1
|
George H, Sun Y, Wu J, Yan Y, Wang R, Pesavento RP, Mathew MT. Intelligent salivary biosensors for periodontitis: in vitro simulation of oral oxidative stress conditions. Med Biol Eng Comput 2024; 62:2409-2434. [PMID: 38609577 DOI: 10.1007/s11517-024-03077-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/16/2024] [Indexed: 04/14/2024]
Abstract
ASTRACT One of the most common oral diseases affecting millions of people worldwide is periodontitis. Usually, proteins in body fluids are used as biomarkers of diseases. This study focused on hydrogen peroxide, lipopolysaccharide (LPS), and lactic acid as salivary non-protein biomarkers for oxidative stress conditions of periodontitis. Electrochemical analysis of artificial saliva was done using Gamry with increasing hydrogen peroxide, bLPS, and lactic acid concentrations. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were conducted. From EIS data, change in capacitance and CV plot area were calculated for each test condition. Hydrogen peroxide groups had a decrease in CV area and an increase in percentage change in capacitance, lipopolysaccharide groups had a decrease in CV area and a decrease in percentage change in capacitance, and lactic acid groups had an increase of CV area and an increase in percentage change in capacitance with increasing concentrations. These data showed a unique combination of electrochemical properties for the three biomarkers. Scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) employed to observe the change in the electrode surface and elemental composition data present on the sensor surface also showed a unique trend of elemental weight percentages. Machine learning models using hydrogen peroxide, LPS, and lactic acid electrochemical data were applied for the prediction of risk levels of periodontitis. The detection of hydrogen peroxide, LPS, and lactic acid by electrochemical biosensors indicates the potential to use these molecules as electrochemical biomarkers and use the data for ML-driven prediction tool for the periodontitis risk levels.
Collapse
Affiliation(s)
- Haritha George
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Yani Sun
- Department of Material Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Junyi Wu
- Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA
| | - Yan Yan
- Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA
| | - Rong Wang
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - Russell P Pesavento
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Mathew T Mathew
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Material Science, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Kanniyappan H, Cheng KY, Badhe RV, Neto M, Bijukumar D, Barba M, Pourzal R, Mathew M. Investigation of cell-accelerated corrosion (CAC) on the CoCrMo alloy with segregation banding: Hip implant applications. J Mech Behav Biomed Mater 2024; 152:106449. [PMID: 38387118 DOI: 10.1016/j.jmbbm.2024.106449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/07/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
Metal alloy microstructure plays a crucial role in corrosion associated with total hip replacement (THR). THR is a prominent strategy that uses metal implants such as cobalt-chromium-molybdenum (CoCrMo) alloys due to their advantageous biological and mechanical properties. Despite all benefits, these implants undergo corrosion and wear processes in-vivo in a synergistic manner called tribocorrosion. Also, the implant retrieval findings reported that fretting corrosion occurred in-vivo, evidenced by the damage patterns that appeared on the THR junction interfaces. There is no scientific data on the studies reporting the fretting corrosion patterns of CoCrMo microstructures in the presence of specific biological treatments to date. In the current study, Flat-on-flat fretting corrosion set-up was customized and used to study the tribocorrosion patterns of fretting corrosion to understand the role of alloy microstructure. Alloy microstructural differences were created with the implant stock metal's longitudinal and transverse cutting orientations. As a result, the transverse created the non-banded, homogenous microstructure, whereas the longitudinal cut resulted in the banded, non-homogenous microstructure on the surface of the alloy (in this manuscript, the terms homogenous and banded were used). The induced currents were monitored using a three-electrode system. Three different types of electrolytes were utilized to study the fretting corrosion patterns with both homogeneous and banded microstructures: 1. Control media 2. Spent media (the macrophage cell cultured media) 3. Challenged media (media collected after the macrophage was treated with CoCrMo particles). From the electrochemical results, in the potentiostat conditions, the banded group exhibited a higher induced current in both challenged and spent electrolyte environments than in control due to the synergistic activity of CoCrMo particles and macrophage demonstrating more corrosion loss. Additionally, both Bode and Nyquist plots reported a clear difference between the banded and homogeneous microstructure, especially with challenged electrolytes becoming more corrosion-resistant post-fretting than pre-fretting results. The banded microstructure showed a unique shape of the fretting loop, which may be due to tribochemical reactions. Therefore, from the electrochemical, mechanical, and surface analysis data results, the transverse/homogenous/non-banded alloy microstructure groups show a higher resistance to fretting-corrosion damage.
Collapse
Affiliation(s)
- Hemalatha Kanniyappan
- Regenerative Medicine and Disability Research (RMDR) Lab, Department of Biomedical Sciences, UICOM, Rockford, IL, USA
| | - Kai-Yuan Cheng
- Regenerative Medicine and Disability Research (RMDR) Lab, Department of Biomedical Sciences, UICOM, Rockford, IL, USA
| | - Ravindra V Badhe
- Regenerative Medicine and Disability Research (RMDR) Lab, Department of Biomedical Sciences, UICOM, Rockford, IL, USA; Marathwada Mitra Mandal's College of Pharmacy, Pune, India
| | | | - Divya Bijukumar
- Regenerative Medicine and Disability Research (RMDR) Lab, Department of Biomedical Sciences, UICOM, Rockford, IL, USA
| | - Mark Barba
- Dept of Orthopedics, Rush University Medical Center, Chicago, IL, USA
| | | | - Mathew Mathew
- Regenerative Medicine and Disability Research (RMDR) Lab, Department of Biomedical Sciences, UICOM, Rockford, IL, USA.
| |
Collapse
|
3
|
Ng E, Tay JRH, Mattheos N, Bostanci N, Belibasakis GN, Seneviratne CJ. A Mapping Review of the Pathogenesis of Peri-Implantitis: The Biofilm-Mediated Inflammation and Bone Dysregulation (BIND) Hypothesis. Cells 2024; 13:315. [PMID: 38391928 PMCID: PMC10886485 DOI: 10.3390/cells13040315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
This mapping review highlights the need for a new paradigm in the understanding of peri-implantitis pathogenesis. The biofilm-mediated inflammation and bone dysregulation (BIND) hypothesis is proposed, focusing on the relationship between biofilm, inflammation, and bone biology. The close interactions between immune and bone cells are discussed, with multiple stable states likely existing between clinically observable definitions of peri-implant health and peri-implantitis. The framework presented aims to explain the transition from health to disease as a staged and incremental process, where multiple factors contribute to distinct steps towards a tipping point where disease is manifested clinically. These steps might be reached in different ways in different patients and may constitute highly individualised paths. Notably, factors affecting the underlying biology are identified in the pathogenesis of peri-implantitis, highlighting that disruptions to the host-microbe homeostasis at the implant-mucosa interface may not be the sole factor. An improved understanding of disease pathogenesis will allow for intervention on multiple levels and a personalised treatment approach. Further research areas are identified, such as the use of novel biomarkers to detect changes in macrophage polarisation and activation status, and bone turnover.
Collapse
Affiliation(s)
- Ethan Ng
- Department of Restorative Dentistry, National Dental Centre Singapore, Singapore 168938, Singapore;
| | - John Rong Hao Tay
- Department of Restorative Dentistry, National Dental Centre Singapore, Singapore 168938, Singapore;
| | - Nikos Mattheos
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand;
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institute, 14152 Stockholm, Sweden; (N.B.); (G.N.B.)
| | - Nagihan Bostanci
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institute, 14152 Stockholm, Sweden; (N.B.); (G.N.B.)
| | - Georgios N. Belibasakis
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institute, 14152 Stockholm, Sweden; (N.B.); (G.N.B.)
