1
|
Pal S, Udgaonkar JB. Rigidifying the β2-α2 Loop in the Mouse Prion Protein Slows down Formation of Misfolded Oligomers. Biochemistry 2024. [PMID: 39565640 DOI: 10.1021/acs.biochem.4c00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Transmissible Spongiform Encephalopathies are fatal neurodegenerative diseases caused by the misfolding of the cellular prion protein (PrPC) into its pathological isoform (PrPSc). Efficient transmission of PrPSc occurs within the same species, but a species barrier limits interspecies transmission. While PrP structure is largely conserved among mammals, variations at the β2-α2 loop are observed, and even minor changes in the amino acid sequence of the β2-α2 loop can significantly affect transmission efficiency. The present study shows that the introduction of the elk/deer-specific amino acid substitutions at positions 169 (Ser to Asn) and 173 (Asn to Thr) into the mouse prion protein, which are associated with the structural rigidity of the β2-α2 loop, has a substantial impact on protein dynamics as well as on the misfolding pathways of the protein. Native state hydrogen-deuterium exchange studies coupled with mass spectrometry, show that the rigid loop substitutions stabilize not only the β2-α2 loop but also the C-terminal end of α3, suggesting that molecular interactions between these two segments are strengthened. Moreover, the energy difference between the native state and multiple misfolding-prone partially unfolded forms (PUFs) present at equilibrium, is increased. The decreased accessibility of the PUFs from the native state leads to a slowing down of the misfolding of the protein. The results of this study provide important insights into the early events of conformational conversion of prion protein into β-rich oligomers, and add to the evidence that the β2-α2 loop is a key determinant in prion protein aggregation.
Collapse
Affiliation(s)
- Suman Pal
- Indian Institute of Science Education and Research Pune Pune 411008, India
| | - Jayant B Udgaonkar
- Indian Institute of Science Education and Research Pune Pune 411008, India
| |
Collapse
|
2
|
Pal S, Udgaonkar JB. Slow Misfolding of a Molten Globule form of a Mutant Prion Protein Variant into a β-rich Dimer. J Mol Biol 2024; 436:168736. [PMID: 39097185 DOI: 10.1016/j.jmb.2024.168736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/13/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Misfolding of the prion protein is linked to multiple neurodegenerative diseases. A better understanding of the process requires the identification and structural characterization of intermediate conformations via which misfolding proceeds. In this study, three conserved aromatic residues (Tyr168, Phe174, and Tyr217) located in the C-terminal domain of mouse PrP (wt moPrP) were mutated to Ala. The resultant mutant protein, 3A moPrP, is shown to adopt a molten globule (MG)-like native conformation. Hydrogen-deuterium exchange studies coupled with mass spectrometry revealed that for 3A moPrP, the free energy gap between the MG-like native conformation and misfolding-prone partially unfolded forms is reduced. Consequently, 3A moPrP misfolds in native conditions even in the absence of salt, unlike wt moPrP, which requires the addition of salt to misfold. 3A moPrP misfolds to a β-rich dimer in the absence of salt, which can rapidly form an oligomer upon the addition of salt. In the presence of salt, 3A moPrP misfolds to a β-rich oligomer about a thousand-fold faster than wt moPrP. Importantly, the misfolded structure of the dimer is similar to that of the salt-induced oligomer. Misfolding to oligomer seems to be induced at the level of the dimeric unit by monomer-monomer association, and the oligomer grows by accretion of misfolded dimeric units. Additionally, it is shown that the conserved aromatic residues collectively stabilize not only monomeric protein, but also the structural core of the β-rich oligomers. Finally, it is also shown that 3A moPrP misfolds much faster to amyloid-fibrils than does the wt protein.
Collapse
Affiliation(s)
- Suman Pal
- Indian Institute of Science Education and Research Pune, Pune 411008, India
| | - Jayant B Udgaonkar
- Indian Institute of Science Education and Research Pune, Pune 411008, India.
