1
|
Martínez Del Río J, Frutos-Beltrán E, Sebastián-Martín A, Lasala F, Yasukawa K, Delgado R, Menéndez-Arias L. HIV-1 Reverse Transcriptase Error Rates and Transcriptional Thresholds Based on Single-strand Consensus Sequencing of Target RNA Derived From In Vitro-transcription and HIV-infected Cells. J Mol Biol 2024; 436:168815. [PMID: 39384034 DOI: 10.1016/j.jmb.2024.168815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Nucleotide incorporation and lacZ-based forward mutation assays have been widely used to determine the accuracy of reverse transcriptases (RTs) in RNA-dependent DNA polymerization reactions. However, they involve quite complex and laborious procedures, and cannot provide accurate error rates. Recently, NGS-based methods using barcodes opened the possibility of detecting all errors introduced by the RT, although their widespread use is limited by cost, due to the large size of libraries to be sequenced. In this study, we describe a novel and relatively simple NGS assay based on single-strand consensus sequencing that provides robust results with a relatively small number of raw sequences (around 60 Mb). The method has been validated by determining the error rate of HIV-1 (BH10 strain) RT using the HIV-1 protease-coding sequence as target. HIV-1 reverse transcription error rates in standard conditions (37 °C/3 mM Mg2+) using an in vitro-transcribed RNA were around 7.3 × 10-5. In agreement with previous reports, an 8-fold increase in RT's accuracy was observed after reducing Mg2+ concentration to 0.5 mM. The fidelity of HIV-1 RT was also higher at 50 °C than at 37 °C (error rate 1.5 × 10-5). Interestingly, error rates obtained with HIV-1 RNA from infected cells as template of the reverse transcription at 3 mM Mg2+ (7.4 × 10-5) were similar to those determined with the in vitro-transcribed RNA, and were reduced to 1.8 × 10-5 in the presence of 0.5 mM Mg2+. Values obtained at low magnesium concentrations were modestly higher than the transcription error rates calculated for human cells, thereby suggesting a realistic transcriptional threshold for our NGS-based error rate determinations.
Collapse
Affiliation(s)
- Javier Martínez Del Río
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid 28049, Spain
| | - Estrella Frutos-Beltrán
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid 28049, Spain
| | - Alba Sebastián-Martín
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid 28049, Spain
| | - Fátima Lasala
- Laboratory of Molecular Microbiology, Instituto de Investigación Hospital 12 de Octubre (lmas12), Madrid 28041, Spain
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Rafael Delgado
- Laboratory of Molecular Microbiology, Instituto de Investigación Hospital 12 de Octubre (lmas12), Madrid 28041, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain; School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Luis Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid 28049, Spain.
| |
Collapse
|
2
|
Bowen NE, Oo A, Kim B. Mechanistic Interplay between HIV-1 Reverse Transcriptase Enzyme Kinetics and Host SAMHD1 Protein: Viral Myeloid-Cell Tropism and Genomic Mutagenesis. Viruses 2022; 14:v14081622. [PMID: 35893688 PMCID: PMC9331428 DOI: 10.3390/v14081622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has been the primary interest among studies on antiviral discovery, viral replication kinetics, drug resistance, and viral evolution. Following infection and entry into target cells, the HIV-1 core disassembles, and the viral RT concomitantly converts the viral RNA into double-stranded proviral DNA, which is integrated into the host genome. The successful completion of the viral life cycle highly depends on the enzymatic DNA polymerase activity of RT. Furthermore, HIV-1 RT has long been known as an error-prone DNA polymerase due to its lack of proofreading exonuclease properties. Indeed, the low fidelity of HIV-1 RT has been considered as one of the key factors in the uniquely high rate of mutagenesis of HIV-1, which leads to efficient viral escape from immune and therapeutic antiviral selective pressures. Interestingly, a series of studies on the replication kinetics of HIV-1 in non-dividing myeloid cells and myeloid specific host restriction factor, SAM domain, and HD domain-containing protein, SAMHD1, suggest that the myeloid cell tropism and high rate of mutagenesis of HIV-1 are mechanistically connected. Here, we review not only HIV-1 RT as a key antiviral target, but also potential evolutionary and mechanistic crosstalk among the unique enzymatic features of HIV-1 RT, the replication kinetics of HIV-1, cell tropism, viral genetic mutation, and host SAMHD1 protein.
Collapse
Affiliation(s)
- Nicole E. Bowen
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30329, USA; (N.E.B.); (A.O.)
| | - Adrian Oo
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30329, USA; (N.E.B.); (A.O.)