| | - Chaminda Jayampath Seneviratne
- School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
- School of Dentistry, Center for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), The University of Queensland, Brisbane, QLD 4072, Australia
- National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore 168938, Singapore
| |
Collapse
|
4
|
Alhamad M, Barão VA, Sukotjo C, Mathew MT. The effect of three dental cement types on the corrosion of dental implant surfaces. Heliyon 2024; 10:e23626. [PMID: 38192807 PMCID: PMC10772628 DOI: 10.1016/j.heliyon.2023.e23626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024] Open
Abstract
Statement of problem One of the main challenges facing dental implant success is peri-implantitis. Recent evidence indicates that titanium (Ti) corrosion products and undetected-residual cement are potential risk factors for peri-implantitis. The literature on the impact of various types of dental cement on Ti corrosion is very limited. Purpose This study aimed to determine the influence of dental cement on Ti corrosion as a function of cement amount and type. Materials and methods Thirty commercially pure Ti grade 4 discs (19 × 7mm) were polished to mirror-shine (Ra ≈ 40 nm). Samples were divided into 10 groups (n = 3) as a cement type and amount function. The groups were no-cement as control, TempBond NE (TB3mm, TB5mm, and TB8mm), FujiCEM-II (FC3mm, FC5mm, and FC8mm), and Panavia-F-2.0 (PC3mm, PC5mm, and PC8mm). Tafel's method estimated corrosion rate (icorr) and corresponding potential (Ecorr) from potentiodynamic curves. Electrochemical Impedance Spectroscopy (EIS) data was utilized to obtain Nyquist and Bode plots. An equivalent electrical circuit estimated polarization resistance (Rp) and double-layer capacitance (Cdl). Inductively coupled plasma mass spectrometry (ICP-MS) analysis was conducted to analyze the electrolyte solution after corrosion. pH measurements of the electrolyte were recorded before and after corrosion tests. Finally, the corroded surface was characterized by a 3D white-light microscope and scanning electron microscope. Statistical analysis was conducted using either one-way ANOVA followed by Tukey's Post Hoc test or Kruskal-Wallis followed by Dunn's test based on data distribution. Results Based on cement amount, FC and PC significantly increased icorr in higher amounts (FC8mm-icorr = 8.22 × 10-8A/cm2, PC8mm-icorr = 5.61 × 10-8A/cm2) compared to control (3.35 × 10-8A/cm2). In contrast, TB3mm decreased icorr significantly compared to the control. As a function of cement type, FC increased icorr the most. EIS data agrees with these observations. Finally, corroded surfaces had higher surface roughness (Ra) compared to non-corroded surfaces. Conclusion The study indicated that cement types FC and PC led to increased Ti-corrosion as a function of a higher amount. Hence, the implant stability could be impacted by the selection, excessive cement, and a potentially increased risk of peri-implantitis.
Collapse
Affiliation(s)
- Mostafa Alhamad
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Valentim A.R. Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Cortino Sukotjo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Mathew T. Mathew
- Department of Restorative Dentistry, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Li Y, Zhou Z, He Y. Tribocorrosion and Surface Protection Technology of Titanium Alloys: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 17:65. [PMID: 38203919 PMCID: PMC10779822 DOI: 10.3390/ma17010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Titanium alloy has the advantages of high specific strength, good corrosion resistance, and biocompatibility and is widely used in marine equipment, biomedicine, aerospace, and other fields. However, the application of titanium alloy in special working conditions shows some shortcomings, such as low hardness and poor wear resistance, which seriously affect the long life and safe and reliable service of the structural parts. Tribocorrosion has been one of the research hotspots in the field of tribology in recent years, and it is one of the essential factors affecting the application of passivated metal in corrosive environments. In this work, the characteristics of the marine and human environments and their critical tribological problems are analyzed, and the research connotation of tribocorrosion of titanium alloy is expounded. The research status of surface protection technology for titanium alloy in marine and biological environments is reviewed, and the development direction and trends in surface engineering of titanium alloy are prospected.
Collapse
Affiliation(s)
- Yang Li
- School of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai 264005, China;
| | - Zelong Zhou
- School of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai 264005, China;
| | - Yongyong He
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Chen L, Tong Z, Luo H, Qu Y, Gu X, Si M. Titanium particles in peri-implantitis: distribution, pathogenesis and prospects. Int J Oral Sci 2023; 15:49. [PMID: 37996420 PMCID: PMC10667540 DOI: 10.1038/s41368-023-00256-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Peri-implantitis is one of the most important biological complications in the field of oral implantology. Identifying the causative factors of peri-implant inflammation and osteolysis is crucial for the disease's prevention and treatment. The underlying risk factors and detailed pathogenesis of peri-implantitis remain to be elucidated. Titanium-based implants as the most widely used implant inevitably release titanium particles into the surrounding tissue. Notably, the concentration of titanium particles increases significantly at peri-implantitis sites, suggesting titanium particles as a potential risk factor for the condition. Previous studies have indicated that titanium particles can induce peripheral osteolysis and foster the development of aseptic osteoarthritis in orthopedic joint replacement. However, it remains unconfirmed whether this phenomenon also triggers inflammation and bone resorption in peri-implant tissues. This review summarizes the distribution of titanium particles around the implant, the potential roles in peri-implantitis and the prevalent prevention strategies, which expects to provide new directions for the study of the pathogenesis and treatment of peri-implantitis.
Collapse
Affiliation(s)
- Long Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zian Tong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Hongke Luo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yuan Qu
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang University, Haining, China
| | - Xinhua Gu
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Misi Si
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
7
|
Sun Y, Cheng KY, Kanniyappan H, Ramachandran RA, Neto MQ, McNallan M, Pourzal R, Lundberg H, Mathew MT. Fretting-corrosion Apparatus with Low Magnitude Micro-motion (≤5 μm): Development and Preliminary Outcome. RESEARCH SQUARE 2023:rs.3.rs-3359897. [PMID: 37886457 PMCID: PMC10602084 DOI: 10.21203/rs.3.rs-3359897/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Fretting-corrosion is one of the failure processes in many applications, including biomedical implants. For example, the modern design of hip implants with multiple components offers better flexibility and inventory storage. However, it will trigger the fretting at the implant interfaces with a small displacement amplitude (< 5 µm) and usually in a partial slip region. Although many studies have been reported on the fretting, they have high displacement amplitude and are in the gross slip region. It is imperative to have an apparatus to overcome such limitations, specifically for hip implant applications. Therefore, this study describes the development of a fretting-corrosion apparatus with low micro-motion (≤ 5 µm) that can simultaneously monitor the corrosion process. Initial experiments with Ti6Al4V-Ti6Al4V in 0.9% saline, Ti6Al4V-Ti6Al4V in bovine calf serum (BCS), and ZrO2-Ti6Al4V in BCS were conducted to validate the system. As a result, the fretting regime of all groups remained partially slip region throughout the 3600 cycles, and the possible failure mechanisms are proposed in this manuscript.
Collapse
Affiliation(s)
- Yani Sun
- University of Illinois at Chicago
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mathew MT, Cheng KY, Sun Y, Barao VAR. The Progress in Tribocorrosion Research (2010-21): Focused on the Orthopedics and Dental Implants. JOURNAL OF BIO- AND TRIBO-CORROSION 2023; 9:48. [PMID: 38525435 PMCID: PMC10959289 DOI: 10.1007/s40735-023-00767-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 03/26/2024]
Abstract
Tribocorrosion is an integration of two areas-tribology and corrosion. It can be defined as the material degradation caused by the combined effect of corrosion and tribological process at the material interfaces. Significant development has occurred in the field of tribocorrosion over the past years. This development is due to its applications in various fields, such as aerospace, marine, biomedical, and space. Focusing on biomedical applications, tribocorrosion finds its applications in the implants used in cardiovascular, spine, orthopedics, trauma, and dental areas. It was reported that around 7.2 million Americans are living with joint implants. Implant surgery is a traumatic and expensive procedure. Tribocorrosion can affect the lifespan of the implants, thus leading to implant failure and a potential cause of revision surgery. Hence, it is essential to understand how tribocorrosion works, its interaction with the implants, and what procedures can be implemented to protect materials from tribocorrosion. This paper discusses how tribocorrosion research has evolved over the past 11 years (2010-2021). This is a comprehensive overview of tribocorrosion research in biomedical applications.
Collapse
Affiliation(s)
- Mathew T. Mathew
- Department of Biomedical Science, UIC College of Medicine, Rockford, IL 61107, USA
- Department of Biomedical Engineering, UIC, Chicago, IL 60612, USA
- Department of Restorative Dentistry, College of Dentistry, UIC, Chicago, IL 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kai-yuan Cheng
- Department of Biomedical Science, UIC College of Medicine, Rockford, IL 61107, USA
| | - Yani Sun
- Department of Biomedical Science, UIC College of Medicine, Rockford, IL 61107, USA
| | - Valentim A. R. Barao
- Departament of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo 13414-903, Brazil
| |
Collapse
|
9
|
Arakelyan M, Spagnuolo G, Iaculli F, Dikopova N, Antoshin A, Timashev P, Turkina A. Minimization of Adverse Effects Associated with Dental Alloys. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7476. [PMID: 36363067 PMCID: PMC9658402 DOI: 10.3390/ma15217476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Metal alloys are one of the most popular materials used in current dental practice. In the oral cavity, metal structures are exposed to various mechanical and chemical factors. Consequently, metal ions are released into the oral fluid, which may negatively affect the surrounding tissues and even internal organs. Adverse effects associated with metallic oral appliances may have various local and systemic manifestations, such as mouth burning, potentially malignant oral lesions, and local or systemic hypersensitivity. However, clear diagnostic criteria and treatment guidelines for adverse effects associated with dental alloys have not been developed yet. The present comprehensive literature review aims (1) to summarize the current information related to possible side effects of metallic oral appliances; (2) to analyze the risk factors aggravating the negative effects of dental alloys; and (3) to develop recommendations for diagnosis, management, and prevention of pathological conditions associated with metallic oral appliances.
