1
|
Hasani M, Esch K, Zieske K. Controlled Protein-Membrane Interactions Modulate Self-Organization of Min Protein Patterns. Angew Chem Int Ed Engl 2024; 63:e202405046. [PMID: 39023015 DOI: 10.1002/anie.202405046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/09/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Self-organizing protein patterns are crucial for living systems, governing important cellular processes such as polarization and division. While the field of protein self-organization has reached a point where basic pattern-forming mechanisms can be reconstituted in vitro using purified proteins, understanding how cells can dynamically switch and modulate these patterns, especially when transiently needed, remains an interesting frontier. Here, we demonstrate the efficient regulation of self-organizing protein patterns through the modulation of simple biophysical membrane parameters. Our investigation focuses on the impact of membrane affinity changes on Min protein patterns at lipid membranes composed of Escherichia coli lipids or minimal lipid compositions, and we present three major results. First, we observed the emergence of a diverse array of pattern phenotypes, ranging from waves over flower-shaped patterns to snowflake-like structures. Second, we demonstrated the dependency of these patterns on the density of protein-membrane linkers. Finally, we demonstrate that the shape of snowflake-like patterns is fine-tuned by membrane charge. Our results demonstrate the significant influence of membrane linkage as a straightforward biophysical parameter governing protein pattern formation. Our research points towards a simple yet intriguing mechanism by which cells can adeptly tune and switch protein patterns on the mesoscale.
Collapse
Affiliation(s)
- Mergime Hasani
- Biophysics and Optogenetics, Max Planck Institute for the Science of Light, Staudtstrasse 2, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 7, 91058, Erlangen, Germany
| | - Katharina Esch
- Biophysics and Optogenetics, Max Planck Institute for the Science of Light, Staudtstrasse 2, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 7, 91058, Erlangen, Germany
| | - Katja Zieske
- Biophysics and Optogenetics, Max Planck Institute for the Science of Light, Staudtstrasse 2, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 7, 91058, Erlangen, Germany
| |
Collapse
|
2
|
Köhler R, Murray SM. Plasmid partitioning driven by collective migration of ParA between nucleoid lobes. Proc Natl Acad Sci U S A 2024; 121:e2319205121. [PMID: 38652748 PMCID: PMC11067062 DOI: 10.1073/pnas.2319205121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
The ParABS system is crucial for the faithful segregation and inheritance of many bacterial chromosomes and low-copy-number plasmids. However, despite extensive research, the spatiotemporal dynamics of the ATPase ParA and its connection to the dynamics and positioning of the ParB-coated cargo have remained unclear. In this study, we utilize high-throughput imaging, quantitative data analysis, and computational modeling to explore the in vivo dynamics of ParA and its interaction with ParB-coated plasmids and the nucleoid. As previously observed, we find that F-plasmid ParA undergoes collective migrations ("flips") between cell halves multiple times per cell cycle. We reveal that a constricting nucleoid is required for these migrations and that they are triggered by a plasmid crossing into the cell half with greater ParA. Using simulations, we show that these dynamics can be explained by the combination of nucleoid constriction and cooperative ParA binding to the DNA, in line with the behavior of other ParA proteins. We further show that these ParA flips act to equally partition plasmids between the two lobes of the constricted nucleoid and are therefore important for plasmid stability, especially in fast growth conditions for which the nucleoid constricts early in the cell cycle. Overall, our work identifies a second mode of action of the ParABS system and deepens our understanding of how this important segregation system functions.
