant disease with complex signaling networks, which means it is unmanageable to cancer therapy by using single classical targeted drug. Recently, dual- or multitarget drugs have emerged as a promising option for cancer therapies. Although many multifunctional compounds targeting HDAC have been validated, as far as we know, there is no molecule targeting GLP and HDAC synchronously. In the present work, we designed and synthesized a series of quinazoline-based hydroxamic acid derivatives as dual GLP and HDAC inhibitors. These hybrid compounds showed potent enzymatic inhibitory activities against GLP and HDAC1/6 with IC50 values in the nanomolar range of less than 190 nM. Furthermore, most of our compounds displayed significant broad spectrum cytotoxic activities apart from D3 and D8 against all the tested cancer cells with IC50 values less than 50 μM. D1, D6 and D7 showed more potent cytotoxic activities than D2, D4 and D5 in those cancer cells. Especially, compound D7 showed potent inhibitory potency activity against both GLP and HDAC1/6 with IC50 values of 1.3, 89, 13 nM. Besides, D7 exhibited the most potent antiproliferative activity against all the tested cancer cells. Further evaluations indicated that D7 could inhibit the methylation and deacetylation of H3K9 on protein level. Moreover, D7 could induce cancer cell apoptosis, G0/G1 cell cycle arrest, and partly block migration and invasion. All these thorough evaluations warranted D7 as a promising lead compound worth further optimization and development for cancer therapy.
Collapse
Affiliation(s)
- Haoting Zheng
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Qiuzi Dai
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Zigao Yuan
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Tingting Fan
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Cunlong Zhang
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Zijian Liu
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Bizhu Chu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, PR China
| | - Qinsheng Sun
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; School of Life Sciences, Tsinghua University, 100084 Beijing, PR China
| | - Yan Chen
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; School of Life Sciences, Tsinghua University, 100084 Beijing, PR China.
| | - Yuyang Jiang
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, PR China; School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
11
|
Sanchez NA, Kallweit LM, Trnka MJ, Clemmer CL, Al-Sady B. Heterodimerization of H3K9 histone methyltransferases G9a and GLP activates methyl reading and writing capabilities. J Biol Chem 2021; 297:101276. [PMID: 34619147 PMCID: PMC8564726 DOI: 10.1016/j.jbc.2021.101276] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022] Open
Abstract
Unique among metazoan repressive histone methyltransferases, G9a and GLP, which chiefly target histone 3 lysine 9 (H3K9), require dimerization for productive H3K9 mono (me1)- and dimethylation (me2) in vivo. Intriguingly, even though each enzyme can independently methylate H3K9, the predominant active form in vivo is a heterodimer of G9a and GLP. How dimerization influences the central H3K9 methyl binding ("reading") and deposition ("writing") activity of G9a and GLP and why heterodimerization is essential in vivo remains opaque. Here, we examine the H3K9me "reading" and "writing" activities of defined, recombinantly produced homo- and heterodimers of G9a and GLP. We find that both reading and writing are significantly enhanced in the heterodimer. Compared with the homodimers, the heterodimer has higher recognition of H3K9me2, and a striking ∼10-fold increased turnover rate for nucleosomal substrates under multiple turnover conditions, which is not evident on histone tail peptide substrates. Cross-linking Mass Spectrometry suggests that differences between the homodimers and the unique activity of the heterodimer may be encoded in altered ground state conformations, as each dimer displays different domain contacts. Our results indicate that heterodimerization may be required to relieve autoinhibition of H3K9me reading and chromatin methylation evident in G9a and GLP homodimers. Relieving this inhibition may be particularly important in early differentiation when large tracts of H3K9me2 are typically deposited by G9a-GLP, which may require a more active form of the enzyme.