Collapse
Affiliation(s)
- Marianna Arakelyan
- Therapeutic Dentistry Department, Institute for Dentistry, Sechenov University, 119991 Moscow, Russia
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80138 Napoli, Italy
| | - Flavia Iaculli
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80138 Napoli, Italy
| | - Natalya Dikopova
- Therapeutic Dentistry Department, Institute for Dentistry, Sechenov University, 119991 Moscow, Russia
| | - Artem Antoshin
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, 119991 Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Anna Turkina
- Therapeutic Dentistry Department, Institute for Dentistry, Sechenov University, 119991 Moscow, Russia
| |
Collapse
|
10
|
Bio-Tribocorrosion of Titanium Dental Implants and Its Toxicological Implications: A Scoping Review. ScientificWorldJournal 2022; 2022:4498613. [PMID: 36312451 PMCID: PMC9616655 DOI: 10.1155/2022/4498613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 11/18/2022] Open
Abstract
Bio-tribocorrosion is a phenomenon that combines the essentials of tribology (friction, wear, and lubrication) and corrosion with microbiological processes. Lately, it has gained attention in implant dentistry because dental implants are exposed to wear, friction, and biofilm formation in the corrosive oral environment. They may degrade upon exposure to various microbial, biochemical, and electrochemical factors in the oral cavity. The mechanical movement of the implant components produces friction and wear that facilitates the release of metal ions, promoting adverse oro-systemic reactions. This review describes the bio-tribocorrosion of the titanium (Ti) dental implants in the oral cavity and its toxicological implications. The original research related to the bio-tribo or tribocorrosion of the dental implants was searched in electronic databases like Medline (Pubmed), Embase, Scopus, and Web of Science. About 34 studies included in the review showed that factors like the type of Ti, oral biofilm, acidic pH, fluorides, and micromovements during mastication promote bio-tribocorrosion of the Ti dental implants. Among the various grades of Ti, grade V, i.e., Ti6Al4V alloy, is most susceptible to tribocorrosion. Oral pathogens like Streptococcus mutans and Porphyromonas gingivalis produce acids and lipopolysaccharides (LPS) that cause pitting corrosion and degrade the TiO2. The low pH and high fluoride concentration in saliva hinder passive film formation and promote metal corrosion. The released metal ions promote inflammatory reactions and bone destruction in the surrounding tissues resulting in peri-implantitis, allergies, and hyper-sensitivity reactions. However, further validation of the role of bio-tribocorrosion on the durability of the Ti dental implants and Ti toxicity is warranted through clinical trials.
Collapse
|
11
|
Manthe J, Cheng KY, Bijukumar D, Barba M, Pourzal R, Neto M, Mathew MT. Hip implant modular junction: The role of CoCrMo alloy microstructure on fretting-corrosion. J Mech Behav Biomed Mater 2022; 134:105402. [PMID: 36041275 PMCID: PMC10507884 DOI: 10.1016/j.jmbbm.2022.105402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/09/2022] [Accepted: 07/24/2022] [Indexed: 11/29/2022]
Abstract
Cobalt-chromium-molybdenum (CoCrMo) alloy is one of the most used metals in total hip replacement (THR) due to the alloy's superior corrosion qualities and biocompatibility. Over time these prostheses may undergo wear and corrosion processes in a synergistic process known as tribocorrosion. Implant retrieval studies have shown that damage patterns on THR modular junction surfaces indicating specifically in vivo fretting-corrosion to take place. To date, there have been no studies on the fretting-corrosion behaviors of CoCrMo alloy under the consideration of specific microstructural features. A custom-built flat-on-flat fretting-corrosion setup was utilized to test the synergistic tribocorrosion behavior of fretting-corrosion. The difference in microstructure was generated through the cutting orientations of the transverse and the longitudinal direction of the bar stock material, where the longitudinal cut exhibits a characteristic banded microstructure (banded group) and the transverse cut a homogenous microstructure (unbanded group). A three-electrode system was employed to monitor the induced currents. Two different types of electrolytes were used in the current study: 1. Bovine calf serum (BCS-30 g/L protein) (normal conditions) 2. BCS with Lipopolysaccharide (LPS, 0.15 μg/ml) (simulated infectious conditions). In the free potential mode, banded samples showed an increased potential compared to the unbanded samples. In potentiostatic conditions, the banded group also exhibited a higher induced current in both electrolyte environments, indicating more corrosion loss. Both Nyquist and Bode plots showed both orientations of metal becoming more corrosion resistant post-fretting when compared to pre-fretting data. The longitudinal group at OCP demonstrated a unique shape of the fretting-loop, which might be related to tribochemical reactions. Based on the mechanical, electrochemical, and surface characterization data, the transverse group (unbanded) microstructures demonstrates a higher resistance to fretting-corrosion damage.
Collapse
Affiliation(s)
- Jacob Manthe
- RMDR Lab, Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | - Kai Yuan Cheng
- RMDR Lab, Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | - Divya Bijukumar
- RMDR Lab, Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | | | - Robin Pourzal
- Department of Orthopedics, Rush University Medical Center, Chicago, IL, USA
| | - Mozart Neto
- Department of Orthopedics, Rush University Medical Center, Chicago, IL, USA
| | - Mathew T Mathew
- RMDR Lab, Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA; Department of Orthopedics, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
12
|
Neto MQ, Radice S, Hall DJ, Mathew MT, Mercuri LG, Pourzal R. Alloys used in different Temporomandibular joint reconstruction replacement prostheses exhibit variable microstructures and electrochemical properties. J Oral Maxillofac Surg 2021; 80:798-813. [DOI: 10.1016/j.joms.2021.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 01/30/2023]
|
13
|
Kheder W, Al Kawas S, Khalaf K, Samsudin A. Impact of tribocorrosion and titanium particles release on dental implant complications - A narrative review. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:182-189. [PMID: 34630776 PMCID: PMC8488597 DOI: 10.1016/j.jdsr.2021.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/03/2023] Open
Abstract
Titanium particles as a product of degradation have been detected in periimplant oral tissues and it has been assumed that implants were the source of these particles. Periimplantitis sites had higher concentrations of particles in comparison to healthy implant sites. Several factors have been identified in the degradation of dental implant surface, such as mechanical wear, contact with chemical agents, and the effects of biofilm adhesion. Titanium particles silently prompt the immune-system activation and generate a pro-inflammatory response in macrophages, T lymphocytes and monocytes. During the activation, inflammatory cytokines are released including, granulocyte-macrophage colony-stimulating factor (GM-CSF), prostaglandin, and TNF-α, IL-1β, IL-6. The nanoparticles depict unique features such as high level of biological reactivity and potentially harmful compared to microparticles since they have a relatively greater surface area to volume ratio. Allergic response to titanium as a cause of implant failure has not been well documented. Evidence demonstrating biological complication due to titanium particles release includes peri-implant tissue inflammation that lead terminally to implant loss. There is a biological probability for a relation between the presence of titanium particles and ions, biological complication, and corrosion, but there is no justifiable evidence for unidirectional series of causative actions.
