1
|
R HC, C GPD. Investigation of the impact of R273H and R273C mutations on the DNA binding domain of P53 protein through molecular dynamic simulation. J Biomol Struct Dyn 2025; 43:798-812. [PMID: 39737749 DOI: 10.1080/07391102.2023.2283793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 01/01/2025]
Abstract
The P53 protein, a cancer-associated transcriptional factor and tumor suppressor, houses a Zn2+ ion in its DNA-binding domain (DBD), essential for sequence-specific DNA binding. However, common mutations at position 273, specifically from Arginine to Histidine and Cysteine, lead to a loss of function as a tumor suppressor, also called DNA contact mutations. The mutant (MT) P53 structure cannot stabilize DNA due to inadequate interaction. To investigate the conformational changes, we performed a comparative molecular dynamic simulation (MDS) to study the effect of the P53-Wildtype (P53-WT) and the DNA contact mutations (R273H and R273C) on the DBD. Our research indicated that the DNA binding bases lose Hydrogen bonds (H bonds) when mutated to P53-R273H and P53-R273C during the simulation. We employed tools, such as PDIviz to highlight the contacts with DNA bases and backbone, major and minor grooves, and various pharmacophore forms of atoms. The contact maps for R273H and R273C were generated using the COZOID tool, which displayed changes in the frequency of the amino acids and DNA bases interaction in the DNA binding domain. These residues have diminished interactions, and the zinc-binding domain shows significant movements by Zn2+ ion binding to the phosphate group of the DNA, moving away from its binding sites. In conclusion, our research suggests that R273H and R273C each have unique stability and self-assembly properties. This understanding might assist researchers in better comprehending the function of the p53 protein and its importance in cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hephzibah Cathryn R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| |
Collapse
|
2
|
Ai Z, Li D, Lan S, Zhang C. Nanomaterials exert biological effects by influencing the ubiquitin-proteasome system. Eur J Med Chem 2025; 282:116974. [PMID: 39556894 DOI: 10.1016/j.ejmech.2024.116974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/05/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
The ubiquitin-proteasome system (UPS) is an important type of protein post-translational modification that affects the quantity and quality of various proteins and influences cellular processes such as the cell cycle, transcription, oxidative stress, and autophagy. Nanomaterials (NMs), which exhibit excellent physicochemical properties, can directly interact with the UPS and act as molecular-targeted drugs to induce changes in biological processes. This review provides an overview of the influence of NMs on the UPS of misfolded proteins and key proteins, which are related to cancer, neurodegenerative diseases and oxidative stress. This review also summarizes the role of modification processes involved in ubiquitination the biological effects of NMs and the mechanism of such effects of NMs through regulation of the UPS. This review deepens our understanding of the influence of NMs on the protein degradation process and provides new potential therapeutic targets for disease.
Collapse
Affiliation(s)
- Zhen Ai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Dan Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Shuquan Lan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Chao Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
3
|
Wang J, Wang Y, Xiao H, Yang W, Zuo W, You Z, Wu C, Bao J. Dynamic O-GlcNAcylation coordinates etoposide-triggered tumor cell pyroptosis by regulating p53 stability. J Biol Chem 2024:108050. [PMID: 39667498 DOI: 10.1016/j.jbc.2024.108050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
O-GlcNAcylation, a modification of nucleocytoplasmic proteins in mammals, plays a critical role in various cellular processes. However, the interplay and their underlying mechanisms in chemotherapy-induced tumor regression between O-GlcNAcylation and pyroptosis, a form of programmed cell death associated with innate immunity, remains unclear. Here, we observed that during the etoposide-induced pyroptosis of SH-SY5Y and A549 cells, overall O-GlcNAcylation levels are substantially reduced. Pharmacological inhibition or genetic manipulation of O-GlcNAcylation, such as OGT inhibition or OGA overexpression, sensitized these cells to etoposide-induced pyroptosis both in vitro and in vivo. Mechanistically, mutations at S96 and S149 residues attenuated p53 O-GlcNAcylation, weakening its interaction with MDM2, reducing p53 ubiquitination and increasing protein stability. These results suggest that S96 may be a putative O-GlcNAcylation site. Therefore, p53 target genes-Fas, DR-5, Puma, and PIDD-were transcriptionally upregulated, leading to activation of the caspase-3-GSDME axis and promoting etoposide-induced pyroptosis in various tumor cells. This study demonstrates a previously uncharacterized association between O-GlcNAcylation and chemotherapy-induced pyroptosis, offering potential therapeutic interventions for pyroptosis-related diseases.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Yida Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Huan Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Wanyi Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Weibo Zuo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Ziming You
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Chuanfang Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China.
| | - Jinku Bao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Wu Q, Nandi D, Sharma D. TRIM-endous functional network of tripartite motif 29 (TRIM29) in cancer progression and beyond. Cancer Metastasis Rev 2024; 44:16. [PMID: 39644332 PMCID: PMC11625080 DOI: 10.1007/s10555-024-10226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/16/2024] [Indexed: 12/09/2024]
Abstract
While most Tripartite motif (TRIM) family proteins are E3 ubiquitin ligases, some members have functions beyond the regulation of ubiquitination, impacting normal physiological processes and disease progression. TRIM29, an important member of the TRIM family, exerts a predominant influence on cancer growth, epithelial-to-mesenchymal transition, stemness and metastatic progression by directly potentiating multiple canonical oncogenic pathways. The cancer-promoting effect of TRIM29 is also evident in metabolic interventions and interference with the efficacy of cancer therapeutics. As expected for any key node in cancer, the expression of TRIM29 is tightly regulated by non-coding RNAs, epigenetic modulation, and post-translational regulation. A systematic discussion of how TRIM29 is regulated in cancer, its influences on cancer progression, and its impact on cancer therapeutics is presented in this review. We also explore the context-dependent alterations between TRIM29 function from oncogenic to tumor suppression. As TRIM29 is involved in multiple aspects of cancer progression, a better understanding of its biological impact in cancer may help improve prognosis and develop novel therapeutic combinations, leading to improved personalized cancer care.
Collapse
Affiliation(s)
- Qitong Wu
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Deeptashree Nandi
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB 1, Rm 145, Baltimore, MD, 21231, USA.
| |
Collapse
|
5
|
Yang JD, Lin SC, Kuo HL, Chen YS, Weng PY, Chen CM, Liu SH, Huang CF, Guan SS, Liao PL, Su YH, Lee KI, Wang PY, Chuang HL, Wu CT. Imperatorin ameliorates ferroptotic cell death, inflammation, and renal fibrosis in a unilateral ureteral obstruction mouse model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156066. [PMID: 39341130 DOI: 10.1016/j.phymed.2024.156066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/01/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Imperatorin is a naturally occurring furocoumarin derivative found in traditional Chinese medicine Angelica dahurica for its anticancer, antihypertensive, and antidiabetic properties. Chronic kidney disease (CKD) is a global health issue, characterized by a high prevalence, significant morbidity and mortality, and a range of related complications. OBJECTIVE This study aims to investigate the protective effects of imperatorin treatment and the specific underlying mechanisms in progressive CKD. METHODS Imperatorin was orally administrated for 14 consecutive days to mice with unilateral ureteral obstruction (UUO) to investigate the renal pathological alternations, pro-inflammatory mediators, antioxidant response, and ferroptotic death signaling. Imperatorin was also tested in the erastin-induced injury of renal proximal tubular cells (NRK-52E). Cell viability, ferroptosis protein markers, erastin-induced oxidative stress, and lipid peroxidation were assessed. RESULTS In vivo, imperatorin treatment alleviated kidney histology alternations and attenuated the protein expression of fibrotic markers. Furthermore, imperatorin administration reduced inflammatory cell infiltration, and alleviated the oxidative stress burden by downregulating protein markers such as catalase, superoxide dismutase 2 (SOD-2), NADPH oxidase 4 (NOX-4), and thioredoxin reductase 1 (Trxr-1). It also mitigated ferroptosis markers such as glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11/cystine transporter (SLC7A11/xCT), and transferrin receptor 1 (TFR-1), and attenuated renal cell apoptosis. In vitro, imperatorin treatment effectively decreased erastin-induced feroptotic cell death, restored the antioxidant enzyme levels, and mitigated lipid peroxidation as well as the expression of ferroptosis-related markers (XCT, GPX4, and p-p53) in a dose-dependent manner. CONCLUSION Our finding demonstrated for the first time, that imperatorin treatment holds therapeutic potential in a UUO mouse model of CKD and inhibits the erastin-induced oxidative stress, ferroptosis, and subsequent lipid peroxidation in vitro. This highlights the potential of imperatorin as a future therapeutic target for ferroptosis to improve the progression of CKD.
Collapse
Affiliation(s)
- Jr-Di Yang
- Division of Urology, Department of Surgery, National Yang-Ming Chiao Tung University Hospital, Yilan, Taiwan
| | - Ssu Chia Lin
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| | - Huey Liang Kuo
- Division of Nephrology, Department of Internal Medicine, China Medical University Hospital, Taichung 40402, Taiwan; School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan; Clinical Nutrition, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yu Syuan Chen
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| | - Pei Yu Weng
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| | - Chang Mu Chen
- Division of Neurosurgery, Department of Surgery, College of Medicine and Hospital, National Taiwan University, Taipei 10051, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chun Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Nursing, College of Medical and Health Science, Asia University, Taichung, 413, Taiwan
| | - Siao Syun Guan
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 32546, Taiwan
| | - Po Lin Liao
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University-Yang ming Campus, 155, Sec. 2, Linong Street, Taipei 11221, Taiwan
| | - Yen Hao Su
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 235, Taiwan; Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Pei Yun Wang
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| | - Haw Ling Chuang
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan.
| | - Cheng Tien Wu
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
6
|
Ahmadi SE, Rahimian E, Rahimi S, Zarandi B, Bahraini M, Soleymani M, Safdari SM, Shabannezhad A, Jaafari N, Safa M. From regulation to deregulation of p53 in hematologic malignancies: implications for diagnosis, prognosis and therapy. Biomark Res 2024; 12:137. [PMID: 39538363 PMCID: PMC11565275 DOI: 10.1186/s40364-024-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The p53 protein, encoded by the TP53 gene, serves as a critical tumor suppressor, playing a vital role in maintaining genomic stability and regulating cellular responses to stress. Dysregulation of p53 is frequently observed in hematological malignancies, significantly impacting disease progression and patient outcomes. This review aims to examine the regulatory mechanisms of p53, the implications of TP53 mutations in various hematological cancers, and emerging therapeutic strategies targeting p53. We conducted a comprehensive literature review to synthesize recent findings related to p53's multifaceted role in hematologic cancers, focusing on its regulatory pathways and therapeutic potential. TP53 mutations in hematological malignancies often lead to treatment resistance and poor prognosis. Current therapeutic strategies, including p53 reactivation and gene therapy, show promise in improving treatment outcomes. Understanding the intricacies of p53 regulation and the consequences of its mutations is essential for developing effective diagnostic and therapeutic strategies in hematological malignancies, ultimately enhancing patient care and survival.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Bahraini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mehrab Safdari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Vandermeulen MD, Khaiwal S, Rubio G, Liti G, Cullen PJ. Gain- and loss-of-function alleles within signaling pathways lead to phenotypic diversity among individuals. iScience 2024; 27:110860. [PMID: 39381740 PMCID: PMC11460476 DOI: 10.1016/j.isci.2024.110860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/29/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024] Open
Abstract
Understanding how phenotypic diversity is generated is an important question in biology. We explored phenotypic diversity among wild yeast isolates (Saccharomyces cerevisiae) and found variation in the activity of MAPK signaling pathways as a contributing mechanism. To uncover the genetic basis of this mechanism, we identified 1957 SNPs in 62 candidate genes encoding signaling proteins from a MAPK signaling module within a large collection of yeast (>1500 individuals). Follow-up testing identified functionally relevant variants in key signaling proteins. Loss-of-function (LOF) alleles in a PAK kinase impacted protein stability and pathway specificity decreasing filamentous growth and mating phenotypes. In contrast, gain-of-function (GOF) alleles in G-proteins that were hyperactivating induced filamentous growth. Similar amino acid substitutions in G-proteins were identified in metazoans that in some cases were fixed in multicellular lineages including humans, suggesting hyperactivating GOF alleles may play roles in generating phenotypic diversity across eukaryotes. A mucin signaler that regulates MAPK activity was also found to contain a prevalance of presumed GOF alleles amoung individuals based on changes in mucin repeat numbers. Thus, genetic variation in signaling pathways may act as a reservoir for generating phenotypic diversity across eukaryotes.
