1
|
Zapater LJ, Lewis SA, Gutierrez RL, Yamada M, Rodriguez-Fos E, Planas-Felix M, Cameron D, Demarest P, Nabila A, Mueller H, Zhao J, Bergin P, Reed C, Chwat-Edelstein T, Pagnozzi A, Nava C, Bourel-Ponchel E, Cornejo P, Dursun A, Özgül RK, Akar HT, Maroofian R, Houlden H, Cheema HA, Anjum MN, Zifarelli G, Essid M, Ben Hafsa M, Benrhouma H, Montoya CIG, Proekt A, Zhao X, Socci ND, Hayes M, Bigot Y, Rabadan R, Torrents D, Kleinmann CL, Kruer MC, Toth M, Kentsis A. A transposase-derived gene required for human brain development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.28.538770. [PMID: 37163102 PMCID: PMC10168387 DOI: 10.1101/2023.04.28.538770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
DNA transposable elements and transposase-derived genes are present in most living organisms, including vertebrates, but their function is largely unknown. PiggyBac Transposable Element Derived 5 (PGBD5) is an evolutionarily conserved vertebrate DNA transposase-derived gene with retained nuclease activity in human cells. Vertebrate brain development is known to be associated with prominent neuronal cell death and DNA breaks, but their causes and functions are not well understood. Here, we show that PGBD5 contributes to normal brain development in mice and humans, where its deficiency causes disorder of intellectual disability, movement, and seizures. In mice, Pgbd5 is required for the developmental induction of post-mitotic DNA breaks and recurrent somatic genome rearrangements. In the brain cortex, loss of Pgbd5 leads to aberrant differentiation and gene expression of distinct neuronal populations, including specific types of glutamatergic neurons, which explains the features of PGBD5 deficiency in humans. Thus, PGBD5 might be a transposase-derived enzyme required for brain development in mammals.
Collapse
Affiliation(s)
- Luz Jubierre Zapater
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center; New York, United States, 10021
| | - Sara A Lewis
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital and Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, Phoenix, AZ
| | | | - Makiko Yamada
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center; New York, United States, 10021
| | | | | | - Daniel Cameron
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center; New York, United States, 10021
| | - Phillip Demarest
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
| | - Anika Nabila
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10021
| | - Helen Mueller
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center; New York, United States, 10021
| | - Junfei Zhao
- Program for Mathematical Genomics, Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY
| | - Paul Bergin
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10021
| | - Casie Reed
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
| | - Tzippora Chwat-Edelstein
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
- Programs in Biochemistry, Cell, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065
| | - Alex Pagnozzi
- The Australian e-Health Research Centre, CSIRO, Brisbane, Australia
| | - Caroline Nava
- Assistance Publique-Hôpitaux de Paris, Département de Génétique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Emilie Bourel-Ponchel
- Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, France
- Pediatric Neurophysiology Unit, Amiens Picardie University Hospital, France
| | | | - Ali Dursun
- Hacettepe University, Faculty of Medicine & Institute of Child Health, Department of Pediatric Metabolism, Ankara, Turkey
| | - R Köksal Özgül
- Hacettepe University, Faculty of Medicine & Institute of Child Health, Department of Pediatric Metabolism, Ankara, Turkey
| | - Halil Tuna Akar
- Hacettepe University, Faculty of Medicine & Institute of Child Health, Department of Pediatric Metabolism, Ankara, Turkey
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Huma Arshad Cheema
- Department of Pediatric Medicine, The Children's Hospital, University of Child Health Sciences, Lahore, Pakistan
| | - Muhammad Nadeem Anjum
- Department of Pediatric Medicine, The Children's Hospital, University of Child Health Sciences, Lahore, Pakistan
| | | | - Miriam Essid
- LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, University of Tunis El Manar, Tunis, Tunisia
| | - Meriem Ben Hafsa
- LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, University of Tunis El Manar, Tunis, Tunisia
| | - Hanene Benrhouma
- LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, University of Tunis El Manar, Tunis, Tunisia
| | | | - Alex Proekt
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania
| | - Xiaolan Zhao
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
| | - Nicholas D Socci
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
| | - Matthew Hayes
- Department of Physics and Computer Science, Xavier University of Louisiana, New Orleans, LA
| | - Yves Bigot