| |
Collapse
|
3
|
Li Q, Zhu Y, Meng X, Tong HHY, Liu H. Experiment and molecular dynamics simulations reveal proanthocyanidin B2 and B3 can inhibit prion aggregation by different mechanisms. J Biomol Struct Dyn 2024; 42:2424-2436. [PMID: 37144732 DOI: 10.1080/07391102.2023.2209663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/14/2023] [Indexed: 05/06/2023]
Abstract
Prion diseases are a group of fatal neurodegenerative diseases caused by the misfolding and aggregation of prion protein (PrP), and the inhibition of PrP aggregation is one of the most effective therapeutic strategies. Proanthocyanidin B2 (PB2) and B3 (PB3), the effective natural antioxidants have been evaluated for the inhibition of amyloid-related protein aggregation. Since PrP has similar aggregation mechanism with other amyloid-related proteins, will PB2 and PB3 affect the aggregation of PrP? In this paper, experimental and molecular dynamics (MD) simulation methods were combined to investigate the influence of PB2 and PB3 on PrP aggregation. Thioflavin T assays showed PB2 and PB3 could inhibit PrP aggregation in a concentrate-dependent manner in vitro. To understand the underlying mechanism, we performed 400 ns all-atom MD simulations. The results suggested PB2 could stabilize the α2 C-terminus and the hydrophobic core of protein by stabilizing two important salt bridges R156-E196 and R156-D202, and consequently made global structure of protein more stable. Surprisingly, PB3 could not stabilize PrP, which may inhibit PrP aggregation through a different mechanism. Since dimerization is the first step of aggregation, will PB3 inhibit PrP aggregation by inhibiting the dimerization? To verify our assumption, we then explored the effect of PB3 on protein dimerization by performing 800 ns MD simulations. The results suggested PB3 could reduce the residue contacts and hydrogen bonds between two monomers, preventing dimerization process of PrP. The possible inhibition mechanism of PB2 and PB3 on PrP aggregation could provide useful information for drug development against prion diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Qin Li
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China
| | - Yongchang Zhu
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Xiaoxiao Meng
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Henry H Y Tong
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China
| | - Huanxiang Liu
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Pal S, Udgaonkar JB. Mutations of evolutionarily conserved aromatic residues suggest that misfolding of the mouse prion protein may commence in multiple ways. J Neurochem 2023; 167:696-710. [PMID: 37941487 DOI: 10.1111/jnc.16007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
The misfolding of the mammalian prion protein from its α-helix rich cellular isoform to its β-sheet rich infectious isoform is associated with several neurodegenerative diseases. The determination of the structural mechanism by which misfolding commences, still remains an unsolved problem. In the current study, native-state hydrogen exchange coupled with mass spectrometry has revealed that the N state of the mouse prion protein (moPrP) at pH 4 is in dynamic equilibrium with multiple partially unfolded forms (PUFs) capable of initiating misfolding. Mutation of three evolutionarily conserved aromatic residues, Tyr168, Phe174, and Tyr217 present at the interface of the β2-α2 loop and the C-terminal end of α3 in the structured C-terminal domain of moPrP significantly destabilize the native state (N) of the protein. They also reduce the free energy differences between the N state and two PUFs identified as PUF1 and PUF2**. It is shown that PUF2** in which the β2-α2 loop and the C-terminal end of α3 are disordered, has the same stability as the previously identified PUF2*, but to have a very different structure. Misfolding can commence from both PUF1 and PUF2**, as it can from PUF2*. Hence, misfolding can commence and proceed in multiple ways from structurally distinct precursor conformations. The increased extents to which PUF1 and PUF2** are populated at equilibrium in the case of the mutant variants, greatly accelerate their misfolding. The results suggest that the three aromatic residues may have been evolutionarily selected to impede the misfolding of moPrP.
Collapse
Affiliation(s)
- Suman Pal
- Indian Institute of Science Education and Research Pune, Pune, India
| | | |
Collapse
|
5
|
Neupane S, Khadka J, Rayamajhi S, Pandey AS. Binding modes of potential anti-prion phytochemicals to PrP C structures in silico. J Ayurveda Integr Med 2023; 14:100750. [PMID: 37453159 PMCID: PMC10368899 DOI: 10.1016/j.jaim.2023.100750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/13/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Prion diseases involve the conversion of a normal, cell-surface glycoprotein (PrPC) into a misfolded pathogenic form (PrPSc). One possible strategy to inhibit PrPSc formation is to stabilize the native conformation of PrPC and interfere with the conversion of PrPC to PrPSc. Many compounds have been shown to inhibit the conversion process, however, no promising drugs have been identified to cure prion diseases. OBJECTIVE This study aims to identify potential anti-prion compounds from plant phytochemicals by integrating traditional ethnobotanical knowledge with modern in silico drug design approaches. MATERIALS AND METHODS In the current study medicinal phytochemicals were docked with swapped and non-swapped crystal structures of PrPCin silico to identify potential anti-prions to determine their binding modes and interactions. RESULTS Eleven new phytochemicals were identified based on their binding energies and pharmacokinetic properties. The binding sites and interactions of the known and new anti-prion compounds are similar, and differences in binding modes occur in structures with very subtle differences in side chain conformations. Binding of these compounds poses steric hindrance to neighbouring molecules. Residues shown to be associated with the inhibition of PrPC to PrPSc conversion form interactions with most of the compounds. CONCLUSION Identified compounds might act as potent inhibitors of PrPC to PrPSc conversion. These might be attractive candidates for the development of novel anti-prion therapy although further tests in vitro cell cultures and in vivo mouse models are needed to confirm these findings.