Collapse
Affiliation(s)
- Waad Kheder
- College of Dental Medicine, University of Sharjah, P.O. Box 27272, United Arab Emirates
| | - Sausan Al Kawas
- College of Dental Medicine, University of Sharjah, P.O. Box 27272, United Arab Emirates
| | - Khaled Khalaf
- College of Dental Medicine, University of Sharjah, P.O. Box 27272, United Arab Emirates
| | - A.R. Samsudin
- College of Dental Medicine, University of Sharjah, P.O. Box 27272, United Arab Emirates
| |
Collapse
|
14
|
Hsu SM, Fares C, Xia X, Rasel MAJ, Ketter J, Afonso Camargo SE, Haque MA, Ren F, Esquivel-Upshaw JF. In Vitro Corrosion of SiC-Coated Anodized Ti Nano-Tubular Surfaces. J Funct Biomater 2021; 12:52. [PMID: 34564201 PMCID: PMC8482235 DOI: 10.3390/jfb12030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/01/2021] [Accepted: 09/12/2021] [Indexed: 11/16/2022] Open
Abstract
Peri-implantitis leads to implant failure and decreases long-term survival and success rates of implant-supported prostheses. The pathogenesis of this disease is complex but implant corrosion is believed to be one of the many factors which contributes to progression of this disease. A nanostructured titanium dioxide layer was introduced using anodization to improve the functionality of dental implants. In the present study, we evaluated the corrosion performance of silicon carbide (SiC) on anodized titanium dioxide nanotubes (ATO) using plasma-enhanced chemical vapor deposition (PECVD). This was investigated through a potentiodynamic polarization test and bacterial incubation for 30 days. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to analyze surface morphologies of non-coated and SiC-coated nanotubes. Energy dispersive X-ray (EDX) was used to analyze the surface composition. In conclusion, SiC-coated ATO exhibited improved corrosion resistance and holds promise as an implant coating material.
Collapse
Affiliation(s)
- Shu-Min Hsu
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.-M.H.); (S.E.A.C.)
| | - Chaker Fares
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32610, USA; (C.F.); (X.X.); (F.R.)
| | - Xinyi Xia
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32610, USA; (C.F.); (X.X.); (F.R.)
| | - Md Abu Jafar Rasel
- Department of Mechanical Engineering, Penn State University, University Park, PA 16802, USA; (M.A.J.R.); (M.A.H.)
| | | | - Samira Esteves Afonso Camargo
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.-M.H.); (S.E.A.C.)
| | - Md Amanul Haque
- Department of Mechanical Engineering, Penn State University, University Park, PA 16802, USA; (M.A.J.R.); (M.A.H.)
| | - Fan Ren
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32610, USA; (C.F.); (X.X.); (F.R.)
| | - Josephine F. Esquivel-Upshaw
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.-M.H.); (S.E.A.C.)
| |
Collapse
|
15
|
Barão VAR, Ramachandran RA, Matos AO, Badhe RV, Grandini CR, Sukotjo C, Ozevin D, Mathew M. Prediction of tribocorrosion processes in titanium-based dental implants using acoustic emission technique: Initial outcome. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112000. [PMID: 33812620 DOI: 10.1016/j.msec.2021.112000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
The use of dental implants is growing rapidly for the last few decades and Ti-based dental implants are a commonly used prosthetic structure in dentistry. Recently, the combined effect of corrosion and wear, called tribocorrosion, is considered as a major driving process in the early failure of dental implants. However, no previous study has reported the prediction of tribocorrosion processes in advance. Therefore, this study is a novel investigation on how the acoustic emission (AE) technique can predict tribocorrosion processes in commercially-pure titanium (cpTi) and titanium-zirconium (TiZr) alloys. In this study, tribocorrosion tests were performed under potentiostatic conditions and AE detection system associated with it captures AE data. Current evolution and friction coefficient data obtained from the potentiostatic evaluations were compared with AE absolute energy showcased the same data interpretation of tribocorrosion characteristics. Other AE data such as duration, count, and amplitude, matched more closely with other potentiostatic corrosion evaluations and delivered more promising results in the detection of tribocorrosion. Hence, AE can be consider as a tool for predicting tribocorrosion in dental implants. Experimental results also reveal Ti5Zr as one of the most appropriate dental implant materials while exposing Ti10Zr's lower effectiveness to withstand in the simulated oral environment.
Collapse
Affiliation(s)
- Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil.
| | | | - Adaías Oliveira Matos
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | | | - Carlos R Grandini
- Laboratório de Anelasticidade e Biomateriais, Univ Estadual Paulista (UNESP), Bauru, São Paulo, Brazil
| | - Cortino Sukotjo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, IL, USA
| | - Didem Ozevin
- Department of Civil, Materials, and Environmental Engineering, University of Illinois at Chicago, IL, USA
| | - Mathew Mathew
- Department of Bioengineering, University of Illinois at Chicago, IL, USA; Department of Biomedical Sciences, UIC Rockford, IL, USA; Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, IL, USA.
| |
Collapse
|
16
|
Teixeira H, Branco AC, Rodrigues I, Silva D, Cardoso S, Colaço R, Serro AP, Figueiredo-Pina CG. Effect of albumin, urea, lysozyme and mucin on the triboactivity of Ti6Al4V/zirconia pair used in dental implants. J Mech Behav Biomed Mater 2021; 118:104451. [PMID: 33730640 DOI: 10.1016/j.jmbbm.2021.104451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
The titanium implant/zirconia abutment interface can suffer failure upon mechanical and biological issues, ultimately leading to the loss of the artificial tooth. The study of the effect of the organic compounds present in saliva on the tribological behavior of these systems is of utmost importance to understand the failure mechanisms and better mimic the in vivo conditions. The aim of the present work is to evaluate the effect of the addition of albumin, urea, lysozyme and mucin to artificial saliva, on the triboactivity of Ti6Al4V/zirconia pair commonly used in dental implants and then, compare the results with those obtained with human saliva. The solutions' viscosity was measured and the adsorption of the different biomolecules to both Ti6Al4V and zirconia was accessed. Tribological tests were performed using Ti6Al4V balls sliding on zirconia plates inside of a corrosion cell. Friction and wear coefficients were determined, and the open circuit potential (OCP) was monitored during the tests. Also, the wear mechanisms were identified. The presence of mucin in the artificial lubricant led to the lowest wear coefficients. The main wear mechanism was abrasion, independently of the used lubricant. Adhesive wear was observed for the systems without mucin. Tribocorrosion activity and wear coefficient were lower in the presence of mucin. None of the studied artificial lubricants mimicked the effect of human saliva (HS) on the tribological behavior of the studied pair since this lubricant led to the lowest friction coefficient and highest corrosion activity.
Collapse
Affiliation(s)
- H Teixeira
- Centro de Desenvolvimento de Produto e Transferência de Tecnologia (CDP2T), Department of Mechanical Engineering, Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de Setúbal, Setúbal, Portugal
| | - A C Branco
- Centro de Desenvolvimento de Produto e Transferência de Tecnologia (CDP2T), Department of Mechanical Engineering, Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de Setúbal, Setúbal, Portugal; Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Centro de investigação interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Monte de Caparica, Portugal
| | - I Rodrigues
- Centro de Desenvolvimento de Produto e Transferência de Tecnologia (CDP2T), Department of Mechanical Engineering, Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de Setúbal, Setúbal, Portugal; Centro de Física e Engenharia de Materiais Avançados (CeFEMA), Instituto Superior Técnico, University of Lisbon, Lisboa, Portugal
| | - D Silva
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - S Cardoso
- Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC-MN), Lisboa, Portugal
| | - R Colaço
- Instituto de Engenharia Mecânica (IDMEC), Departamento de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - A P Serro
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Centro de investigação interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Monte de Caparica, Portugal.
| | - C G Figueiredo-Pina
- Centro de Desenvolvimento de Produto e Transferência de Tecnologia (CDP2T), Department of Mechanical Engineering, Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de Setúbal, Setúbal, Portugal; Centro de investigação interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Monte de Caparica, Portugal; Centro de Física e Engenharia de Materiais Avançados (CeFEMA), Instituto Superior Técnico, University of Lisbon, Lisboa, Portugal
| |
Collapse
|
17
|
Guo T, Gulati K, Arora H, Han P, Fournier B, Ivanovski S. Race to invade: Understanding soft tissue integration at the transmucosal region of titanium dental implants. Dent Mater 2021; 37:816-831. [PMID: 33676764 DOI: 10.1016/j.dental.2021.02.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/03/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The success of a dental implant system not only depends on appropriate osseointegration at the bone-implant interface, but also on robust soft-tissue integration (STI)/muco-integration at the transmucosal region. However, numerous studies have reported that the STI quality of conventional smooth and bio-inert titanium-based transmucosal components is significantly inferior to that of natural teeth, which may compromise the long-term success of implant restorations. In this review article, we discuss the structural and histological characteristics of peri-implant tissues; compare the roles of various cells residing in the transmucosal region and explore the material-based challenges that must be addressed to achieve early establishment and long-term maintenance of STI. METHODS This extensive review article critically compares and contrasts the findings from articles published in the domain of 'soft-tissue integration around Ti dental implants'. RESULTS Histological characteristics, including poorer epithelial attachment and absence of direct collagen-implant/abutment integration, are responsible for the inferior STI strength around dental implants/abutments. Furthermore, various cellular functions during STI establishment and maturation at the abutment-mucosa interface must be modulated to achieve early STI. Moreover, we discuss and detail the challenges of achieving robust STI, including the presence of oral bacterial milieu, as well as material and corrosion related issues. Finally, research challenges towards achieving and maintaining robust STI are discussed, targeting the future directions to enhance the long-term survival of implant restorations. SIGNIFICANCE Based on its histological characteristics, STI on current implant/abutment surfaces is suboptimal compared to the periodontal attachment found at teeth, making implants potentially more susceptible to disease initiation and progression. To obtain stable STI at the trasmucosal region, it is essential for future studies to design customized implant systems, with enhanced surface bioactivity and tailorable therapeutic capacity, which can improve the long-term success of implant restorations, especially in compromised conditions.