Collapse
Affiliation(s)
- Nicholas A Sanchez
- Department of Microbiology & Immunology, George Williams Hooper Foundation, University of California San Francisco, San Francisco, California, USA; TETRAD Graduate Program, University of California San Francisco, San Francisco, California, USA
| | - Lena M Kallweit
- Department of Microbiology & Immunology, George Williams Hooper Foundation, University of California San Francisco, San Francisco, California, USA
| | - Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Charles L Clemmer
- Department of Microbiology & Immunology, George Williams Hooper Foundation, University of California San Francisco, San Francisco, California, USA
| | - Bassem Al-Sady
- Department of Microbiology & Immunology, George Williams Hooper Foundation, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
12
|
Vidal SE, Polyzos A, Chatterjee K, Ee LS, Swanzey E, Morales-Valencia J, Wang H, Parikh CN, Amlani B, Tu S, Gong Y, Snetkova V, Skok JA, Tsirigos A, Kim S, Apostolou E, Stadtfeld M. Context-Dependent Requirement of Euchromatic Histone Methyltransferase Activity during Reprogramming to Pluripotency. Stem Cell Reports 2020; 15:1233-1245. [PMID: 32976761 PMCID: PMC7724475 DOI: 10.1016/j.stemcr.2020.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022] Open
Abstract
Methylation of histone 3 at lysine 9 (H3K9) constitutes a roadblock for cellular reprogramming. Interference with methyltransferases or activation of demethylases by the cofactor ascorbic acid (AA) facilitates the derivation of induced pluripotent stem cells (iPSCs), but possible interactions between specific methyltransferases and AA treatment remain insufficiently explored. We show that chemical inhibition of the methyltransferases EHMT1 and EHMT2 counteracts iPSC formation in an enhanced reprogramming system in the presence of AA, an effect that is dependent on EHMT1. EHMT inhibition during enhanced reprogramming is associated with rapid loss of H3K9 dimethylation, inefficient downregulation of somatic genes, and failed mesenchymal-to-epithelial transition. Furthermore, transient EHMT inhibition during reprogramming yields iPSCs that fail to efficiently give rise to viable mice upon blastocyst injection. Our observations establish novel functions of H3K9 methyltransferases and suggest that a functional balance between AA-stimulated enzymes and EHMTs supports efficient and less error-prone iPSC reprogramming to pluripotency. EHMT function during mouse cell reprogramming is modulated by ascorbic acid (AA) EHMT inhibition counteracts reprogramming in the presence of AA EHMT inhibition in the presence of AA results in global erasure of H3K9 dimethylation Cells reprogrammed in the presence of EHMT inhibitor are functionally impaired
Collapse
Affiliation(s)
- Simon E Vidal
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU Langone Medical Center, New York, NY 10016, USA; Helen L. and Martin S. Kimmel Center for Biology and Medicine, NYU Langone Medical Center, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016, USA; Pharma Technical Development, Genentech, South San Francisco, CA 94080, USA
| | - Alexander Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Kaushiki Chatterjee
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ly-Sha Ee
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU Langone Medical Center, New York, NY 10016, USA; Helen L. and Martin S. Kimmel Center for Biology and Medicine, NYU Langone Medical Center, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016, USA; Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Emily Swanzey
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU Langone Medical Center, New York, NY 10016, USA; Helen L. and Martin S. Kimmel Center for Biology and Medicine, NYU Langone Medical Center, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016, USA; The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Jorge Morales-Valencia
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Hongsu Wang
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU Langone Medical Center, New York, NY 10016, USA; Helen L. and Martin S. Kimmel Center for Biology and Medicine, NYU Langone Medical Center, New York, NY 10016, USA
| | - Chaitanya N Parikh
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Bhishma Amlani
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU Langone Medical Center, New York, NY 10016, USA; Helen L. and Martin S. Kimmel Center for Biology and Medicine, NYU Langone Medical Center, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016, USA
| | - Shengjiang Tu
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - Yixiao Gong
- Department of Pathology, NYU Langone Medical Center, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016, USA
| | - Valentina Snetkova
- Department of Pathology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Jane A Skok
- Department of Pathology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU Langone Medical Center, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU Langone Medical Center, New York, NY 10016, USA
| | - Sangyong Kim
- Department of Pathology, NYU Langone Medical Center, New York, NY 10016, USA; Office for Collaborative Science, NYU Langone Medical Center, New York, NY 10016, USA