Collapse
Affiliation(s)
| | - Sakshi Khaiwal
- Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Gabriel Rubio
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| | - Gianni Liti
- Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
8
|
Myeza N, Slabber C, Munro OQ, Sookai S, Zacharias SC, Martins-Furness C, Harmse L. An 8-aminoquinoline-naphthyl copper complex causes apoptotic cell death by modulating the expression of apoptotic regulatory proteins in breast cancer cells. Eur J Pharmacol 2024; 978:176764. [PMID: 38908670 DOI: 10.1016/j.ejphar.2024.176764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Breast cancer is one of the most common cancers globally and a leading cause of cancer-related deaths among women. Despite the combination of chemotherapy with targeted therapy, including monoclonal antibodies and kinase inhibitors, drug resistance and treatment failure remain a common occurrence. Copper, complexed to various organic ligands, has gained attention as potential chemotherapeutic agents due to its perceived decreased toxicity to normal cells. The cytotoxic efficacy and the mechanism of cell death of an 8-aminoquinoline-naphthyl copper complex (Cu8AqN) in MCF-7 and MDA-MB-231 breast cancer cell lines was investigated. The complex inhibited the growth of MCF-7 and MDA-MB-231 cells with IC50 values of 2.54 ± 0.69 μM and 3.31 ± 0.06 μM, respectively. Nuclear fragmentation, annexin V binding, and increased caspase-3/7 activity indicated apoptotic cell death. The loss of mitochondrial membrane potential, an increase in caspase-9 activity, the absence of active caspase-8 and a decrease of tumour necrosis factor receptor 1(TNFR1) expression supported activation of the intrinsic apoptotic pathway. Increased ROS formation and increased expression of haem oxygenase-1 (HMOX-1) indicated activation of cellular stress pathways. Expression of p21 protein in the nuclei was increased indicating cell cycle arrest, whilst the expression of inhibitor of apoptosis proteins (IAPs); cIAP1, XIAP and survivin were decreased, creating a pro-apoptotic environment. Phosphorylated p53 species; phospho-p53(S15), phospho-p53(S46), and phospho-p53(S392) accumulated in MCF-7 cells indicating the potential of Cu8AqN to restore p53 function in the cells. In combination, the data indicates that Cu8AqN is a useful lead molecule worthy of further exploration as a potential anti-cancer drug.
Collapse
Affiliation(s)
- Nonzuzo Myeza
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa
| | - Cathy Slabber
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smut Ave, Braamfontein, Johannesburg, 2017, South Africa
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smut Ave, Braamfontein, Johannesburg, 2017, South Africa; School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Sheldon Sookai
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smut Ave, Braamfontein, Johannesburg, 2017, South Africa
| | - Savannah C Zacharias
- School of Chemistry and Physics, University of KwaZulu-Natal, King Edward Drive, Pietermaritzburg, Scottsville, 3209, South Africa
| | - Carla Martins-Furness
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa
| | - Leonie Harmse
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa.
| |
Collapse
|
9
|
Hosonaga M, Habano E, Arakawa H, Kaneko K, Nakajima T, Hayashi N, Fukada I, Nakamura A, Haruyama Y, Maeda T, Inari H, Kobayashi T, Nakashima E, Ueno T, Takano T, Takahashi S, Ohno S, Ueki A. Case series of Li-Fraumeni syndrome: carcinogenic mechanisms in breast cancer with TP53 pathogenic variant carriers. Breast Cancer 2024; 31:988-996. [PMID: 39017822 PMCID: PMC11341599 DOI: 10.1007/s12282-024-01612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 06/30/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Li-Fraumeni syndrome (LFS), a hereditary condition attributed to TP53 pathogenic variants,(PV), is associated with high risks for various malignant tumors, including breast cancer. Notably, individuals harboring TP53 PVs are more likely (67-83%) to develop HER2 + breast cancer than noncarriers (16-25%). In this retrospective study, we evaluated the associations between TP53 variants and breast cancer phenotype. METHODS We conducted a retrospective review of the medical records of patients with LFS treated at a single institution and reviewed the literature on TP53 functions and the mechanisms underlying HER2 + breast cancer development in LFS. RESULTS We analyzed data for 10 patients with LFS from 8 families. The median age at the onset of the first tumor was 35.5 years. Only case 2 met the classic criteria; this patient harbored a nonsense variant, whereas the other patients carried missense variants. We observed that 9 of 10 patients developed breast cancer. Immunohistochemical analyses revealed that 40% of breast cancers in patients with LFS were HR - /HER2 + . The median age at the onset of breast cancer was slightly younger in HR - /HER2 + tumors than in HR + /HER2 - tumors (31 years and 35.5 years, respectively). CONCLUSIONS The occurrence of HER2 + breast cancer subtype was 40% in our LFS case series, which is greater than that in the general population (16-25%). Some TP53 PVs may facilitate HER2-derived oncogenesis in breast cancer. However, further studies with larger sample sizes are warranted to clarify the oncogenic mechanisms underlying each subtype of breast cancer in TP53 PV carriers.
Collapse
Affiliation(s)
- Mari Hosonaga
- Department of Breast Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan.
| | - Eri Habano
- Department of Clinical Genetic Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Hiromi Arakawa
- Department of Clinical Genetic Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Keika Kaneko
- Department of Clinical Genetic Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Takeshi Nakajima
- Medical Ethics and Medical Genetics, Kyoto University, Graduate of School of Medicine, School of Public Health, Kyoto, 606-8501, Japan
| | - Naomi Hayashi
- Division of Genomic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Ippei Fukada
- Department of Breast Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
- Division of Genomic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Akira Nakamura
- Department of Breast Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Yurie Haruyama
- Department of Breast Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Tetsuyo Maeda
- Department of Breast Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Hitoshi Inari
- Department of Breast Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Takayuki Kobayashi
- Department of Breast Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Eri Nakashima
- Department of Breast Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Takayuki Ueno
- Department of Breast Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Toshimi Takano
- Department of Breast Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Shunji Takahashi
- Division of Genomic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Shinji Ohno
- Department of Breast Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
- Department of Breast Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Arisa Ueki
- Department of Clinical Genetic Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| |
Collapse
|
10
|
Sato S, Rancourt A, Satoh MS. Cell fate simulation reveals cancer cell features in the tumor microenvironment. J Biol Chem 2024; 300:107697. [PMID: 39173950 PMCID: PMC11419826 DOI: 10.1016/j.jbc.2024.107697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024] Open
Abstract
To elucidate the dynamic evolution of cancer cell characteristics within the tumor microenvironment (TME), we developed an integrative approach combining single-cell tracking, cell fate simulation, and 3D TME modeling. We began our investigation by analyzing the spatiotemporal behavior of individual cancer cells in cultured pancreatic (MiaPaCa2) and cervical (HeLa) cancer cell lines, with a focus on the α2-6 sialic acid (α2-6Sia) modification on glycans, which is associated with cell stemness. Our findings revealed that MiaPaCa2 cells exhibited significantly higher levels of α2-6Sia modification, correlating with enhanced reproductive capabilities, whereas HeLa cells showed less prevalence of this modification. To accommodate the in vivo variability of α2-6Sia levels, we employed a cell fate simulation algorithm that digitally generates cell populations based on our observed data while varying the level of sialylation, thereby simulating cell growth patterns. Subsequently, we performed a 3D TME simulation with these deduced cell populations, considering the microenvironment that could impact cancer cell growth. Immune cell landscape information derived from 193 cervical and 172 pancreatic cancer cases was used to estimate the degree of the positive or negative impact. Our analysis suggests that the deduced cells generated based on the characteristics of MiaPaCa2 cells are less influenced by the immune cell landscape within the TME compared to those of HeLa cells, highlighting that the fate of cancer cells is shaped by both the surrounding immune landscape and the intrinsic characteristics of the cancer cells.
Collapse
Affiliation(s)
- Sachiko Sato
- Glycobiology and Bioimaging Laboratory of Research Center for Infectious Diseases and Axe of Infectious and Immunological Diseases, Research Centre of CHU de Quebec, Faculty of Medicine, Laval University, Quebec, Canada
| | - Ann Rancourt
- Glycobiology and Bioimaging Laboratory of Research Center for Infectious Diseases and Axe of Infectious and Immunological Diseases, Research Centre of CHU de Quebec, Faculty of Medicine, Laval University, Quebec, Canada; Laboratory of DNA Damage Responses and Bioimaging, Research Centre of CHU de Quebec, Faculty of Medicine, Laval University, Quebec, Canada
| | - Masahiko S Satoh
- Laboratory of DNA Damage Responses and Bioimaging, Research Centre of CHU de Quebec, Faculty of Medicine, Laval University, Quebec, Canada.
| |
Collapse
|
11
|
Pesini C, Artal L, Paúl Bernal J, Sánchez Martinez D, Pardo J, Ramírez-Labrada A. In-depth analysis of the interplay between oncogenic mutations and NK cell-mediated cancer surveillance in solid tumors. Oncoimmunology 2024; 13:2379062. [PMID: 39036370 PMCID: PMC11259085 DOI: 10.1080/2162402x.2024.2379062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in antitumoral and antiviral responses. Yet, cancer cells can alter themselves or the microenvironment through the secretion of cytokines or other factors, hindering NK cell activation and promoting a less cytotoxic phenotype. These resistance mechanisms, often referred to as the "hallmarks of cancer" are significantly influenced by the activation of oncogenes, impacting most, if not all, of the described hallmarks. Along with oncogenes, other types of genes, the tumor suppressor genes are frequently mutated or modified during cancer. Traditionally, these genes have been associated with uncontrollable tumor growth and apoptosis resistance. Recent evidence suggests oncogenic mutations extend beyond modulating cell death/proliferation programs, influencing cancer immunosurveillance. While T cells have been more studied, the results obtained highlight NK cells as emerging key protagonists for enhancing tumor cell elimination by modulating oncogenic activity. A few recent studies highlight the crucial role of oncogenic mutations in NK cell-mediated cancer recognition, impacting angiogenesis, stress ligands, and signaling balance within the tumor microenvironment. This review will critically examine recent discoveries correlating oncogenic mutations to NK cell-mediated cancer immunosurveillance, a relatively underexplored area, particularly in the era dominated by immune checkpoint inhibitors and CAR-T cells. Building on these insights, we will explore opportunities to improve NK cell-based immunotherapies, which are increasingly recognized as promising alternatives for treating low-antigenic tumors, offering significant advantages in terms of safety and manufacturing suitability.
Collapse
Affiliation(s)
- Cecilia Pesini
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Laura Artal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Institute of Carbochemistry (ICB-CSIC), Zaragoza, Spain
| | - Jorge Paúl Bernal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Diego Sánchez Martinez
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Aragón I + D Foundation (ARAID), Government of Aragon, Zaragoza, Spain
| | - Julián Pardo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Ariel Ramírez-Labrada
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
| |
Collapse
|
12
|
Wen W, Zhang WL, Tan R, Zhong TT, Zhang MR, Fang XS. Progress in deciphering the role of p53 in diffuse large B-cell lymphoma: mechanisms and therapeutic targets. Am J Cancer Res 2024; 14:3280-3293. [PMID: 39113862 PMCID: PMC11301306 DOI: 10.62347/lhio8294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/30/2024] [Indexed: 08/10/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma subtype, accounting for 30%-40% of non-Hodgkin lymphoma in adults. The mechanisms underlying DLBCL occurrence are extremely complex, and involve the B-cell receptor (BCR) and Toll-like receptor (TLR) signaling pathways, as well as genetic abnormalities and other factors. With the development of high-throughput sequencing, an increasing number of abnormal genes have been identified in DLBCL. Among them, the tumor protein p53 (TP53/p53) gene is important in DLBCL occurrence. Patients with DLBCL carrying TP53 gene abnormalities generally have poor prognosis and studies of p53 have potential to provide a better basis for their treatment. Normally, p53 is maintained at low levels through its interaction with murine double minute 2 (MDM2), and prevents tumorigenesis by mediating cell cycle arrest, apoptosis, and repair of damaged cells, among other processes. Therefore, the prognosis of patients with DLBCL harboring TP53 gene abnormalities (mutations, deletions, etc.) is poor, and targeting p53 for tumor therapy has become a research hotspot, following developments in molecular biology technologies. Current treatments targeting p53 mainly act by restoring the function or promoting degradation of mutant p53, and enhancing wild-type p53 protein stability and activity. Based on the current status of p53 research, exploration of existing therapeutic methods to improve the prognosis of patients with DLBCL with TP53 abnormalities is warranted.