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30329, USA; (N.E.B.); (A.O.)
- Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
- Correspondence:
| |
Collapse
|
3
|
Meissner ME, Talledge N, Mansky LM. Molecular Biology and Diversification of Human Retroviruses. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2022; 2:872599. [PMID: 35783361 PMCID: PMC9242851 DOI: 10.3389/fviro.2022.872599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Studies of retroviruses have led to many extraordinary discoveries that have advanced our understanding of not only human diseases, but also molecular biology as a whole. The most recognizable human retrovirus, human immunodeficiency virus type 1 (HIV-1), is the causative agent of the global AIDS epidemic and has been extensively studied. Other human retroviruses, such as human immunodeficiency virus type 2 (HIV-2) and human T-cell leukemia virus type 1 (HTLV-1), have received less attention, and many of the assumptions about the replication and biology of these viruses are based on knowledge of HIV-1. Existing comparative studies on human retroviruses, however, have revealed that key differences between these viruses exist that affect evolution, diversification, and potentially pathogenicity. In this review, we examine current insights on disparities in the replication of pathogenic human retroviruses, with a particular focus on the determinants of structural and genetic diversity amongst HIVs and HTLV.
Collapse
Affiliation(s)
- Morgan E. Meissner
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| | - Nathaniel Talledge
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| | - Louis M. Mansky
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| |
Collapse
|
4
|
Phylogenetic inference of changes in amino acid propensities with single-position resolution. PLoS Comput Biol 2022; 18:e1009878. [PMID: 35180226 PMCID: PMC9106220 DOI: 10.1371/journal.pcbi.1009878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 05/13/2022] [Accepted: 01/28/2022] [Indexed: 11/19/2022] Open
Abstract
Fitness conferred by the same allele may differ between genotypes and environments, and these differences shape variation and evolution. Changes in amino acid propensities at protein sites over the course of evolution have been inferred from sequence alignments statistically, but the existing methods are data-intensive and aggregate multiple sites. Here, we develop an approach to detect individual amino acids that confer different fitness in different groups of species from combined sequence and phylogenetic data. Using the fact that the probability of a substitution to an amino acid depends on its fitness, our method looks for amino acids such that substitutions to them occur more frequently in one group of lineages than in another. We validate our method using simulated evolution of a protein site under different scenarios and show that it has high specificity for a wide range of assumptions regarding the underlying changes in selection, while its sensitivity differs between scenarios. We apply our method to the env gene of two HIV-1 subtypes, A and B, and to the HA gene of two influenza A subtypes, H1 and H3, and show that the inferred fitness changes are consistent with the fitness differences observed in deep mutational scanning experiments. We find that changes in relative fitness of different amino acid variants within a site do not always trigger episodes of positive selection and therefore may not result in an overall increase in the frequency of substitutions, but can still be detected from changes in relative frequencies of different substitutions.
Collapse
|
5
|
Differential Activity of APOBEC3F, APOBEC3G, and APOBEC3H in the Restriction of HIV-2. J Mol Biol 2022; 434:167355. [PMID: 34774569 PMCID: PMC8752514 DOI: 10.1016/j.jmb.2021.167355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 02/01/2023]
Abstract
Human immunodeficiency virus (HIV) mutagenesis is driven by a variety of internal and external sources, including the host APOBEC3 (apolipoprotein B mRNA editing enzyme catalytic polypetide-like 3; A3) family of mutagenesis factors, which catalyze G-to-A transition mutations during virus replication. HIV-2 replication is characterized by a relative lack of G-to-A mutations, suggesting infrequent mutagenesis by A3 proteins. To date, the activity of the A3 repertoire against HIV-2 has remained largely uncharacterized, and the mutagenic activity of these proteins against HIV-2 remains to be elucidated. In this study, we provide the first comprehensive characterization of the restrictive capacity of A3 proteins against HIV-2 in cell culture using a dual fluorescent reporter HIV-2 vector virus. We found that A3F, A3G, and A3H restricted HIV-2 infectivity in the absence of Vif and were associated with significant increases in the frequency of viral mutants. These proteins increased the frequency of G-to-A mutations within the proviruses of infected cells as well. A3G and A3H also reduced HIV-2 infectivity via inhibition of reverse transcription and the accumulation of DNA products during replication. In contrast, A3D did not exhibit any restrictive activity against HIV-2, even at higher expression levels. Taken together, these results provide evidence that A3F, A3G, and A3H, but not A3D, are capable of HIV-2 restriction. Differences in A3-mediated restriction of HIV-1 and HIV-2 may serve to provide new insights in the observed mutation profiles of these viruses.