Collapse
Affiliation(s)
- Tianqi Guo
- The University of Queensland, School of Dentistry, Herston QLD 4006, Australia
| | - Karan Gulati
- The University of Queensland, School of Dentistry, Herston QLD 4006, Australia.
| | - Himanshu Arora
- The University of Queensland, School of Dentistry, Herston QLD 4006, Australia
| | - Pingping Han
- The University of Queensland, School of Dentistry, Herston QLD 4006, Australia
| | - Benjamin Fournier
- The University of Queensland, School of Dentistry, Herston QLD 4006, Australia; Universite de Paris, Dental Faculty Garanciere, Oral Biology Department, Centre of Reference for Oral and Dental Rare Diseases, Paris, France; Centre de Recherche des Cordeliers, Universite de Paris, Sorbonne Universite, INSERM UMRS 1138, Molecular Oral Pathophysiology, Paris, France
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Herston QLD 4006, Australia.
| |
Collapse
|
18
|
Soler MD, Hsu SM, Fares C, Ren F, Jenkins RJ, Gonzaga L, Clark AE, O’Neill E, Neal D, Esquivel-Upshaw JF. Titanium Corrosion in Peri-Implantitis. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5488. [PMID: 33276474 PMCID: PMC7730765 DOI: 10.3390/ma13235488] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022]
Abstract
Titanium (Ti) corrodes clinically in the presence of bacteria. We investigated this phenomenon as a function of Ti particles found in biopsied tissues around peri-implantitis sites and surface roughness of failed Ti implants. Tissue biopsies were surgically collected from peri-implantitis sites, processed, and embedded in resin. The resin-embedded samples were hand trimmed to the region of interest and semi-thick (500 nm) sections were collected onto coverslips. One section was toluidine blue post-stained as a reference. The remainder sections were left unstained for energy-dispersive X-ray spectroscopy (EDX) analysis. Processed samples were examined under scanning electron microscopy (SEM) and EDX. Corresponding failed implants were also removed and examined under SEM and EDX. Five out of eight biopsied samples demonstrated the presence of Ti particles in the soft tissue, suggesting the true rate among all failures was between 24.5% and 91.5% (the lower bound of a 95% confidence interval for the true rate of Ti presence). SEM analysis of failed implant bodies also indicated changes in surface morphology and appeared less detailed with decreased weight percent of Ti on the surface of the failed implants. In conclusion, Ti particles were noted in 5/8 biopsied samples. Surface morphologies were smoother in failed implants compared with the reference implant.
Collapse
Affiliation(s)
- Mailis D. Soler
- Division of Prosthodontics, Department of Restorative Dental Sciences, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (M.D.S.); (S.-M.H.); (A.E.C.); (E.O.)
| | - Shu-Min Hsu
- Division of Prosthodontics, Department of Restorative Dental Sciences, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (M.D.S.); (S.-M.H.); (A.E.C.); (E.O.)
| | - Chaker Fares
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32610, USA; (C.F.); (F.R.)
| | - Fan Ren
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32610, USA; (C.F.); (F.R.)
| | - Renita J. Jenkins
- Dental Clinical Research Unit, University of Florida, Gainesville, FL 32610, USA;
| | - Luiz Gonzaga
- Center for Implant Dentistry, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| | - Arthur E. Clark
- Division of Prosthodontics, Department of Restorative Dental Sciences, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (M.D.S.); (S.-M.H.); (A.E.C.); (E.O.)
| | - Edgar O’Neill
- Division of Prosthodontics, Department of Restorative Dental Sciences, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (M.D.S.); (S.-M.H.); (A.E.C.); (E.O.)
| | - Dan Neal
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA;
| | - Josephine F. Esquivel-Upshaw
- Division of Prosthodontics, Department of Restorative Dental Sciences, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (M.D.S.); (S.-M.H.); (A.E.C.); (E.O.)
| |
Collapse
|
19
|
Wilson TG. Bone loss around implants-is it metallosis? J Periodontol 2020; 92:181-185. [PMID: 32729118 DOI: 10.1002/jper.20-0208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 12/28/2022]
Abstract
Most would agree that the etiology of dental implant failure is related to oral biofilm. At present one group of scientists and clinicians feel that biofilm is solely responsible for bone loss around the devices. However, there is strong evidence that particles and ions of titanium released into the surrounding tissues by the action of biofilm and/or mechanical forces, a process termed metallosis, can be responsible for bone loss around some dental implants. These findings are reinforced by similar responses found around failed metal on metal joint prostheses. Both possible etiologies are discussed in detail in this commentary.
Collapse
|
20
|
Cheng KY, Gopal V, McNallan M, Manivasagam G, Mathew MT. Enhanced Tribocorrosion Resistance of Hard Ceramic Coated Ti-6Al-4V Alloy for Hip Implant Application: In-Vitro Simulation Study. ACS Biomater Sci Eng 2019; 5:4817-4824. [PMID: 33448824 DOI: 10.1021/acsbiomaterials.9b00609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developing coatings for various applications is an area of research of uttermost importance, to protect surfaces from severe damage by improving the wear and corrosion resistance of the materials. Recently, there has been increasing interest in ceramic coatings for biomedical applications, as the surface may become more inert in nature for the biological reactions and potentially increase the lifespan of the implants and minimize the side effects on the patients. Hence this study is focused on the tribocorrosion behavior of the ceramic coatings for the hip implant application on commonly used implant titanium alloy. The three types of the ceramic coatings are conventional monolithic micron alumina (IDA), micron alumina-40 wt % yttria-stabilized zirconia (YSZ) composite coating (IDAZ), and by-layer nanostructured alumina-13 wt % titania/YSZ (IDZAT) on Ti-6Al-4V alloy. A series of tests, under free potential and potentiostatic mode, were conducted using a hip simulator tribocorrosion setup under simulated joint fluid (bovine calf serum with protein concentration 30g/L). The tribological conditions are pin-on-ball contact with a load of 16N (approximately contact pressure of 50 MPa), the frequency of 1 Hz (walking frequency), and with an amplitude of 30°. The tribocorrosion studies clearly revealed that the coatings have better wear and corrosion resistance and the predominant damage mechanism was mechanical wear rather than corrosion. Among the coatings, the IDZAT shows enhanced tribocorrosion performance by exhibiting more positive OCP, no induced current, and a lower coefficient of friction.