Collapse
Affiliation(s)
- Robin Köhler
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and Centre for Synthetic Microbiology (SYNMIKRO), Marburg35043, Germany
| | - Seán M. Murray
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and Centre for Synthetic Microbiology (SYNMIKRO), Marburg35043, Germany
| |
Collapse
|
3
|
Carlquist WC, Cytrynbaum EN. The mechanism of MinD stability modulation by MinE in Min protein dynamics. PLoS Comput Biol 2023; 19:e1011615. [PMID: 37976301 PMCID: PMC10691731 DOI: 10.1371/journal.pcbi.1011615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 12/01/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023] Open
Abstract
The patterns formed both in vivo and in vitro by the Min protein system have attracted much interest because of the complexity of their dynamic interactions given the apparent simplicity of the component parts. Despite both the experimental and theoretical attention paid to this system, the details of the biochemical interactions of MinD and MinE, the proteins responsible for the patterning, are still unclear. For example, no model consistent with the known biochemistry has yet accounted for the observed dual role of MinE in the membrane stability of MinD. Until now, a statistical comparison of models to the time course of Min protein concentrations on the membrane has not been carried out. Such an approach is a powerful way to test existing and novel models that are difficult to test using a purely experimental approach. Here, we extract time series from previously published fluorescence microscopy time lapse images of in vitro experiments and fit two previously described and one novel mathematical model to the data. We find that the novel model, which we call the Asymmetric Activation with Bridged Stability Model, fits the time-course data best. It is also consistent with known biochemistry and explains the dual MinE role via MinE-dependent membrane stability that transitions under the influence of rising MinE to membrane instability with positive feedback. Our results reveal a more complex network of interactions between MinD and MinE underlying Min-system dynamics than previously considered.
Collapse
Affiliation(s)
- William C. Carlquist
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Eric N. Cytrynbaum
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Wang N, Sun H, Zhao K, Shi R, Wang S, Zhou Y, Zhai M, Huang C, Chen Y. The C-terminal domain of MinC, a cell division regulation protein, is sufficient to form a copolymer with MinD. FEBS J 2023; 290:4921-4932. [PMID: 37329190 DOI: 10.1111/febs.16890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/19/2023] [Accepted: 06/15/2023] [Indexed: 06/18/2023]
Abstract
Assembly of cell division protein FtsZ into the Z-ring at the division site is a key step in bacterial cell division. The Min proteins can restrict the Z-ring to the middle of the cell. MinC is the main protein that obstructs Z-ring formation by inhibiting FtsZ assembly. Its N-terminal domain (MinCN ) regulates the localization of the Z-ring by inhibiting FtsZ polymerization, while its C-terminal domain (MinCC ) binds to MinD as well as to FtsZ. Previous studies have shown that MinC and MinD form copolymers in vitro. This copolymer may greatly enhance the binding of MinC to FtsZ, and/or prevent FtsZ filaments from diffusing to the ends of the cell. Here, we investigated the assembly properties of MinCC -MinD of Pseudomonas aeruginosa. We found that MinCC is sufficient to form the copolymers. Although MinCC -MinD assembles into larger bundles, most likely because MinCC is spatially more readily bound to MinD, its copolymerization has similar dynamic properties: the concentration of MinD dominates their copolymerization. The critical concentration of MinD is around 3 μm and when MinD concentration is high enough, a low concentration MinCC could still be copolymerized. We also found that MinCC -MinD can still rapidly bind to FtsZ protofilaments, providing direct evidence that MinCC also interacts directly with FtsZ. However, although the presence of minCC can slightly improve the division defect of minC-knockout strains and shorten the cell length from an average of 12.2 ± 6.7 to 6.6 ± 3.6 μm, it is still insufficient for the normal growth and division of bacteria.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Haiyu Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Kairui Zhao
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China
| | - Runqing Shi
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Shenping Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Yao Zhou
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Meiting Zhai
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China
| | - Chenghao Huang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Yaodong Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China
| |
Collapse
|
5
|
Meindlhumer S, Brauns F, Finžgar JR, Kerssemakers J, Dekker C, Frey E. Directing Min protein patterns with advective bulk flow. Nat Commun 2023; 14:450. [PMID: 36707506 PMCID: PMC9883515 DOI: 10.1038/s41467-023-35997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/10/2023] [Indexed: 01/29/2023] Open
Abstract
The Min proteins constitute the best-studied model system for pattern formation in cell biology. We theoretically predict and experimentally show that the propagation direction of in vitro Min protein patterns can be controlled by a hydrodynamic flow of the bulk solution. We find downstream propagation of Min wave patterns for low MinE:MinD concentration ratios, upstream propagation for large ratios, but multistability of both propagation directions in between. Whereas downstream propagation can be described by a minimal model that disregards MinE conformational switching, upstream propagation can be reproduced by a reduced switch model, where increased MinD bulk concentrations on the upstream side promote protein attachment. Our study demonstrates that a differential flow, where bulk flow advects protein concentrations in the bulk, but not on the surface, can control surface-pattern propagation. This suggests that flow can be used to probe molecular features and to constrain mathematical models for pattern-forming systems.
