1
|
Chen Y, Fan H, Li R, Zhang H, Zhou R, Liu GL, Sun C, Huang L. Free Electron Density Gradients Enhanced Biosensor for Ultrasensitive and Accurate Affinity Assessment of the Immunotherapy Drugs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404559. [PMID: 39443825 PMCID: PMC11633510 DOI: 10.1002/advs.202404559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/10/2024] [Indexed: 10/25/2024]
Abstract
Accurate affinity assessments play an important role in drug discovery, screening, and efficacy evaluation. Label-free affinity biosensors are recognized as a dependable and standard technology for addressing this challenge. This study constructs a free electron density gradient-enhanced meta-surface plasmon resonance (FED-MSPR) biosensor through a finite-difference time-domain simulation model, the biosensor demonstrates superior detection performance in accurately determining affinity and kinetic rate constants. By controlling the dielectric properties of the metal on the surface of the nanocup arrays, the plasmon resonance effects are easily tuned without changing the nanostructure design. Compared with the single-layer gold chip, the triple-layer FED-MSPR chip demonstrated a four-fold improvement in resolution at the optimal resonance peak. Additionally, the sensitivity and figure of merit (FOM) of the multi-layer chip increased by 3.5 and 7.99 times, respectively. Following modification with high- and low-staggered carboxylation, the noise-signal ratio and baseline stability of the real-time kinetic curves based on these chips are significantly enhanced. The developed carboxylation FED-MSPR platform is successfully used to perform affinity assays for Adalimumab and TNF-α protein, resulting in favorable dynamic curves. These findings validate the proposed FED-MSPR biosensor platform as cost-effective, rapid, sensitive, and label-free, facilitating real-time quality control in drug development.
Collapse
Affiliation(s)
- Youqian Chen
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
| | - Hongli Fan
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
| | - Rui Li
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
| | - Huazhi Zhang
- Biosensor R&D DepartmentLiangzhun (Wuhan) Life Technology Co. LtdWuhan430070P. R. China
| | - Rui Zhou
- Biosensor R&D DepartmentLiangzhun (Wuhan) Life Technology Co. LtdWuhan430070P. R. China
| | - Gang L. Liu
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
| | - Chunmeng Sun
- Department of PharmaceuticsSchool of PharmacyChina Pharmaceutical University639 Longmian AvenueNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and ExcipientsChina Pharmaceutical University24 Tong Jia XiangNanjing210009P. R. China
| | - Liping Huang
- College of Life Science and TechnologyHuazhong University of Science and Technology1037 Luo Yu RoadWuhan430074P. R. China
- Biosensor R&D DepartmentLiangzhun (Wuhan) Life Technology Co. LtdWuhan430070P. R. China
- School of Food Science and Pharmaceutical EngineeringNanjing Normal UniversityNanjing210023P. R. China
| |
Collapse
|
2
|
Zanini E, Forster-Gross N, Bachmann F, Brüngger A, McSheehy P, Litherland K, Burger K, Groner AC, Roceri M, Bury L, Stieger M, Willemsen-Seegers N, de Man J, Vu-Pham D, van Riel HWE, Zaman GJR, Buijsman RC, Kellenberger L, Lane HA. Dual TTK/PLK1 inhibition has potent anticancer activity in TNBC as monotherapy and in combination. Front Oncol 2024; 14:1447807. [PMID: 39184047 PMCID: PMC11341980 DOI: 10.3389/fonc.2024.1447807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Background Threonine tyrosine kinase (TTK) and polo-like kinase 1 (PLK1) are common essential kinases that collaborate in activating the spindle assembly checkpoint (SAC) at the kinetochore, ensuring appropriate chromosome alignment and segregation prior to mitotic exit. Targeting of either TTK or PLK1 has been clinically evaluated in cancer patients; however, dual inhibitors have not yet been pursued. Here we present the in vitro and in vivo characterization of a first in class, dual TTK/PLK1 inhibitor (BAL0891). Methods Mechanism of action studies utilized biochemical kinase and proteomics-based target-engagement assays. Cellular end-point assays included immunoblot- and flow cytometry-based cell cycle analyses and SAC integrity evaluation using immunoprecipitation and immunofluorescence approaches. Anticancer activity was assessed in vitro using cell growth assays and efficacy was evaluated, alone and in combination with paclitaxel and carboplatin, using mouse models of triple negative breast cancer (TNBC). Results BAL0891 elicits a prolonged effect on TTK, with a transient activity on PLK1. This unique profile potentiates SAC disruption, forcing tumor cells to aberrantly exit mitosis with faster kinetics than observed with a TTK-specific inhibitor. Broad anti-proliferative activity was demonstrated across solid tumor cell lines in vitro. Moreover, intermittent intravenous single-agent BAL0891 treatment of the MDA-MB-231 mouse model of TNBC induced profound tumor regressions associated with prolonged TTK and transient PLK1 in-tumor target occupancy. Furthermore, differential tumor responses across a panel of thirteen TNBC patient-derived xenograft models indicated profound anticancer activity in a subset (~40%). Using a flexible dosing approach, pathologically confirmed cures were observed in combination with paclitaxel, whereas synergy with carboplatin was schedule dependent. Conclusions Dual TTK/PLK1 inhibition represents a novel approach for the treatment of human cancer, including TNBC patients, with a potential for potent anticancer activity and a favorable therapeutic index. Moreover, combination approaches may provide an avenue to expand responsive patient populations.
Collapse
Affiliation(s)
- Elisa Zanini
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | | | - Felix Bachmann
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Adrian Brüngger
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Paul McSheehy
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | | | - Karin Burger
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Anna C. Groner
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Mila Roceri
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Luc Bury
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Martin Stieger
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | | | - Jos de Man
- Crossfire Oncology B.V., Oss, Netherlands
| | | | | | | | | | | | - Heidi A. Lane
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| |
Collapse
|
3
|
Gerninghaus J, Zhubi R, Krämer A, Karim M, Tran DHN, Joerger AC, Schreiber C, Berger LM, Berger BT, Ehret TAL, Elson L, Lenz C, Saxena K, Müller S, Einav S, Knapp S, Hanke T. Back-Pocket Optimization of 2-Aminopyrimidine-Based Macrocycles Leads to Potent EPHA2/GAK Kinase Inhibitors. J Med Chem 2024; 67:12534-12552. [PMID: 39028937 DOI: 10.1021/acs.jmedchem.4c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Macrocyclization of acyclic compounds is a powerful strategy for improving inhibitor potency and selectivity. Here we have optimized 2-aminopyrimidine-based macrocycles to use these compounds as chemical tools for the ephrin kinase family. Starting with a promiscuous macrocyclic inhibitor, 6, we performed a structure-guided activity relationship and selectivity study using a panel of over 100 kinases. The crystal structure of EPHA2 in complex with the developed macrocycle 23 provided a basis for further optimization by specifically targeting the back pocket, resulting in compound 55, a potent inhibitor of EPHA2/A4 and GAK. Subsequent front-pocket derivatization resulted in an interesting in cellulo selectivity profile, favoring EPHA4 over the other ephrin receptor kinase family members. The dual EPHA2/A4 and GAK inhibitor 55 prevented dengue virus infection of Huh7 liver cells. However, further investigations are needed to determine whether this was a compound-specific effect or target-related.
Collapse
Affiliation(s)
- Joshua Gerninghaus
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Rezart Zhubi
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Marwah Karim
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Do Hoang Nhu Tran
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Christian Schreiber
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Lena M Berger
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Benedict-Tilman Berger
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Theresa A L Ehret
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Lewis Elson
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Christopher Lenz
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Krishna Saxena
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
- Chan Zuckerberg Biohub, 499 Illinois St, San Francisco, California 94158, United States
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Thomas Hanke
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| |
Collapse
|
4
|
Pinto MF, Sirina J, Holliday ND, McWhirter CL. High-throughput kinetics in drug discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100170. [PMID: 38964171 DOI: 10.1016/j.slasd.2024.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
The importance of a drug's kinetic profile and interplay of structure-kinetic activity with PK/PD has long been appreciated in drug discovery. However, technical challenges have often limited detailed kinetic characterization of compounds to the latter stages of projects. This review highlights the advances that have been made in recent years in techniques, instrumentation, and data analysis to increase the throughput of detailed kinetic and mechanistic characterization, enabling its application earlier in the drug discovery process.
Collapse
Affiliation(s)
- Maria Filipa Pinto
- Artios Pharma Ltd, B940, Babraham Research Campus, Cambridge CB22 3FH, United Kingdom
| | - Julija Sirina
- Excellerate Bioscience Ltd, 21 The Triangle, NG2 Business Park, Nottingham, NG2 1AE, United Kingdom
| | - Nicholas D Holliday
- Excellerate Bioscience Ltd, 21 The Triangle, NG2 Business Park, Nottingham, NG2 1AE, United Kingdom; School of Life Sciences, The Medical School, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Claire L McWhirter
- Artios Pharma Ltd, B940, Babraham Research Campus, Cambridge CB22 3FH, United Kingdom.
| |
Collapse
|
5
|
Bravo-Moraga F, Bedoya M, Vergara-Jaque A, Alzate-Morales J. Understanding the Differences of Danusertib's Residence Time in Aurora Kinases A/B: Dissociation Paths and Key Residues Identified using Conventional and Enhanced Molecular Dynamics Simulations. J Chem Inf Model 2024; 64:4759-4772. [PMID: 38857305 DOI: 10.1021/acs.jcim.4c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The accurate experimental estimation of protein-ligand systems' residence time (τ) has become very relevant in drug design projects due to its importance in the last stages of refinement of the drug's pharmacodynamics and pharmacokinetics. It is now well-known that it is not sufficient to estimate the affinity of a protein-drug complex in the thermodynamic equilibrium process in in vitro experiments (closed systems), where the concentrations of the drug and protein remain constant. On the contrary, it is mandatory to consider the conformational dynamics of the system in terms of the binding and unbinding processes between protein and drugs in in vivo experiments (open systems), where their concentrations are in constant flux. This last model has been proven to dictate much of several drugs' pharmacological activities in vivo. At the atomistic level, molecular dynamics simulations can explain why some drugs are more effective than others or unveil the molecular aspects that make some drugs work better in one molecular target. Here, the protein kinases Aurora A/B, complexed with its inhibitor Danusertib, were studied using conventional and enhanced molecular dynamics (MD) simulations to estimate the dissociation paths and, therefore, the computational τ values and their comparison with experimental ones. Using classical molecular dynamics (cMD), three differential residues within the Aurora A/B active site, which seems to play an essential role in the observed experimental Danusertib's residence time against these kinases, were characterized. Then, using WT-MetaD, the relative Danusertib's residence times against Aurora A/B kinases were measured in a nanosecond time scale and were compared to those τ values observed experimentally. In addition, the potential dissociation paths of Danusertib in Aurora A and B were characterized, and differences that might be explained by the differential residues in the enzyme's active sites were found. In perspective, it is expected that this computational protocol can be applied to other protein-ligand complexes to understand, at the molecular level, the differences in residence times and amino acids that may contribute to it.