Collapse
Affiliation(s)
- Wen Wen
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan 250021, Shandong, China
- Shandong First Medical UniversityJinan 250024, Shandong, China
| | - Wen-Lu Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan 250021, Shandong, China
- Shandong First Medical UniversityJinan 250024, Shandong, China
| | - Ran Tan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan 250021, Shandong, China
- Shandong First Medical UniversityJinan 250024, Shandong, China
| | - Tan-Tan Zhong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan 250021, Shandong, China
- Shandong First Medical UniversityJinan 250024, Shandong, China
| | - Mei-Rui Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan 250021, Shandong, China
- Shandong First Medical UniversityJinan 250024, Shandong, China
| | - Xiao-Sheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan 250021, Shandong, China
- Shandong First Medical UniversityJinan 250024, Shandong, China
| |
Collapse
|
13
|
Benedetti R, Di Crosta M, D’Orazi G, Cirone M. Post-Translational Modifications (PTMs) of mutp53 and Epigenetic Changes Induced by mutp53. BIOLOGY 2024; 13:508. [PMID: 39056701 PMCID: PMC11273943 DOI: 10.3390/biology13070508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
Wild-type (wt) p53 and mutant forms (mutp53) play a key but opposite role in carcinogenesis. wtP53 acts as an oncosuppressor, preventing oncogenic transformation, while mutp53, which loses this property, may instead favor this process. This suggests that a better understanding of the mechanisms activating wtp53 while inhibiting mutp53 may help to design more effective anti-cancer treatments. In this review, we examine possible PTMs with which both wt- and mutp53 can be decorated and discuss how their manipulation could represent a possible strategy to control the stability and function of these proteins, focusing in particular on mutp53. The impact of ubiquitination, phosphorylation, acetylation, and methylation of p53, in the context of several solid and hematologic cancers, will be discussed. Finally, we will describe some of the recent studies reporting that wt- and mutp53 may influence the expression and activity of enzymes responsible for epigenetic changes such as acetylation, methylation, and microRNA regulation and the possible consequences of such changes.
Collapse
Affiliation(s)
- Rossella Benedetti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (R.B.); (M.D.C.)
| | - Michele Di Crosta
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (R.B.); (M.D.C.)
| | - Gabriella D’Orazi
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (R.B.); (M.D.C.)
| |
Collapse
|
14
|
Benitez DA, Cumplido-Laso G, Olivera-Gómez M, Del Valle-Del Pino N, Díaz-Pizarro A, Mulero-Navarro S, Román-García A, Carvajal-Gonzalez JM. p53 Genetics and Biology in Lung Carcinomas: Insights, Implications and Clinical Applications. Biomedicines 2024; 12:1453. [PMID: 39062026 PMCID: PMC11274425 DOI: 10.3390/biomedicines12071453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The TP53 gene is renowned as a tumor suppressor, playing a pivotal role in overseeing the cell cycle, apoptosis, and maintaining genomic stability. Dysregulation of p53 often contributes to the initiation and progression of various cancers, including lung cancer (LC) subtypes. The review explores the intricate relationship between p53 and its role in the development and progression of LC. p53, a crucial tumor suppressor protein, exists in various isoforms, and understanding their distinct functions in LC is essential for advancing our knowledge of this deadly disease. This review aims to provide a comprehensive literature overview of p53, its relevance to LC, and potential clinical applications.
Collapse
Affiliation(s)
- Dixan A. Benitez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.C.-L.); (M.O.-G.); (N.D.V.-D.P.); (A.D.-P.); (S.M.-N.); (A.R.-G.)
| | | | | | | | | | | | | | - Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.C.-L.); (M.O.-G.); (N.D.V.-D.P.); (A.D.-P.); (S.M.-N.); (A.R.-G.)
| |
Collapse
|
15
|
K AR, Arumugam S, Muninathan N, Baskar K, S D, D DR. P53 Gene as a Promising Biomarker and Potential Target for the Early Diagnosis of Reproductive Cancers. Cureus 2024; 16:e60125. [PMID: 38864057 PMCID: PMC11165294 DOI: 10.7759/cureus.60125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
One of the crucial aspects of cancer research is diagnosis with specificity and accuracy. Early cancer detection mostly helps make appropriate decisions regarding treatment and metastasis. The well-studied transcription factor tumor suppressor protein p53 is essential for maintaining genetic integrity. p53 is a key tumor suppressor that recognizes the carcinogenic biological pathways and eradicates them by apoptosis. A wide range of carcinomas, especially gynecological such as ovarian, cervical, and endometrial cancers, frequently undergo TP53 gene mutations. This study evaluates the potential of the p53 gene as a biological marker for the diagnosis of reproductive system neoplasms. Immunohistochemistry of p53 is rapid, easy to accomplish, cost-effective, and preferred by pathologists as a surrogate for the analysis of TP53 mutation. Thus, this review lays a groundwork for future efforts to develop techniques using p53 for the early diagnosis of cancer.
Collapse
Affiliation(s)
- Aswathi R K
- Medical Biochemistry, Meenakshi Academy of Higher Education and Research, Chennai, IND
| | - Suresh Arumugam
- Central Research Laboratory, Meenakshi Medical College Hospital and Research Institute, Kanchipuram, IND
| | - Natrajan Muninathan
- Central Research Laboratory, Meenakshi Medical College Hospital and Research Institute, Kanchipuram, IND
| | - Kuppusamy Baskar
- Central Research Laboratory, Meenakshi Medical College Hospital and Research Institute, Kanchipuram, IND
| | - Deepthi S
- Research and Development, Meenakshi Academy of Higher Education and Research, Chennai, IND
| | - Dinesh Roy D
- Centre for Advanced Genetic Studies, Genetika, Thiruvananthapuram, IND
| |
Collapse
|
16
|
Huang X, Cao Z, Qian J, Ding T, Wu Y, Zhang H, Zhong S, Wang X, Ren X, Zhang W, Xu Y, Yao G, Wang X, Yang X, Wen L, Zhang Y. Nanoreceptors promote mutant p53 protein degradation by mimicking selective autophagy receptors. NATURE NANOTECHNOLOGY 2024; 19:545-553. [PMID: 38216684 DOI: 10.1038/s41565-023-01562-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/01/2023] [Indexed: 01/14/2024]
Abstract
In some cancers mutant p53 promotes the occurrence, development, metastasis and drug resistance of tumours, with targeted protein degradation seen as an effective therapeutic strategy. However, a lack of specific autophagy receptors limits this. Here, we propose the synthesis of biomimetic nanoreceptors (NRs) that mimic selective autophagy receptors. The NRs have both a component for targeting the desired protein, mutant-p53-binding peptide, and a component for enhancing degradation, cationic lipid. The peptide can bind to mutant p53 while the cationic lipid simultaneously targets autophagosomes and elevates the levels of autophagosome formation, increasing mutant p53 degradation. The NRs are demonstrated in vitro and in a patient-derived xenograft ovarian cancer model in vivo. The work highlights a possible direction for treating diseases by protein degradation.
Collapse
Affiliation(s)
- Xiaowan Huang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, People's Republic of China
- School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Ziyang Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Jieying Qian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, People's Republic of China
| | - Tao Ding
- School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Yanxia Wu
- Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - Hao Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, People's Republic of China
| | - Suqin Zhong
- School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Xiaoli Wang
- School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Xiaoguang Ren
- School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Wang Zhang
- School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Youcui Xu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Guangyu Yao
- Breast Center, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xingwu Wang
- Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - Xianzhu Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, People's Republic of China.
- National Engineering Research Centre for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, People's Republic of China.
| | - Longping Wen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China.
| | - Yunjiao Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, People's Republic of China.
- School of Medicine, South China University of Technology, Guangzhou, People's Republic of China.
- National Engineering Research Centre for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, People's Republic of China.
| |
Collapse
|
17
|
Prasad R, Sharma K, Bhutani K, Prasad S, Manhas S, Kishan J. Identification of Genetic Variants in Exon 4 of TP53 in Lung Carcinoma and in Silico Prediction of Their Significance. Indian J Clin Biochem 2024; 39:276-282. [PMID: 38577139 PMCID: PMC10987423 DOI: 10.1007/s12291-022-01099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022]
Abstract
Lung cancer is a severe and the leading cause of cancer related deaths in men and women all over the world. Tumor suppressor protein (TP53) encoded by the TP53 gene which plays a pivotal role in various cellular tumor suppression processes viz cell cycle arrest and apoptosis. Henceforth, the present study was aimed to TP53 exon4 variants from lung carcinoma. Histopathologic and clinically proven 20 patients of lung cancer were enrolled in this study the average age of patients was 45 ± 8 years which categorized as early onset of lung cancer. Genomic DNA was isolated from the blood specimen of patients. Extracted DNA was subjected to PCR amplification for exon 4 of TP53 using appropriate primers and subsequently amplified products were applied to nucleotide alterations via using the DNA sanger sequencing. The genetic analysis documented five variants in exon4 of TP53 which include viz. 4 substitutions [c.215 > C at codon 72, C. 358-359AA > GG at codon 120] were highly prevalent, occurring in 63% and 25% frequency in patients. Other two variants viz. C. 358 A > C at codon 120, C. 365T > G at codon 122 were present at frequency of 15% whilst one deletion variant [152 del C] was found with 5% frequency. Furthermore, alterations on codon 72, 120,122 and 51 were characterized as possibly damaging by Poly Phen-2 and decreased stability using stability bioinformatic tool. Taken together all these findings infer that TP53 gene involved in modulation and susceptibility to lung cancer.
Collapse
Affiliation(s)
- Rajendra Prasad
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala India
| | - Kirti Sharma
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala India
| | - Karanpreet Bhutani
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala India
| | - Suvarna Prasad
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala India
- Department of Biochemistry, AIIMS, Deoghar, India
| | - Sunita Manhas
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala India
| | - Jai Kishan
- Department of Respiratory Medicine, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala India
| |
Collapse
|
18
|
Shahzad M, Iqbal Q, Tariq E, Ammad-Ud-Din M, Butt A, Mushtaq AH, Ali F, Chaudhary SG, Anwar I, Gonzalez-Lugo JD, Abdelhakim H, Ahmed N, Hematti P, Singh AK, McGuirk JP, Mushtaq MU. Outcomes with allogeneic hematopoietic stem cell transplantation in TP53-mutated myelodysplastic syndrome: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2024; 196:104310. [PMID: 38423375 DOI: 10.1016/j.critrevonc.2024.104310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
We conducted a systematic review and meta-analysis to evaluate outcomes after allogeneic hematopoietic stem cell transplantation (Allo-HSCT) in TP53-mutated myelodysplastic syndromes (MDS). A literature search was performed on PubMed, Cochrane, Embase, and Clinicaltrials.gov. After screening 626 articles, eight studies were included. Data were extracted following the PRISMA guidelines and analyzed using the meta-package by Schwarzer et al. We analyzed 540 patients. The pooled median 3 (1-5) year overall survival was 21% (95% CI 0.08-0.37, I2=91%, n=540). The pooled relapse rate was 58.9% (95% CI 0.38-0.77, I2=93%, n=487) at a median of 1.75 (1-3) years. The pooled 4-year progression- free survival was 34.8% (95% CI 0.15-0.57, I2=72%, n=105). Outcomes of Allo-HSCT for TP53-mutated MDS patients remain poor, with 21% OS at three years; however, Allo-HSCT confers a survival advantage as compared to non-transplant palliative therapies. Our findings suggest the need to explore novel therapeutic agents in prospective clinical trials.
Collapse
Affiliation(s)
- Moazzam Shahzad
- Department of Hematology/Oncology, H. Lee Moffitt Cancer and Research Institute, University of South Florida, Tampa, FL, USA
| | - Qamar Iqbal
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ezza Tariq
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mohammad Ammad-Ud-Din
- Department of Hematology/Oncology, H. Lee Moffitt Cancer and Research Institute, University of South Florida, Tampa, FL, USA
| | - Atif Butt
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ali Hassan Mushtaq
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Fatima Ali
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sibgha Gull Chaudhary
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Iqra Anwar
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jesus D Gonzalez-Lugo
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Haitham Abdelhakim
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nausheen Ahmed
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Peiman Hematti
- Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anurag K Singh
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Joseph P McGuirk
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Muhammad Umair Mushtaq
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
19
|
Basha NJ, Mohan RM. Insight on Heterocycles as p53‐MDM2 Protein‐Protein Interaction Inhibitors: Molecular Mechanism for p53 Activation. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202304525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/20/2024] [Indexed: 01/03/2025]
Abstract
AbstractTranscription factor p53, also known as tumor suppressor protein. Encoded by the TP53 gene, the guardian of genome p53 regulates many gene pathways. Nevertheless, the molecular mechanisms of p53 functioning have been known for a few decades, and the exact role of p53 in cancer therapy is unclear. Also, comprehensive literature on heterocycles as p53‐MDM2 protein‐protein interaction inhibitors is limited. This review covers the molecular mechanism for the p53‐MDM2 interaction and its inhibition by the heterocyclic small molecules. We hope the present comprehensive study will help to develop heterocycles as anticancer drugs that induce apoptosis in tumor cells.