Collapse
Affiliation(s)
- Sabrina Meindlhumer
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Fridtjof Brauns
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Jernej Rudi Finžgar
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jacob Kerssemakers
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
- Max Planck School Matter to Life, Hofgartenstraße 8, 80539, Munich, Germany.
| |
Collapse
|
6
|
Takada S, Yoshinaga N, Doi N, Fujiwara K. Mode selection mechanism in traveling and standing waves revealed by Min wave reconstituted in artificial cells. SCIENCE ADVANCES 2022; 8:eabm8460. [PMID: 35675408 PMCID: PMC9177070 DOI: 10.1126/sciadv.abm8460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Reaction-diffusion coupling (RDc) generates spatiotemporal patterns, including two dynamic wave modes: traveling and standing waves. Although mode selection plays a substantial role in the spatiotemporal organization of living cell molecules, the mechanism for selecting each wave mode remains elusive. Here, we investigated a wave mode selection mechanism using Min waves reconstituted in artificial cells, emerged by the RDc of MinD and MinE. Our experiments and theoretical analysis revealed that the balance of membrane binding and dissociation from the membrane of MinD determines the mode selection of the Min wave. We successfully demonstrated that the transition of the wave modes can be regulated by controlling this balance and found hysteresis characteristics in the wave mode transition. These findings highlight a previously unidentified role of the balance between activators and inhibitors as a determinant of the mode selection of waves by RDc and depict an unexplored mechanism in intracellular spatiotemporal pattern formations.
Collapse
Affiliation(s)
- Sakura Takada
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Natsuhiko Yoshinaga
- Mathematical Science Group, WPI Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577, Japan
- MathAM-OIL, AIST, Sendai 980-8577, Japan
- Corresponding author. (N.Y.); (K.F.)
| | - Nobuhide Doi
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kei Fujiwara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- Corresponding author. (N.Y.); (K.F.)
| |
Collapse
|
7
|
Merino-Salomón A, Babl L, Schwille P. Self-organized protein patterns: The MinCDE and ParABS systems. Curr Opin Cell Biol 2021; 72:106-115. [PMID: 34399108 DOI: 10.1016/j.ceb.2021.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/04/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
Self-organized protein patterns are of tremendous importance for biological decision-making processes. Protein patterns have been shown to identify the site of future cell division, establish cell polarity, and organize faithful DNA segregation. Intriguingly, several key concepts of pattern formation and regulation apply to a variety of different protein systems. Herein, we explore recent advances in the understanding of two prokaryotic pattern-forming systems: the MinCDE system, positioning the FtsZ ring precisely at the midcell, and the ParABS system, distributing newly synthesized DNA along with the cell. Despite differences in biological functionality, these two systems have remarkably similar molecular components, mechanisms, and strategies to achieve biological robustness.
Collapse
Affiliation(s)
- Adrián Merino-Salomón
- Dept. Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Leon Babl
- Dept. Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Petra Schwille
- Dept. Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany.
| |
Collapse
|
8
|
Kretschmer S, Heermann T, Tassinari A, Glock P, Schwille P. Increasing MinD's Membrane Affinity Yields Standing Wave Oscillations and Functional Gradients on Flat Membranes. ACS Synth Biol 2021; 10:939-949. [PMID: 33881306 PMCID: PMC8155659 DOI: 10.1021/acssynbio.0c00604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 11/28/2022]
Abstract
The formation of large-scale patterns through molecular self-organization is a basic principle of life. Accordingly, the engineering of protein patterns and gradients is of prime relevance for synthetic biology. As a paradigm for such pattern formation, the bacterial MinDE protein system is based on self-organization of the ATPase MinD and ATPase-activating protein MinE on lipid membranes. Min patterns can be tightly regulated by tuning physical or biochemical parameters. Among the biochemically engineerable modules, MinD's membrane targeting sequence, despite being a key regulating element, has received little attention. Here we attempt to engineer patterns by modulating the membrane affinity of MinD. Unlike the traveling waves or stationary patterns commonly observed in vitro on flat supported membranes, standing-wave oscillations emerge upon elongating MinD's membrane targeting sequence via rationally guided mutagenesis. These patterns are capable of forming gradients and thereby spatially target co-reconstituted downstream proteins, highlighting their functional potential in designing new life-like systems.