Collapse
Affiliation(s)
- Felipe Bravo-Moraga
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 1 Poniente 1141, 3466706 Talca, Chile
| | - Mauricio Bedoya
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3466706, Chile
- Laboratorio de Bioinformática y Química Computacional (LBQC), Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3466706, Chile
| | - Ariela Vergara-Jaque
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 1 Poniente 1141, 3466706 Talca, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), 8380453 Santiago, Chile
| | - Jans Alzate-Morales
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 1 Poniente 1141, 3466706 Talca, Chile
| |
Collapse
|
6
|
Wujieti B, Feng X, Liu E, Li D, Hao M, Zhou L, Cui W. A theoretical study on the activity and selectivity of IDO/TDO inhibitors. Phys Chem Chem Phys 2024; 26:16747-16764. [PMID: 38818624 DOI: 10.1039/d3cp06036e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO) is a tryptophan (Trp) metabolic enzyme along the kynurenine (NFK) pathway. Under pathological conditions, IDO overexpressed by tumor cells causes depletion of tryptophan and the accumulation of metabolic products, which inhibit the local immune response and form immune escape. Therefore, the suppression of IDO activity is one of the strategies for tumor immunotherapy, and drug design for this target has been the focus of research for more than two decades. Apart from IDO, tryptophan dioxygenase (TDO) of the same family can also catalyze the same biochemical reaction in the human body, but it has different tissue distribution and substrate selectivity from IDO. Based on the principle of drug design with high potency and low cross-reactivity to specific targets, in this subject, the activity and selectivity of IDO and TDO toward small molecular inhibitors were studied from the perspective of thermodynamics and kinetics. The aim was to elucidate the structural requirements for achieving favorable biological activity and selectivity of IDO and TDO inhibitors. Specifically, the interactions of inhibitors from eight families with IDO and TDO were initially investigated through molecular docking and molecular dynamics simulations, and the thermodynamic data for binding of inhibitors were predicted by the molecular mechanics/generalized Born surface area (MM/GBSA) method. Secondly, we explored the free energy landscape of JKloops, the kinetic control element of IDO/TDO, using temperature replica exchange molecular dynamics (T-REMD) simulations and elucidated the connection between the rules of IDO/TDO conformational changes and the inhibitor selectivity mechanism. Furthermore, the binding and dissociation processes of the C1 inhibitor (NLG919) were simulated by the adaptive steering molecular dynamics (ASMD) method, which not only addressed the possible stable, metastable, and transition states for C1 inhibitor-IDO/TDO interactions, but also accurately predicted kinetic data for C1 inhibitor binding and dissociation. In conclusion, we have constructed a complete process from enzyme (IDO/TDO) conformational activation to inhibitor binding/dissociation and used the thermodynamic and kinetic data of each link as clues to verify the control mechanism of IDO/TDO on inhibitor selectivity. This is of great significance for us to understand the design principles of tumor immunotherapy drugs and to avoid drug resistance of immunotherapy drugs.
Collapse
Affiliation(s)
- Baerlike Wujieti
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Xinping Feng
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Erxia Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Deqing Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Mingtian Hao
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Luqi Zhou
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| | - Wei Cui
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China.
| |
Collapse
|
7
|
Khameneh HJ, Bolis M, Ventura PMO, Cassanmagnago GA, Fischer BA, Zenobi A, Guerra J, Buzzago I, Bernasconi M, Zaman GJR, Rinaldi A, Moro SG, Sallusto F, Baulier E, Pasquali C, Guarda G. The bacterial lysate OM-85 engages Toll-like receptors 2 and 4 triggering an immunomodulatory gene signature in human myeloid cells. Mucosal Immunol 2024; 17:346-358. [PMID: 38447907 DOI: 10.1016/j.mucimm.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
OM-85 is a bacterial lysate used in clinical practice to reduce duration and frequency of recurrent respiratory tract infections. Whereas knowledge of its regulatory effects in vivo has substantially advanced, the mechanisms of OM-85 sensing remain inadequately addressed. Here, we show that the immune response to OM-85 in the mouse is largely mediated by myeloid immune cells through Toll-like receptor (TLR) 4 in vitro and in vivo. Instead, in human immune cells, TLR2 and TLR4 orchestrate the response to OM-85, which binds to both receptors as shown by surface plasmon resonance assay. Ribonucleic acid-sequencing analyses of human monocyte-derived dendritic cells reveal that OM-85 triggers a pro-inflammatory signature and a unique gene set, which is not induced by canonical agonists of TLR2 or TLR4 and comprises tolerogenic genes. A largely overlapping TLR2/4-dependent gene signature was observed in individual subsets of primary human airway myeloid cells, highlighting the robust effects of OM-85. Collectively, our results suggest caution should be taken when relating murine studies on bacterial lysates to humans. Furthermore, our data shed light on how a standardized bacterial lysate shapes the response through TLR2 and TLR4, which are crucial for immune response, trained immunity, and tolerance.
Collapse
Affiliation(s)
- Hanif J Khameneh
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland.
| | - Marco Bolis
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute of Oncology Research, Bellinzona, Switzerland; Computational Oncology Unit, Department of Oncology, Istituto di Richerche Farmacologiche 'Mario Negri' IRCCS, Milano, Italy; Bioinformatics Core Unit, Swiss Institute of Bioinformatics, Bellinzona, Switzerland
| | - Pedro M O Ventura
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Giada A Cassanmagnago
- Computational Oncology Unit, Department of Oncology, Istituto di Richerche Farmacologiche 'Mario Negri' IRCCS, Milano, Italy
| | - Berenice A Fischer
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Alessandro Zenobi
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Jessica Guerra
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Irene Buzzago
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Maurizio Bernasconi
- Pulmonology Division, Ente Ospedaliero Cantonale (EOC), Ospedale Regionale di Bellinzona e Valli (ORBV), Bellinzona, Switzerland
| | | | - Andrea Rinaldi
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute of Oncology Research, Bellinzona, Switzerland
| | - Simone G Moro
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Federica Sallusto
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland; Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Edouard Baulier
- OM Pharma SA, Department of Preclinical Research, Meyrin, Switzerland
| | | | - Greta Guarda
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland.
| |
Collapse
|
8
|
Cui XY, Li Z, Kong Z, Liu Y, Meng H, Wen Z, Wang C, Chen J, Xu M, Li Y, Gao J, Zhu W, Hao Z, Huo L, Liu S, Yang Z, Liu Z. Covalent targeted radioligands potentiate radionuclide therapy. Nature 2024; 630:206-213. [PMID: 38778111 DOI: 10.1038/s41586-024-07461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Targeted radionuclide therapy, in which radiopharmaceuticals deliver potent radionuclides to tumours for localized irradiation, has addressed unmet clinical needs and improved outcomes for patients with cancer1-4. A therapeutic radiopharmaceutical must achieve both sustainable tumour targeting and fast clearance from healthy tissue, which remains a major challenge5,6. A targeted ligation strategy that selectively fixes the radiopharmaceutical to the target protein in the tumour would be an ideal solution. Here we installed a sulfur (VI) fluoride exchange (SuFEx) chemistry-based linker on radiopharmaceuticals to prevent excessively fast tumour clearance. When the engineered radiopharmaceutical binds to the tumour-specific protein, the system undergoes a binding-to-ligation transition and readily conjugates to the tyrosine residues through the 'click' SuFEx reaction. The application of this strategy to a fibroblast activation protein (FAP) inhibitor (FAPI) triggered more than 80% covalent binding to the protein and almost no dissociation for six days. In mice, SuFEx-engineered FAPI showed 257% greater tumour uptake than did the original FAPI, and increased tumour retention by 13-fold. The uptake in healthy tissues was rapidly cleared. In a pilot imaging study, this strategy identified more tumour lesions in patients with cancer than did other methods. SuFEx-engineered FAPI also successfully achieved targeted β- and α-radionuclide therapy, causing nearly complete tumour regression in mice. Another SuFEx-engineered radioligand that targets prostate-specific membrane antigen (PSMA) also showed enhanced therapeutic efficacy. Considering the broad scope of proteins that can potentially be ligated to SuFEx warheads, it might be possible to adapt this strategy to other cancer targets.
Collapse
Affiliation(s)
- Xi-Yang Cui
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
- Changping Laboratory, Beijing, P. R. China
| | - Zhu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, P. R. China
| | - Ziren Kong
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yu Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Hao Meng
- Changping Laboratory, Beijing, P. R. China
| | - Zihao Wen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Changlun Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Junyi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Mengxin Xu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
- Changping Laboratory, Beijing, P. R. China
| | - Yiyan Li
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Jingyue Gao
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Wenjia Zhu
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine and State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zhixin Hao
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine and State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Li Huo
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine and State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Shaoyan Liu
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, P. R. China
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China.
- Changping Laboratory, Beijing, P. R. China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, P. R. China.