Collapse
|
6
|
Wang R, Belew AT, Achuthan V, El Sayed N, DeStefano JJ. Physiological magnesium concentrations increase fidelity of diverse reverse transcriptases from HIV-1, HIV-2, and foamy virus, but not MuLV or AMV. J Gen Virol 2021; 102. [PMID: 34904939 PMCID: PMC10019084 DOI: 10.1099/jgv.0.001708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
Reverse transcriptases (RTs) are typically assayed using optimized Mg2+ concentrations (~5-10 mM) several-fold higher than physiological cellular free Mg2+ (~0.5 mM). Recent analyses demonstrated that HIV-1, but not Moloney murine leukaemia (MuLV) or avain myeloblastosis (AMV) virus RTs has higher fidelity in low Mg2+. In the current report, lacZα-based α-complementation assays were used to measure the fidelity of several RTs including HIV-1 (subtype B and A/E), several drug-resistant HIV-1 derivatives, HIV-2, and prototype foamy virus (PFV), all which showed higher fidelity using physiological Mg2+, while MuLV and AMV RTs demonstrated equivalent fidelity in low and high Mg2+. In 0.5 mM Mg2+, all RTs demonstrated approximately equal fidelity, except for PFV which showed higher fidelity. A Next Generation Sequencing (NGS) approach that used barcoding to determine mutation profiles was used to examine the types of mutations made by HIV-1 RT (type B) in low (0.5 mM) and high (6 mM) Mg2+ on a lacZα template. Unlike α-complementation assays which are dependent on LacZα activity, the NGS assay scores mutations at all positions and of every type. Consistent with α-complementation assays, a ~four-fold increase in mutations was observed in high Mg2+. These findings help explain why HIV-1 RT displays lower fidelity in vitro (with high Mg2+ concentrations) than other RTs (e.g. MuLV and AMV), yet cellular fidelity for these viruses is comparable. Establishing in vitro conditions that accurately represent RT's activity in cells is pivotal to determining the contribution of RT and other factors to the mutation profile observed with HIV-1.
Collapse
Affiliation(s)
- Ruofan Wang
- Department of Cell Biology and Molecular Genetics, Bioscience Research Building, University of Maryland, College Park, Maryland 20742, USA
- Present address: Vigene Biosciences, Rockville Maryland, USA
| | - Ashton T Belew
- Department of Cell Biology and Molecular Genetics, Bioscience Research Building, University of Maryland, College Park, Maryland 20742, USA
| | - Vasudevan Achuthan
- Department of Cell Biology and Molecular Genetics, Bioscience Research Building, University of Maryland, College Park, Maryland 20742, USA
- Present address: CRISPR Therapeutics, Cambridge, Massachusetts, USA
| | - Najib El Sayed
- Department of Cell Biology and Molecular Genetics, Bioscience Research Building, University of Maryland, College Park, Maryland 20742, USA
- Maryland Pathogen Research Institute, College Park, Maryland, USA
| | - Jeffrey J DeStefano
- Department of Cell Biology and Molecular Genetics, Bioscience Research Building, University of Maryland, College Park, Maryland 20742, USA
- Maryland Pathogen Research Institute, College Park, Maryland, USA
| |
Collapse
|
7
|
Meissner ME, Julik EJ, Badalamenti JP, Arndt WG, Mills LJ, Mansky LM. Development of a User-Friendly Pipeline for Mutational Analyses of HIV Using Ultra-Accurate Maximum-Depth Sequencing. Viruses 2021; 13:v13071338. [PMID: 34372543 PMCID: PMC8310143 DOI: 10.3390/v13071338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/23/2023] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) accumulates fewer mutations during replication than HIV type 1 (HIV-1). Advanced studies of HIV-2 mutagenesis, however, have historically been confounded by high background error rates in traditional next-generation sequencing techniques. In this study, we describe the adaptation of the previously described maximum-depth sequencing (MDS) technique to studies of both HIV-1 and HIV-2 for the ultra-accurate characterization of viral mutagenesis. We also present the development of a user-friendly Galaxy workflow for the bioinformatic analyses of sequencing data generated using the MDS technique, designed to improve replicability and accessibility to molecular virologists. This adapted MDS technique and analysis pipeline were validated by comparisons with previously published analyses of the frequency and spectra of mutations in HIV-1 and HIV-2 and is readily expandable to studies of viral mutation across the genomes of both viruses. Using this novel sequencing pipeline, we observed that the background error rate was reduced 100-fold over standard Illumina error rates, and 10-fold over traditional unique molecular identifier (UMI)-based sequencing. This technical advancement will allow for the exploration of novel and previously unrecognized sources of viral mutagenesis in both HIV-1 and HIV-2, which will expand our understanding of retroviral diversity and evolution.