Collapse
Affiliation(s)
- Kai-Yuan Cheng
- Department of Material Science and Civil Engineering, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Vasanth Gopal
- Department of Physics, School of Advanced Sciences, VIT, Vellore 632014, India.,Centre for Biomaterials, Cellular, and Molecular Theranostics, VIT, Vellore, 632014, India
| | - Michael McNallan
- Department of Material Science and Civil Engineering, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular, and Molecular Theranostics, VIT, Vellore, 632014, India
| | - Mathew T Mathew
- Department of Biomedical Sciences, College of Medicine at Rockford, University of Illinois-School of Medicine at Rockford, Rockford, Illinois 61107-1897, United States
| |
Collapse
|
21
|
Corne P, De March P, Cleymand F, Geringer J. Fretting-corrosion behavior on dental implant connection in human saliva. J Mech Behav Biomed Mater 2019; 94:86-92. [DOI: 10.1016/j.jmbbm.2019.02.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 01/01/2023]
|
22
|
Souza FÁ, Furtado TSM, Dayube URC, Melo WM, Nishioka RS, Poli PP, Maiorana C, de Carvalho PSP. Comparative in vivo study of alloy titanium implants with two different surfaces: biomechanical and SEM analysis. Clin Oral Investig 2019; 23:4383-4397. [PMID: 30972600 DOI: 10.1007/s00784-019-02872-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/19/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The purpose of this study was to evaluate the biomechanical behavior of the interface formed between bone and implants with machined surfaces (MS) and those modified by Al2O3 sandblasting and acid etching (SBAS). MATERIALS AND METHODS Before surgery, topographic characterization was performed by SEM-EDX and by mean roughness measurements. Ten Albinus rabbits received randomly 20 Ti-6Al-4V implants on its right and left tibiae, with one implant placed in each tibia. After implant insertion, the implant stability quotient (ISQ) was measured by means of resonance frequency analysis (RFA). After 3 and 6 weeks, the ISQ was again measured, followed by torque removal measurements. Analysis of variance and Tukey tests were used to analyze the data. The surface of the implants removed was evaluated by SEM-EDX. Immunohistochemical analysis of osteopontin (OPN) and osteocalcin (OC) protein was performed in bone tissue. RESULTS The topographic characterization showed differences between the analyzed surfaces, and the mean roughness values of SBAS group were statistically higher than MS. Overall, higher statistically significant ISQ values were observed in the SBAS group compared to the MS group (p = 0.012). The intra-group comparison of ISQ values in the SBAS group showed statistically significant differences between 0 and 3 weeks (p = 0.032) and 0 and 6 weeks (p = 0.003). The torque removal measurements of group SBAS were statistically higher when compared with the torque removal measurements of group MS in the time intervals of 3 weeks (p = 0.002) and 6 weeks (p < 0.001). SEM-EDX of the implant surfaces removed in SBAS group showed greater bone tissue covering and mean values atomic in percentage of Ca, P, and O statistically superior (p < 0.05) than MS group. Immunohistochemical reactions showed intense OC immunolabeling at 6 weeks postoperative for SBAS group. CONCLUSIONS The topographical modifications made in group SBAS allowed a better mechanical interlocking between the implant and bone tissue.
Collapse
Affiliation(s)
- Francisley Ávila Souza
- Department of Surgery and Integrated Clinic, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho, São Paulo, Brazil.
| | - Thayane Silveira Mata Furtado
- Implant Dentistry Postgraduate Program, São Leopoldo Mandic School of Dentistry and Research Center, Campinas, Brazil
| | - Ulisses Ribeiro Campos Dayube
- Implant Dentistry Postgraduate Program, São Leopoldo Mandic School of Dentistry and Research Center, Campinas, Brazil
| | - Willian Moraes Melo
- Department of Surgery and Integrated Clinic, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho, São Paulo, Brazil
| | - Renato Sussumu Nishioka
- Department of Materials Dental and Prosthesis, São José dos Campos Dental of School, São Paulo State University Júlio de Mesquita Filho, São Paulo, Brazil
| | - Pier Paolo Poli
- Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Cà Granda Maggiore Policlinico Hospital, University of Milan, Milan, Italy
| | - Carlo Maiorana
- Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Cà Granda Maggiore Policlinico Hospital, University of Milan, Milan, Italy
| | - Paulo Sérgio Perri de Carvalho
- Department of Surgery and Integrated Clinic, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho, São Paulo, Brazil.,Implant Dentistry Postgraduate Program, São Leopoldo Mandic School of Dentistry and Research Center, Campinas, Brazil
| |
Collapse
|
23
|
Delgado-Ruiz R, Romanos G. Potential Causes of Titanium Particle and Ion Release in Implant Dentistry: A Systematic Review. Int J Mol Sci 2018; 19:E3585. [PMID: 30428596 PMCID: PMC6274707 DOI: 10.3390/ijms19113585] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 01/03/2023] Open
Abstract
Implant surface characteristics, as well as physical and mechanical properties, are responsible for the positive interaction between the dental implant, the bone and the surrounding soft tissues. Unfortunately, the dental implant surface does not remain unaltered and changes over time during the life of the implant. If changes occur at the implant surface, mucositis and peri-implantitis processes could be initiated; implant osseointegration might be disrupted and bone resorption phenomena (osteolysis) may lead to implant loss. This systematic review compiled the information related to the potential sources of titanium particle and ions in implant dentistry. Research questions were structured in the Population, Intervention, Comparison, Outcome (PICO) framework. PICO questionnaires were developed and an exhaustive search was performed for all the relevant studies published between 1980 and 2018 involving titanium particles and ions related to implant dentistry procedures. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed for the selection and inclusion of the manuscripts in this review. Titanium particle and ions are released during the implant bed preparation, during the implant insertion and during the implant decontamination. In addition, the implant surfaces and restorations are exposed to the saliva, bacteria and chemicals that can potentially dissolve the titanium oxide layer and, therefore, corrosion cycles can be initiated. Mechanical factors, the micro-gap and fluorides can also influence the proportion of metal particles and ions released from implants and restorations.
Collapse
Affiliation(s)
- Rafael Delgado-Ruiz
- Department of Prosthodontics and Digital Technology, School of Dental Medicine, Stony Brook University, New York, NY 11794, USA.
| | - Georgios Romanos
- Department of Periodontics, School of Dental Medicine, Stony Brook University, New York, NY 11794, USA.
- Department of Oral Surgery and Implant Dentistry, Dental School, Johann Wolfgang Goethe University, 60323 Frankfurt, Germany.
| |
Collapse
|
24
|
Mombelli A, Hashim D, Cionca N. What is the impact of titanium particles and biocorrosion on implant survival and complications? A critical review. Clin Oral Implants Res 2018; 29 Suppl 18:37-53. [DOI: 10.1111/clr.13305] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Andrea Mombelli
- Division of Periodontology; University Clinics of Dental Medicine; University of Geneva; Geneva Switzerland
| | - Dena Hashim
- Division of Periodontology; University Clinics of Dental Medicine; University of Geneva; Geneva Switzerland
| | - Norbert Cionca
- Division of Periodontology; University Clinics of Dental Medicine; University of Geneva; Geneva Switzerland
| |
Collapse
|
25
|
Mystkowska J, Niemirowicz-Laskowska K, Łysik D, Tokajuk G, Dąbrowski JR, Bucki R. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction-Corrosion and Friction Aspects. Int J Mol Sci 2018; 19:E743. [PMID: 29509686 PMCID: PMC5877604 DOI: 10.3390/ijms19030743] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/23/2018] [Accepted: 03/03/2018] [Indexed: 12/14/2022] Open
Abstract
Metallic biomaterials in the oral cavity are exposed to many factors such as saliva, bacterial microflora, food, temperature fluctuations, and mechanical forces. Extreme conditions present in the oral cavity affect biomaterial exploitation and significantly reduce its biofunctionality, limiting the time of exploitation stability. We mainly refer to friction, corrosion, and biocorrosion processes. Saliva plays an important role and is responsible for lubrication and biofilm formation as a transporter of nutrients for microorganisms. The presence of metallic elements in the oral cavity may lead to the formation of electro-galvanic cells and, as a result, may induce corrosion. Transitional microorganisms such as sulfate-reducing bacteria may also be present among the metabolic microflora in the oral cavity, which can induce biological corrosion. Microorganisms that form a biofilm locally change the conditions on the surface of biomaterials and contribute to the intensification of the biocorrosion processes. These processes may enhance allergy to metals, inflammation, or cancer development. On the other hand, the presence of saliva and biofilm may significantly reduce friction and wear on enamel as well as on biomaterials. This work summarizes data on the influence of saliva and oral biofilms on the destruction of metallic biomaterials.
Collapse
Affiliation(s)
- Joanna Mystkowska
- Department of Materials Engineering and Production, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland.
| | - Katarzyna Niemirowicz-Laskowska
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland.
| | - Dawid Łysik
- Department of Materials Engineering and Production, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland.
| | - Grażyna Tokajuk
- Department of Integrated Dentistry, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland.
| | - Jan R Dąbrowski
- Department of Materials Engineering and Production, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland.