- Peking University-Tsinghua University Center for Life Sciences, Peking University, Beijing, P. R. China.
| |
Collapse
|
9
|
Khan ZR, Welsby PJ, Stasik I, Hayes JM. Discovery of Potent Multikinase Type-II Inhibitors Targeting CDK5 in the DFG-out Inactive State with Promising Potential against Glioblastoma. J Med Chem 2024. [PMID: 38686637 DOI: 10.1021/acs.jmedchem.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Kinases have proven valuable targets in successful cancer drug discovery projects, but not yet for malignant brain tumors where type-II inhibition of cyclin-dependent kinase 5 (CDK5) stabilizing the DFG-out inactive state has potential for design of selective and clinically efficient drug candidates. In the absence of crystallographic evidence for a CDK5 DFG-out inactive state protein-ligand complex, for the first time, a model was designed using metadynamics/molecular dynamics simulations. Glide docking of the ZINC15 biogenic database identified [pyrimidin-2-yl]amino-furo[3,2-b]-furyl-urea/amide hit chemical scaffolds. For four selected analogues (4, 27, 36, and 42), potent effects on glioblastoma cell viability in U87-MG, T98G, and U251-MG cell lines and patient-derived cultures were generally observed (IC50s ∼ 10-40 μM at 72 h). Selectivity profiling against 11 homologous kinases revealed multikinase inhibition (CDK2, CDK5, CDK9, and GSK-3α/β), most potent for GSK-3α in the nanomolar range (IC50s ∼ 0.23-0.98 μM). These compounds may therefore have diverse anticancer mechanisms of action and are of considerable interest for lead optimization.
Collapse
Affiliation(s)
- Zahra R Khan
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Philip J Welsby
- Education Directorate, Royal College of Physicians, Liverpool L7 3FA, United Kingdom
| | - Izabela Stasik
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Joseph M Hayes
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
- Biomedical Evidence-Based Transdisciplinary (BEST) Health Research Institute, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| |
Collapse
|
10
|
Zeng Y, Zhang A, Yang X, Xing C, Zhai J, Wang Y, Cai B, Shi S, Zhang Y, Shen Z, Fu TM, Zhu L, Shen H, Ye J, Wang C. Internal exposure potential of water-soluble organic molecules in urban PM 2.5 evaluated by non-covalent adductome of human serum albumin. ENVIRONMENT INTERNATIONAL 2024; 184:108492. [PMID: 38350258 DOI: 10.1016/j.envint.2024.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
Water-soluble organic molecules (WSOMs) in inhaled PM2.5 can readily translocate from the lungs into the blood circulation, facilitating their distribution to and health effects on distant organs and tissues in the human body. Human serum albumin (HSA), the most abundant protein carrier in the blood, readily binds exogenous substances to form non-covalent adducts and subsequently transports them throughout the circulatory system, thereby indicating their internal exposure. The direct internal exposure of WSOMs in PM2.5 needs to be understood. In this study, the non-covalent HSA-WSOM adductome was developed as a dosimeter to evaluate the internal exposure potential of WSOMs in urban PM2.5. The WSOM composition was acquired from non-target high-resolution mass spectrometry analysis coupled with multiple ionizations. The binding level of HSA-WSOM non-covalent adducts was obtained from surface plasma resonance. Machine learning combined WSOM composition and the binding level of HSA-WSOM non-covalent adducts to screen bindable (also internalizable) WSOMs. The concentration of WSOM ranged from 4 to 13 μg/m3 during our observation period. Of the 17,513 mass spectral features detected, 9,484 contributed to the non-covalent adductome and possessed the internal exposure potential. 102 major contributors accounted for 90.6 % of the HSA-WSOM binding level. The fraction of internalizable WSOMs in PM2.5 varied from 11.9 % to 61.3 %, averaging 26.2 %. WSOMs that have internal exposure potential were primarily lignin-like and lipid-like substances. The HSA-WSOMs non-covalent adductome represents direct internal exposure potential, which can provide crucial insights into the molecular diagnosis of PM2.5 exposure and precise assessments of PM2.5 health effects.
Collapse
Affiliation(s)
- Yaling Zeng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Antai Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China.
| | - Chunbo Xing
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Jinghao Zhai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Yixiang Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Baohua Cai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Shao Shi
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Yujie Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Lei Zhu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Jianhuai Ye
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Chen Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| |
Collapse
|
11
|
Yamini, Anand P, Bhardwaj VK, Kumar A, Purohit R, Das P, Padwad Y. Novel pyrrolone-fused benzosuberene MK2 inhibitors: synthesis, pharmacophore modelling, molecular docking, and anti-cancer efficacy evaluation in HNSCC cells. J Biomol Struct Dyn 2023; 42:11954-11975. [PMID: 39540409 DOI: 10.1080/07391102.2023.2265993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/17/2023] [Indexed: 11/16/2024]
Abstract
Head and neck Squamous Cell Carcinoma (HNSCC) is a growing concern worldwide and MAPKAPK2/MK2 (Mitogen-Activated Protein Kinase Activated Protein Kinase 2) is crucially involved in HNSCC progression. Increased disease burden and lacuna of targeted therapies require novel and safe pharmacological inhibitors to suppress the well-explored molecular targets in HNSCC. Here, we used dibromo-substituted benzosuberene synthesized from the mixture of α, β, γ-himachalenes and utilized as a precursor for the synthesis of Pyrrolone-fused benzosuberenes (PfBS) as MK2 inhibitors through aminocarbonylation approach in a single-pot reaction. The devised protocol provides a broad substrate scope, facile recovery, recyclability of Polystyrene-supported palladium (Pd@PS) nanoparticle catalyst, and fewer synthesis steps. In-silico molecular docking, pharmacophore modeling, and ADMET revealed MK2-inhibitory potential and drug-likeliness of PfBS analogues. Surface plasmon resonance (SPR) analysis revealed effective high binding affinity (KD) and kinetics of PfBS analogues with MK2. Additionally, the SPR-mediated in-solution inhibition assay established the MK2-inhibition properties of PfBS analogues through abrogation of MK2-Hsp27 interaction. Further, in-vitro studies validate the findings in HNSCC cells. PfBS analogues exhibited significant anti-proliferative effects on CAL 27 tongue squamous carcinoma cells and were found safe on IEC-6 intestinal epithelial cells. Moreover, immunofluorescence analysis and western-blot assays potentiated, that selected analogues inhibited the inflammatory cytokine TNF-α induced activation of MK2 on cellular and molecular levels in HNSCC cells. In conclusion, this study presents novel MK2-inhibitors and opens the avenue for further pre-clinical and clinical efficacy evaluation of developed PfBS analogues in the treatment of HNSCC.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yamini
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prince Anand
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
| | - Vijay Kumar Bhardwaj
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, India
| | - Ashish Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rituraj Purohit
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, India
| | - Pralay Das
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Yogendra Padwad
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
| |
Collapse
|
12
|
Chen Y, Chen Z, Li T, Qiu M, Zhang J, Wang Y, Yuan W, Ho AHP, Al-Hartomy O, Wageh S, Al-Sehemi AG, Shi X, Li J, Xie Z, Xuejin L, Zhang H. Ultrasensitive and Specific Clustered Regularly Interspaced Short Palindromic Repeats Empowered a Plasmonic Fiber Tip System for Amplification-Free Monkeypox Virus Detection and Genotyping. ACS NANO 2023; 17:12903-12914. [PMID: 37384815 PMCID: PMC10340103 DOI: 10.1021/acsnano.3c05007] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023]
Abstract
The urgent necessity for highly sensitive diagnostic tools has been accentuated by the ongoing mpox (monkeypox) virus pandemic due to the complexity in identifying asymptomatic and presymptomatic carriers. Traditional polymerase chain reaction-based tests, despite their effectiveness, are hampered by limited specificity, expensive and bulky equipment, labor-intensive operations, and time-consuming procedures. In this study, we present a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a-based diagnostic platform with a surface plasmon resonance-based fiber tip (CRISPR-SPR-FT) biosensor. The compact CRISPR-SPR-FT biosensor, with a 125 μm diameter, offers high stability and portability, enabling exceptional specificity for mpox diagnosis and precise identification of samples with a fatal mutation site (L108F) in the F8L gene. The CRISPR-SPR-FT system can analyze viral double-stranded DNA from mpox virus without amplification in under 1.5 h with a limit of detection below 5 aM in plasmids and about 59.5 copies/μL when in pseudovirus-spiked blood samples. Our CRISPR-SPR-FT biosensor thus offers fast, sensitive, portable, and accurate target nucleic acid sequence detection.