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Matthias Stadtfeld
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU Langone Medical Center, New York, NY 10016, USA; Helen L. and Martin S. Kimmel Center for Biology and Medicine, NYU Langone Medical Center, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016, USA; Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
13
|
Silva-Carvalho AÉ, Alencar APD, Resende MR, da Costa DF, Nonino A, Neves FAR, Saldanha-Araujo F. Epigenetic priming by EHMT1/EHMT2 in acute lymphoblastic leukemia induces TP53 and TP73 overexpression and promotes cell death. Toxicol In Vitro 2020; 69:104992. [PMID: 32889036 DOI: 10.1016/j.tiv.2020.104992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/19/2020] [Accepted: 08/29/2020] [Indexed: 01/25/2023]
Abstract
Euchromatic histone-lysine N-methyltransferase 1 (EHMT1) and EHMT2 are upregulated in various human cancers, and their deregulation is associated with tumor development and progression. In this paper, we investigated the expression level of EHMT1/EHMT2 in acute lymphoblastic leukemia (ALL) and whether the modulation of these enzymes could have any cellular or molecular impact on ALL cells. For this, we used UNC0646 as a priming strategy to target EHMT1/EHMT2 and investigated its effect on proliferation and cell viability of Jurkat cells by MTT assay. Then, considering the IC50 and IC75, cellular death was determined by Annexin V/PI staining using flow cytometry. Finally, we investigated by RT-PCR the molecular bases that could be involved in the observed effects. Interestingly, accessing the International Microarray Innovations in Leukemia (MILE) study group, we detected that both EHMT1 and EHMT2 are overexpressed in ALL. More important, we determined that inhibition of EHMT1/EHMT2 significantly decreased Jurkat cell viability in a dose-dependent manner. Accordingly, we observed that inhibition of EHMT1/EHMT2 promoted Jurkat cell death, which was accompanied by increased expression of P53, TP73, BAX, and MDM4. These results clearly indicate that inhibition of EHMT1/EHMT2 induces pro-apoptotic gene expression in ALL and promotes cell death. More importantly, the modulation of these histone methyltransferases may be a promising epigenetic target for ALL treatment.
Collapse
Affiliation(s)
- Amandda Évelin Silva-Carvalho
- Laboratório de Farmacologia Molecular, Universidade de Brasília, Av. L2 Norte, Brasília, DF 70.910-900, Brazil; Laboratório de Hematologia e Células-tronco, Universidade de Brasília, Av. L2 Norte, Brasília, DF 70.910-900, Brazil
| | - Ana Paula Dorneles Alencar
- Laboratório de Farmacologia Molecular, Universidade de Brasília, Av. L2 Norte, Brasília, DF 70.910-900, Brazil; Laboratório de Hematologia e Células-tronco, Universidade de Brasília, Av. L2 Norte, Brasília, DF 70.910-900, Brazil
| | - Marielly Reis Resende
- Laboratório de Farmacologia Molecular, Universidade de Brasília, Av. L2 Norte, Brasília, DF 70.910-900, Brazil; Laboratório de Hematologia e Células-tronco, Universidade de Brasília, Av. L2 Norte, Brasília, DF 70.910-900, Brazil
| | - Daniel Freitas da Costa
- Laboratório de Hematologia e Células-tronco, Universidade de Brasília, Av. L2 Norte, Brasília, DF 70.910-900, Brazil
| | - Alexandre Nonino
- Hospital de Base do Distrito Federal, Setor Hospitalar Sul, Área Especial, Quadra 101, Brasília, DF 70.330-150, Brazil
| | - Francisco Assis Rocha Neves
- Laboratório de Farmacologia Molecular, Universidade de Brasília, Av. L2 Norte, Brasília, DF 70.910-900, Brazil
| | - Felipe Saldanha-Araujo
- Laboratório de Farmacologia Molecular, Universidade de Brasília, Av. L2 Norte, Brasília, DF 70.910-900, Brazil; Laboratório de Hematologia e Células-tronco, Universidade de Brasília, Av. L2 Norte, Brasília, DF 70.910-900, Brazil.
| |
Collapse
|
14
|
Choi MH, Palanichamy Kala M, Ow JR, Rao VK, Suriyamurthy S, Taneja R. GLP inhibits heterochromatin clustering and myogenic differentiation by repressing MeCP2. J Mol Cell Biol 2019; 10:161-174. [PMID: 28992061 DOI: 10.1093/jmcb/mjx038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/17/2017] [Indexed: 01/07/2023] Open
Abstract
Myogenic differentiation is accompanied by alterations in the chromatin states, which permit or restrict the transcriptional machinery and thus impact distinctive gene expression profiles. The mechanisms by which higher-order chromatin remodeling is associated with gene activation and silencing during differentiation is not fully understood. In this study, we provide evidence that the euchromatic lysine methyltransferase GLP regulates heterochromatin organization and myogenic differentiation. Interestingly, GLP represses expression of the methyl-binding protein MeCP2 that induces heterochromatin clustering during differentiation. Consequently, MeCP2 and HP1γ localization at major satellites are altered upon modulation of GLP expression. In GLP knockdown cells, depletion of MeCP2 restored both chromatin organization and myogenic differentiation. These results identify a novel regulatory axis between a histone methylation writer and DNA methylation reader, which is important for heterochromatin organization during differentiation.