Collapse
Affiliation(s)
- N. Jeelan Basha
- Department of Chemistry Indian Academy Degree College-Autonomous Bengaluru India- 560043
| | - R. M. Mohan
- Department of Chemistry Indian Academy Degree College-Autonomous Bengaluru India- 560043
| |
Collapse
|
20
|
Perotti D, Williams RD, Wegert J, Brzezinski J, Maschietto M, Ciceri S, Gisselsson D, Gadd S, Walz AL, Furtwaengler R, Drost J, Al-Saadi R, Evageliou N, Gooskens SL, Hong AL, Murphy AJ, Ortiz MV, O'Sullivan MJ, Mullen EA, van den Heuvel-Eibrink MM, Fernandez CV, Graf N, Grundy PE, Geller JI, Dome JS, Perlman EJ, Gessler M, Huff V, Pritchard-Jones K. Hallmark discoveries in the biology of Wilms tumour. Nat Rev Urol 2024; 21:158-180. [PMID: 37848532 DOI: 10.1038/s41585-023-00824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/19/2023]
Abstract
The modern study of Wilms tumour was prompted nearly 50 years ago, when Alfred Knudson proposed the 'two-hit' model of tumour development. Since then, the efforts of researchers worldwide have substantially expanded our knowledge of Wilms tumour biology, including major advances in genetics - from cloning the first Wilms tumour gene to high-throughput studies that have revealed the genetic landscape of this tumour. These discoveries improve understanding of the embryonal origin of Wilms tumour, familial occurrences and associated syndromic conditions. Many efforts have been made to find and clinically apply prognostic biomarkers to Wilms tumour, for which outcomes are generally favourable, but treatment of some affected individuals remains challenging. Challenges are also posed by the intratumoural heterogeneity of biomarkers. Furthermore, preclinical models of Wilms tumour, from cell lines to organoid cultures, have evolved. Despite these many achievements, much still remains to be discovered: further molecular understanding of relapse in Wilms tumour and of the multiple origins of bilateral Wilms tumour are two examples of areas under active investigation. International collaboration, especially when large tumour series are required to obtain robust data, will help to answer some of the remaining unresolved questions.
Collapse
Affiliation(s)
- Daniela Perotti
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Richard D Williams
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Section of Genetics and Genomics, Faculty of Medicine, Imperial College London, London, UK
| | - Jenny Wegert
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, Wuerzburg, Germany
| | - Jack Brzezinski
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Mariana Maschietto
- Research Center, Boldrini Children's Hospital, Campinas, São Paulo, Brazil
| | - Sara Ciceri
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - David Gisselsson
- Cancer Cell Evolution Unit, Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genetics, Pathology and Molecular Diagnostics, Office of Medical Services, Skåne, Sweden
| | - Samantha Gadd
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Amy L Walz
- Division of Hematology,Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Rhoikos Furtwaengler
- Division of Pediatric Oncology and Hematology, Department of Pediatrics, Inselspital Bern University, Bern, Switzerland
| | - Jarno Drost
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Reem Al-Saadi
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | - Nicholas Evageliou
- Divisions of Hematology and Oncology, Children's Hospital of Philadelphia, CHOP Specialty Care Center, Vorhees, NJ, USA
| | - Saskia L Gooskens
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands
| | - Andrew L Hong
- Aflac Cancer and Blood Disorders Center, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael V Ortiz
- Department of Paediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maureen J O'Sullivan
- Histology Laboratory, Children's Health Ireland at Crumlin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
| | - Elizabeth A Mullen
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | | | - Conrad V Fernandez
- Division of Paediatric Hematology Oncology, IWK Health Centre and Dalhousie University, Halifax, Nova Scotia, Canada
| | - Norbert Graf
- Department of Paediatric Oncology and Hematology, Saarland University Hospital, Homburg, Germany
| | - Paul E Grundy
- Department of Paediatrics Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Jeffrey S Dome
- Division of Oncology, Center for Cancer and Blood Disorders, Children's National Hospital and the Department of Paediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Elizabeth J Perlman
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Manfred Gessler
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, Wuerzburg, Germany
- Comprehensive Cancer Center Mainfranken, Wuerzburg, Germany
| | - Vicki Huff
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathy Pritchard-Jones
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
21
|
Huang Y, Jiao Z, Fu Y, Hou Y, Sun J, Hu F, Yu S, Gong K, Liu Y, Zhao G. An overview of the functions of p53 and drugs acting either on wild- or mutant-type p53. Eur J Med Chem 2024; 265:116121. [PMID: 38194777 DOI: 10.1016/j.ejmech.2024.116121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/22/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024]
Abstract
TP53, also known as the "guardian of the genome," is an important tumor suppressor gene. It is encoded by the human genome and is associated with the development of diverse cancers. The p53 protein, encoded by TP53, functions in the cell to monitor DNA damage and prompts the cell to respond appropriately. When DNA is damaged, p53 halts the cell cycle, allowing cells to enter the repair state. If the repair is ineffective, p53 induces cell death via apoptosis. This prevents DNA damage transmission during cell division and reduces cancer risk. However, the p53 gene mutation compromises its function. This leads to the inability of cells to respond properly to DNA damage, which may result in cancer development. Mutations in p53 are widespread in diverse cancers, especially highly prevalent cancers, including breast, colon, and lung cancers. Despite the association between p53 mutations and cancer, researchers have discovered drugs and treatments that may reactivate mutated p53 function. Therefore, p53 remains an important area of research in cancer treatment and holds promise as a new direction for cancer therapy. In summary, TP53 is a vital tumor suppressor gene responsible for monitoring DNA damage and prompting cells to respond appropriately. This article summarizes drugs related to p53 and diverse strategies for discovering drugs that act on either wide or mutant p53. Herein, p53 is categorized into two types: wild and mutant type. Drugs are also classified according to diverse treatment strategies, enabling readers to differentiate between the two types of p53 and aiding in selecting the appropriate research direction. Additionally, this review offers a valuable reference for drug design.
Collapse
Affiliation(s)
- Yongmi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China.
| | - Zhihao Jiao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China.
| | - Yuqing Fu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Yue Hou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Jinxiao Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Feiran Hu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Shangzhe Yu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Kexin Gong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Yiru Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Guisen Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China.
| |
Collapse
|
22
|
Kamath D, Iwakuma T, Bossmann SH. Therapeutic potential of combating cancer by restoring wild-type p53 through mRNA nanodelivery. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 56:102732. [PMID: 38199451 PMCID: PMC11108594 DOI: 10.1016/j.nano.2024.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Among the tumor suppressor genes, TP53 is the most frequently mutated in human cancers, and most mutations are missense mutations causing production of mutant p53 (mutp53) proteins. TP53 mutations not only results in loss of function (LOH) as a transcription factor and a tumor suppressor, but also gain wild-type p53 (WTp53)-independent oncogenic functions that enhance cancer metastasis and progression (Yamamoto and Iwakuma, 2018; Zhang et al., 2022). TP53 has extensively been studied as a therapeutic target as well as for drug development and therapies, however with limited success. Achieving targeted therapies for restoration of WTp53 function and depletion or repair of mutant p53 (mutp53) will have far reaching implication in cancer treatment and therapies. This review briefly discusses the role of p53 mutation in cancer and the therapeutic potential of restoring WTp53 through the advances in mRNA nanomedicine.
Collapse
Affiliation(s)
- Divya Kamath
- The University of Kansas Medical Center, Department of Cancer Biology, 3901 Rainbow Blvd, mailstop 1071, 66160 Kansas City, KS, USA.
| | - Tomoo Iwakuma
- Children's Mercy Hospital, Adele Hall Campus, 2401 Gillham Rd, Kansas City, MO 64108, USA.
| | - Stefan H Bossmann
- The University of Kansas Medical Center, Department of Cancer Biology, 3901 Rainbow Blvd, mailstop 1071, 66160 Kansas City, KS, USA.
| |
Collapse
|
23
|
Moes-Sosnowska J, Szpechcinski A, Chorostowska-Wynimko J. Clinical significance of TP53 alterations in advanced NSCLC patients treated with EGFR, ALK and ROS1 tyrosine kinase inhibitors: An update. Tumour Biol 2024; 46:S309-S325. [PMID: 37840519 DOI: 10.3233/tub-230034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
The development of targeted therapies for non-small cell lung cancer (NSCLC), such as the epidermal growth factor receptor (EGFR), anaplastic lymphoma receptor tyrosine kinase (ALK), and ROS proto-oncogene 1 (ROS1), has improved patients' prognosis and significantly extended progression-free survival. However, it remains unclear why some patients do not benefit from the treatment as much or have a rapid disease progression. It is considered that, apart from the oncogenic driver gene, molecular alterations in a number of caretaker and gatekeeper genes significantly impact the efficacy of targeted therapies. The tumor protein 53 (TP53) gene is one of the most frequently mutated genes in NSCLC. To date, numerous studies have investigated the influence of various TP53 alterations on patient prognosis and responsiveness to therapies targeting EGFR, ALK, or ROS1. This review focuses on the latest data concerning the role of TP53 alterations as prognostic and/or predictive biomarkers for EGFR, ALK, and ROS1 tyrosine kinase inhibitors (TKIs) in advanced NSCLC patients. Since the presence of TP53 mutations in NSCLC has been linked to its decreased responsiveness to EGFR, ALK, and ROS1 targeted therapy in most of the referenced studies, the review also discusses the impact of TP53 mutations on treatment resistance. It seems plausible that assessing the TP53 mutation status could aid in patient stratification for optimal clinical decision-making. However, drawing meaningful conclusions about the clinical value of the TP53 co-mutations in EGFR-, ALK- or ROS1-positive NSCLC is hampered mainly by an insufficient knowledge regarding the functional consequences of the TP53 alterations. The integration of next-generation sequencing into the routine molecular diagnostics of cancer patients will facilitate the detection and identification of targetable genetic alterations along with co-occurring TP53 variants. This advancement holds the potential to accelerate understanding of the biological and clinical role of p53 in targeted therapies for NSCLC.
Collapse
Affiliation(s)
- Joanna Moes-Sosnowska
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Adam Szpechcinski
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
24
|
Kwon YJ, Kwon TU, Shin S, Lee B, Lee H, Park H, Kim D, Moon A, Chun YJ. Enhancing the invasive traits of breast cancers by CYP1B1 via regulation of p53 to promote uPAR expression. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166868. [PMID: 37661069 DOI: 10.1016/j.bbadis.2023.166868] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/03/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Human cytochrome P450 1B1 (CYP1B1) catalyzes estrogen metabolism to produce metabolites that promote the progression of breast cancer. Since the invasive properties of cancer cells cause cancer relapse, which dramatically reduces patient survival, we investigated the new pro-invasive mechanism involving CYP1B1 in breast cancer. Exploring clinical data from invasive breast cancer patients revealed that CYP1B1 exhibits a potential correlation with urokinase-type plasminogen activator receptor (uPAR). Interestingly, uPAR mRNA expression was elevated in invasive breast cancer patients carrying TP53 genes with driver mutations, and our results showed that CYP1B1 activates the uPAR pathway following regulation of p53 according to its mutant status. CYP1B1 suppressed wild-type (WT) p53 whereas it induced the oncogenic gain-of-function mutant p53R280K, not only via transcriptional regulation but also the protein stabilization and activation following phosphorylation on Ser15 residue of p53R280K. Intriguingly, results from CYP1B1 polymorphic gene study and 4-hydroxyestradiol (4-OHE2) treatment showed that CYP1B1 regulates p53s and uPAR through its enzymatic activity. Furthermore, effects of DMBA and TMS on uPAR expression disappeared in HCT116p53-/- cells, indicating that p53 is critical for uPAR induction by CYP1B1. Collectively, our results demonstrate that CYP1B1 may reduce the relapse-free survival rate of breast cancer patients by inducing invasive traits in cancer cells via p53 regulation based on the mutation status of TP53 genes and further activation of the uPAR pathway. The elucidation of the previously unknown molecular mechanism of CYP1B1 may provide evidence for the development of effective anti-cancer therapeutic strategies that target the progression of cancer invasion.