Collapse
Affiliation(s)
- Yuzhi Chen
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s
Republic of China
- Shenzhen
Key Laboratory of Sensor Technology, Shenzhen 518060, People’s Republic of China
| | - Zhi Chen
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s
Republic of China
- The
Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong 511518, People’s Republic
of China
- Shenzhen
International Institute for Biomedical Research, Shenzhen, Guangdong 518110, People’s Republic
of China
| | - Tianzhong Li
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s
Republic of China
| | - Meng Qiu
- College
of Chemistry and Chemical Engineering, Key Laboratory of Marine Chemistry
Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, People’s Republic
of China
| | - Jinghan Zhang
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s
Republic of China
- Shenzhen
Key Laboratory of Sensor Technology, Shenzhen 518060, People’s Republic of China
- The
Chinese University of Hong Kong, Shenzhen, Guangdong 518060, People’s Republic
of China
| | - Yan Wang
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s
Republic of China
- Shenzhen
Key Laboratory of Sensor Technology, Shenzhen 518060, People’s Republic of China
| | - Wu Yuan
- Department
of Biomedical Engineering, The Chinese University
of Hong Kong, Shatin, N.T., Hong Kong 999077, People’s Republic of China
| | - Aaron Ho-Pui Ho
- Department
of Biomedical Engineering, The Chinese University
of Hong Kong, Shatin, N.T., Hong Kong 999077, People’s Republic of China
| | - Omar Al-Hartomy
- Department
of Physics, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Swelm Wageh
- Department
of Physics, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Abdullah G. Al-Sehemi
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Xin Shi
- China Medical University, Shenyang, Liaoning 110001, People’s
Republic of China
- School
of Mathematics and Information Science, Shandong Technology and Business University, Yantai, Shandong 264005 People’s Republic
of China
- Manchester Metropolitan University (MMU), Operations, Technology, Events and Hospitality Management,
Business
School, All Saints Campus, Oxford Road, Manchester M15 6BH, United Kingdom
| | - Jingfeng Li
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s
Republic of China
- Shenzhen
International Institute for Biomedical Research, Shenzhen, Guangdong 518110, People’s Republic
of China
| | - Zhongjian Xie
- Institute
of Pediatrics, Shenzhen Children’s
Hospital, Shenzhen, Guangdong 518038, People’s Republic of China
| | - Li Xuejin
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s
Republic of China
- Shenzhen
Key Laboratory of Sensor Technology, Shenzhen 518060, People’s Republic of China
- The
Chinese University of Hong Kong, Shenzhen, Guangdong 518060, People’s Republic
of China
| | - Han Zhang
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s
Republic of China
- International
Collaborative Laboratory of 2D, Materials for Optoelectronics Science
and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, People’s Republic of China
| |
Collapse
|
13
|
Jang S, Strickland B, Finis L, Kooijman JJ, Melis JJTM, Zaman GJR, Van Tornout J. Comparative biochemical kinase activity analysis identifies rivoceranib as a highly selective VEGFR2 inhibitor. Cancer Chemother Pharmacol 2023; 91:491-499. [PMID: 37148323 DOI: 10.1007/s00280-023-04534-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR2), a key regulator of tumor angiogenesis, is highly expressed across numerous tumor types and has been an attractive target for anti-cancer therapy. However, clinical application of available VEGFR2 inhibitors has been challenged by limited efficacy and a wide range of side effects, potentially due to inadequate selectivity for VEGFR2. Thus, development of potent VEGFR2 inhibitors with improved selectivity is needed. Rivoceranib is an orally administered tyrosine kinase inhibitor that potently and selectively targets VEGFR2. A comparative understanding of the potency and selectivity of rivoceranib and approved inhibitors of VEGFR2 is valuable to inform rationale for therapy selection in the clinic. Here, we performed biochemical analyses of the kinase activity of VEGFR2 and of a panel of 270 kinases to compare rivoceranib to 10 FDA-approved kinase inhibitors ("reference inhibitors") with known activity against VEGFR2. Rivoceranib demonstrated potency within the range of the reference inhibitors, with a VEGFR2 kinase inhibition IC50 value of 16 nM. However, analysis of residual kinase activity of the panel of 270 kinases showed that rivoceranib displayed greater selectivity for VEGFR2 compared with the reference inhibitors. Differences in selectivity among compounds within the observed range of potency of VEGFR2 kinase inhibition are clinically relevant, as toxicities associated with available VEGFR2 inhibitors are thought to be partly due to their effects against kinases other than VEGFR2. Together, this comparative biochemical analysis highlights the potential for rivoceranib to address clinical limitations associated with off-target effects of currently available VEGFR2 inhibitors.
Collapse
|
14
|
Berges N, Klug JH, Eicher A, Loehr J, Schwarz D, Bomke J, Leuthner B, Perrin D, Schadt O. Differences in Sustained Cellular Effects of MET inhibitors Are Driven by Prolonged Target Engagement and Lysosomal Retention. Mol Pharmacol 2023; 103:77-88. [PMID: 36400432 DOI: 10.1124/molpharm.122.000590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022] Open
Abstract
Intracellular distribution of drug compounds is dependent on physicochemical characteristics and may have a significant bearing on the extent of target occupancy and, ultimately, drug efficacy. We assessed differences in the physicochemical profiles of MET inhibitors capmatinib, crizotinib, savolitinib, and tepotinib and their effects on cell viability and MET phosphorylation under steady-state and washout conditions (to mimic an open organic system) in a human lung cancer cell line. To examine the differences of the underlying molecular mechanisms at the receptor level, we investigated the residence time at the kinase domain and the cellular target engagement. We found that the ranking of the drugs for cell viability was different under steady-state and washout conditions and that under washout conditions, tepotinib displayed the most potent inhibition of phosphorylated MET. Postwashout effects were correlated with the partitioning of the drug into acidic subcellular compartments such as lysosomes, and the tested MET inhibitors were grouped according to their ability to access lysosomes (crizotinib and tepotinib) or not (capmatinib and savolitinib). Reversible lysosomal retention may represent a valuable intracellular storage mechanism for MET inhibitors, enabling prolonged receptor occupancy in dynamic, open-physiologic systems and may act as a local drug reservoir. The use of washout conditions to simulate open systems and investigate intracellular drug distribution is a useful characterization step that deserves further investigation. SIGNIFICANCE STATEMENT: Generally, determination of potency and receptor occupancy is performed under steady-state conditions. In vivo conditions are more complex due to concentration differences between compartments and equilibrium processes. Experiments under steady state cannot explore effects such as sustained target inhibition. This study has shown that differences between MET inhibitors are observable by applying washout conditions to in vitro assays. This important finding applies to most compound classes and may inspire readers to rethink their assay designs in the future.
Collapse
Affiliation(s)
- Nina Berges
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | - Anna Eicher
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Jennifer Loehr
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Daniel Schwarz
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Joerg Bomke
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | | | - Oliver Schadt
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| |
Collapse
|
15
|
Sabatier P, Beusch CM, Meng Z, Zubarev RA. System-Wide Profiling by Proteome Integral Solubility Alteration Assay of Drug Residence Times for Target Characterization. Anal Chem 2022; 94:15772-15780. [DOI: 10.1021/acs.analchem.2c03506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pierre Sabatier
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17177, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala751 85, Sweden
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen2200, Denmark
| | - Christian M. Beusch
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17177, Sweden
| | - Zhaowei Meng
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17177, Sweden
| | - Roman A. Zubarev
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17177, Sweden
- Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow119146, Russia
- The National Medical Research Center for Endocrinology, Moscow115478, Russia
| |
Collapse
|
16
|
Chen Z, Li J, Li T, Fan T, Meng C, Li C, Kang J, Chai L, Hao Y, Tang Y, Al-Hartomy OA, Wageh S, Al-Sehemi AG, Luo Z, Yu J, Shao Y, Li D, Feng S, Liu WJ, He Y, Ma X, Xie Z, Zhang H. A CRISPR/Cas12a empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2. Natl Sci Rev 2022; 9:nwac104. [PMID: 35992231 PMCID: PMC9385456 DOI: 10.1093/nsr/nwac104] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 11/14/2022] Open
Abstract
The outbreak of the COVID-19 pandemic was partially due to the challenge of identifying asymptomatic and presymptomatic carriers of the virus, and thus highlights a strong motivation for diagnostics with high sensitivity that can be rapidly deployed. On the other hand, several concerning SARS-CoV-2 variants, including Omicron, are required to be identified as soon as the samples are identified as ‘positive’. Unfortunately, a traditional PCR test does not allow their specific identification. Herein, for the first time, we have developed MOPCS (Methodologies of Photonic CRISPR Sensing), which combines an optical sensing technology-surface plasmon resonance (SPR) with the ‘gene scissors’ clustered regularly interspaced short palindromic repeat (CRISPR) technique to achieve both high sensitivity and specificity when it comes to measurement of viral variants. MOPCS is a low-cost, CRISPR/Cas12a-system-empowered SPR gene-detecting platform that can analyze viral RNA, without the need for amplification, within 38 min from sample input to results output, and achieve a limit of detection of 15 fM. MOPCS achieves a highly sensitive analysis of SARS-CoV-2, and mutations appear in variants B.1.617.2 (Delta), B.1.1.529 (Omicron) and BA.1 (a subtype of Omicron). This platform was also used to analyze some recently collected patient samples from a local outbreak in China, identified by the Centers for Disease Control and Prevention. This innovative CRISPR-empowered SPR platform will further contribute to the fast, sensitive and accurate detection of target nucleic acid sequences with single-base mutations.
Collapse
Affiliation(s)
- Zhi Chen
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
| | - Jinfeng Li
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
- Shenzhen International Institute for Biomedical Research , Shenzhen 518116 , Guangdong , China
| | - Tianzhong Li
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
- Shenzhen International Institute for Biomedical Research , Shenzhen 518116 , Guangdong , China
| | - Taojian Fan
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
| | - Changle Meng
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
| | - Chaozhou Li
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
| | - Jianlong Kang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
| | - Luxiao Chai
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
| | - Yabin Hao
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
- Shenzhen Han's Tech Limited Company. Shenzhen 518000 , China
| | - Yuxuan Tang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
- Shenzhen Metasensing Tech Limited Company. Shenzhen 518000 , China
| | - Omar A Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University , Jeddah 21589, Saudi Arabia
| | - Swelm Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University , Jeddah 21589, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University , Abha 61413, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University , Abha 61413, Saudi Arabia
| | - Zhiguang Luo
- Zhongmin (Shenzhen) intelligent ecology Co. , Ltd., Shenzhen 518055 , China
| | - Jiangtian Yu
- Shenzhen International Institute for Biomedical Research , Shenzhen 518116 , Guangdong , China
| | - Yonghong Shao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University , Shenzhen 518060 , China
| | - Defa Li
- Department of Laboratory Medicine, Shenzhen Children's Hospital , Shenzhen 518038 , China
| | - Shuai Feng
- Optoelectronics Research Center, School of Science, Minzu University of China , Beijing 100081 , China
| | - William J Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing 102206 , China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences , Beijing 102206 , China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055 , China
| | - Xiaopeng Ma
- Department of Respiratory, Shenzhen Children's Hospital , Shenzhen 518038 , China
| | - Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital , Shenzhen 518038 , China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education; Shenzhen Institute of Translational Medicine; Department of Otolaryngology, Shenzhen Second People's Hospital; the First Affiliated Hospital; Institute of Microscale Optoelectronics, Shenzhen University , Shenzhen 518060 , China
| |
Collapse
|
17
|
Targeting the HER3 pseudokinase domain with small molecule inhibitors. Methods Enzymol 2022; 667:455-505. [PMID: 35525551 DOI: 10.1016/bs.mie.2022.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HER3 is a potent oncogenic growth factor receptor belonging to the human epidermal growth factor (HER/EGFR) family of receptor tyrosine kinases. In contrast to other EGFR family members, HER3 is a pseudokinase, lacking functional kinase activity. As such, efforts to develop small molecule tyrosine kinase inhibitors against this family member have been limited. In response to HER3-specific growth factors such as neuregulin (NRG, also known as heregulin or HRG), HER3 must couple with catalytically active family members, including its preferred partner HER2. Dimerization of the intracellular HER2:HER3 kinase domains is a critical part of the activation mechanism and HER3 plays a specialized role as an allosteric activator of the active HER2 kinase partner. Intriguingly, many pseudokinases retain functionally important nucleotide binding capacity, despite loss of kinase activity. We demonstrated that occupation of the nucleotide pocket of the pseudokinase HER3 retains functional importance for growth factor signaling through oncogenic HER2:HER3 heterodimers. Mutation of the HER3 nucleotide pocket both disrupts signaling and disrupts HER2:HER3 dimerization. Conversely, ATP competitive drugs which bind to HER3, but not HER2, can stabilize HER2:HER3 dimers, induce signaling and promote cell growth in breast cancer models. This indicates a nucleotide-dependent conformational role for the HER3 kinase domain. Critically, our recent proof-of-concept work demonstrated that HER3-directed small molecule inhibitors can also disrupt HER2:HER3 dimerization and signaling, supporting the prospect that HER3 can be a direct drug target despite its lack of intrinsic activity. In this chapter we will describe methods for identifying and validating small molecule inhibitors against the HER3 pseudokinase.