Collapse
Affiliation(s)
- Min Hee Choi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456, Singapore
| | - Monica Palanichamy Kala
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Jin Rong Ow
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456, Singapore
| | - Vinay Kumar Rao
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Sudha Suriyamurthy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456, Singapore
| |
Collapse
|
15
|
Karl M, Sommer C, Gabriel CH, Hecklau K, Venzke M, Hennig AF, Radbruch A, Selbach M, Baumgrass R. Recruitment of Histone Methyltransferase Ehmt1 to Foxp3 TSDR Counteracts Differentiation of Induced Regulatory T Cells. J Mol Biol 2019; 431:3606-3625. [PMID: 31362003 DOI: 10.1016/j.jmb.2019.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022]
Abstract
Differentiation toward CD4+ regulatory T (Treg) cells is essentially dependent on an epigenetic program at Treg signature genes, which involves remodeling of the Treg-specific demethylated regions (TSDRs). In particular, the epigenetic status of the conserved non-coding sequence 2 of Foxp3 (Foxp3 TSDR) determines expression stability of the master transcription factor and thus Treg lineage identity. However, the molecular mechanisms controlling the epigenetic remodeling at TSDRs in Treg and conventional T cells are largely unknown. Using a combined approach of DNA pull-down and mass spectrometric analysis, we report a novel regulatory mechanism in which transcription factor Wiz recruits the histone methyltransferase Ehmt1 to Foxp3 TSDR. We show that both Wiz and Ehmt1 are crucial for shaping the region with the repressive histone modification H3K9me2 in conventional T cells. Consistently, knocking out either Ehmt1 or Wiz by CRISPR/Cas resulted in the loss of H3K9me2 and enhanced Foxp3 expression during iTreg differentiation. Moreover, the essential role of the Wiz-Ehmt1 interaction as observed at several TSDRs indicates a global function of Ehmt1 in the Treg differentiation program.
Collapse
Affiliation(s)
- Martin Karl
- Signal Transduction, German Rheumatism Research Center (DRFZ), A Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian Sommer
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Christian H Gabriel
- Signal Transduction, German Rheumatism Research Center (DRFZ), A Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Katharina Hecklau
- Signal Transduction, German Rheumatism Research Center (DRFZ), A Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Melanie Venzke
- Signal Transduction, German Rheumatism Research Center (DRFZ), A Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Anna Floriane Hennig
- Signal Transduction, German Rheumatism Research Center (DRFZ), A Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Andreas Radbruch
- Cell Biology, German Rheumatism Research Center (DRFZ), A Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany; Charité-University Medicine, Charitéplatz 1, 10117 Berlin, Germany
| | - Matthias Selbach
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Ria Baumgrass
- Signal Transduction, German Rheumatism Research Center (DRFZ), A Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
16
|
Srinivasan S, Shankar SR, Wang Y, Taneja R. SUMOylation of G9a regulates its function as an activator of myoblast proliferation. Cell Death Dis 2019; 10:250. [PMID: 30867409 PMCID: PMC6416281 DOI: 10.1038/s41419-019-1465-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 02/03/2023]
Abstract
The lysine methyltransferase G9a plays a role in many cellular processes. It is a potent repressor of gene expression, a function attributed to its ability to methylate histone and non-histone proteins. Paradoxically, in some instances, G9a can activate gene expression. However, regulators of G9a expression and activity are poorly understood. In this study, we report that endogenous G9a is SUMOylated in proliferating skeletal myoblasts. There are four potential SUMOylation consensus motifs in G9a. Mutation of all four acceptor lysine residues [K79, K152, K256, and K799] inhibits SUMOylation. Interestingly, SUMOylation does not impact G9a-mediated repression of MyoD transcriptional activity or myogenic differentiation. In contrast, SUMO-defective G9a is unable to enhance proliferation of myoblasts. Using complementation experiments, we show that the proliferation defect of primary myoblasts from conditional G9a-deficient mice is rescued by re-expression of wild-type, but not SUMOylation-defective, G9a. Mechanistically, SUMOylation acts as signal for PCAF (P300/CBP-associated factor) recruitment at E2F1-target genes. This results in increased histone H3 lysine 9 acetylation marks at E2F1-target gene promoters that are required for S-phase progression. Our studies provide evidence by which SUMO modification of G9a influences the chromatin environment to impact cell cycle progression.