- Physiologie de la reproduction et des comportements, UMR INRAe 0085 CNRS7247, Centre INRAE Val de Loire, France
| | - Raul Rabadan
- Program for Mathematical Genomics, Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY
| | - David Torrents
- Barcelona Supercomputing Center (BSC), Barcelona, Spain, 08034
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Claudia L Kleinmann
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital and Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, Phoenix, AZ
| | - Miklos Toth
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10021
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center; New York, United States, 10021
- Barcelona Supercomputing Center (BSC), Barcelona, Spain, 08034
- Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University; New York, United States
| |
Collapse
|
2
|
Rossi M, Breman E. Engineering strategies to safely drive CAR T-cells into the future. Front Immunol 2024; 15:1411393. [PMID: 38962002 PMCID: PMC11219585 DOI: 10.3389/fimmu.2024.1411393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has proven a breakthrough in cancer treatment in the last decade, giving unprecedented results against hematological malignancies. All approved CAR T-cell products, as well as many being assessed in clinical trials, are generated using viral vectors to deploy the exogenous genetic material into T-cells. Viral vectors have a long-standing clinical history in gene delivery, and thus underwent iterations of optimization to improve their efficiency and safety. Nonetheless, their capacity to integrate semi-randomly into the host genome makes them potentially oncogenic via insertional mutagenesis and dysregulation of key cellular genes. Secondary cancers following CAR T-cell administration appear to be a rare adverse event. However several cases documented in the last few years put the spotlight on this issue, which might have been underestimated so far, given the relatively recent deployment of CAR T-cell therapies. Furthermore, the initial successes obtained in hematological malignancies have not yet been replicated in solid tumors. It is now clear that further enhancements are needed to allow CAR T-cells to increase long-term persistence, overcome exhaustion and cope with the immunosuppressive tumor microenvironment. To this aim, a variety of genomic engineering strategies are under evaluation, most relying on CRISPR/Cas9 or other gene editing technologies. These approaches are liable to introduce unintended, irreversible genomic alterations in the product cells. In the first part of this review, we will discuss the viral and non-viral approaches used for the generation of CAR T-cells, whereas in the second part we will focus on gene editing and non-gene editing T-cell engineering, with particular regard to advantages, limitations, and safety. Finally, we will critically analyze the different gene deployment and genomic engineering combinations, delineating strategies with a superior safety profile for the production of next-generation CAR T-cell.
Collapse
|
3
|
Luo P, Yang J, Jian L, Dong J, Yin S, Luo C, Zhou S. Knockdown of PGBD5 inhibits the malignant progression of glioma through upregulation of the PPAR pathway. Int J Oncol 2024; 64:55. [PMID: 38577941 PMCID: PMC11015917 DOI: 10.3892/ijo.2024.5643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/05/2024] [Indexed: 04/06/2024] Open
Abstract
Glioma is the most common type of primary intracranial malignant tumor, and because of its high invasiveness and recurrence, its prognosis remains poor. The present study investigated the biological function of piggyBac transportable element derived 5 (PGBD5) in glioma. Glioma and para-cancerous tissues were obtained from five patients. Reverse transcription-quantitative PCR and western blotting were used to detect the expression levels of PGBD5. Transwell assay and flow cytometry were used to evaluate cell migration, invasion, apoptosis and cell cycle distribution. In addition, a nude mouse tumor transplantation model was established to study the downstream pathways of PGBD5 and the molecular mechanism was analyzed using transcriptome sequencing. The mRNA and protein expression levels of PGBD5 were increased in glioma tissues and cells. Notably, knockdown of PGBD5 in vitro could inhibit the migration and invasion of glioma cells. In addition, the knockdown of PGBD5 expression promoted apoptosis and caused cell cycle arrest in the G2/M phase, thus inhibiting cell proliferation. Furthermore, in vivo experiments revealed that knockdown of PGBD5 expression could inhibit Ki67 expression and slow tumor growth. Changes in PGBD5 expression were also shown to be closely related to the peroxisome proliferator-activated receptor (PPAR) signaling pathway. In conclusion, interference with PGBD5 could inhibit the malignant progression of glioma through the PPAR pathway, suggesting that PGBD5 may be a potential molecular target of glioma.