Collapse
|
18
|
Zheng F, Chen Z, Li J, Wu R, Zhang B, Nie G, Xie Z, Zhang H. A Highly Sensitive CRISPR-Empowered Surface Plasmon Resonance Sensor for Diagnosis of Inherited Diseases with Femtomolar-Level Real-Time Quantification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105231. [PMID: 35343100 PMCID: PMC9108660 DOI: 10.1002/advs.202105231] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/21/2022] [Indexed: 05/25/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) molecular system has emerged as a promising technology for the detection of nucleic acids. Herein, the development of a surface plasmon resonance (SPR) sensor that is functionalized with a layer of locally grown graphdiyne film, achieving excellent sensing performance when coupled with catalytically deactivated CRISPR-associated protein 9 (dCas9), is reported. dCas9 protein is immobilized on the sensor surface and complexed with a specific single-guide RNA, enabling the amplification-free detection of target sequences within genomic DNA. The sensor, termed CRISPR-SPR-Chip, is used to successfully analyze recombinant plasmids with only three-base mutations with a limit of detection as low as 1.3 fM. Real-time monitoring CRISPR-SPR-Chip is used to analyze clinical samples of patients with Duchenne muscular dystrophy with two exon deletions, which are detected without any pre-amplification step, yielding significantly positive results within 5 min. The ability of this novel CRISPR-empowered SPR (CRISPR-eSPR) sensing platform to rapidly, precisely, sensitively, and specifically detect a target gene sequence provides a new on-chip optic approach for clinical gene analysis.
Collapse
Affiliation(s)
- Fei Zheng
- Shenzhen Engineering Laboratory of phosphorene and OptoelectronicsInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationShenzhen Institute of Translational MedicineDepartment of OtolaryngologyShenzhen Second People's Hospitalthe First Affiliated HospitalInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P.R. China
| | - Zhi Chen
- Shenzhen Engineering Laboratory of phosphorene and OptoelectronicsInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationShenzhen Institute of Translational MedicineDepartment of OtolaryngologyShenzhen Second People's Hospitalthe First Affiliated HospitalInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P.R. China
| | - Jingfeng Li
- Shenzhen Engineering Laboratory of phosphorene and OptoelectronicsInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationShenzhen Institute of Translational MedicineDepartment of OtolaryngologyShenzhen Second People's Hospitalthe First Affiliated HospitalInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P.R. China
- Shenzhen International Institute for Biomedical ResearchShenzhen518110China
| | - Rui Wu
- Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001P. R. China
| | - Bin Zhang
- Shenzhen Engineering Laboratory of phosphorene and OptoelectronicsInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationShenzhen Institute of Translational MedicineDepartment of OtolaryngologyShenzhen Second People's Hospitalthe First Affiliated HospitalInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P.R. China
| | - Guohui Nie
- Shenzhen Engineering Laboratory of phosphorene and OptoelectronicsInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationShenzhen Institute of Translational MedicineDepartment of OtolaryngologyShenzhen Second People's Hospitalthe First Affiliated HospitalInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P.R. China
| | - Zhongjian Xie
- Institute of PediatricsShenzhen Children's HospitalShenzhenGuangdong518038P. R. China
- Shenzhen International Institute for Biomedical ResearchShenzhenGuangdong518116P. R. China
| | - Han Zhang
- Shenzhen Engineering Laboratory of phosphorene and OptoelectronicsInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationShenzhen Institute of Translational MedicineDepartment of OtolaryngologyShenzhen Second People's Hospitalthe First Affiliated HospitalInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P.R. China
| |
Collapse
|
19
|
Mutation in Abl kinase with altered drug-binding kinetics indicates a novel mechanism of imatinib resistance. Proc Natl Acad Sci U S A 2021; 118:2111451118. [PMID: 34750265 DOI: 10.1073/pnas.2111451118] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 12/19/2022] Open
Abstract
Protein kinase inhibitors are potent anticancer therapeutics. For example, the Bcr-Abl kinase inhibitor imatinib decreases mortality for chronic myeloid leukemia by 80%, but 22 to 41% of patients acquire resistance to imatinib. About 70% of relapsed patients harbor mutations in the Bcr-Abl kinase domain, where more than a hundred different mutations have been identified. Some mutations are located near the imatinib-binding site and cause resistance through altered interactions with the drug. However, many resistance mutations are located far from the drug-binding site, and it remains unclear how these mutations confer resistance. Additionally, earlier studies on small sets of patient-derived imatinib resistance mutations indicated that some of these mutant proteins were in fact sensitive to imatinib in cellular and biochemical studies. Here, we surveyed the resistance of 94 patient-derived Abl kinase domain mutations annotated as disease relevant or resistance causing using an engagement assay in live cells. We found that only two-thirds of mutations weaken imatinib affinity by more than twofold compared to Abl wild type. Surprisingly, one-third of mutations in the Abl kinase domain still remain sensitive to imatinib and bind with similar or higher affinity than wild type. Intriguingly, we identified three clinical Abl mutations that bind imatinib with wild type-like affinity but dissociate from imatinib considerably faster. Given the relevance of residence time for drug efficacy, mutations that alter binding kinetics could cause resistance in the nonequilibrium environment of the body where drug export and clearance play critical roles.
Collapse
|
20
|
Copeland RA. Chance Favors the Perplexed Mind: The Critical Role of Mechanistic Biochemistry in Drug Discovery. Biochemistry 2021; 60:2275-2284. [PMID: 34259514 DOI: 10.1021/acs.biochem.1c00345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Scientific discoveries often start with an observation that does not quite make sense, within the framework of a well-established hypothesis. It is when researchers delve deeply to understand such perplexing data that established hypotheses are modified or replaced, and new and expanded knowledge of the system can be gained. This is often the case in the field of drug discovery. In this Perspective, case studies demonstrate how an understanding of perplexing data can lead to novel discoveries regarding the biological function of drug targets, or the mechanisms of compound-target interactions, that can ultimately result in new drugs entering the clinic. These case studies reinforce two interdependent themes: (1) that understanding the pathophysiological context in which drug targets function and the mechanistic details of drug-target interactions are critical to efficient and effective drug discovery and (2) that investing time and energy into following up on perplexing data can lead to novel discoveries that can drive the development of new and improved medicines.
Collapse
Affiliation(s)
- Robert A Copeland
- Accent Therapeutics, Inc., 65 Hayden Avenue, Lexington, Massachusetts 02421, United States
| |
Collapse
|
21
|
Abstract
IntroductionThe pharmacological action of a drug is linked to its affinity for a specific molecular target as quantified by in vitro equilibrium measurements. However, it is clear that for many highly effective drugs, interactions with their molecular targets do not conform to simple, equilibrium conditions in vivo and this results in a temporal discordance between pharmacokinetics and pharmacodynamics. The drug-target residence time model was developed to provide a theoretical framework with which to understand cases in which very slow dissociation of the drug-target complex in vivo results in durable PD effects even after systemic concentrations of drug have waned.Area coveredIn this article, the author provides a brief description of the drug-target residence time model and focuses on the refinements that have been made to the original model to incorporate the influences of compound rebinding in cells and pharmacokinetic properties of drug molecules.Expert opinionThere is now overwhelming evidence for the utility of the drug-target residence time model as a framework for understanding in vivo drug action. The in vitro measured residence time (τR) must be used in concert with equilibrium measures of drug-target affinity (e.g. IC50) and with in vivo measures of pharmacokinetic half-life, to afford the researcher a powerful approach to compound optimization for clinical effect. Despite the significant use and refinement of this model, continued studies are required to better understand the dynamic interplay between residence time, target pathobiology, drug distribution and drug pharmacokinetics.