Collapse
Affiliation(s)
- Sandesh Neupane
- Purbanchal University, Department of Biotechnology, SANN International College, Kathmandu, 44616, Nepal.
| | - Jenisha Khadka
- Purbanchal University, Department of Biotechnology, SANN International College, Kathmandu, 44616, Nepal.
| | - Sandesh Rayamajhi
- Purbanchal University, Department of Biotechnology, SANN International College, Kathmandu, 44616, Nepal.
| | - Arti S Pandey
- Department of Biochemistry, Kathmandu Medical College (Basic Sciences), Bhaktapur, 44800, Nepal.
| |
Collapse
|
6
|
Castro E Costa AR, Mysore S, Paruchuri P, Chen KY, Liu AY. PolyQ-Expanded Mutant Huntingtin Forms Inclusion Body Following Transient Cold Shock in a Two-Step Aggregation Mechanism. ACS Chem Neurosci 2023; 14:277-288. [PMID: 36574489 DOI: 10.1021/acschemneuro.2c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Age-dependent formation of insoluble protein aggregates is a hallmark of many neurodegenerative diseases. We are interested in the cell chemistry that drives the aggregation of polyQ-expanded mutant Huntingtin (mHtt) protein into insoluble inclusion bodies (IBs). Using an inducible cell model of Huntington's disease, we show that a transient cold shock (CS) at 4 °C followed by recovery incubation at temperatures of 25-37 °C strongly and rapidly induces the compaction of diffuse polyQ-expanded HuntingtinExon1-enhanced green fluorescent protein chimera protein (mHtt) into round, micron size, cytosolic IBs. This transient CS-induced mHtt IB formation is independent of microtubule integrity or de novo protein synthesis. The addition of millimolar concentrations of sodium chloride accelerates, whereas urea suppresses this transient CS-induced mHtt IB formation. These results suggest that the low temperature of CS constrains the conformation dynamics of the intrinsically disordered mHtt into labile intermediate structures to facilitate de-solvation and hydrophobic interaction for IB formation at the higher recovery temperature. This work, along with our previous observation of the effects of heat shock protein chaperones and osmolytes in driving mHtt IB formation, underscores the primacy of mHtt structuring and rigidification for H-bond-mediated cross-linking in a two-step mechanism of mHtt IB formation in living cells.
Collapse
Affiliation(s)
- Ana Raquel Castro E Costa
- Department of Cell Biology and Neuroscience, Nelson Biology Laboratory, Rutgers State University of New Jersey, 604 Allison Road, Piscataway, New Jersey 08854, United States
| | - Sachin Mysore
- Department of Cell Biology and Neuroscience, Nelson Biology Laboratory, Rutgers State University of New Jersey, 604 Allison Road, Piscataway, New Jersey 08854, United States
| | - Praneet Paruchuri
- Department of Cell Biology and Neuroscience, Nelson Biology Laboratory, Rutgers State University of New Jersey, 604 Allison Road, Piscataway, New Jersey 08854, United States
| | - Kuang Yu Chen
- Department of Chemistry and Chemical Biology, Wright-Rieman Chemistry Laboratory, Rutgers State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Alice Y Liu
- Department of Cell Biology and Neuroscience, Nelson Biology Laboratory, Rutgers State University of New Jersey, 604 Allison Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
7
|
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021; 122:7562-7623. [PMID: 34493042 PMCID: PMC9053315 DOI: 10.1021/acs.chemrev.1c00279] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solution-phase hydrogen/deuterium
exchange (HDX) coupled to mass
spectrometry (MS) is a widespread tool for structural analysis across
academia and the biopharmaceutical industry. By monitoring the exchangeability
of backbone amide protons, HDX-MS can reveal information about higher-order
structure and dynamics throughout a protein, can track protein folding
pathways, map interaction sites, and assess conformational states
of protein samples. The combination of the versatility of the hydrogen/deuterium
exchange reaction with the sensitivity of mass spectrometry has enabled
the study of extremely challenging protein systems, some of which
cannot be suitably studied using other techniques. Improvements over
the past three decades have continually increased throughput, robustness,
and expanded the limits of what is feasible for HDX-MS investigations.
To provide an overview for researchers seeking to utilize and derive
the most from HDX-MS for protein structural analysis, we summarize
the fundamental principles, basic methodology, strengths and weaknesses,
and the established applications of HDX-MS while highlighting new
developments and applications.