Collapse
Affiliation(s)
- Yeo-Jung Kwon
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Tae-Uk Kwon
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Sangyun Shin
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Boyoung Lee
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Hyein Lee
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Hyemin Park
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, South Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul 01369, South Korea
| | - Young-Jin Chun
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
25
|
Mushtaq Z, Imran M, Saeed F, Imran A, Ali SW, Shahbaz M, Alsagaby SA, Guerrero Sánchez Y, Umar M, Hussain M, Al Abdimonem W, Al Jbawi E, Mahwish, El-Ghorab AH, Abdelgawad MA. Berberine: a comprehensive Approach to combat human maladies. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2184300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Zarina Mushtaq
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal-Pakistan, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Ali Imran
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Shinawar Waseem Ali
- Institute of Agricultural Sciences, University of the Punjab, Quid-i-Azam Campus, Lahore, Pakistan
| | - Muhammad Shahbaz
- Department of Food Science and Technology, MNS-University Multan, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | | | - Maryam Umar
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Waleed Al Abdimonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | | | - Mahwish
- Department of Nutritional Sciences, Government College Women University Faisalabad, Pakistan
| | - Ahmed H. El-Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
26
|
Oak S, Karajgikar O, Teni T. Curcumin mediates selective aggregation of mutant p53 in cancer cells: A promising therapeutic strategy. Biochem Biophys Res Commun 2023; 677:141-148. [PMID: 37586212 DOI: 10.1016/j.bbrc.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
The increased stability of mutant p53 (Mutp53) plays a crucial role in its gain of function, making proteins involved in its stabilization promising targets for drug intervention. Although curcumin is known to exhibit anti-cancer effects, its role as a deubiquitinase (DUB) inhibitor in Mutp53 destabilization remains poorly explored. Our study demonstrates that curcumin treatment induced ubiquitination and destabilization of Mutp53 but not Wild-type p53 (WTp53) in cancer cells. Furthermore, proteasome and lysosome inhibitors failed to reverse the effect of curcumin, indicating Mutp53 destabilization is possibly via an alternate mechanism. Intriguingly, curcumin treatment also resulted in the nuclear aggregation of the Mutp53 protein, which was rescued by combined Dithiothreitol (DTT) treatment. Similar to curcumin, a broad-spectrum deubiquitinase inhibitor induced Mutp53 aggregation implying curcumin possibly acts by inhibiting deubiquitinases. Additionally, curcumin treatment inhibited colony-forming abilities, induced cytoplasmic vacuolation, and cell death selectively in Mutp53-expressing cells. Collectively, our study highlights the potential of curcumin as a promising therapeutic agent for targeting Mutp53-expressing cancer cells.
Collapse
Affiliation(s)
- Swapnil Oak
- Teni Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Onkar Karajgikar
- Teni Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, 410210, India
| | - Tanuja Teni
- Teni Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India.
| |
Collapse
|
27
|
Rius-Pérez S. p53 at the crossroad between mitochondrial reactive oxygen species and necroptosis. Free Radic Biol Med 2023; 207:183-193. [PMID: 37481144 DOI: 10.1016/j.freeradbiomed.2023.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
p53 is a redox-sensitive transcription factor that can regulate multiple cell death programs through different signaling pathways. In this review, we assess the role of p53 in the regulation of necroptosis, a programmed form of lytic cell death highly involved in the pathophysiology of multiple diseases. In particular, we focus on the role of mitochondrial reactive oxygen species (mtROS) as essential contributors to modulate necroptosis execution through p53. The enhanced generation of mtROS during necroptosis is critical for the correct interaction between receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and 3 (RIPK3), two key components of the functional necrosome. p53 controls the occurrence of necroptosis by modulating the levels of mitochondrial H2O2 via peroxiredoxin 3 and sulfiredoxin. Furthermore, in response to increased levels of H2O2, p53 upregulates the long non-coding RNA necrosis-related factor, favoring the translation of RIPK1 and RIPK3. In parallel, a fraction of cytosolic p53 migrates into mitochondria, a process notably involved in necroptosis execution via its interaction with the mitochondrial permeability transition pore. In conclusion, p53 is located at the intersection between mtROS and the necroptosis machinery, making it a key protein to orchestrate redox signaling during necroptosis.
Collapse
Affiliation(s)
- Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100, Valencia, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
| |
Collapse
|
28
|
Pal A, Gonzalez-Malerva L, Eaton S, Xu C, Zhang Y, Grief D, Sakala L, Nwekwo L, Zeng J, Christensen G, Gupta C, Streitwieser E, Singharoy A, Park JG, LaBaer J. Multidimensional quantitative phenotypic and molecular analysis reveals neomorphic behaviors of p53 missense mutants. NPJ Breast Cancer 2023; 9:78. [PMID: 37773066 PMCID: PMC10541912 DOI: 10.1038/s41523-023-00582-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
Mutations in the TP53 tumor suppressor gene occur in >80% of the triple-negative or basal-like breast cancer. To test whether neomorphic functions of specific TP53 missense mutations contribute to phenotypic heterogeneity, we characterized phenotypes of non-transformed MCF10A-derived cell lines expressing the ten most common missense mutant p53 proteins and observed a wide spectrum of phenotypic changes in cell survival, resistance to apoptosis and anoikis, cell migration, invasion and 3D mammosphere architecture. The p53 mutants R248W, R273C, R248Q, and Y220C are the most aggressive while G245S and Y234C are the least, which correlates with survival rates of basal-like breast cancer patients. Interestingly, a crucial amino acid difference at one position-R273C vs. R273H-has drastic changes on cellular phenotype. RNA-Seq and ChIP-Seq analyses show distinct DNA binding properties of different p53 mutants, yielding heterogeneous transcriptomics profiles, and MD simulation provided structural basis of differential DNA binding of different p53 mutants. Integrative statistical and machine-learning-based pathway analysis on gene expression profiles with phenotype vectors across the mutant cell lines identifies quantitative association of multiple pathways including the Hippo/YAP/TAZ pathway with phenotypic aggressiveness. Further, comparative analyses of large transcriptomics datasets on breast cancer cell lines and tumors suggest that dysregulation of the Hippo/YAP/TAZ pathway plays a key role in driving the cellular phenotypes towards basal-like in the presence of more aggressive p53 mutants. Overall, our study describes distinct gain-of-function impacts on protein functions, transcriptional profiles, and cellular behaviors of different p53 missense mutants, which contribute to clinical phenotypic heterogeneity of triple-negative breast tumors.
Collapse
Affiliation(s)
- Anasuya Pal
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Laura Gonzalez-Malerva
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Seron Eaton
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Chenxi Xu
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Yining Zhang
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Dustin Grief
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Lydia Sakala
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Lilian Nwekwo
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Jia Zeng
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Grant Christensen
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Chitrak Gupta
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Ellen Streitwieser
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Abhishek Singharoy
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Jin G Park
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
| | - Joshua LaBaer
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
29
|
Li M, Sun D, Song N, Chen X, Zhang X, Zheng W, Yu Y, Han C. Mutant p53 in head and neck squamous cell carcinoma: Molecular mechanism of gain‑of‑function and targeting therapy (Review). Oncol Rep 2023; 50:162. [PMID: 37449494 PMCID: PMC10394732 DOI: 10.3892/or.2023.8599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most widespread malignancies worldwide. p53, as a transcription factor, can play its role in tumor suppression by activating the expression of numerous target genes. However, p53 is one of the most commonly mutated genes, which frequently harbors missense mutations. These missense mutations are nucleotide substitutions that result in the substitution of an amino acid in the DNA binding domain. Most p53 mutations in HNSCC are missense mutations and the mutation rate of p53 reaches 65‑85%. p53 mutation not only inhibits the tumor suppressive function of p53 but also provides novel functions to facilitate tumor recurrence, called gain‑of‑function (GOF). The present study focused on the prevalence and clinical relevance of p53 mutations in HNSCC, and further described how mutant p53 accumulates. Moreover, mutant p53 in HNSCC can interact with proteins, RNA, and exosomes to exert effects on proliferation, migration, invasion, immunosuppression, and metabolism. Finally, several treatment strategies have been proposed to abolish the tumor‑promoting function of mutant p53; these strategies include reactivation of mutant p53 into wild‑type p53, induction of mutant p53 degradation, enhancement of the synthetic lethality of mutant p53, and treatment with immunotherapy. Due to the high frequency of p53 mutations in HNSCC, a further understanding of the mechanism of mutant p53 may provide potential applications for targeted therapy in patients with HNSCC.
Collapse
Affiliation(s)
- Minmin Li
- School of Stomatology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Dongyuan Sun
- School of Stomatology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
- Department of Dentistry, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Ning Song
- School of Stomatology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Xi Chen
- School of Stomatology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Xinyue Zhang
- School of Stomatology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Wentian Zheng
- School of Stomatology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Yang Yu
- School of Stomatology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
- Department of Dentistry, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Chengbing Han
- Department of Stomatology, First Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
30
|
Li Y, Shen L, Tao K, Xu G, Ji K. Key Roles of p53 Signaling Pathway-Related Factors GADD45B and SERPINE1 in the Occurrence and Development of Gastric Cancer. Mediators Inflamm 2023; 2023:6368893. [PMID: 37662480 PMCID: PMC10471451 DOI: 10.1155/2023/6368893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/16/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
p53 can function as an independent and unfavorable prognosis biomarker in cancer patients. We tried to identify the key factors of the p53 signaling pathway involved in gastric cancer (GC) occurrence and development based on the genotype-tissue expression (GTEx) and the Cancer Genome Atlas (TCGA) screening. We downloaded gene expression data and clinical data of GC included in the GTEx and TCGA databases, followed by differential analysis. Then, the key factors in the p53 signaling pathway were identified, followed by an analysis of the correlation between key factors and the prognosis of GC patients. Human GC cell lines were selected for in vitro cell experiments to verify the effects of key prognostic factors on the proliferation, migration, invasion, and apoptosis of GC cells. We found 4,944 significantly differentially expressed genes (DEGs), of which 2,465 were upregulated and 2,479 downregulated in GC. Then, 27 DEGs were found to be involved in the p53 signaling pathway. GADD45B and SERPINE1 genes were prognostic high-risk genes. The regression coefficients of GADD45B and SERPINE1 were positive. GADD45B was poorly expressed, while SERPINE1 was highly expressed in GC tissues, highlighting their prognostic role in GC. The in vitro cell experiments confirmed that overexpression of GADD45B or silencing of SERPINE1 could inhibit the proliferation, migration, and invasion and augment the apoptosis of GC cells. Collectively, the p53 signaling pathway-related factors GADD45B and SERPINE1 may be key genes that participate in the development of GC.
Collapse
Affiliation(s)
- Yaoqing Li
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing 312000, China
| | - Liyijing Shen
- Department of Radiology, Shaoxing People's Hospital, Shaoxing 312000, China
| | - Kelong Tao
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing 312000, China
| | - Guangen Xu
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing 312000, China
| | - Kewei Ji
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing 312000, China
| |
Collapse
|
31
|
Ding D, Blee AM, Zhang J, Pan Y, Becker NA, Maher LJ, Jimenez R, Wang L, Huang H. Gain-of-function mutant p53 together with ERG proto-oncogene drive prostate cancer by beta-catenin activation and pyrimidine synthesis. Nat Commun 2023; 14:4671. [PMID: 37537199 PMCID: PMC10400651 DOI: 10.1038/s41467-023-40352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
Whether TMPRSS2-ERG fusion and TP53 gene alteration coordinately promote prostate cancer (PCa) remains unclear. Here we demonstrate that TMPRSS2-ERG fusion and TP53 mutation / deletion co-occur in PCa patient specimens and this co-occurrence accelerates prostatic oncogenesis. p53 gain-of-function (GOF) mutants are now shown to bind to a unique DNA sequence in the CTNNB1 gene promoter and transactivate its expression. ERG and β-Catenin co-occupy sites at pyrimidine synthesis gene (PSG) loci and promote PSG expression, pyrimidine synthesis and PCa growth. β-Catenin inhibition by small molecule inhibitors or oligonucleotide-based PROTAC suppresses TMPRSS2-ERG- and p53 mutant-positive PCa cell growth in vitro and in mice. Our study identifies a gene transactivation function of GOF mutant p53 and reveals β-Catenin as a transcriptional target gene of p53 GOF mutants and a driver and therapeutic target of TMPRSS2-ERG- and p53 GOF mutant-positive PCa.