Collapse
Affiliation(s)
- Pengren Luo
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Yunnan 650500, P.R. China
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Yunnan 650500, P.R. China
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Jinhong Yang
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Lipeng Jian
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Yunnan 650500, P.R. China
| | - Jigen Dong
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Yunnan 650500, P.R. China
| | - Shi Yin
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Yunnan 650500, P.R. China
| | - Chao Luo
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Yunnan 650500, P.R. China
| | - Shuai Zhou
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Yunnan 650500, P.R. China
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Yunnan 650500, P.R. China
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
4
|
Shao W, Yao Y, Yang L, Li X, Ge T, Zheng Y, Zhu Q, Ge S, Gu X, Jia R, Song X, Zhuang A. Novel insights into TCR-T cell therapy in solid neoplasms: optimizing adoptive immunotherapy. Exp Hematol Oncol 2024; 13:37. [PMID: 38570883 PMCID: PMC10988985 DOI: 10.1186/s40164-024-00504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Adoptive immunotherapy in the T cell landscape exhibits efficacy in cancer treatment. Over the past few decades, genetically modified T cells, particularly chimeric antigen receptor T cells, have enabled remarkable strides in the treatment of hematological malignancies. Besides, extensive exploration of multiple antigens for the treatment of solid tumors has led to clinical interest in the potential of T cells expressing the engineered T cell receptor (TCR). TCR-T cells possess the capacity to recognize intracellular antigen families and maintain the intrinsic properties of TCRs in terms of affinity to target epitopes and signal transduction. Recent research has provided critical insight into their capability and therapeutic targets for multiple refractory solid tumors, but also exposes some challenges for durable efficacy. In this review, we describe the screening and identification of available tumor antigens, and the acquisition and optimization of TCRs for TCR-T cell therapy. Furthermore, we summarize the complete flow from laboratory to clinical applications of TCR-T cells. Last, we emerge future prospects for improving therapeutic efficacy in cancer world with combination therapies or TCR-T derived products. In conclusion, this review depicts our current understanding of TCR-T cell therapy in solid neoplasms, and provides new perspectives for expanding its clinical applications and improving therapeutic efficacy.
Collapse
Affiliation(s)
- Weihuan Shao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Xiaoran Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Tongxin Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Yue Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Qiuyi Zhu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
5
|
Yamada M, Keller RR, Gutierrez RL, Cameron D, Suzuki H, Sanghrajka R, Vaynshteyn J, Gerwin J, Maura F, Hooper W, Shah M, Robine N, Demarest P, Bayin NS, Zapater LJ, Reed C, Hébert S, Masilionis I, Chaligne R, Socci ND, Taylor MD, Kleinman CL, Joyner AL, Raju GP, Kentsis A. Childhood cancer mutagenesis caused by transposase-derived PGBD5. SCIENCE ADVANCES 2024; 10:eadn4649. [PMID: 38517960 PMCID: PMC10959420 DOI: 10.1126/sciadv.adn4649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/16/2024] [Indexed: 03/24/2024]
Abstract
Genomic rearrangements are a hallmark of most childhood tumors, including medulloblastoma, one of the most common brain tumors in children, but their causes remain largely unknown. Here, we show that PiggyBac transposable element derived 5 (Pgbd5) promotes tumor development in multiple developmentally accurate mouse models of Sonic Hedgehog (SHH) medulloblastoma. Most Pgbd5-deficient mice do not develop tumors, while maintaining normal cerebellar development. Ectopic activation of SHH signaling is sufficient to enforce cerebellar granule cell progenitor-like cell states, which exhibit Pgbd5-dependent expression of distinct DNA repair and neurodevelopmental factors. Mouse medulloblastomas expressing Pgbd5 have increased numbers of somatic structural DNA rearrangements, some of which carry PGBD5-specific sequences at their breakpoints. Similar sequence breakpoints recurrently affect somatic DNA rearrangements of known tumor suppressors and oncogenes in medulloblastomas in 329 children. This identifies PGBD5 as a medulloblastoma mutator and provides a genetic mechanism for the generation of oncogenic DNA rearrangements in childhood cancer.