Collapse
Affiliation(s)
- Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
8
|
Chen YW, Rahman SK. Fatal Attraction: The Case of Toxic Soluble Dimers of Truncated PQBP-1 Mutants in X-Linked Intellectual Disability. Int J Mol Sci 2021; 22:ijms22052240. [PMID: 33668121 PMCID: PMC7956452 DOI: 10.3390/ijms22052240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 11/16/2022] Open
Abstract
The frameshift mutants K192Sfs*7 and R153Sfs*41, of the polyglutamine tract-binding protein 1 (PQBP-1), are stable intrinsically disordered proteins (IDPs). They are each associated with the severe cognitive disorder known as the Renpenning syndrome, a form of X-linked intellectual disability (XLID). Relative to the monomeric wild-type protein, these mutants are dimeric, contain more folded contents, and have higher thermal stabilities. Comparisons can be drawn to the toxic oligomerisation in the “conformational diseases”, which collectively describe medical conditions involving a substantial protein structural transition in the pathogenic mechanism. At the molecular level, the end state of these diseases is often cytotoxic protein aggregation. The conformational disease proteins contain varying extents of intrinsic disorder, and the consensus pathogenesis includes an early oligomer formation. We reviewed the experimental characterisation of the toxic oligomers in representative cases. PQBP-1 mutant dimerisation was then compared to the oligomerisation of the conformational disease proteins. The PQBP-1 mutants are unique in behaving as stable soluble dimers, which do not further develop into higher oligomers or aggregates. The toxicity of the PQBP-1 mutant dimers lies in the native functions (in transcription regulation and possibly, RNA splicing) being compromised, rather than proceeding to aggregation. Other examples of stable IDP dimers were discussed and we speculated on the roles of IDP dimerisation in protein evolution.
Collapse
Affiliation(s)
- Yu Wai Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hunghom 999077, Hong Kong
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hunghom 999077, Hong Kong
- Correspondence:
| | - Shah Kamranur Rahman
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK;
| |
Collapse
|
9
|
Aravindan S, Chen S, Choudhry H, Molfetta C, Chen KY, Liu AYC. Osmolytes dynamically regulate mutant Huntingtin aggregation and CREB function in Huntington's disease cell models. Sci Rep 2020; 10:15511. [PMID: 32968182 PMCID: PMC7511939 DOI: 10.1038/s41598-020-72613-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Osmolytes are organic solutes that change the protein folding landscape shifting the equilibrium towards the folded state. Herein, we use osmolytes to probe the structuring and aggregation of the intrinsically disordered mutant Huntingtin (mHtt) vis-a-vis the pathogenicity of mHtt on transcription factor function and cell survival. Using an inducible PC12 cell model of Huntington's disease (HD), we show that stabilizing polyol osmolytes drive the aggregation of Htt103QExon1-EGFP from a diffuse ensemble into inclusion bodies (IBs), whereas the destabilizing osmolyte urea does not. This effect of stabilizing osmolytes is innate, generic, countered by urea, and unaffected by HSP70 and HSC70 knockdown. A qualitatively similar result of osmolyte-induced mHtt IB formation is observed in a conditionally immortalized striatal neuron model of HD, and IB formation correlates with improved survival under stress. Increased expression of diffuse mHtt sequesters the CREB transcription factor to repress CREB-reporter gene activity. This repression is mitigated either by stabilizing osmolytes, which deplete diffuse mHtt or by urea, which negates protein-protein interaction. Our results show that stabilizing polyol osmolytes promote mHtt aggregation, alleviate CREB dysfunction, and promote survival under stress to support the hypothesis that lower molecular weight entities of disease protein are relevant pathogenic species in neurodegeneration.
Collapse
Affiliation(s)
- Shreyaas Aravindan
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Nelson Biology Laboratory, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Samantha Chen
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Nelson Biology Laboratory, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Hannaan Choudhry
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Nelson Biology Laboratory, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Celine Molfetta
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Nelson Biology Laboratory, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Kuang Yu Chen
- Department of Chemistry and Chemical Biology, Rutgers State University of New Jersey, Nelson Biology Laboratory, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Alice Y C Liu
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Nelson Biology Laboratory, 604 Allison Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
10
|
Xu Z, Liu H, Wang S, Zhang Q, Yao X, Zhou S, Liu H. Unraveling the Molecular Mechanism of Prion H2 C-Terminus Misfolding by Metadynamics Simulations. ACS Chem Neurosci 2020; 11:772-782. [PMID: 32023408 DOI: 10.1021/acschemneuro.9b00679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Conformational transition from the normal cellular form of prion protein (PrPC) to the pathogenic "scrapie" form (PrPSc) is considered to be a key event in the occurrence of prion disease. Additionally, the H2 C-terminus is widely considered to be a vital site for PrP conformational transition, which can be used as an important region to explore the potential mechanism of PrP misfolding. Therefore, to study the misfolding mechanism of PrP, 500 ns well-tempered metadynamics simulations were performed by focusing on the H2 C-terminus of PrP. For comparison, three systems were designed in total, including PrP in neutral and acidic conditions, as well as H187R mutant. The resulting free energy surfaces (FESs) obtained from metadynamics simulations reveal that acidic conditions and H187R mutation can facilitate PrP misfolding by decreasing free energy barriers for conformational transition and forming energy stable conformational states. Further analyses aimed at H2 C-terminus show that due to the increase of positive charge on residue 187 in both acidic and H187R systems, the electrostatic repulsion of residue 187 and R136/R156 increases greatly, which disrupts the electrostatic interaction network around H2 C-terminus and exposes the hydrophobic core to the solvent. Taken together, acidic conditions and H187R mutation can accelerate PrP misfolding mainly by forming more energetically stable metastable conformations with lower free energy barriers, and electrostatic network disruption involving residue 187 drives the initial misfolding of H2 C-terminus. This study provides quantitative insight into the related function of the H2 C-terminus in the PrP misfolding process, which may guide H2 C-terminus mediated drug design in the future.