Collapse
Affiliation(s)
- Donglin Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Alexandra M Blee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 73240, USA
| | - Jianong Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Nicole A Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Rafael Jimenez
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
| |
Collapse
|
32
|
Shen J, Wang Q, Mao Y, Gao W, Duan S. Targeting the p53 signaling pathway in cancers: Molecular mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e288. [PMID: 37256211 PMCID: PMC10225743 DOI: 10.1002/mco2.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Tumor suppressor p53 can transcriptionally activate downstream genes in response to stress, and then regulate the cell cycle, DNA repair, metabolism, angiogenesis, apoptosis, and other biological responses. p53 has seven functional domains and 12 splice isoforms, and different domains and subtypes play different roles. The activation and inactivation of p53 are finely regulated and are associated with phosphorylation/acetylation modification and ubiquitination modification, respectively. Abnormal activation of p53 is closely related to the occurrence and development of cancer. While targeted therapy of the p53 signaling pathway is still in its early stages and only a few drugs or treatments have entered clinical trials, the development of new drugs and ongoing clinical trials are expected to lead to the widespread use of p53 signaling-targeted therapy in cancer treatment in the future. TRIAP1 is a novel p53 downstream inhibitor of apoptosis. TRIAP1 is the homolog of yeast mitochondrial intermembrane protein MDM35, which can play a tumor-promoting role by blocking the mitochondria-dependent apoptosis pathway. This work provides a systematic overview of recent basic research and clinical progress in the p53 signaling pathway and proposes that TRIAP1 is an important therapeutic target downstream of p53 signaling.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Yunan Mao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Wei Gao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| |
Collapse
|
33
|
Kong Y, Wu M, Wan X, Sun M, Zhang Y, Wu Z, Li C, Liang X, Gao L, Ma C, Yue X. Lipophagy-mediated cholesterol synthesis inhibition is required for the survival of hepatocellular carcinoma under glutamine deprivation. Redox Biol 2023; 63:102732. [PMID: 37150151 DOI: 10.1016/j.redox.2023.102732] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023] Open
Abstract
Glutamine is critical for tumor progression, and restriction of its availability is emerging as a potential therapeutic strategy. The metabolic plasticity of tumor cells helps them adapting to glutamine restriction. However, the role of cholesterol metabolism in this process is relatively unexplored. Here, we reported that glutamine deprivation inhibited cholesterol synthesis in hepatocellular carcinoma (HCC). Reactivation of cholesterol synthesis enhanced glutamine-deprivation-induced cell death of HCC cells, which is partially duo to augmented NADPH depletion and lipid peroxidation. Mechanistically, glutamine deprivation induced lipophagy to transport cholesterol from lipid droplets (LDs) to endoplasmic reticulum (ER), leading to inhibit SREBF2 maturation and cholesterol synthesis, and maintain redox balance for survival. Glutamine deprivation decreased mTORC1 activity to induce lipophagy. Importantly, administration of U18666A, CQ, or shTSC2 viruses further augmented GPNA-induced inhibition of xenograft tumor growth. Clinical data supported that glutamine utilization positively correlated with cholesterol synthesis, which is associated with poor prognosis of HCC patients. Collectively, our study revealed that cholesterol synthesis inhibition is required for the survival of HCC under glutamine-restricted tumor microenvironment.
Collapse
Affiliation(s)
- Youzi Kong
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Mengting Wu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaoyu Wan
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Min Sun
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yankun Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Chunyang Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xuetian Yue
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
34
|
Zheng P, Xiao W, Zhang J, Zheng X, Jiang J. The role of AIM2 in human hepatocellular carcinoma and its clinical significance. Pathol Res Pract 2023; 245:154454. [PMID: 37060822 DOI: 10.1016/j.prp.2023.154454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND AIM2 (absent in melanoma 2) was first discovered as the gene which was not expressed in melanoma cells. It is established that the AIM2 inflammasome function as the double-stranded DNA (dsDNA) sensor, and it plays a crucial role in infectious disorders and cancer. Little is known about the AIM2 expression pattern and its clinical significance in human hepatocellular carcinoma (HCC), understating how AIM2 altered the HCC cells is of high clinical interest. METHODS Immunohistochemistry was performed to investigate the AIM2 expression in HCC tissues. Then we constructed the ectopic AIM2-expressed HCC cell line by lentiviral transduction. Biological functional assays were used to analyze the clinical significance of AIM2. RESULTS AIM2 expression was significantly decreased in human HCC tissues compared with adjacent normal tissues, and the overall survival of HCC patients with higher AIM2 expression was significantly better. Ectopic expression of AIM2 in HCC cells significantly inhibited migration and promoted apoptosis. Furthermore, our study revealed that the notch signaling pathway could be involved in the regulation of AIM2 in the cellular network in HCC cells. AIM2 delayed the tumor progression and correlated with immune cell infiltration. CONCLUSION In this study, we suggested AIM2 played an inhibitory role in regulating the growth and metastasis of HCC, which supported the notion that AIM2 could serve as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Panpan Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Wenlu Xiao
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215006, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, China.
| |
Collapse
|
35
|
Rahmé R, Braun T, Manfredi JJ, Fenaux P. TP53 Alterations in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Biomedicines 2023; 11:biomedicines11041152. [PMID: 37189770 DOI: 10.3390/biomedicines11041152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
TP53 mutations are less frequent in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) than in solid tumors, except in secondary and therapy-related MDS/AMLs, and in cases with complex monosomal karyotype. As in solid tumors, missense mutations predominate, with the same hotspot mutated codons (particularly codons 175, 248, 273). As TP53-mutated MDS/AMLs are generally associated with complex chromosomal abnormalities, it is not always clear when TP53 mutations occur in the pathophysiological process. It is also uncertain in these MDS/AML cases, which often have inactivation of both TP53 alleles, if the missense mutation is only deleterious through the absence of a functional p53 protein, or through a potential dominant-negative effect, or finally a gain-of-function effect of mutant p53, as demonstrated in some solid tumors. Understanding when TP53 mutations occur in the disease course and how they are deleterious would help to design new treatments for those patients who generally show poor response to all therapeutic approaches.
Collapse
Affiliation(s)
- Ramy Rahmé
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institut de Recherche Saint Louis (IRSL), INSERM U1131, Université Paris Cité, 75010 Paris, France
- Ecole Doctorale Hématologie-Oncogenèse-Biothérapies, Université Paris Cité, 75010 Paris, France
- Clinical Hematology Department, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Sorbonne Paris Nord, 93000 Bobigny, France
| | - Thorsten Braun
- Clinical Hematology Department, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Sorbonne Paris Nord, 93000 Bobigny, France
| | - James J Manfredi
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pierre Fenaux
- Senior Hematology Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, 75010 Paris, France
| |
Collapse
|
36
|
Sasaki K, Takahashi S, Ouchi K, Otsuki Y, Wakayama S, Ishioka C. Different impacts of TP53 mutations on cell cycle-related gene expression among cancer types. Sci Rep 2023; 13:4868. [PMID: 36964217 PMCID: PMC10039000 DOI: 10.1038/s41598-023-32092-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/22/2023] [Indexed: 03/26/2023] Open
Abstract
Functional properties caused by TP53 mutations are involved in cancer development and progression. Although most of the mutations lose normal p53 functions, some of them, gain-of-function (GOF) mutations, exhibiting novel oncogenic functions. No reports have analyzed the impact of TP53 mutations on the gene expression profile of the p53 signaling pathway across cancer types. This study is a cross-cancer type analysis of the effects of TP53 mutations on gene expression. A hierarchical cluster analysis of the expression profile of the p53 signaling pathway classified 21 cancer types into two clusters (A1 and A2). Changes in the expression of cell cycle-related genes and MKI67 by TP53 mutations were greater in cluster A1 than in cluster A2. There was no distinct difference in the effects between GOF and non-GOF mutations on the gene expression profile of the p53 signaling pathway.
Collapse
Affiliation(s)
- Keiju Sasaki
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shin Takahashi
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Kota Ouchi
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Yasufumi Otsuki
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shonosuke Wakayama
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Chikashi Ishioka
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan.
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan.
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
37
|
Li Z, Zhao J, Huang X, Wang J. An m7G-related lncRNA signature predicts prognosis and reveals the immune microenvironment in bladder cancer. Sci Rep 2023; 13:4302. [PMID: 36922569 PMCID: PMC10017825 DOI: 10.1038/s41598-023-31424-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Bladder cancer (BC) is a representative malignant tumor type, and the significance of N7-methyguanosine (m7G)-related lncRNAs in BC is still unclear. Utilizing m7G-related lncRNAs, we developed a prognostic model to evaluate BC's prognosis and tumor immunity. First, we selected prognostic lncRNAs related to m7G by co-expression analysis and univariate Cox regression and identified two clusters by consensus clustering. The two clusters differed significantly in terms of overall survival, clinicopathological factors, and immune microenvironment. Then, we further constructed a linear stepwise regression signature by multivariate Cox and least absolute shrinkage and selection operator (LASSO) regression analysis. Patients fell into high-risk (HR) and low-risk (LR) groups considering the train group risk score. HR group had worse prognoses when stratified by clinicopathological factors. The receiver operating curve (ROC) suggested that the signature had a better prognostic value. Tumor mutation burden (TMB) showed a negative relevance to the risk score, and patients with low TMB presented a better prognosis. Validation of the signature was carried out with multivariate and univariate Cox regression analysis, nomogram, principal component analysis (PCA), C-Index, and quantitative reverse transcriptase PCR (qRT-PCR). Finally, the gene set enrichment analysis (GSEA) demonstrated the enrichment of tumor-related pathways in HR groups, and single-sample gene set enrichment analysis (ssGSEA) indicated a close association of risk score with tumor immunity. According to the drug sensitivity test, the signature could predict the effects of conventional chemotherapy drugs. In conclusion, our study indicates the close relevance of m7G-related lncRNAs to BC, and the established risk signature can effectively evaluate patient prognosis and tumor immunity and is expected to become a novel prognostic marker for BC patients.
Collapse
Affiliation(s)
- Zhenchi Li
- Department of Urology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, 366 Taihu Road, Taizhou, 225300, Jiangsu, China.,Graduate School of Dalian Medical University, No. 9 West Section, Lushun South Road, Dalian, Liaoning, China
| | - Jie Zhao
- Department of Urology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, 366 Taihu Road, Taizhou, 225300, Jiangsu, China.,Graduate School of Dalian Medical University, No. 9 West Section, Lushun South Road, Dalian, Liaoning, China
| | - Xing Huang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiangping Wang
- Department of Urology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, 366 Taihu Road, Taizhou, 225300, Jiangsu, China.
| |
Collapse
|
38
|
Xu H, Luo W, Zhao Z, Miao X, Chai C, Hu J, Tang H, Zhang H, Zhou W. Establishment and characterization of a new intrahepatic cholangiocarcinoma cell line, ICC-X3. Hum Cell 2023; 36:854-865. [PMID: 36662372 DOI: 10.1007/s13577-023-00858-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/14/2023] [Indexed: 01/21/2023]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is an aggressive cancer of the biliary tract that is prone to recurrence and metastasis and is characterized by poor sensitivity to chemotherapy and overall prognosis. To address this challenge, the establishment of suitable preclinical models is critical. In this study, we successfully established a new ICC cell line, named ICC-X3, from the satellite lesions of one ICC patient. The cell line was characterized with respect to phenotypic, molecular, biomarker, functional and histological properties. STR confirmed that ICC-X3 was highly consistent with primary tumor tissue. ICC-X3 cells positively expressed CK7, CK19, E-cadherin, vimentin, and Ki67. ICC-X3 was all resistant to gemcitabine, paclitaxel, 5-FU, and oxaliplatin. The cell line was able to rapidly form xenograft tumors which were highly similar to the primary tumor. The missense mutation of TP53 exon was detected in ICC-X3 cells. ICC-X3 can be used as a good experimental model to study the progression, metastasis, and drug resistance of ICC.
Collapse
Affiliation(s)
- Hao Xu
- The Forth Department of General Surgery, the First Hospital of Lanzhou University, No. 1, Donggang West Road, LanZhou, 730000, Gansu, China.
| | - Wei Luo
- The Forth Department of General Surgery, the First Hospital of Lanzhou University, No. 1, Donggang West Road, LanZhou, 730000, Gansu, China
| | - Zhenjie Zhao
- The Forth Department of General Surgery, the First Hospital of Lanzhou University, No. 1, Donggang West Road, LanZhou, 730000, Gansu, China
| | - Xin Miao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, LanZhou, 730000, China
| | - Changpeng Chai
- The Forth Department of General Surgery, the First Hospital of Lanzhou University, No. 1, Donggang West Road, LanZhou, 730000, Gansu, China
| | - Jinjing Hu
- The Forth Department of General Surgery, the First Hospital of Lanzhou University, No. 1, Donggang West Road, LanZhou, 730000, Gansu, China
| | - Huan Tang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Hui Zhang
- Department of General Surgery, the Second Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Wence Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China.