Collapse
Affiliation(s)
- Shruti Srinivasan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore, Singapore
| | - Shilpa Rani Shankar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore, Singapore
| | - Yaju Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore, Singapore.
| |
Collapse
|
17
|
Bhat AV, Palanichamy Kala M, Rao VK, Pignata L, Lim HJ, Suriyamurthy S, Chang KT, Lee VK, Guccione E, Taneja R. Epigenetic Regulation of the PTEN-AKT-RAC1 Axis by G9a Is Critical for Tumor Growth in Alveolar Rhabdomyosarcoma. Cancer Res 2019; 79:2232-2243. [PMID: 30833420 DOI: 10.1158/0008-5472.can-18-2676] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/17/2018] [Accepted: 02/26/2019] [Indexed: 11/16/2022]
Abstract
Alveolar rhabdomyosarcoma (ARMS) is an aggressive pediatric cancer with poor prognosis. As transient and stable modifications to chromatin have emerged as critical mechanisms in oncogenic signaling, efforts to target epigenetic modifiers as a therapeutic strategy have accelerated in recent years. To identify chromatin modifiers that sustain tumor growth, we performed an epigenetic screen and found that inhibition of lysine methyltransferase G9a significantly affected the viability of ARMS cell lines. Targeting expression or activity of G9a reduced cellular proliferation and motility in vitro and tumor growth in vivo. Transcriptome and chromatin immunoprecipitation-sequencing analysis provided mechanistic evidence that the tumor-suppressor PTEN was a direct target gene of G9a. G9a repressed PTEN expression in a methyltransferase activity-dependent manner, resulting in increased AKT and RAC1 activity. Re-expression of constitutively active RAC1 in G9a-deficient tumor cells restored oncogenic phenotypes, demonstrating its critical functions downstream of G9a. Collectively, our study provides evidence for a G9a-dependent epigenetic program that regulates tumor growth and suggests targeting G9a as a therapeutic strategy in ARMS. SIGNIFICANCE: These findings demonstrate that RAC1 is an effector of G9a oncogenic functions and highlight the potential of G9a inhibitors in the treatment of ARMS.
Collapse
Affiliation(s)
- Akshay V Bhat
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Monica Palanichamy Kala
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vinay Kumar Rao
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Luca Pignata
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Huey Jin Lim
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sudha Suriyamurthy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kenneth T Chang
- Department of Pathology, KK Women and Children's Hospital, Singapore, Singapore
| | - Victor K Lee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
18
|
Milite C, Feoli A, Horton JR, Rescigno D, Cipriano A, Pisapia V, Viviano M, Pepe G, Amendola G, Novellino E, Cosconati S, Cheng X, Castellano S, Sbardella G. Discovery of a Novel Chemotype of Histone Lysine Methyltransferase EHMT1/2 (GLP/G9a) Inhibitors: Rational Design, Synthesis, Biological Evaluation, and Co-crystal Structure. J Med Chem 2019; 62:2666-2689. [PMID: 30753076 DOI: 10.1021/acs.jmedchem.8b02008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Since the discovery of compound BIX01294 over 10 years ago, only a very limited number of nonquinazoline inhibitors of H3K9-specific methyltransferases G9a and G9a-like protein (GLP) have been reported. Herein, we report the identification of a novel chemotype for G9a/GLP inhibitors, based on the underinvestigated 2-alkyl-5-amino- and 2-aryl-5-amino-substituted 3 H-benzo[ e][1,4]diazepine scaffold. Our research efforts resulted in the identification 12a (EML741), which not only maintained the high in vitro and cellular potency of its quinazoline counterpart, but also displayed improved inhibitory potency against DNA methyltransferase 1, improved selectivity against other methyltransferases, low cell toxicity, and improved apparent permeability values in both parallel artificial membrane permeability assay (PAMPA) and blood-brain barrier-specific PAMPA, and therefore might potentially be a better candidate for animal studies. Finally, the co-crystal structure of GLP in complex with 12a provides the basis for the further development of benzodiazepine-based G9a/GLP inhibitors.