Collapse
|
22
|
Schuetz DA, Richter L, Martini R, Ecker GF. A structure-kinetic relationship study using matched molecular pair analysis. RSC Med Chem 2020; 11:1285-1294. [PMID: 34085042 PMCID: PMC8126976 DOI: 10.1039/d0md00178c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The lifetime of a binary drug–target complex is increasingly acknowledged as an important parameter for drug efficacy and safety. With a better understanding of binding kinetics and better knowledge about kinetic parameter optimization, intentionally induced prolongation of the drug–target residence time through structural changes of the ligand could become feasible. In this study we assembled datasets from 21 publications and the K4DD (Kinetic for Drug Discovery) database to conduct large scale data analysis. This resulted in 3812 small molecules annotated to 78 different targets from five protein classes (GPCRs: 273, kinases: 3238, other enzymes: 240, HSPs: 160, ion channels: 45). Performing matched molecular pair (MMP) analysis to further investigate the structure–kinetic relationship (SKR) in this data collection allowed us to identify a fundamental contribution of a ligand's polarity to its association rate, and in selected cases, also to its dissociation rate. However, we furthermore observed that the destabilization of the transition state introduced by increased polarity is often accompanied by simultaneous destabilization of the ground state resulting in an unaffected or even worsened residence time. Supported by a set of case studies, we provide concepts on how to alter ligands in ways to trigger on-rates, off-rates, or both. A large-scale study employing matched molecular pair (MMP) analysis to uncover the contribution of a compound's polarity to its association and dissociation rates.![]()
Collapse
Affiliation(s)
- Doris A Schuetz
- Department of Pharmaceutical Chemistry, University of Vienna UZA 2, Althanstrasse 14 1090 Vienna Austria
| | - Lars Richter
- Department of Pharmaceutical Chemistry, University of Vienna UZA 2, Althanstrasse 14 1090 Vienna Austria
| | - Riccardo Martini
- Department of Pharmaceutical Chemistry, University of Vienna UZA 2, Althanstrasse 14 1090 Vienna Austria
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna UZA 2, Althanstrasse 14 1090 Vienna Austria
| |
Collapse
|
23
|
Du Y, Wang R. Revealing the Unbinding Kinetics and Mechanism of Type I and Type II Protein Kinase Inhibitors by Local-Scaled Molecular Dynamics Simulations. J Chem Theory Comput 2020; 16:6620-6632. [PMID: 32841004 DOI: 10.1021/acs.jctc.0c00342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein kinase inhibitors disrupt phosphorylation of the target kinases, which are an important class of drug for treating cancer and other diseases. Conventional structure-based design methods (such as molecular docking) focus on the static binding mode of the kinase inhibitor with its target. However, dissociation kinetic properties of a drug molecule are found to correlate with its residence time in vivo and thus have drawn the attention of drug designers in recent years. In this study, we have applied the local-scaled molecular dynamics (MD) simulation enabled in GROMACS software to explore the unbinding mechanism of a total of 41 type I and type II kinase inhibitors. Our simulation considered multiple starting configurations as well as possible protonation states of kinase inhibitors. Based on our local-scaled MD results, we discovered that the integrals of the favorable binding energy during dissociation correlated well (R2 = 0.64) with the experimental dissociation rate constants of those kinase inhibitors on the entire data set. Given its accuracy and technical advantage, this method may serve as a practical option for estimating this important property in reality. Our simulation also provided a reasonable explanation of the dynamic properties of kinase and its inhibitor as well as the role of relevant water molecules in dissociation.
Collapse
Affiliation(s)
- Yu Du
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Renxiao Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| |
Collapse
|
24
|
Braun TP, Eide CA, Druker BJ. Response and Resistance to BCR-ABL1-Targeted Therapies. Cancer Cell 2020; 37:530-542. [PMID: 32289275 PMCID: PMC7722523 DOI: 10.1016/j.ccell.2020.03.006] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
Chronic myeloid leukemia (CML), caused by constitutively active BCR-ABL1 fusion tyrosine kinase, has served as a paradigm for successful application of molecularly targeted cancer therapy. The development of the tyrosine kinase inhibitor (TKI) imatinib allows patients with CML to experience near-normal life expectancy. Specific point mutations that decrease drug binding affinity can produce TKI resistance, and second- and third-generation TKIs largely mitigate this problem. Some patients develop TKI resistance without known resistance mutations, with significant heterogeneity in the underlying mechanism, but this is relatively uncommon, with the majority of patients with chronic phase CML achieving long-term disease control. In contrast, responses to TKI treatment are short lived in advanced phases of the disease or in BCR-ABL1-positive acute lymphoblastic leukemia, with relapse driven by both BCR-ABL1 kinase-dependent and -independent mechanisms. Additionally, the frontline CML treatment with second-generation TKIs produces deeper molecular responses, driving disease burden below the detection limit for a greater number of patients. For patients with deep molecular responses, up to half have been able to discontinue therapy. Current efforts are focused on identifying therapeutic strategies to drive deeper molecular responses, enabling more patients to attempt TKI discontinuation.
Collapse
MESH Headings
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Molecular Targeted Therapy
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Theodore P Braun
- Division of Hematology/Medical Oncology, Knight Cancer Insitute, Oregon Health & Science University, Portland, OR, USA.
| | - Christopher A Eide
- Division of Hematology/Medical Oncology, Knight Cancer Insitute, Oregon Health & Science University, Portland, OR, USA
| | - Brian J Druker
- Division of Hematology/Medical Oncology, Knight Cancer Insitute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
25
|
Grobben Y, Uitdehaag JC, Willemsen-Seegers N, Tabak WW, de Man J, Buijsman RC, Zaman GJ. Structural insights into human Arginase-1 pH dependence and its inhibition by the small molecule inhibitor CB-1158. JOURNAL OF STRUCTURAL BIOLOGY-X 2019; 4:100014. [PMID: 32647818 PMCID: PMC7337048 DOI: 10.1016/j.yjsbx.2019.100014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Arginase-1 is a manganese-dependent metalloenzyme that catalyzes the hydrolysis of L-arginine into L-ornithine and urea. Arginase-1 is abundantly expressed by tumor-infiltrating myeloid cells that promote tumor immunosuppression, which is relieved by inhibition of Arginase-1. We have characterized the potencies of the Arginase-1 reference inhibitors (2S)-2-amino-6-boronohexanoic acid (ABH) and N ω-hydroxy-nor-L-arginine (nor-NOHA), and studied their pH-dependence and binding kinetics. To gain a better understanding of the structural changes underlying the high pH optimum of Arginase-1 and its pH-dependent inhibition, we determined the crystal structure of the human Arginase-1/ABH complex at pH 7.0 and 9.0. These structures revealed that at increased pH, the manganese cluster assumes a more symmetrical coordination structure, which presumably contributes to its increase in catalytic activity. Furthermore, we show that binding of ABH involves the presence of a sodium ion close to the manganese cluster. We also studied the investigational new drug CB-1158 (INCB001158). This inhibitor has a low-nanomolar potency at pH 7.4 and increases the thermal stability of Arginase-1 more than ABH and nor-NOHA. Moreover, CB-1158 displays slow association and dissociation kinetics at both pH 9.5 and 7.4, as indicated by surface plasmon resonance. The potent character of CB-1158 is presumably due to its increased rigidity compared to ABH as well as the formation of an additional hydrogen-bond network as observed by resolution of the Arginase-1/CB-1158 crystal structure.
Collapse
Key Words
- ABH, (2S)-2-amino-6-boronohexanoic acid
- Biochemical inhibition
- Cancer immunotherapy
- DMSO, dimethyl sulfoxide
- IC50, half-maximal inhibitory concentration
- ITC, isothermal titration calorimetry
- KD, binding affinity
- KM, Michaelis constant
- Ki, inhibition constant
- MQ, MilliQ water
- PDB, Protein Data Bank
- RMSD, root-mean-square deviation
- SD, standard deviation
- SPR, surface plasmon resonance
- Surface plasmon resonance
- Thermal stability
- Tm, melting temperature
- X-ray crystallography
- ka, association rate constant
- kcat, catalytic rate constant
- kd, dissociation rate constant
- nor-NOHA, Nω-hydroxy-nor-L-arginine
- ΔTm, melting temperature shift
- τ, target residence time
Collapse
|
26
|
IJzerman AP, Guo D. Drug-Target Association Kinetics in Drug Discovery. Trends Biochem Sci 2019; 44:861-871. [PMID: 31101454 DOI: 10.1016/j.tibs.2019.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/28/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
The important role of ligand-receptor binding kinetics in drug design and discovery is increasingly recognized by the drug research community. Over the past decade, accumulating evidence has shown that optimizing the ligand's dissociation rate constant can lead to desirable duration of in vivo target occupancy and, hence, improved pharmacodynamic properties. However, the association rate constant as a pharmacological principle remains less investigated, whereas it can play an equally important role in the selection of drug candidates. This review provides a compilation and discussion of otherwise scarce and dispersed information on this topic, bringing to light the importance of drug-target association in kinetics-directed drug design and discovery.
Collapse
Affiliation(s)
- Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300, RA, Leiden, The Netherlands
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
27
|
Zeng Y, Zheng H, Shen Y, Xu J, Tan M, Liu F, Song H. Identification and analysis of binding residues in the CBM68 of pullulanase PulA from Anoxybacillus sp. LM18-11. J Biosci Bioeng 2019; 127:8-15. [DOI: 10.1016/j.jbiosc.2018.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/28/2018] [Accepted: 06/08/2018] [Indexed: 12/29/2022]
|
28
|
Uitdehaag JCM, Kooijman JJ, de Roos JADM, Prinsen MBW, Dylus J, Willemsen-Seegers N, Kawase Y, Sawa M, de Man J, van Gerwen SJC, Buijsman RC, Zaman GJR. Combined Cellular and Biochemical Profiling to Identify Predictive Drug Response Biomarkers for Kinase Inhibitors Approved for Clinical Use between 2013 and 2017. Mol Cancer Ther 2018; 18:470-481. [PMID: 30381447 DOI: 10.1158/1535-7163.mct-18-0877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/17/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022]
Abstract
Kinase inhibitors form the largest class of precision medicine. From 2013 to 2017, 17 have been approved, with 8 different mechanisms. We present a comprehensive profiling study of all 17 inhibitors on a biochemical assay panel of 280 kinases and proliferation assays of 108 cancer cell lines. Drug responses of the cell lines were related to the presence of frequently recurring point mutations, insertions, deletions, and amplifications in 15 well-known oncogenes and tumor-suppressor genes. In addition, drug responses were correlated with basal gene expression levels with a focus on 383 clinically actionable genes. Cell lines harboring actionable mutations defined in the FDA labels, such as mutant BRAF(V600E) for cobimetinib, or ALK gene translocation for ALK inhibitors, are generally 10 times more sensitive compared with wild-type cell lines. This sensitivity window is more narrow for markers that failed to meet endpoints in clinical trials, for instance CDKN2A loss for CDK4/6 inhibitors (2.7-fold) and KRAS mutation for cobimetinib (2.3-fold). Our data underscore the rationale of a number of recently opened clinical trials, such as ibrutinib in ERBB2- or ERBB4-expressing cancers. We propose and validate new response biomarkers, such as mutation in FBXW7 or SMAD4 for EGFR and HER2 inhibitors, ETV4 and ETV5 expression for MEK inhibitors, and JAK3 expression for ALK inhibitors. Potentially, these new markers could be combined to improve response rates. This comprehensive overview of biochemical and cellular selectivities of approved kinase inhibitor drugs provides a rich resource for drug repurposing, basket trial design, and basic cancer research.