Collapse
Affiliation(s)
- Zerong Xu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hongli Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shuo Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Qianqian Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Shuangyan Zhou
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
11
|
Wille H, Dorosh L, Amidian S, Schmitt-Ulms G, Stepanova M. Combining molecular dynamics simulations and experimental analyses in protein misfolding. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 118:33-110. [PMID: 31928730 DOI: 10.1016/bs.apcsb.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The fold of a protein determines its function and its misfolding can result in loss-of-function defects. In addition, for certain proteins their misfolding can lead to gain-of-function toxicities resulting in protein misfolding diseases such as Alzheimer's, Parkinson's, or the prion diseases. In all of these diseases one or more proteins misfold and aggregate into disease-specific assemblies, often in the form of fibrillar amyloid deposits. Most, if not all, protein misfolding diseases share a fundamental molecular mechanism that governs the misfolding and subsequent aggregation. A wide variety of experimental methods have contributed to our knowledge about misfolded protein aggregates, some of which are briefly described in this review. The misfolding mechanism itself is difficult to investigate, as the necessary timescale and resolution of the misfolding events often lie outside of the observable parameter space. Molecular dynamics simulations fill this gap by virtue of their intrinsic, molecular perspective and the step-by-step iterative process that forms the basis of the simulations. This review focuses on molecular dynamics simulations and how they combine with experimental analyses to provide detailed insights into protein misfolding and the ensuing diseases.
Collapse
Affiliation(s)
- Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Canada; Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Lyudmyla Dorosh
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Sara Amidian
- Department of Biochemistry, University of Alberta, Edmonton, Canada; Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Gerold Schmitt-Ulms
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Maria Stepanova
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
12
|
Mondal B, Reddy G. A Transient Intermediate Populated in Prion Folding Leads to Domain Swapping. Biochemistry 2019; 59:114-124. [DOI: 10.1021/acs.biochem.9b00621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Balaka Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka India, 560012
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka India, 560012
| |
Collapse
|
13
|
Bernardi L, Bruni AC. Mutations in Prion Protein Gene: Pathogenic Mechanisms in C-Terminal vs. N-Terminal Domain, a Review. Int J Mol Sci 2019; 20:E3606. [PMID: 31340582 PMCID: PMC6678283 DOI: 10.3390/ijms20143606] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/07/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Inherited mutations in the Prion protein (PrP), encoded by the PRNP gene, have been associated with autosomal dominant neurodegenerative disorders, such as Creutzfeldt-Jacob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), and Fatal Familial Insomnia (FFI). Notably, PRNP mutations have also been described in clinical pictures resembling other neurodegenerative diseases, such as frontotemporal dementia. Regarding the pathogenesis, it has been observed that these point mutations are located in the C-terminal region of the PRNP gene and, currently, the potential significance of the N-terminal domain has largely been underestimated. The purpose of this report is to review and provide current insights into the pathogenic mechanisms of PRNP mutations, emphasizing the differences between the C- and N-terminal regions and focusing, in particular, on the lesser-known flexible N-terminal, for which recent biophysical evidence has revealed a physical interaction with the globular C-terminal domain of the cellular prion protein (PrPC).