Collapse
Affiliation(s)
| | | | - John R Horton
- Department of Molecular and Cellular Oncology , The University of Texas MD Anderson Cancer Center , Houston , Texas 77030 , United States
| | | | | | | | | | | | - Giorgio Amendola
- DiSTABiF , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy
| | - Ettore Novellino
- Department of Pharmacy , University Federico II of Naples , Via D. Montesano 49 , 80131 Naples , Italy
| | - Sandro Cosconati
- DiSTABiF , University of Campania "Luigi Vanvitelli" , Via Vivaldi 43 , 81100 Caserta , Italy
| | - Xiaodong Cheng
- Department of Molecular and Cellular Oncology , The University of Texas MD Anderson Cancer Center , Houston , Texas 77030 , United States
| | | | | |
Collapse
|
19
|
Herrera-Vázquez FS, Hernández-Luis F, Medina Franco JL. Quinazolines as inhibitors of chromatin-associated proteins in histones. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02300-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
CBP and P300 regulate distinct gene networks required for human primary myoblast differentiation and muscle integrity. Sci Rep 2018; 8:12629. [PMID: 30135524 PMCID: PMC6105712 DOI: 10.1038/s41598-018-31102-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023] Open
Abstract
The acetyltransferases CBP and P300 have been implicated in myogenesis in mouse immortalized cell lines but these studies focused only on the expression of a handful of myogenic factors. Hence, the respective role of these two related cofactors and their impact at global scale on gene expression rewiring during primary myoblast differentiation remain unknown. Here, we characterised the gene networks regulated by these two epigenetic enzymes during human primary myoblast differentiation (HPM). We found that CBP and p300 play a critical role in the activation of the myogenic program and mostly regulate distinct gene sets to control several aspects of HPM biology, even though they also exhibit some degree of redundancy. Moreover, CBP or P300 knockdown strongly impaired muscle cell adhesion and resulted in the activation of inflammation markers, two hallmarks of dystrophic disease. This was further validated in zebrafish where inhibition of CBP and P300 enzymatic activities led to cell adhesion defects and muscle fiber detachment. Our data highlight an unforeseen link between CBP/P300 activity and the emergence of dystrophic phenotypes. They thereby identify CBP and P300 as mediators of adult muscle integrity and suggest a new lead for intervention in muscular dystrophy.
Collapse
|
21
|
Xiong Y, Li F, Babault N, Wu H, Dong A, Zeng H, Chen X, Arrowsmith CH, Brown PJ, Liu J, Vedadi M, Jin J. Structure-activity relationship studies of G9a-like protein (GLP) inhibitors. Bioorg Med Chem 2017; 25:4414-4423. [PMID: 28662962 DOI: 10.1016/j.bmc.2017.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/10/2017] [Accepted: 06/13/2017] [Indexed: 02/01/2023]
Abstract
Given the high homology between the protein lysine methyltransferases G9a-like protein (GLP) and G9a, it has been challenging to develop potent and selective inhibitors for either enzyme. Recently, we reported two quinazoline compounds, MS0124 and MS012, as GLP selective inhibitors. To further investigate the structure-activity relationships (SAR) of the quinazoline scaffold, we designed and synthesized a range of analogs bearing different 2-amino substitutions and evaluated their inhibition potencies against both GLP and G9a. These studies led to the identification of two new GLP selective inhibitors, 13 (MS3748) and 17 (MS3745), with 59- and 65-fold higher potency for GLP over G9a, which were confirmed by isothermal titration calorimetry (ITC). Crystal structures of GLP and G9a in complex with 13 and 17 provide insight into the interactions of the inhibitors with both proteins. In addition, we generated GLP selective inhibitors bearing a quinoline core instead of the quinazoline core.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Nicolas Babault
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Hong Wu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Xin Chen
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada; Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Jing Liu
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Jian Jin
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
22
|
Tomaz RA, Harman JL, Karimlou D, Weavers L, Fritsch L, Bou-Kheir T, Bell E, Del Valle Torres I, Niakan KK, Fisher C, Joshi O, Stunnenberg HG, Curry E, Ait-Si-Ali S, Jørgensen HF, Azuara V. Jmjd2c facilitates the assembly of essential enhancer-protein complexes at the onset of embryonic stem cell differentiation. Development 2017; 144:567-579. [PMID: 28087629 PMCID: PMC5312034 DOI: 10.1242/dev.142489] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022]
Abstract