Collapse
Affiliation(s)
| | | | | | | | - Jelle Dylus
- Netherlands Translational Research Center B.V., Oss, the Netherlands
| | | | | | | | - Jos de Man
- Netherlands Translational Research Center B.V., Oss, the Netherlands
| | | | - Rogier C Buijsman
- Netherlands Translational Research Center B.V., Oss, the Netherlands
| | - Guido J R Zaman
- Netherlands Translational Research Center B.V., Oss, the Netherlands.
| |
Collapse
|
29
|
Pitsawong W, Buosi V, Otten R, Agafonov RV, Zorba A, Kern N, Kutter S, Kern G, Pádua RA, Meniche X, Kern D. Dynamics of human protein kinase Aurora A linked to drug selectivity. eLife 2018; 7:36656. [PMID: 29901437 PMCID: PMC6054532 DOI: 10.7554/elife.36656] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/12/2018] [Indexed: 12/24/2022] Open
Abstract
Protein kinases are major drug targets, but the development of highly-selective inhibitors has been challenging due to the similarity of their active sites. The observation of distinct structural states of the fully-conserved Asp-Phe-Gly (DFG) loop has put the concept of conformational selection for the DFG-state at the center of kinase drug discovery. Recently, it was shown that Gleevec selectivity for the Tyr-kinase Abl was instead rooted in conformational changes after drug binding. Here, we investigate whether protein dynamics after binding is a more general paradigm for drug selectivity by characterizing the binding of several approved drugs to the Ser/Thr-kinase Aurora A. Using a combination of biophysical techniques, we propose a universal drug-binding mechanism, that rationalizes selectivity, affinity and long on-target residence time for kinase inhibitors. These new concepts, where protein dynamics in the drug-bound state plays the crucial role, can be applied to inhibitor design of targets outside the kinome. Protein kinases are a family of enzymes found in all living organisms. These enzymes help to control many biological processes, including cell division. When particular protein kinases do not work correctly, cells may start to divide uncontrollably, which can lead to cancer. One example is the kinase Aurora A, which is over-active in many common human cancers. As a result, researchers are currently trying to design drugs that reduce the activity of Aurora A in the hope that these could form new anticancer treatments. In general, drugs are designed to be as specific in their action as possible to reduce the risk of harmful side effects to the patient. Designing a drug that affects a single protein kinase, however, is difficult because there are hundreds of different kinases in the body, all with similar structures. Because drugs often work by binding to specific structural features, a drug that targets one protein kinase can often alter the activity of a large number of others too. Gleevec is a successful anti-leukemia drug that specifically works on one target kinase, producing minimal side effects. It was recently discovered that the drug works through a phenomenon called ‘induced fit’. This means that after the drug binds it causes a change in the enzyme’s overall shape that alters the activity of the enzyme. The shape change is complex, and so even small structural differences can change the effect of a particular drug. Do other drugs that target other protein kinases also produce induced fit effects? To find out, Pitsawong, Buosi, Otten, Agafonov et al. studied how three anti-cancer drugs interact with Aurora A: two drugs specifically designed to switch off Aurora A, and Gleevec (which does not target Aurora A). The two drugs that specifically target Aurora A were thought to work by targeting one structural feature of the enzyme. However, the biochemical and biophysical experiments performed by Pitsawong et al. revealed that these drugs instead work through an induced fit effect. By contrast, Gleevec did not trigger an induced fit on Aurora A and so bound less tightly to it. In light of these results, Pitsawong et al. suggest that future efforts to design drugs that target protein kinases should focus on exploiting the induced fit process. This will require more research into the structure of particular kinases.
Collapse
Affiliation(s)
- Warintra Pitsawong
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Vanessa Buosi
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Renee Otten
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Roman V Agafonov
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Adelajda Zorba
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Nadja Kern
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Steffen Kutter
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Gunther Kern
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Ricardo Ap Pádua
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Xavier Meniche
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Dorothee Kern
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| |
Collapse
|
30
|
Heroven C, Georgi V, Ganotra GK, Brennan P, Wolfreys F, Wade RC, Fernández-Montalván AE, Chaikuad A, Knapp S. Halogen-Aromatic π Interactions Modulate Inhibitor Residence Times. Angew Chem Int Ed Engl 2018; 57:7220-7224. [PMID: 29601130 PMCID: PMC7615044 DOI: 10.1002/anie.201801666] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/25/2018] [Indexed: 11/06/2022]
Abstract
Prolonged drug residence times may result in longer-lasting drug efficacy, improved pharmacodynamic properties, and "kinetic selectivity" over off-targets with high drug dissociation rates. However, few strategies have been elaborated to rationally modulate drug residence time and thereby to integrate this key property into the drug development process. Herein, we show that the interaction between a halogen moiety on an inhibitor and an aromatic residue in the target protein can significantly increase inhibitor residence time. By using the interaction of the serine/threonine kinase haspin with 5-iodotubercidin (5-iTU) derivatives as a model for an archetypal active-state (type I) kinase-inhibitor binding mode, we demonstrate that inhibitor residence times markedly increase with the size and polarizability of the halogen atom. The halogen-aromatic π interactions in the haspin-inhibitor complexes were characterized by means of kinetic, thermodynamic, and structural measurements along with binding-energy calculations.
Collapse
Affiliation(s)
- Christina Heroven
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ (UK)
| | - Victoria Georgi
- Bayer AG, Drug Discovery Pharmaceuticals, Lead Discovery Berlin 13353 Berlin (Germany)
| | - Gaurav K. Ganotra
- Molecular and Cellular Modeling Group Heidelberg Institute for Theoretical Studies (HITS) 69118 Heidelberg (Germany)
- Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences Heidelberg University, 69120 Heidelberg (Germany)
| | - Paul Brennan
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ (UK)
- Target Discovery Institute, Nuffield Department of Clinical Medicine University of Oxford, Oxford, OX3 7FZ (UK)
| | - Finn Wolfreys
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ (UK)
- Target Discovery Institute, Nuffield Department of Clinical Medicine University of Oxford, Oxford, OX3 7FZ (UK)
| | - Rebecca C. Wade
- Molecular and Cellular Modeling Group Heidelberg Institute for Theoretical Studies (HITS) 69118 Heidelberg (Germany)
- Zentrum für Molekulare Biologie der Universität Heidelberg DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg (Germany)
- Interdisciplinary Center for Scientific Computing Heidelberg University, 69120 Heidelberg (Germany)
| | | | - Apirat Chaikuad
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ (UK)
- Buchmann Institute for Molecular Life Sciences Johann Wolfgang Goethe-University, 60438 Frankfurt am Main (Germany)
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, 60438 Frankfurt am Main (Germany)
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ (UK)
- Buchmann Institute for Molecular Life Sciences Johann Wolfgang Goethe-University, 60438 Frankfurt am Main (Germany)
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, 60438 Frankfurt am Main (Germany)
- German Cancer Network (DKTK), Frankfurt/Mainz site 60438 Frankfurt am Main (Germany)
| |
Collapse
|
31
|
Abstract
Many results reported in the biomedical research literature cannot be independently reproduced, undermining the basic foundations of science. This overview is intended for researchers who are committed to improving the quality and integrity of biomedical science by raising awareness of both the sources of irreproducibility, and activities specifically targeted to address the issue. The irreproducibility of biomedical research is due to a variety of factors, known and unknown, that markedly influence experimental outcomes. Among the known factors are inadequate training or mentoring, or experimenter incompetence. These may result in flawed experimental design and execution that reflect a lack of planning, leading to an underpowering of a study, an absence of appropriate controls, selective data analysis, inappropriate statistical analysis, and/or investigator bias or fraud. Another frequently overlooked source of irreproducibility is failure to ensure that the equipment used is performing up to manufacturer specifications. Failure to validate/authenticate the experimental reagents is another source of irreproducibility. These include compounds, cell lines, antibodies, and the animal models used in a study. This overview discusses how a lack of validation of research reagents negatively impact experimental reproducibility, and provides guidelines to avoid these pitfalls. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Michael Williams
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, Ohio
| |
Collapse
|
32
|
Heroven C, Georgi V, Ganotra GK, Brennan P, Wolfreys F, Wade RC, Fernández-Montalván AE, Chaikuad A, Knapp S. Halogenaromatische π-Wechselwirkungen modulieren die Verweilzeit von Inhibitoren. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Christina Heroven
- Nuffield Department of Clinical Medicine; Structural Genomics Consortium; University of Oxford; Oxford OX3 7DQ Großbritannien
| | - Victoria Georgi
- Bayer AG; Drug Discovery; Pharmaceuticals; Lead Discovery Berlin; 13353 Berlin Deutschland
| | - Gaurav K. Ganotra
- Molecular and Cellular Modeling Group; Heidelberg Institut für Theoretische Studien (HITS); 69118 Heidelberg Deutschland
- Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences; Universität Heidelberg; 69118 Heidelberg Deutschland
| | - Paul Brennan
- Nuffield Department of Clinical Medicine; Structural Genomics Consortium; University of Oxford; Oxford OX3 7DQ Großbritannien
- Target Discovery Institute; Nuffield Department of Clinical Medicine; University of Oxford; Oxford OX3 7FZ Großbritannien
| | - Finn Wolfreys