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland.
| |
Collapse
|
26
|
Revathi A, Borrás AD, Muñoz AI, Richard C, Manivasagam G. Degradation mechanisms and future challenges of titanium and its alloys for dental implant applications in oral environment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1354-1368. [DOI: 10.1016/j.msec.2017.02.159] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 01/28/2023]
|
27
|
Apaza-Bedoya K, Tarce M, Benfatti CAM, Henriques B, Mathew MT, Teughels W, Souza JCM. Synergistic interactions between corrosion and wear at titanium-based dental implant connections: A scoping review. J Periodontal Res 2017; 52:946-954. [DOI: 10.1111/jre.12469] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2017] [Indexed: 01/15/2023]
Affiliation(s)
- K. Apaza-Bedoya
- Center for Research on Dental Implants (CEPID); Post-Graduate Program in Dentistry (PPGO); School of Dentistry (ODT); Federal University of Santa Catarina (UFSC); Florianopolis Brazil
| | - M. Tarce
- Department of Oral Health Sciences; University Hospitals Leuven; Katholieke Universiteit Leuven; Leuven Belgium
| | - C. A. M. Benfatti
- Center for Research on Dental Implants (CEPID); Post-Graduate Program in Dentistry (PPGO); School of Dentistry (ODT); Federal University of Santa Catarina (UFSC); Florianopolis Brazil
| | - B. Henriques
- Center for Research on Dental Implants (CEPID); Post-Graduate Program in Dentistry (PPGO); School of Dentistry (ODT); Federal University of Santa Catarina (UFSC); Florianopolis Brazil
- Center for Microelectromechanical Systems (CMEMS); University of Minho; Guimarães Portugal
| | - M. T. Mathew
- Department of Biomedical Science; University of Illinois (UIC) School of Medicine; Rockford IL USA
- Department of Restorative Dentistry; University of Illinois (UIC) College of Dentistry; Chicago IL USA
| | - W. Teughels
- Department of Oral Health Sciences; University Hospitals Leuven; Katholieke Universiteit Leuven; Leuven Belgium
| | - J. C. M. Souza
- Center for Research on Dental Implants (CEPID); Post-Graduate Program in Dentistry (PPGO); School of Dentistry (ODT); Federal University of Santa Catarina (UFSC); Florianopolis Brazil
- Center for Microelectromechanical Systems (CMEMS); University of Minho; Guimarães Portugal
| |
Collapse
|
28
|
|
29
|
Corrosion, Tribology, and Tribocorrosion Research in Biomedical Implants: Progressive Trend in the Published Literature. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40735-016-0060-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Ogawa ES, Matos AO, Beline T, Marques IS, Sukotjo C, Mathew MT, Rangel EC, Cruz NC, Mesquita MF, Consani RX, Barão VA. Surface-treated commercially pure titanium for biomedical applications: Electrochemical, structural, mechanical and chemical characterizations. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:251-61. [DOI: 10.1016/j.msec.2016.04.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/17/2016] [Accepted: 04/11/2016] [Indexed: 01/04/2023]
|
31
|
Fage SW, Muris J, Jakobsen SS, Thyssen JP. Titanium: a review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity. Contact Dermatitis 2016; 74:323-45. [PMID: 27027398 DOI: 10.1111/cod.12565] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/07/2016] [Accepted: 02/08/2016] [Indexed: 11/29/2022]
Abstract
Exposure to titanium (Ti) from implants and from personal care products as nanoparticles (NPs) is common. This article reviews exposure sources, ion release, skin penetration, allergenic effects, and diagnostic possibilities. We conclude that human exposure to Ti mainly derives from dental and medical implants, personal care products, and foods. Despite being considered to be highly biocompatible relative to other metals, Ti is released in the presence of biological fluids and tissue, especially under certain circumstances, which seem to be more likely with regard to dental implants. Although most of the studies reviewed have important limitations, Ti seems not to penetrate a competent skin barrier, either as pure Ti, alloy, or as Ti oxide NPs. However, there are some indications of Ti penetration through the oral mucosa. We conclude that patch testing with the available Ti preparations for detection of type IV hypersensitivity is currently inadequate for Ti. Although several other methods for contact allergy detection have been suggested, including lymphocyte stimulation tests, none has yet been generally accepted, and the diagnosis of Ti allergy is therefore still based primarily on clinical evaluation. Reports on clinical allergy and adverse events have rarely been published. Whether this is because of unawareness of possible adverse reactions to this specific metal, difficulties in detection methods, or the metal actually being relatively safe to use, is still unresolved.
Collapse
Affiliation(s)
- Simon W Fage
- Department of Dermato-Venereology, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Joris Muris
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Stig S Jakobsen
- Department of Orthopaedic Surgery, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Jacob P Thyssen
- National Allergy Research Centre, Department of Dermato-Allergology, Copenhagen University Hospital Herlev-Gentofte, 2900 Hellerup, Denmark
| |
Collapse
|
32
|
Production of a biofunctional titanium surface using plasma electrolytic oxidation and glow-discharge plasma for biomedical applications. Biointerphases 2016; 11:011013. [PMID: 26984234 DOI: 10.1116/1.4944061] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, the authors tested the hypotheses that plasma electrolytic oxidation (PEO) and glow-discharge plasma (GDP) would improve the electrochemical, physical, chemical, and mechanical properties of commercially pure titanium (cpTi), and that blood protein adsorption on plasma-treated surfaces would increase. Machined and sandblasted surfaces were used as controls. Standard electrochemical tests were conducted in artificial saliva (pHs of 3.0, 6.5, and 9.0) and simulated body fluid. Surfaces were characterized by scanning electron microscopy, energy-dispersive spectroscopy, x-ray photoelectron spectroscopy, atomic force microscopy, x-ray diffraction, profilometry, Vickers microhardness, and surface energy. For biological assay, the adsorption of blood serum proteins (i.e., albumin, fibrinogen, and fibronectin) was tested. Higher values of polarization resistance and lower values of capacitance were noted for the PEO and GDP groups (p < 0.05). Acidic artificial saliva reduced the corrosion resistance of cpTi (p < 0.05). PEO and GDP treatments improved the surface properties by enrichment of the surface chemistry with bioactive elements and increased surface energy. PEO produced a porous oxide layer (5-μm thickness), while GDP created a very thin oxide layer (0.76-μm thickness). For the PEO group, the authors noted rutile and anatase crystalline structures that may be responsible for the corrosion barrier improvement and increased microhardness values. Plasma treatments were able to enhance the surface properties and electrochemical stability of titanium, while increasing protein adsorption levels.
Collapse
|
33
|
Yu W, Qian C, Weng W, Zhang S. Effects of lipopolysaccharides on the corrosion behavior of Ni-Cr and Co-Cr alloys. J Prosthet Dent 2016; 116:286-91. [PMID: 26973298 DOI: 10.1016/j.prosdent.2016.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 01/02/2016] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
STATEMENT OF PROBLEM Lipopolysaccharides (LPS) are constituents of gingival crevicular fluid and may affect the base metal alloys used in metal ceramic crowns. The role of LPS in base metal alloys is currently unknown. PURPOSE The purpose of this in vitro study was to evaluate the effects of gram-negative bacterial LPS on the electrochemical behavior of Ni-Cr and Co-Cr alloys. MATERIAL AND METHODS Alloy specimens were divided into 4 groups according to Escherichia coli LPS concentration (0, 0.15, 15, and 150 μg/mL) in acidic saliva (pH 5). Open circuit potential (OCP) and potentiodynamic polarization behavior were examined using a computer-controlled potentiostat. Metal ions released from the 2 alloys were measured by immersion in LPS-free solution and 150 μg/mL LPS solution and analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES). Data were evaluated using 1-way ANOVA (α=.05). RESULTS Compared with control groups, medium LPS concentration (15 μg/mL) accelerated Ni-Cr alloy corrosion (P<.05), whereas high LPS concentration (150 μg/mL) accelerated Co-Cr alloy corrosion (P<.05), as determined by OCP, corrosion current density, and polarization resistance parameters. After immersion in high LPS concentrations (150 μg/mL), a slight increase in Ni ion release (P >.05) was observed for the Ni-Cr alloy, while a more significant Co ion release (P<.05) was observed for the Co-Cr alloy. CONCLUSIONS LPS negatively affected the electrochemical behavior of both the Ni-Cr and Co-Cr alloys.