Collapse
Affiliation(s)
- Makiko Yamada
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
| | - Ross R. Keller
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
| | | | - Daniel Cameron
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
| | - Hiromichi Suzuki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Reeti Sanghrajka
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jake Vaynshteyn
- Departments of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey Gerwin
- Departments of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesco Maura
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - William Hooper
- Computational Biology, New York Genome Center, New York, NY, USA
| | - Minita Shah
- Computational Biology, New York Genome Center, New York, NY, USA
| | - Nicolas Robine
- Computational Biology, New York Genome Center, New York, NY, USA
| | - Phillip Demarest
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
| | - N. Sumru Bayin
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge University, Cambridge, UK
| | - Luz Jubierre Zapater
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
| | - Casie Reed
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
| | - Steven Hébert
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Ignas Masilionis
- Single-Cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronan Chaligne
- Single-Cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas D. Socci
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael D. Taylor
- Department of Pediatrics—Hematology/Oncology and Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Hematology-Oncology Section, Texas Children’s Cancer Center, Houston, TX, USA
- The Arthur and Sonia Labatt Brain Tumour Research Centre and the Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Claudia L. Kleinman
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Alexandra L. Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Biochemistry, Cell and Molecular Biology Program and Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - G. Praveen Raju
- Departments of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alex Kentsis
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
- Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
6
|
Bushman FD. DNA transposon mechanisms and pathways of genotoxicity. Mol Ther 2023; 31:613-615. [PMID: 36754054 PMCID: PMC10014265 DOI: 10.1016/j.ymthe.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Affiliation(s)
- Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Kolacsek O, Wachtl G, Fóthi Á, Schamberger A, Sándor S, Pergel E, Varga N, Raskó T, Izsvák Z, Apáti Á, Orbán TI. Functional indications for transposase domestications - Characterization of the human piggyBac transposase derived (PGBD) activities. Gene 2022; 834:146609. [PMID: 35609796 DOI: 10.1016/j.gene.2022.146609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
Abstract
Transposable elements are widespread in all living organisms. In addition to self-reproduction, they are a major source of genetic variation that drives genome evolution but our knowledge of the functions of human genes derived from transposases is limited. There are examples of transposon-derived, domesticated human genes that lost (SETMAR) or retained (THAP9) their transposase activity, however, several remnants in the human genome have not been thoroughly investigated yet. These include the five human piggyBac-derived sequences (PGBD1-5) which share ancestry with the Trichoplusia ni originated piggyBac (PB) transposase. Since PB is widely used in gene delivery applications, the potential activities of endogenous PGBDs are important to address. However, previous data is controversial, especially with the claimed transposition activity of PGBD5, it awaits further investigations. Here, we aimed to systematically analyze all five human PGBD proteins from several aspects, including phylogenetic conservation, potential transposase activity, expression pattern and their regulation in different stress conditions. Among PGBDs, PGBD5 is under the highest purifying selection, and exhibits the most cell type specific expression pattern. In a two-component vector system, none of the human PGBDs could mobilize either the insect PB transposon or the endogenous human PB-like MER75 and MER85 elements with intact terminal sequences. When cells were exposed to various stress conditions, including hypoxia, oxidative or UV stress, the expression profiles of all PGBDs showed different, often cell type specific responses; however, the pattern of PGBD5 in most cases had the opposite tendency than that of the other piggyBac-derived elements. Taken together, our results indicate that human PGBD elements did not retain their mobilizing activity, but their cell type specific, and cellular stress related expression profiles point toward distinct domesticated functions that require further characterization.
Collapse
Affiliation(s)
- Orsolya Kolacsek
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gerda Wachtl
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ábel Fóthi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Anita Schamberger
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Sára Sándor
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Enikő Pergel
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Nóra Varga
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás Raskó
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Ágota Apáti
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás I Orbán
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|