- Nuffield Department of Clinical Medicine; Structural Genomics Consortium; University of Oxford; Oxford OX3 7DQ Großbritannien
- Target Discovery Institute; Nuffield Department of Clinical Medicine; University of Oxford; Oxford OX3 7FZ Großbritannien
| | - Rebecca C. Wade
- Molecular and Cellular Modeling Group; Heidelberg Institut für Theoretische Studien (HITS); 69118 Heidelberg Deutschland
- Zentrum für Molekulare Biologie der Universität Heidelberg; DKFZ-ZMBH Allianz; Universität Heidelberg; 69120 Heidelberg Deutschland
- Interdisziplinäre Zentrum für Wissenschaftliches Rechnen (IWR); Universität Heidelberg; 69120 Heidelberg Deutschland
| | | | - Apirat Chaikuad
- Nuffield Department of Clinical Medicine; Structural Genomics Consortium; University of Oxford; Oxford OX3 7DQ Großbritannien
- Buchmann Institute for Molecular Life Sciences; Johann Wolfgang Goethe-Universität; 60438 Frankfurt am Main Deutschland
- Institut für Pharmazeutische Chemie; Johann Wolfgang Goethe-Universität; 60438 Frankfurt am Main Deutschland
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine; Structural Genomics Consortium; University of Oxford; Oxford OX3 7DQ Großbritannien
- Buchmann Institute for Molecular Life Sciences; Johann Wolfgang Goethe-Universität; 60438 Frankfurt am Main Deutschland
- Institut für Pharmazeutische Chemie; Johann Wolfgang Goethe-Universität; 60438 Frankfurt am Main Deutschland
- Deutsches Konsortium für Translationale Krebsforschung (DKTK); Frankfurt/Mainz; 60438 Frankfurt am Main Deutschland
| |
Collapse
|
33
|
Schuetz DA, Richter L, Amaral M, Grandits M, Grädler U, Musil D, Buchstaller HP, Eggenweiler HM, Frech M, Ecker GF. Ligand Desolvation Steers On-Rate and Impacts Drug Residence Time of Heat Shock Protein 90 (Hsp90) Inhibitors. J Med Chem 2018; 61:4397-4411. [DOI: 10.1021/acs.jmedchem.8b00080] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Doris A. Schuetz
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| | - Lars Richter
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| | - Marta Amaral
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Melanie Grandits
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| | - Ulrich Grädler
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Djordje Musil
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | | | | | - Matthias Frech
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Gerhard F. Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
34
|
Walter NM, Wentsch HK, Bührmann M, Bauer SM, Döring E, Mayer-Wrangowski S, Sievers-Engler A, Willemsen-Seegers N, Zaman G, Buijsman R, Lämmerhofer M, Rauh D, Laufer SA. Design, Synthesis, and Biological Evaluation of Novel Type I 1/ 2 p38α MAP Kinase Inhibitors with Excellent Selectivity, High Potency, and Prolonged Target Residence Time by Interfering with the R-Spine. J Med Chem 2017; 60:8027-8054. [PMID: 28834431 DOI: 10.1021/acs.jmedchem.7b00745] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We recently reported 1a (skepinone-L) as a type I p38α MAP kinase inhibitor with high potency and excellent selectivity in vitro and in vivo. However, as a type I inhibitor, it is entirely ATP-competitive and shows just a moderate residence time. Thus, the scope was to develop a new class of advanced compounds maintaining the structural binding features of skepinone-L scaffold like inducing a glycine flip at the hinge region and occupying both hydrophobic regions I and II. Extending this scaffold with suitable residues resulted in an interference with the kinase's R-Spine. By synthesizing 69 compounds, we could significantly prolong the target residence time with one example to 3663 s, along with an excellent selectivity score of 0.006 and an outstanding potency of 1.0 nM. This new binding mode was validated by cocrystallization, showing all binding interactions typifying type I1/2 binding. Moreover, microsomal studies showed convenient metabolic stability of the most potent, herein reported representatives.
Collapse
Affiliation(s)
- Niklas M Walter
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universitaet Tuebingen , Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Heike K Wentsch
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universitaet Tuebingen , Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Mike Bührmann
- Faculty of Chemistry and Chemical Biology, Technische Universitaet Dortmund , Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Silke M Bauer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universitaet Tuebingen , Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Eva Döring
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universitaet Tuebingen , Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Svenja Mayer-Wrangowski
- Faculty of Chemistry and Chemical Biology, Technische Universitaet Dortmund , Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Adrian Sievers-Engler
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universitaet Tuebingen , Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Nicole Willemsen-Seegers
- Netherlands Translational Research Center B.V. (NTRC) , Pivot Park, RE1210, Molenstraat 110, 5342 CC Oss, The Netherlands
| | - Guido Zaman
- Netherlands Translational Research Center B.V. (NTRC) , Pivot Park, RE1210, Molenstraat 110, 5342 CC Oss, The Netherlands
| | - Rogier Buijsman
- Netherlands Translational Research Center B.V. (NTRC) , Pivot Park, RE1210, Molenstraat 110, 5342 CC Oss, The Netherlands
| | - Michael Lämmerhofer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universitaet Tuebingen , Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology, Technische Universitaet Dortmund , Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universitaet Tuebingen , Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| |
Collapse
|
35
|
Uitdehaag JCM, de Man J, Willemsen-Seegers N, Prinsen MBW, Libouban MAA, Sterrenburg JG, de Wit JJP, de Vetter JRF, de Roos JADM, Buijsman RC, Zaman GJR. Target Residence Time-Guided Optimization on TTK Kinase Results in Inhibitors with Potent Anti-Proliferative Activity. J Mol Biol 2017; 429:2211-2230. [PMID: 28539250 DOI: 10.1016/j.jmb.2017.05.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/10/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022]
Abstract
The protein kinase threonine tyrosine kinase (TTK; also known as Mps1) is a critical component of the spindle assembly checkpoint and a promising drug target for the treatment of aggressive cancers, such as triple negative breast cancer. While the first TTK inhibitors have entered clinical trials, little is known about how the inhibition of TTK with small-molecule compounds affects cellular activity. We studied the selective TTK inhibitor NTRC 0066-0, which was developed in our own laboratory, together with 11 TTK inhibitors developed by other companies, including Mps-BAY2b, BAY 1161909, BAY 1217389 (Bayer), TC-Mps1-12 (Shionogi), and MPI-0479605 (Myrexis). Parallel testing shows that the cellular activity of these TTK inhibitors correlates with their binding affinity to TTK and, more strongly, with target residence time. TTK inhibitors are therefore an example where target residence time determines activity in in vitro cellular assays. X-ray structures and thermal stability experiments reveal that the most potent compounds induce a shift of the glycine-rich loop as a result of binding to the catalytic lysine at position 553. This "lysine trap" disrupts the catalytic machinery. Based on these insights, we developed TTK inhibitors, based on a (5,6-dihydro)pyrimido[4,5-e]indolizine scaffold, with longer target residence times, which further exploit an allosteric pocket surrounding Lys553. Their binding mode is new for kinase inhibitors and can be classified as hybrid Type I/Type III. These inhibitors have very potent anti-proliferative activity that rivals classic cytotoxic therapy. Our findings will open up new avenues for more applications for TTK inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Joost C M Uitdehaag
- Netherlands Translational Research Center B.V., Kloosterstraat 9, 5349AB Oss, The Netherlands
| | - Jos de Man
- Netherlands Translational Research Center B.V., Kloosterstraat 9, 5349AB Oss, The Netherlands
| | | | - Martine B W Prinsen
- Netherlands Translational Research Center B.V., Kloosterstraat 9, 5349AB Oss, The Netherlands
| | - Marion A A Libouban
- Netherlands Translational Research Center B.V., Kloosterstraat 9, 5349AB Oss, The Netherlands
| | - Jan Gerard Sterrenburg
- Netherlands Translational Research Center B.V., Kloosterstraat 9, 5349AB Oss, The Netherlands
| | - Joeri J P de Wit
- Netherlands Translational Research Center B.V., Kloosterstraat 9, 5349AB Oss, The Netherlands
| | - Judith R F de Vetter
- Netherlands Translational Research Center B.V., Kloosterstraat 9, 5349AB Oss, The Netherlands
| | - Jeroen A D M de Roos
- Netherlands Translational Research Center B.V., Kloosterstraat 9, 5349AB Oss, The Netherlands
| | - Rogier C Buijsman
- Netherlands Translational Research Center B.V., Kloosterstraat 9, 5349AB Oss, The Netherlands
| | - Guido J R Zaman
- Netherlands Translational Research Center B.V., Kloosterstraat 9, 5349AB Oss, The Netherlands.
| |
Collapse
|
36
|
Kumar M, Lowery RG. A High-Throughput Method for Measuring Drug Residence Time Using the Transcreener ADP Assay. SLAS DISCOVERY 2017; 22:915-922. [PMID: 28346107 DOI: 10.1177/2472555217695080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Analysis of drug-target residence times during drug development can result in improved efficacy, increased therapeutic window, and reduced side effects. Residence time can be estimated as the reciprocal of the dissociation rate ( koff) of an inhibitor from its target. The traditional methods for measuring koff require synthesis of labeled ligands or low-throughput label-free methods. To provide an alternative that is better suited to an automated high-throughput screening (HTS) environment, we adapted a classic "jump dilution" catalytic assay method for determination of koff values for kinase inhibitor drugs. We used the Transcreener ADP2 Kinase assay as a universal, homogenous method to monitor the recovery of kinase activity as the drugs dissociated from preformed inhibitor-kinase complexes. We measured residence times for several drugs that bind the epidermal growth factor receptor (EGFR), ABL1, and Aurora kinases and found that the rank ordering of inhibitor koff values correlated with literature values determined using ligand binding assays. Moreover, very similar results were obtained using the Transcreener assay with fluorescence polarization (FP), fluorescence intensity (FI), and time-resolved Förster resonance energy transfer (TR-FRET) detection modes. This HTS-compatible, generic assay method should facilitate the use of residence time as a parameter for compound prioritization and optimization early in kinase drug discovery programs.
Collapse
|