Jmjd2 H3K9 demethylases cooperate in promoting mouse embryonic stem cell (ESC) identity. However, little is known about their importance at the exit of ESC pluripotency. Here, we reveal that Jmjd2c facilitates this process by stabilising the assembly of mediator-cohesin complexes at lineage-specific enhancers. Functionally, we show that Jmjd2c is required in ESCs to initiate appropriate gene expression programs upon somatic multi-lineage differentiation. In the absence of Jmjd2c, differentiation is stalled at an early post-implantation epiblast-like stage, while Jmjd2c-knockout ESCs remain capable of forming extra-embryonic endoderm derivatives. Dissection of the underlying molecular basis revealed that Jmjd2c is re-distributed to lineage-specific enhancers during ESC priming for differentiation. Interestingly, Jmjd2c-bound enhancers are co-occupied by the H3K9-methyltransferase G9a (also known as Ehmt2), independently of its H3K9-modifying activity. Loss of Jmjd2c abrogates G9a recruitment and further destabilises loading of the mediator and cohesin components Med1 and Smc1a at newly activated and poised enhancers in ESC-derived epiblast-like cells. These findings unveil Jmjd2c and G9a as novel enhancer-associated factors, and implicate Jmjd2c as a molecular scaffold for the assembly of essential enhancer-protein complexes with an impact on timely gene activation.
Collapse
Affiliation(s)
- Rute A Tomaz
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Jennifer L Harman
- Cardiovascular Medicine Division, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Donja Karimlou
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Lauren Weavers
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Lauriane Fritsch
- Centre National de la Recherche Scientifique CNRS - Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris 75013, France
| | - Tony Bou-Kheir
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Emma Bell
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | | | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW7 1AA, UK
| | - Cynthia Fisher
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Onkar Joshi
- Radboud University, Faculty of Science, Department of Molecular Biology, Nijmegen 6525GA, The Netherlands
| | - Hendrik G Stunnenberg
- Radboud University, Faculty of Science, Department of Molecular Biology, Nijmegen 6525GA, The Netherlands
| | - Edward Curry
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Slimane Ait-Si-Ali
- Centre National de la Recherche Scientifique CNRS - Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris 75013, France
| | - Helle F Jørgensen
- Cardiovascular Medicine Division, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Véronique Azuara
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| |
Collapse
|
23
|
Xiong Y, Li F, Babault N, Dong A, Zeng H, Wu H, Chen X, Arrowsmith CH, Brown PJ, Liu J, Vedadi M, Jin J. Discovery of Potent and Selective Inhibitors for G9a-Like Protein (GLP) Lysine Methyltransferase. J Med Chem 2017; 60:1876-1891. [PMID: 28135087 DOI: 10.1021/acs.jmedchem.6b01645] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
G9a-like protein (GLP) and G9a are highly homologous protein lysine methyltransferases (PKMTs) sharing approximately 80% sequence identity in their catalytic domains. GLP and G9a form a heterodimer complex and catalyze mono- and dimethylation of histone H3 lysine 9 and nonhistone substrates. Although they are closely related, GLP and G9a possess distinct physiological and pathophysiological functions. Thus, GLP or G9a selective small-molecule inhibitors are useful tools to dissect their distinct biological functions. We previously reported potent and selective G9a/GLP dual inhibitors including UNC0638 and UNC0642. Here we report the discovery of potent and selective GLP inhibitors including 4 (MS0124) and 18 (MS012), which are >30-fold and 140-fold selective for GLP over G9a and other methyltransferases, respectively. The cocrystal structures of GLP and G9a in the complex with either 4 or 18 displayed virtually identical binding modes and interactions, highlighting the challenges in structure-based design of selective inhibitors for either enzyme.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada
| | - Nicolas Babault
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada
| | - Hong Wu
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada
| | - Xin Chen
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto , Toronto, Ontario M5G 2M9, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada
| | - Jing Liu
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto , Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | - Jian Jin
- Department of Pharmacological Sciences and Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| |
Collapse
|
24
|
Abstract
Progression of cells through distinct phases of the cell cycle, and transition into out-of-cycling states, such as terminal differentiation and senescence, is accompanied by specific patterns of gene expression. These cell fate decisions are mediated not only by distinct transcription factors, but also chromatin modifiers that establish heritable epigenetic patterns. Lysine methyltransferases (KMTs) that mediate methylation marks on histone and non-histone proteins are now recognized as important regulators of gene expression in cycling and non-cycling cells. Among these, the SUV39 sub-family of KMTs, which includes SUV39H1, SUV39H2, G9a, GLP, SETDB1, and SETDB2, play a prominent role. In this review, we discuss their biochemical properties, sub-cellular localization and function in cell cycle, differentiation programs, and cellular senescence. We also discuss their aberrant expression in cancers, which exhibit de-regulation of cell cycle and differentiation.