Collapse
Affiliation(s)
- Livia Bernardi
- Regional Neurogenetic Centre, ASP Catanzaro, 88046 Lamezia Terme (CZ), Italy
| | - Amalia C Bruni
- Regional Neurogenetic Centre, ASP Catanzaro, 88046 Lamezia Terme (CZ), Italy.
| |
Collapse
|
14
|
Sengupta I, Udgaonkar J. Monitoring site-specific conformational changes in real-time reveals a misfolding mechanism of the prion protein. eLife 2019; 8:44698. [PMID: 31232689 PMCID: PMC6590988 DOI: 10.7554/elife.44698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 06/11/2019] [Indexed: 11/25/2022] Open
Abstract
During pathological aggregation, proteins undergo remarkable conformational re-arrangements to anomalously assemble into a heterogeneous collection of misfolded multimers, ranging from soluble oligomers to insoluble amyloid fibrils. Inspired by fluorescence resonance energy transfer (FRET) measurements of protein folding, an experimental strategy to study site-specific misfolding kinetics during aggregation, by effectively suppressing contributions from inter-molecular FRET, is described. Specifically, the kinetics of conformational changes across different secondary and tertiary structural segments of the mouse prion protein (moPrP) were monitored independently, after the monomeric units transformed into large oligomers OL, which subsequently disaggregated reversibly into small oligomers OS at pH 4. The sequence segments spanning helices α2 and α3 underwent a compaction during the formation of OL and elongation into β-sheets during the formation of OS. The β1-α1-β2 and α2-α3 subdomains were separated, and the helix α1 was unfolded to varying extents in both OL and OS.
Collapse
Affiliation(s)
- Ishita Sengupta
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Jayant Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| |
Collapse
|
15
|
Zhou S, Shi D, Liu X, Yao X, Da LT, Liu H. pH-Induced Misfolding Mechanism of Prion Protein: Insights from Microsecond-Accelerated Molecular Dynamics Simulations. ACS Chem Neurosci 2019; 10:2718-2729. [PMID: 31070897 DOI: 10.1021/acschemneuro.8b00582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The conformational transition of prion protein (PrP) from a native form PrPC to a pathological isoform PrPSc is the main cause of a number of prion diseases in human and animals. Thus, understanding the molecular basis of conformational transition of PrP will be valuable for unveiling the etiology of PrP-related diseases. Here, to explore the potential misfolding mechanism of PrP under the acidic condition, which is known to promote PrP misfolding and trigger its aggregation, the conventional and accelerated molecular dynamics (MD) simulations combined with the Markov state model (MSM) analysis were performed. The conventional MD simulations reveal that, at an acidic pH, the globular domain of PrP is partially unfolded, particularly for the α2 C-terminus. Structural analysis of the key macrostates obtained by MSM indicates that the α2 C-terminus and the β2-α2 loop may serve as important sites for the pH-induced PrP misfolding. Meanwhile, the α1 may also participate in the pH-induced structural conversion by moving away from the α2-α3 subdomain. Notably, dynamical network analysis of the key metastable states indicates that the protonated H187 weakens the interactions between the α2 C-terminus, α1-β2 loop, and α2-α3 loop, leading these domains, especially the α2 C-terminus, to become unstable and to begin to misfold. Therefore, the α2 C-terminus plays a key role in the PrP misfolding process and serves as a potential site for drug targeting. Overall, our findings can deepen the understanding of the pathogenesis related to PrP and provide useful guidance for the future drug discovery.
Collapse
Affiliation(s)
- Shuangyan Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- Chongqing Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Danfeng Shi
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xuewei Liu
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
16
|
Chen JY, Parekh M, Seliman H, Bakshinskaya D, Dai W, Kwan K, Chen KY, Liu AYC. Heat shock promotes inclusion body formation of mutant huntingtin (mHtt) and alleviates mHtt-induced transcription factor dysfunction. J Biol Chem 2018; 293:15581-15593. [PMID: 30143534 PMCID: PMC6177601 DOI: 10.1074/jbc.ra118.002933] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/22/2018] [Indexed: 01/08/2023] Open
Abstract
PolyQ-expanded huntingtin (mHtt) variants form aggregates, termed inclusion bodies (IBs), in individuals with and models of Huntington's disease (HD). The role of IB versus diffusible mHtt in neurotoxicity remains unclear. Using a ponasterone (PA)-inducible cell model of HD, here we evaluated the effects of heat shock on the appearance and functional outcome of Htt103QExon1-EGFP expression. Quantitative image analysis indicated that 80-90% of this mHtt protein initially appears as "diffuse" signals in the cytosol, with IBs forming at high mHtt expression. A 2-h heat shock during the PA induction reduced the diffuse signal, but greatly increased mHtt IB formation in both cytosol and nucleus. Dose- and time-dependent mHtt expression suggested that nucleated polymerization drives IB formation. RNA-mediated knockdown of heat shock protein 70 (HSP70) and heat shock cognate 70 protein (HSC70) provided evidence for their involvement in promoting diffuse mHtt to form IBs. Reporter gene assays assessing the impacts of diffuse versus IB mHtt showed concordance of diffuse mHtt expression with the repression of heat shock factor 1, cAMP-responsive element-binding protein (CREB), and NF-κB activity. CREB repression was reversed by heat shock coinciding with mHtt IB formation. In an embryonic striatal neuron-derived HD model, the chemical chaperone sorbitol similarly promoted the structuring of diffuse mHtt into IBs and supported cell survival under stress. Our results provide evidence that mHtt IB formation is a chaperone-supported cellular coping mechanism that depletes diffusible mHtt conformers, alleviates transcription factor dysfunction, and promotes neuron survival.