Collapse
Affiliation(s)
- Simon Kretschmer
- Department
of Cellular and Molecular Biophysics, Max-Planck-Institute
of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- Current
affiliation: Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, United States
| | - Tamara Heermann
- Department
of Cellular and Molecular Biophysics, Max-Planck-Institute
of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Andrea Tassinari
- Department
of Cellular and Molecular Biophysics, Max-Planck-Institute
of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Philipp Glock
- Department
of Cellular and Molecular Biophysics, Max-Planck-Institute
of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Petra Schwille
- Department
of Cellular and Molecular Biophysics, Max-Planck-Institute
of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
9
|
Fu M, Franquelim HG, Kretschmer S, Schwille P. Non‐Equilibrium Large‐Scale Membrane Transformations Driven by MinDE Biochemical Reaction Cycles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Meifang Fu
- Dept. Cellular and Molecular Biophysics Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| | - Henri G. Franquelim
- Dept. Cellular and Molecular Biophysics Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| | - Simon Kretschmer
- Dept. Cellular and Molecular Biophysics Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
- Department of Bioengineering and Therapeutic Science University of California San Francisco San Francisco CA USA
| | - Petra Schwille
- Dept. Cellular and Molecular Biophysics Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| |
Collapse
|
10
|
Fu M, Franquelim HG, Kretschmer S, Schwille P. Non-Equilibrium Large-Scale Membrane Transformations Driven by MinDE Biochemical Reaction Cycles. Angew Chem Int Ed Engl 2021; 60:6496-6502. [PMID: 33285025 PMCID: PMC7986748 DOI: 10.1002/anie.202015184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 12/11/2022]
Abstract
The MinDE proteins from E. coli have received great attention as a paradigmatic biological pattern-forming system. Recently, it has surfaced that these proteins do not only generate oscillating concentration gradients driven by ATP hydrolysis, but that they can reversibly deform giant vesicles. In order to explore the potential of Min proteins to actually perform mechanical work, we introduce a new model membrane system, flat vesicle stacks on top of a supported lipid bilayer. MinDE oscillations can repeatedly deform these flat vesicles into tubules and promote progressive membrane spreading through membrane adhesion. Dependent on membrane and buffer compositions, Min oscillations further induce robust bud formation. Altogether, we demonstrate that under specific conditions, MinDE self-organization can result in work performed on biomimetic systems and achieve a straightforward mechanochemical coupling between the MinDE biochemical reaction cycle and membrane transformation.
Collapse
Affiliation(s)
- Meifang Fu
- Dept. Cellular and Molecular BiophysicsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Henri G. Franquelim
- Dept. Cellular and Molecular BiophysicsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Simon Kretschmer
- Dept. Cellular and Molecular BiophysicsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
- Department of Bioengineering and Therapeutic ScienceUniversity of California San FranciscoSan FranciscoCAUSA
| | - Petra Schwille
- Dept. Cellular and Molecular BiophysicsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| |
Collapse
|
11
|
Mass-sensitive particle tracking to elucidate the membrane-associated MinDE reaction cycle. Nat Methods 2021; 18:1239-1246. [PMID: 34608318 PMCID: PMC8490154 DOI: 10.1038/s41592-021-01260-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023]
Abstract
In spite of their great importance in biology, methods providing access to spontaneous molecular interactions with and on biological membranes have been sparse. The recent advent of mass photometry to quantify mass distributions of unlabeled biomolecules landing on surfaces raised hopes that this approach could be transferred to membranes. Here, by introducing a new interferometric scattering (iSCAT) image processing and analysis strategy adapted to diffusing particles, we enable mass-sensitive particle tracking (MSPT) of single unlabeled biomolecules on a supported lipid bilayer. We applied this approach to the highly nonlinear reaction cycles underlying MinDE protein self-organization. MSPT allowed us to determine the stoichiometry and turnover of individual membrane-bound MinD/MinDE protein complexes and to quantify their size-dependent diffusion. This study demonstrates the potential of MSPT to enhance our quantitative understanding of membrane-associated biological systems.
Collapse
|