- Department of General Surgery, the Second Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
39
|
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023; 8:92. [PMID: 36859359 PMCID: PMC9977964 DOI: 10.1038/s41392-023-01347-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression. Mutations in TP53 not only impair its tumor suppressor function, but also confer oncogenic properties to p53 mutants. Since p53 is mutated and inactivated in most malignant tumors, it has been a very attractive target for developing new anti-cancer drugs. However, until recently, p53 was considered an "undruggable" target and little progress has been made with p53-targeted therapies. Here, we provide a systematic review of the diverse molecular mechanisms of the p53 signaling pathway and how TP53 mutations impact tumor progression. We also discuss key structural features of the p53 protein and its inactivation by oncogenic mutations. In addition, we review the efforts that have been made in p53-targeted therapies, and discuss the challenges that have been encountered in clinical development.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
40
|
Analysis of Network Pharmacology and Molecular Docking on Radix Pseudostellariae for Its Active Components on Gastric Cancer. Appl Biochem Biotechnol 2023; 195:1968-1982. [PMID: 36401725 DOI: 10.1007/s12010-022-04263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Radix Pseudostellariae, a traditional Chinese medicine, functions in modulating human immunity and anti-tumor, but its pharmacological mechanism remained unclear. In this study, 8 active components and 91 targets of Radix Pseudostellariae were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, and 225 genes related to gastric cancer (GC) were accessed from MalaCards. On the basis of these targets and GC-related genes, a protein-protein interaction (PPI) network was established. Random walk with restart (RWR) analysis was performed on the PPI network with the intersection of targets and GC-related genes as the seeds. The top 50 target genes with high affinity scores were obtained. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the enrichment of the top 50 genes was mostly presented in the cancer-related biological functions and signaling pathways, such as cellular response to oxidative stress, regulation of apoptotic signaling pathway, and P53 signaling pathway. A drug-component-target network was established, with the top 50 genes being used as key targets. Acacetin and luteolin were revealed to directly act on the core target TP53 in the network. Thus, SwissDock was used to simulate the molecular docking between TP53 protein and acacetin and luteolin. The results of docking simulation presented small estimated ΔG of two small molecules, which were suggested to be potential targets of TP53 protein. Subsequent cellular and molecular experiments confirmed this bioinformatics result. In conclusion, this study predicted the key anti-GC active components and corresponding targets of Radix Pseudostellariae through bioinformatics analysis. The findings underlie the anti-GC mechanism of Radix Pseudostellariae.
Collapse
|
41
|
Asl ER, Rostamzadeh D, Duijf PHG, Mafi S, Mansoori B, Barati S, Cho WC, Mansoori B. Mutant P53 in the formation and progression of the tumor microenvironment: Friend or foe. Life Sci 2023; 315:121361. [PMID: 36608871 DOI: 10.1016/j.lfs.2022.121361] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
TP53 is the most frequently mutated gene in human cancer. It encodes the tumor suppressor protein p53, which suppresses tumorigenesis by acting as a critical transcription factor that can induce the expression of many genes controlling a plethora of fundamental cellular processes, including cell cycle progression, survival, apoptosis, and DNA repair. Missense mutations are the most frequent type of mutations in the TP53 gene. While these can have variable effects, they typically impair p53 function in a dominant-negative manner, thereby altering intra-cellular signaling pathways and promoting cancer development. Additionally, it is becoming increasingly apparent that p53 mutations also have non-cell autonomous effects that influence the tumor microenvironment (TME). The TME is a complex and heterogeneous milieu composed of both malignant and non-malignant cells, including cancer-associated fibroblasts (CAFs), adipocytes, pericytes, different immune cell types, such as tumor-associated macrophages (TAMs) and T and B lymphocytes, as well as lymphatic and blood vessels and extracellular matrix (ECM). Recently, a large body of evidence has demonstrated that various types of p53 mutations directly affect TME. They fine-tune the inflammatory TME and cell fate reprogramming, which affect cancer progression. Notably, re-educating the p53 signaling pathway in the TME may be an effective therapeutic strategy in combating cancer. Therefore, it is timely to here review the recent advances in our understanding of how TP53 mutations impact the fate of cancer cells by reshaping the TME.
Collapse
Affiliation(s)
- Elmira Roshani Asl
- Department of Biochemistry, Saveh University of Medical Sciences, Saveh, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Pascal H G Duijf
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia; Cancer and Aging Research Program, Queensland University of Technology, Brisbane, QLD, Australia; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Sahar Mafi
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Behnaz Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, PA, United States.
| |
Collapse
|
42
|
Wang J, Qu C, Shao X, Song G, Sun J, Shi D, Jia R, An H, Wang H. Carrier-free nanoprodrug for p53-mutated tumor therapy via concurrent delivery of zinc-manganese dual ions and ROS. Bioact Mater 2023; 20:404-417. [PMID: 35784636 PMCID: PMC9218170 DOI: 10.1016/j.bioactmat.2022.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 02/09/2023] Open
Abstract
Human cancers typically express a high level of tumor-promoting mutant p53 protein (Mutp53) with a minimal level of tumor-suppressing wild-type p53 protein (WTp53). In this regard, inducing Mutp53 degradation while activating WTp53 is a viable strategy for precise anti-tumor therapy. Herein, a new carrier-free nanoprodrug (i.e., Mn-ZnO2 nanoparticles) was developed for concurrent delivery of dual Zn-Mn ions and reactive oxygen species (ROS) within tumor to regulate the p53 protein for high anti-tumor efficacy. In response to the mild tumor acidic environment, the released Zn2+ and H2O2 from Mn-ZnO2 NPs induced ubiquitination-mediated proteasomal degradation of Mutp53, while the liberative Mn2+ and increased ROS level activated the ATM-p53-Bax pathway to elevate WTp53 level. Both in vitro and in vivo results demonstrated that pH-responsive decomposition of Mn-ZnO2 NPs could effectively elevate the intracellular dual Zn-Mn ions and ROS level and subsequently generate the cytotoxic hydroxyl radical (•OH) through the Fenton-like reaction. With the integration of multiple functions (i.e., carrier-free ion and ROS delivery, tumor accumulation, p53 protein modulation, toxic •OH generation, and pH-activated MRI contrast) in a single nanosystem, Mn-ZnO2 NPs demonstrate its superiority as a promising nanotherapeutics for p53-mutated tumor therapy.
Collapse
Affiliation(s)
- Jinping Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, PR China.,Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
| | - Chang Qu
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China.,State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130, PR China
| | - Xinyue Shao
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China
| | - Guoqiang Song
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China
| | - Jingyu Sun
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
| | - Donghong Shi
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China.,State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130, PR China
| | - Ran Jia
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China
| | - Hailong An
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, PR China
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, United States.,Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, United States.,Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
| |
Collapse
|
43
|
Chen H, Yu Y, Zhou L, Chen J, Li Z, Tan X. Cuproptosis-related LncRNAs signature as biomarker of prognosis and immune infiltration in pancreatic cancer. Front Genet 2023; 14:1049454. [PMID: 36713077 PMCID: PMC9880288 DOI: 10.3389/fgene.2023.1049454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
Background: Pancreatic cancer (PC) is a malignant gastrointestinal tumor with a terrible prognosis. Cuproptosis is a recently discovered form of cell death. This study is intended to explore the relationship between cuproptosis-related lncRNAs (CRLncs) signature with the prognosis and the tumor microenvironment (TME) of PC. Methods: Transcript sequencing data of PC samples with clinical information were obtained from the Cancer Genome Atlas (TCGA). Univariate Cox regression analysis and LASSO regression analysis were employed to construct the prognostic signature based on CRLncs associated with PC survival. A nomogram was created according to this signature, and the signaling pathway enrichment was analyzed. Subsequently, we explored the link between this prognostic signature with the mutational landscape and TME. Eventually, drug sensitivity was predicted based on this signature. Results: Forty-six of 159 CRLncs were most significantly relevant to the prognosis of PC, and a 6-lncRNA prognostic signature was established. The expression level of signature lncRNAs were detected in PC cell lines. The AUC value of the ROC curve for this risk score predicting 5-year survival in PC was .944, which was an independent prognostic factor for PC. The risk score was tightly related to the mutational pattern of PC, especially the driver genes of PC. Single-sample gene set enrichment analysis (ssGSEA) demonstrated a significant correlation between signature with the TME of PC. Ultimately, compounds were measured for therapy in high-risk and low-risk PC patients, respectively. Conclusion: A prognostic signature of CRLncs for PC was established in the current study, which may serve as a promising marker for the outcomes of PC patients and has important forecasting roles for gene mutations, immune cell infiltration, and drug sensitivity in PC.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaodong Tan
- Department of General Surgery, Pancreatic, and Thyroid Ward, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
44
|
Brown K, Jenkins LMM, Crooks DR, Surman DR, Mazur SJ, Xu Y, Arimilli BS, Yang Y, Lane AN, Fan TWM, Schrump DS, Linehan WM, Ripley RT, Appella E. Targeting mutant p53-R248W reactivates WT p53 function and alters the onco-metabolic profile. Front Oncol 2023; 12:1094210. [PMID: 36713582 PMCID: PMC9874945 DOI: 10.3389/fonc.2022.1094210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
TP53 is the most commonly mutated gene in cancer, and gain-of-function mutations have wide-ranging effects. Efforts to reactivate wild-type p53 function and inhibit mutant functions have been complicated by the variety of TP53 mutations. Identified from a screen, the NSC59984 compound has been shown to restore activity to mutant p53 in colorectal cancer cells. Here, we investigated its effects on esophageal adenocarcinoma cells with specific p53 hot-spot mutations. NSC59984 treatment of cells reactivated p53 transcriptional regulation, inducing mitochondrial intrinsic apoptosis. Analysis of its effects on cellular metabolism demonstrated increased utilization of the pentose phosphate pathway and inhibition of glycolysis at the fructose-1,6-bisphosphate to fructose 6-phosphate junction. Furthermore, treatment of cells with NSC59984 increased reactive oxygen species production and decreased glutathione levels; these effects were enhanced by the addition of buthionine sulfoximine and inhibited by N-acetyl cysteine. We found that the effects of NSC59984 were substantially greater in cells harboring the p53 R248W mutation. Overall, these findings demonstrate p53-dependent effects of NSC59984 on cellular metabolism, with increased activity in cells harboring the p53 R248W mutation. This research highlights the importance of defining the mutational status of a particular cancer to create a patient-centric strategy for the treatment of p53-driven cancers.
Collapse
Affiliation(s)
- Kate Brown
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States,*Correspondence: Kate Brown,
| | - Lisa M. Miller Jenkins
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Daniel R. Crooks
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Deborah R. Surman
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Sharlyn J. Mazur
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yuan Xu
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Bhargav S. Arimilli
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ye Yang
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Andrew N. Lane
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, UK, Lexington, KY, United States
| | - Teresa W-M. Fan
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, UK, Lexington, KY, United States
| | - David S. Schrump
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - R. Taylor Ripley
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Ettore Appella
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
45
|
Alhaddad L, Chuprov-Netochin R, Pustovalova M, Osipov AN, Leonov S. Polyploid/Multinucleated Giant and Slow-Cycling Cancer Cell Enrichment in Response to X-ray Irradiation of Human Glioblastoma Multiforme Cells Differing in Radioresistance and TP53/PTEN Status. Int J Mol Sci 2023; 24:ijms24021228. [PMID: 36674747 PMCID: PMC9865596 DOI: 10.3390/ijms24021228] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Radioresistance compromises the efficacy of radiotherapy for glioblastoma multiforme (GBM), the most devastating and common brain tumor. The present study investigated the relationship between radiation tolerance and formation of polyploid/multinucleated giant (PGCC/MGCC) and quiescent/senescent slow-cycling cancer cells in human U-87, LN-229, and U-251 cell lines differing in TP53/PTEN status and radioresistance. We found significant enrichment in MGCC populations of U-87 and LN-229 cell lines, and generation of numerous small mononuclear (called Raju cells, or RJ cells) U-87-derived cells that eventually form cell colonies, in a process termed neosis, in response to X-ray irradiation (IR) at single acute therapeutic doses of 2-6 Gy. For the first time, single-cell high-content imaging and analysis of Ki-67- and EdU-coupled fluorescence demonstrated that the IR exposure dose-dependently augments two distinct GBM cell populations. Bifurcation of Ki-67 staining suggests fast-cycling and slow-cycling populations with a normal-sized nuclear area, and with an enlarged nuclear area, including one resembling the size of PGCC/MGCCs, that likely underlie the highest radioresistance and propensity for repopulation of U-87 cells. Proliferative activity and anchorage-independent survival of GBM cell lines seem to be related to neosis, low level of apoptosis, fraction of prematurely stress-induced senescent MGCCs, and the expression of p63 and p73, members of p53 family transcription factors, but not to the mutant p53. Collectively, our data support the importance of the TP53wt/PTENmut genotype for the maintenance of cycling radioresistant U-87 cells to produce a significant amount of senescent MGCCs as an IR stress-induced adaptation response to therapeutic irradiation doses.