Collapse
Affiliation(s)
- Justin Y Chen
- From the Department of Cell Biology and Neuroscience and
| | - Miloni Parekh
- From the Department of Cell Biology and Neuroscience and
| | - Hadear Seliman
- From the Department of Cell Biology and Neuroscience and
| | | | - Wei Dai
- From the Department of Cell Biology and Neuroscience and
| | - Kelvin Kwan
- From the Department of Cell Biology and Neuroscience and
| | - Kuang Yu Chen
- Department of Chemistry and Chemical Biology, Rutgers State University of New Jersey, Piscataway, New Jersey 08854
| | - Alice Y C Liu
- From the Department of Cell Biology and Neuroscience and
| |
Collapse
|
17
|
Sengupta I, Udgaonkar JB. Structural mechanisms of oligomer and amyloid fibril formation by the prion protein. Chem Commun (Camb) 2018; 54:6230-6242. [PMID: 29789820 DOI: 10.1039/c8cc03053g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Misfolding and aggregation of the prion protein is responsible for multiple neurodegenerative diseases. Works from several laboratories on folding of both the WT and multiple pathogenic mutant variants of the prion protein have identified several structurally dissimilar intermediates, which might be potential precursors to misfolding and aggregation. The misfolded aggregates themselves are morphologically distinct, critically dependent on the solution conditions under which they are prepared, but always β-sheet rich. Despite the lack of an atomic resolution structure of the infectious pathogenic agent in prion diseases, several low resolution models have identified the β-sheet rich core of the aggregates formed in vitro, to lie in the α2-α3 subdomain of the prion protein, albeit with local stabilities that vary with the type of aggregate. This feature article describes recent advances in the investigation of in vitro prion protein aggregation using multiple spectroscopic probes, with particular focus on (1) identifying aggregation-prone conformations of the monomeric protein, (2) conditions which trigger misfolding and oligomerization, (3) the mechanism of misfolding and aggregation, and (4) the structure of the misfolded intermediates and final aggregates.
Collapse
Affiliation(s)
- Ishita Sengupta
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | | |
Collapse
|
18
|
Mechanism of aggregation and membrane interactions of mammalian prion protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018. [DOI: 10.1016/j.bbamem.2018.02.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Sabareesan AT, Udgaonkar JB. The G126V Mutation in the Mouse Prion Protein Hinders Nucleation-Dependent Fibril Formation by Slowing Initial Fibril Growth and by Increasing the Critical Concentration. Biochemistry 2017; 56:5931-5942. [PMID: 29045139 DOI: 10.1021/acs.biochem.7b00894] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The middle disordered hydrophobic region of the prion protein plays a critical role in conformational conversion of the protein, with pathogenic as well as protective mutations being localized to this region. In particular, it has been shown that the G127V mutation in this region of the human prion protein (huPrP) is protective against the spread of prion disease, but the mechanism of protection remains unknown. In this study, quantitative analyses of the kinetics of fibril formation by wild-type mouse prion protein (moPrP) and G126V moPrP (equivalent to G127V huPrP) reveal important differences: the critical concentration is higher, the lag phase is longer, and the initial effective rate constant of fibril growth is slower for the mutant variant. The study offers a simple biophysical explanation for why the G127V mutation in huPrP would be protective in humans: the ∼5-fold increase in critical concentration caused by the mutation likely results in the critical concentration (below which fibril formation cannot occur) being higher that the concentration of the protein present in and on cells in vivo.