Collapse
Affiliation(s)
- Vinay Kumar Rao
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Ananya Pal
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Reshma Taneja
- a Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
25
|
Histone H3 Methyltransferase Suv39h1 Prevents Myogenic Terminal Differentiation by Repressing MEF2 Activity in Muscle Cells. Int J Mol Sci 2016; 17:ijms17121908. [PMID: 27916793 PMCID: PMC5187760 DOI: 10.3390/ijms17121908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 11/16/2022] Open
Abstract
The myogenic regulatory factors (MRFs) and myocyte enhancer factor 2 (MEF2) transcription factors have been extensively studied as key transcription factors that regulate myogenic gene expression. However, few reports on the molecular mechanism that modulates chromatin remodeling during skeletal muscle differentiation are available. We reported here that the expression of the H3-K9 methyltransferase Suv39h1 was decreased during myoblast differentiation. Ectopic expression of Suv39h1 could inhibit myoblast differentiation, increasing H3-K9 methylation levels, whereas knockdown of Suv39h1 stimulated myoblast differentiation. Furthermore, Suv39h1 interacted with MEF2C directly and inhibited MEF2 transcription activity in a dose-dependent manner. Together, our studies revealed a molecular mechanism wherein Suv39h1 modulated myogenic gene expression and activation during skeletal muscle differentiation.
Collapse
|
26
|
Ow JR, Palanichamy Kala M, Rao VK, Choi MH, Bharathy N, Taneja R. G9a inhibits MEF2C activity to control sarcomere assembly. Sci Rep 2016; 6:34163. [PMID: 27667720 PMCID: PMC5036183 DOI: 10.1038/srep34163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/08/2016] [Indexed: 12/25/2022] Open
Abstract
In this study, we demonstrate that the lysine methyltransferase G9a inhibits sarcomere organization through regulation of the MEF2C-HDAC5 regulatory axis. Sarcomeres are essential for muscle contractile function. Presently, skeletal muscle disease and dysfunction at the sarcomere level has been associated with mutations of sarcomere proteins. This study provides evidence that G9a represses expression of several sarcomere genes and its over-expression disrupts sarcomere integrity of skeletal muscle cells. G9a inhibits MEF2C transcriptional activity that is essential for expression of sarcomere genes. Through protein interaction assays, we demonstrate that G9a interacts with MEF2C and its co-repressor HDAC5. In the presence of G9a, calcium signaling-dependent phosphorylation and export of HDAC5 to the cytoplasm is blocked which likely results in enhanced MEF2C-HDAC5 association. Activation of calcium signaling or expression of constitutively active CaMK rescues G9a-mediated repression of HDAC5 shuttling as well as sarcomere gene expression. Our results demonstrate a novel epigenetic control of sarcomere assembly and identifies new therapeutic avenues to treat skeletal and cardiac myopathies arising from compromised muscle function.
Collapse
Affiliation(s)
- Jin Rong Ow
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456, Singapore
| | - Monica Palanichamy Kala
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Vinay Kumar Rao
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Min Hee Choi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456, Singapore
| | - Narendra Bharathy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456, Singapore
| |
Collapse
|