Collapse
Affiliation(s)
- Lina Alhaddad
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Roman Chuprov-Netochin
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Margarita Pustovalova
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098 Moscow, Russia
| | - Andreyan N. Osipov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098 Moscow, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence:
| | - Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
46
|
Hu W, Li M, Wang Y, Zhong C, Si X, Shi X, Wang Z. Comprehensive bioinformatics analysis reveals the significance of forkhead box family members in pancreatic adenocarcinoma. Aging (Albany NY) 2023; 15:92-107. [PMID: 36622275 PMCID: PMC9876641 DOI: 10.18632/aging.204455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Forkhead box proteins (FOXs) play important roles in multiple biological processes; while little is known regarding the role of FOX members in pancreatic adenocarcinoma (PAAD). This study aimed to comprehensively investigate the function of FOX family members in PAAD. METHODS Expression and prognostic value of FOXs were analyzed by R language and GEPIA. Genetic alteration and promoter methylation level were analyzed using CBioPortal and UALCAN. Protein-protein interactions and gene functions were analyzed using STRING and DAVID. TIMER and SENESCopedia were utilized to analyze the correlation of FOXs with immune cell infiltration or tumor senescence. Protein levels of FOXs were detected by immunohistochemistry. RESULTS Expression of 15 of 50 FOXs were significantly elevated in PAAD. Among these 15 differentially expressed FOXs (DE-FOXs), 4 were significantly associated with the clinical cancer stage and 4 were negatively associated with overall survival. Functions of DE-FOXs were related to epithelial tube morphogenesis, nuclear chromatin, and DNA-binding. Promoter methylation and genomic alterations were not major causes of FOX dysregulation. Most DE-FOX was correlated with diverse immune infiltration cells. Seven of the DE-FOXs were positively related to tumor senescence. The protein levels of FOXM1, FOXP1, and FOXN3 were negatively correlated with OS in the collected PAAD patients. CONCLUSIONS FOXM1, FOXP1, and FOXN3 have prognostic value. Seven FOXs were related senescence, whereas most DE-FOXs were related to immune infiltration in PAAD. Our findings are instructive for future research on FOX family and provide novel insights into the selection of FOXs with potential prognostic or therapeutic target value.
Collapse
Affiliation(s)
- Wei Hu
- Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222001, Jiangsu, P.R. China
| | - Mingxu Li
- Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222001, Jiangsu, P.R. China
| | - Yan Wang
- Department of Pathology, The Second People’s Hospital of Lianyungang, Lianyungang 222001, Jiangsu, P.R. China
| | - Chengcheng Zhong
- Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222001, Jiangsu, P.R. China
| | - Xinxin Si
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, P.R. China
| | - Xiao Shi
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, P.R. China
| | - Zhong Wang
- Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222001, Jiangsu, P.R. China
| |
Collapse
|
47
|
Kim NW, Seo SM, Yoo ES, Kang AR, Lee JH, Lee JH, Kang BC, Lee HW, Choi YK. Short-term carcinogenicity study of N-methyl-N-nitrosourea in FVB-Trp53 heterozygous mice. PLoS One 2023; 18:e0280214. [PMID: 36608059 PMCID: PMC9821506 DOI: 10.1371/journal.pone.0280214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023] Open
Abstract
Carcinogenicity tests predict the tumorigenic potential of various substances in the human body by studying tumor induction in experimental animals. There is a need for studies that explore the use of FVB/N-Trp53em2Hwl/Korl (FVB-Trp53+/-) mice, created by TALEN-mediated gene targeting in Korea, in carcinogenicity tests. This study was performed to determine whether FVB-Trp53+/- mice are a suitable model for short-term carcinogenicity studies. To compare the carcinogenicity at different concentrations, 25, 50, and 75 mg/kg of N-methyl-N-nitrosourea (MNU), a known carcinogen, were administered intraperitoneally to FVB-Trp53+/- and wild-type male mice. After 26 weeks, the survival rate was significantly reduced in FVB-Trp53+/- mice compared to the wild-type mice in the 50 and 75 mg/kg groups. The incidence of thymic malignant lymphoma (TML) in the 50 and 75 mg/kg groups was 54.2 and 59.1% in FVB-Trp53+/- male mice, respectively. TML metastasized to the lungs, spleen, lymph nodes, liver, kidney, and heart in FVB-Trp53+/- male mice. Furthermore, the incidence of primary lung tumors, such as adenomas and adenocarcinomas, was 65.4, 62.5, and 45.4% in the FVB-Trp53+/- mice of the 25, 50, and 75 mg/kg groups, respectively. The main tumor types in FVB-Trp53+/- mice were TML and primary lung tumors, regardless of the dose of MNU administered. These results suggest that systemic tumors may result from malfunctions in the p53 gene and pathway, which is an important factor in the pathogenesis of human cancers. Therefore, FVB-Trp53 heterozygous mice are suitable for short-term carcinogenicity tests using positive carcinogens, and that the best result using MNU, a positive carcinogen, might have a single dose of 50 mg/kg.
Collapse
Affiliation(s)
- Na-Won Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sun-Min Seo
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Eun-Seon Yoo
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Ah-Reum Kang
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Ji-Hun Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jae-Hoon Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yang-Kyu Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
48
|
Chu C, Liu D, Wang D, Hu S, Zhang Y. Identification and development of TP53 mutation-associated Long non-coding RNAs signature for optimized prognosis assessment and treatment selection in hepatocellular carcinoma. Int J Immunopathol Pharmacol 2023; 37:3946320231211795. [PMID: 37942552 PMCID: PMC10637161 DOI: 10.1177/03946320231211795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND The TP53 gene is estimated to be mutated in over 50% of tumors, with the majority of tumors exhibiting abnormal TP53 signaling pathways. However, the exploration of TP53 mutation-related LncRNAs in Hepatocellular carcinoma (HCC) remains incomplete. This study aims to identify such LncRNAs and enhance the prognostic accuracy for Hepatoma patients. MATERIAL AND METHODS Differential gene expression was identified using the "limma" package in R. Prognosis-related LncRNAs were identified via univariate Cox regression analysis, while a prognostic model was crafted using multivariate Cox regression analysis. Survival analysis was conducted using Kaplan-Meier curves. The precision of the prognostic model was assessed through ROC analysis. Subsequently, the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm were executed on the TCGA dataset via the TIDE database. Fractions of 24 types of immune cell infiltration were obtained from NCI Cancer Research Data Commons using deconvolution techniques. The protein expression levels encoded by specific genes were obtained through the TPCA database. RESULTS In this research, we have identified 85 LncRNAs associated with TP53 mutations and developed a corresponding signature referred to as TP53MLncSig. Kaplan-Meier analysis revealed a lower 3-year survival rate in high-risk patients (46.9%) compared to low-risk patients (74.2%). The accuracy of the prognostic TP53MLncSig was further evaluated by calculating the area under the ROC curve. The analysis yielded a 5-year ROC score of 0.793, confirming its effectiveness. Furthermore, a higher score for TP53MLncSig was found to be associated with an increased response rate to immune checkpoint blocker (ICB) therapy (p = .005). Patients possessing high-risk classification exhibited lower levels of P53 protein expression and higher levels of genomic instability. CONCLUSION The present study aimed to identify and validate LncRNAs associated with TP53 mutations. We constructed a prognostic model that can predict chemosensitivity and response to ICB therapy in HCC patients. This novel approach sheds light on the role of LncRNAs in TP53 mutation and provides valuable resources for analyzing patient prognosis and treatment selection.
Collapse
Affiliation(s)
- Chenghao Chu
- Department of General Surgery, Anqing First People's Hospital Affiliated to Anhui Medical University, Anqing, China
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Daoli Liu
- Department of General Surgery, Anqing First People's Hospital Affiliated to Anhui Medical University, Anqing, China
| | - Duofa Wang
- Department of General Surgery, Anqing First People's Hospital Affiliated to Anhui Medical University, Anqing, China
| | - Shuangjiu Hu
- Department of General Surgery, Anqing First People's Hospital Affiliated to Anhui Medical University, Anqing, China
| | - Yongwei Zhang
- Department of General Surgery, Anqing First People's Hospital Affiliated to Anhui Medical University, Anqing, China
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| |
Collapse
|
49
|
Jiang Q, Wang Y, Xiang M, Hua J, Zhou T, Chen F, Lv X, Huang J, Cai Y. UFL1, a UFMylation E3 ligase, plays a crucial role in multiple cellular stress responses. Front Endocrinol (Lausanne) 2023; 14:1123124. [PMID: 36843575 PMCID: PMC9950256 DOI: 10.3389/fendo.2023.1123124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
The UFM1 conjugation system(UFMylation)is a novel type of ubiquitin-like system that plays an indispensable role in maintaining cell homeostasis under various cellular stress. Similar to ubiquitination, UFMylation consists of a three-step enzymatic reaction with E1-like enzymes ubiquitin-like modifier activating enzyme5 (UBA5), E2-like enzymes ubiquitin-fold modifier-conjugating enzyme 1(UFC1), and E3-like ligase UFM1-specific ligase 1 (UFL1). As the only identified E3 ligase, UFL1 is responsible for specific binding and modification of the substrates to mediate numerous hormone signaling pathways and endocrine regulation under different physiological or pathological stress, such as ER stress, genotoxic stress, oncogenic stress, and inflammation. Further elucidation of the UFL1 working mechanism in multiple cellular stress responses is essential for revealing the disease pathogenesis and providing novel potential therapeutic targets. In this short review, we summarize the recent advances in novel UFL1 functions and shed light on the potential challenges ahead, thus hopefully providing a better understanding of UFMylation-mediated cellular stress.
Collapse
Affiliation(s)
- Qiang Jiang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yongsheng Wang
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Minghui Xiang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiamin Hua
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tianci Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fanghui Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Xiaoyang Lv
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou, China
| | - Jinming Huang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- *Correspondence: Yafei Cai, ; Jinming Huang,
| | - Yafei Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yafei Cai, ; Jinming Huang,
| |
Collapse
|
50
|
Zhu Y, Sun W, Jiang X, Bai R, Luo Y, Gao Y, Li S, Huang Z, Gong Y, Xie C. Differential effects of WRAP53 transcript variants on non-small cell lung cancer cell behaviors. PLoS One 2023; 18:e0281132. [PMID: 36706151 PMCID: PMC9882892 DOI: 10.1371/journal.pone.0281132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The WD40-encoding RNA antisense to p53 (WRAP53) is an antisense gene of TP53 with three transcriptional start sites producing three transcript variants involved in the progression of non-small cell lung cancer. However, the mechanism by which these different transcript variants regulate non-small cell lung cancer cell behaviors is to be elucidated. METHODS Two non-small cell lung cancer cell lines, A549 cells with wild-type p53 and H1975 with mutated p53, were transfected with WRAP53-1α and WRAP53-1β siRNA. The biological effects were assessed via colony formation, cell viability, apoptosis, cell cycle, wound healing and cell invasion assays, as well as immunoblotting. RESULTS Knockdown of WRAP53-1α increased the mRNA and protein levels of p53; suppressed colony formation and proliferation of A549 cells but promoted them in H1975 cells; increased the proportion of cells in the G0/G1 phase in A549 cells but decreased that in H1975 cells; and suppressed migration and invasion in A549 cells but not in H1975 cells. Conversely, knockdown of WRAP53-1β had no effect on p53 expression; promoted the growth of A549 cells but not of H1975 cells; decreased the proportion of cells in the G0/G1 phase in A549 cells but not in H1975 cells; and promoted migration and invasion in A549 cells but not in H1975 cells. Knockdown of both WRAP53-1α and WRAP53-1β promoted apoptosis in A549 cells but not in H1975 cells. CONCLUSIONS WRAP53 transcript variants exerted different functions in non-small cell lung cancer cells and regulated non-small cell lung cancer cell behaviors depending on the p53 expression.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xueping Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rui Bai
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanping Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shuying Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhengrong Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- * E-mail: (CX); (YG)
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumour Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- * E-mail: (CX); (YG)
| |
Collapse
|