Collapse
Affiliation(s)
- Ambadi Thody Sabareesan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research , Bengaluru 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research , Bengaluru 560065, India
| |
Collapse
|
20
|
Zhou S, Liu X, An X, Yao X, Liu H. Molecular Dynamics Simulation Study on the Binding and Stabilization Mechanism of Antiprion Compounds to the "Hot Spot" Region of PrP C. ACS Chem Neurosci 2017; 8:2446-2456. [PMID: 28795797 DOI: 10.1021/acschemneuro.7b00214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Structural transitions in the prion protein from the cellular form, PrPC, into the pathological isoform, PrPSc, are regarded as the main cause of the transmissible spongiform encephalopathies, also known as prion diseases. Hence, discovering and designing effective antiprion drugs that can inhibit PrPC to PrPSc conversion is regarded as a promising way to cure prion disease. Among several strategies to inhibit PrPC to PrPSc conversion, stabilizing the native PrPC via specific binding is believed to be one of the valuable approaches and many antiprion compounds have been reported based on this strategy. However, the detailed mechanism to stabilize the native PrPC is still unknown. As such, to unravel the stabilizing mechanism of these compounds to PrPC is valuable for the further design and discovery of antiprion compounds. In this study, by molecular dynamics simulation method, we investigated the stabilizing mechanism of several antiprion compounds on PrPC that were previously reported to have specific binding to the "hot spot" region of PrPC. Our simulation results reveal that the stabilization mechanism of specific binding compounds can be summarized as (I) to stabilize both the flexible C-terminal of α2 and the hydrophobic core, such as BMD42-29 and GN8; (II) to stabilize the hydrophobic core, such as J1 and GJP49; (III) to stabilize the overall structure of PrPC by high binding affinity, as NPR-056. In addition, as indicated by the H-bond analysis and decomposition analysis of binding free energy, the residues N159 and Q160 play an important role in the specific binding of the studied compounds and all these compounds interact with PrPC in a similar way with the key interacting residues L130 in the β1 strand, P158, N159, Q160, etc. in the α1-β2 loop, and H187, T190, T191, etc. in the α2 C-terminus although the compounds have large structural difference. As a whole, our obtained results can provide some insights into the specific binding mechanism of main antiprion compounds to the "hot spot" region of PrPC at the molecular level and also provide guidance for effective antiprion drug design in the future.
Collapse
Affiliation(s)
- Shuangyan Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xuewei Liu
- State Key Laboratory of Applied Organic Chemistry and
Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiaoli An
- State Key Laboratory of Applied Organic Chemistry and
Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and
Department of Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Quality Research
in Chinese Medicine, Macau Institute for Applied Research in Medicine
and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
21
|
Cieplak AS. Protein folding, misfolding and aggregation: The importance of two-electron stabilizing interactions. PLoS One 2017; 12:e0180905. [PMID: 28922400 PMCID: PMC5603215 DOI: 10.1371/journal.pone.0180905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/22/2017] [Indexed: 12/17/2022] Open
Abstract
Proteins associated with neurodegenerative diseases are highly pleiomorphic and may adopt an all-α-helical fold in one environment, assemble into all-β-sheet or collapse into a coil in another, and rapidly polymerize in yet another one via divergent aggregation pathways that yield broad diversity of aggregates’ morphology. A thorough understanding of this behaviour may be necessary to develop a treatment for Alzheimer’s and related disorders. Unfortunately, our present comprehension of folding and misfolding is limited for want of a physicochemical theory of protein secondary and tertiary structure. Here we demonstrate that electronic configuration and hyperconjugation of the peptide amide bonds ought to be taken into account to advance such a theory. To capture the effect of polarization of peptide linkages on conformational and H-bonding propensity of the polypeptide backbone, we introduce a function of shielding tensors of the Cα atoms. Carrying no information about side chain-side chain interactions, this function nonetheless identifies basic features of the secondary and tertiary structure, establishes sequence correlates of the metamorphic and pH-driven equilibria, relates binding affinities and folding rate constants to secondary structure preferences, and manifests common patterns of backbone density distribution in amyloidogenic regions of Alzheimer’s amyloid β and tau, Parkinson’s α-synuclein and prions. Based on those findings, a split-intein like mechanism of molecular recognition is proposed to underlie dimerization of Aβ, tau, αS and PrPC, and divergent pathways for subsequent association of dimers are outlined; a related mechanism is proposed to underlie formation of PrPSc fibrils. The model does account for: (i) structural features of paranuclei, off-pathway oligomers, non-fibrillar aggregates and fibrils; (ii) effects of incubation conditions, point mutations, isoform lengths, small-molecule assembly modulators and chirality of solid-liquid interface on the rate and morphology of aggregation; (iii) fibril-surface catalysis of secondary nucleation; and (iv) self-propagation of infectious strains of mammalian prions.
Collapse
Affiliation(s)
- Andrzej Stanisław Cieplak
- Department of Chemistry, Bilkent University, Ankara, Turkey
- Department of Chemistry, Yale University, New Haven, Connecticut, United States of America
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
Sengupta I, Bhate SH, Das R, Udgaonkar JB. Salt-Mediated Oligomerization of the Mouse Prion Protein Monitored by Real-Time NMR. J Mol Biol 2017; 429:1852-1872. [DOI: 10.1016/j.jmb.2017.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 12/11/2022]
|