Collapse
Affiliation(s)
- Morgan E. Meissner
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (E.J.J.); (W.G.A.)
| | - Emily J. Julik
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (E.J.J.); (W.G.A.)
- Division of Basic Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jonathan P. Badalamenti
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - William G. Arndt
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (E.J.J.); (W.G.A.)
- Division of Basic Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lauren J. Mills
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (L.J.M.); (L.M.M.)
| | - Louis M. Mansky
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (E.J.J.); (W.G.A.)
- Division of Basic Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (L.J.M.); (L.M.M.)
| |
Collapse
|
8
|
Lu IN, Muller CP, He FQ. Applying next-generation sequencing to unravel the mutational landscape in viral quasispecies. Virus Res 2020; 283:197963. [PMID: 32278821 PMCID: PMC7144618 DOI: 10.1016/j.virusres.2020.197963] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) has revolutionized the scale and depth of biomedical sciences. Because of its unique ability for the detection of sub-clonal variants within genetically diverse populations, NGS has been successfully applied to analyze and quantify the exceptionally-high diversity within viral quasispecies, and many low-frequency drug- or vaccine-resistant mutations of therapeutic importance have been discovered. Although many works have intensively discussed the latest NGS approaches and applications in general, none of them has focused on applying NGS in viral quasispecies studies, mostly due to the limited ability of current NGS technologies to accurately detect and quantify rare viral variants. Here, we summarize several error-correction strategies that have been developed to enhance the detection accuracy of minority variants. We also discuss critical considerations for preparing a sequencing library from viral RNAs and for analyzing NGS data to unravel the mutational landscape.
Collapse
Affiliation(s)
- I-Na Lu
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, D-45147 Essen, Germany; Department of Infectious Diseases, Aarhus University Hospital, DK-8200 Aarhus N, Denmark.
| | - Claude P Muller
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-Sur-Alzette, Luxembourg; Laboratoire National de Santé, L-3583 Dudelange, Luxembourg
| | - Feng Q He
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-Sur-Alzette, Luxembourg; Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
9
|
Sloan DB, Broz AK, Sharbrough J, Wu Z. Detecting Rare Mutations and DNA Damage with Sequencing-Based Methods. Trends Biotechnol 2018; 36:729-740. [PMID: 29550161 PMCID: PMC6004327 DOI: 10.1016/j.tibtech.2018.02.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 12/18/2022]
Abstract
There is a great need in biomedical and genetic research to detect DNA damage and de novo mutations, but doing so is inherently challenging because of the rarity of these events. The enormous capacity of current DNA sequencing technologies has opened the door for quantifying sequence variants present at low frequencies in vivo, such as within cancerous tissues. However, these sequencing technologies are error prone, resulting in high noise thresholds. Most DNA sequencing methods are also generally incapable of identifying chemically modified bases arising from DNA damage. In recent years, numerous specialized modifications to sequencing methods have been developed to address these shortcomings. Here, we review this landscape of emerging techniques, highlighting their respective strengths, weaknesses, and target applications.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
10
|
Domingo E, Perales C. Quasispecies and virus. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:443-457. [PMID: 29397419 DOI: 10.1007/s00249-018-1282-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/11/2018] [Accepted: 01/27/2018] [Indexed: 12/13/2022]
Abstract
Quasispecies theory has been instrumental in the understanding of RNA virus population dynamics because it considered for the first time mutation as an integral part of the replication process. The key influences of quasispecies theory on experimental virology have been: (1) to disclose the mutant spectrum nature of viral populations and to evaluate its consequences; (2) to unveil collective properties of genome ensembles that can render a mutant spectrum a unit of selection; and (3) to identify new vulnerability points of pathogenic RNA viruses on three fronts: the need to apply multiple selective constraints (in the form of drug combinations) to minimize selection of treatment-escape variants, to translate the error threshold concept into antiviral designs, and to construct attenuated vaccine viruses through alterations of viral polymerase copying fidelity or through displacements of viral genomes towards unfavorable regions of sequence space. These three major influences on the understanding of viral pathogens preceded extensions of quasispecies to non-viral systems such as bacterial and tumor cell collectivities and prions. These developments are summarized here.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| |
Collapse
|