Collapse
Affiliation(s)
- Weiqiang Yu
- Physician-in-charge, Department of Prosthodontics, School of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chao Qian
- Doctoral candidate, Department of Prosthodontics, School of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Weimin Weng
- Associate Professor, Department of Prosthodontics, School of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Songmei Zhang
- Physician-in-charge, Department of Prosthodontics, School of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
34
|
|
35
|
Beline T, Garcia CS, Ogawa ES, Marques ISV, Matos AO, Sukotjo C, Mathew MT, Mesquita MF, Consani RX, Barão VAR. Surface treatment influences electrochemical stability of cpTi exposed to mouthwashes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 59:1079-1088. [PMID: 26652467 DOI: 10.1016/j.msec.2015.11.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 08/10/2015] [Accepted: 11/16/2015] [Indexed: 11/26/2022]
Abstract
The role of surface treatment on the electrochemical behavior of commercially pure titanium (cpTi) exposed to mouthwashes was tested. Seventy-five disks were divided into 15 groups according to surface treatment (machined, sand blasted with Al2O3, and acid etched) and electrolyte solution (artificial saliva — control, 0.12% chlorhexidine digluconate, 0.05% cetylpyridinium chloride, 0.2% sodium fluoride, and 1.5% hydrogen peroxide) (n = 5). Open-circuit-potential and electrochemical impedance spectroscopy were conducted at baseline and after 7 and 14 days of immersion in each solution. Potentiodynamic test and total weight loss of disks were performed after 14 days of immersion. Scanning electron microscopy, energy dispersive spectroscopy, white light interferometry and profilometry were conducted for surface characterization before and after the electrochemical tests. Sandblasting promoted the lowest polarization resistance (Rp) (P b .0001) and the highest capacitance (CPE) (P b .006), corrosion current density (Icorr) and corrosion rate (P b .0001). In contrast, acid etching increased Rp and reduced CPE, independent to the mouthwash; while hydrogen peroxide reduced Rp (P b .008) and increased Icorr and corrosion rate (P b .0001). The highest CPE values were found for hydrogen peroxide and 0.2% sodium fluoride. Immersion for longer period improved the electrochemical stability of cpTi (P b .05). In conclusion, acid etching enhanced the electrochemical stability of cpTi. Hydrogen peroxide and sodium fluoride reduced the resistance to corrosion of cpTi, independent to the surface treatment. Chlorhexidine gluconate and cetylpyridinium chloride did not alter the corrosive behavior of cpTi.
Collapse
Affiliation(s)
- Thamara Beline
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; IBTN/Br - Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch, Brazil
| | - Camila S Garcia
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Erika S Ogawa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; IBTN/Br - Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch, Brazil
| | - Isabella S V Marques
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Adaias O Matos
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; IBTN/Br - Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch, Brazil
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, 801 S Paulina, Chicago, IL 60612, USA; IBTN - Institute of Biomaterials, Tribocorrosion and Nanomedicine, USA
| | - Mathew T Mathew
- IBTN - Institute of Biomaterials, Tribocorrosion and Nanomedicine, USA; Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison, Chicago, IL 60612, USA
| | - Marcelo F Mesquita
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Rafael X Consani
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; IBTN/Br - Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch, Brazil.
| |
Collapse
|
36
|
The role of nicotine, cotinine and caffeine on the electrochemical behavior and bacterial colonization to cp-Ti. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 56:114-24. [DOI: 10.1016/j.msec.2015.06.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/11/2015] [Accepted: 06/12/2015] [Indexed: 11/20/2022]
|
37
|
Royhman D, Patel M, Runa MJ, Jacobs JJ, Hallab NJ, Wimmer MA, Mathew MT. Fretting-corrosion in Hip Implant Modular Junctions: New Experimental Set-up and Initial Outcome. TRIBOLOGY INTERNATIONAL 2015; 91:235-245. [PMID: 26405372 PMCID: PMC4576847 DOI: 10.1016/j.triboint.2015.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Modern hip prostheses feature a modular implant design with at least one tapered junction. This design can lead to several complications due to the introduction of additional interfaces, which are subjected to various loading conditions and micromotion. The main objective of current study is to develop a fretting corrosion apparatus, which is able characterize the mechanical and electrochemical behaviour of various existing metal alloy couples during fretting motion. This study describes the design and the main considerations during the development of a novel fretting corrosion apparatus, as well as determination of the machine compliance and the initial testing results. Machine compliance considerations and frictional interactions of the couples are discussed in detail. For the preliminary tests, metal alloy pins, made of Ti6Al4V and wrought high-carbon CoCrMo were mechanically polished to a surface roughness of less than 20nm. 2 pins (Diameter = 11mm) of either Ti6Al4V or CoCrMo were loaded onto a Ti6Al4V alloy rod at a normal force of 200N. The interface types included: Ti6Al4V-Ti6Al4V-Ti6Al4V, Ti6Al4V-Ti6Al4V-CoCrMo, and CoCrMo-Ti6Al4V-CoCrMo. The Ti6Al4V rod articulated against the metal alloy pins in a sinusoidal fretting motion with a displacement amplitude of ±50μm. Bovine calf serum (30g/L of protein content) was selected as a lubricant and tested at 2 different pH levels (pH 3.0 and 7.6). In all cases, current and friction energy were monitored during the fretting process. The results indicated distinct, material-specific current evolutions and friction energies. No significant differences were observed in electrochemical or mechanical behaviour in response to pH change. In general, Ti6Al4V-Ti6Al4V-Ti6Al4V couples displayed the earliest passivation and superior electrochemical behaviour compared to Ti6Al4V-Ti6Al4V-CoCrMo and CoCrMo-Ti6Al4V-CoCrMo under fretting conditions. In addition, fluctuations in current were observed in specific regions at all instances where Ti6Al4V was coupled with Ti6Al4V. These fluctuations were not observed in instances where Ti6Al4V was coupled with CoCrMo. These findings suggest transitions in the degradation mechanisms at the modular junction as a function of material couples/contacts. The findings may assist in improving the current hip modular junctions.
Collapse
Affiliation(s)
- D Royhman
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - M Patel
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA ; Department of Biotechnology, University of Illinois at Chicago Medical College, Rockford, IL, USA
| | - M J Runa
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA ; CMEMS - Center MicroElectroMechanical Systems, University of Minho, Azurém, Guimarães, Portugal
| | - J J Jacobs
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - N J Hallab
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - M A Wimmer
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - M T Mathew
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
38
|
Lipopolysaccharide inhibits or accelerates biomedical titanium corrosion depending on environmental acidity. Int J Oral Sci 2015; 7:179-86. [PMID: 25634122 PMCID: PMC4582556 DOI: 10.1038/ijos.2014.76] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2014] [Indexed: 11/08/2022] Open
Abstract
Titanium and its alloys are routinely used as biomedical implants and are usually considered to be corrosion resistant under physiological conditions. However, during inflammation, chemical modifications of the peri-implant environment including acidification occur. In addition certain biomolecules including lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls and driver of inflammation have been shown to interact strongly with Ti and modify its corrosion resistance. Gram-negative microbes are abundant in biofilms which form on dental implants. The objective was to investigate the influence of LPS on the corrosion properties of relevant biomedical Ti substrates as a function of environmental acidity. Inductively coupled plasma mass spectrometry was used to quantify Ti dissolution following immersion testing in physiological saline for three common biomedical grades of Ti (ASTM Grade 2, Grade 4 and Grade 5). Complementary electrochemical tests including anodic and cathodic polarisation experiments and potentiostatic measurements were also conducted. All three Ti alloys were observed to behave similarly and ion release was sensitive to pH of the immersion solution. However, LPS significantly inhibited Ti release under the most acidic conditions (pH 2), which may develop in localized corrosion sites, but promoted dissolution at pH 4–7, which would be more commonly encountered physiologically. The observed pattern of sensitivity to environmental acidity of the effect of LPS on Ti corrosion has not previously been reported. LPS is found extensively on the surfaces of skin and mucosal penetrating Ti implants and the findings are therefore relevant when considering the chemical stability of Ti implant surfaces in vivo.
Collapse
|
39
|
Guo F, Zhou Z, Hua M, Dong G. Effect of aqueous solution and load on the formation of DLC transfer layer against Co-Cr-Mo for joint prosthesis. J Mech Behav Biomed Mater 2015; 49:12-22. [PMID: 25967039 DOI: 10.1016/j.jmbbm.2015.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/10/2015] [Accepted: 04/12/2015] [Indexed: 11/24/2022]
Abstract
Diamond-like carbon (DLC) coating exhibits excellent mechanical properties such as high hardness, low friction and wear, which offer a promising solution for the metal-on-metal hip joint implants. In the study, the hydrogen-free DLC coating with the element Cr as the interlay addition was deposited on the surface of the Co-Cr-Mo alloy by a unbalanced magnetron sputtering method. The coating thickness was controlled as 2 µm. Nano-indentation test indicated the hardness was about 13 GPa. DLC coated Co-Cr-Mo alloy disc against un-coated Co-Cr-Mo alloy pin (spherical end SR9.5) comprised the friction pairs in the pin-on-disc tribotest under bovine serum albumin solution (BSA) and physiological saline(PS).The tribological behavior under different BSA concetrations(2-20 mg/ml), and applied load (2-15N) was investigated.DLC transfer layer did not form under BSA solution, even though different BSA concetration and applied load changed. The coefficient of friction(COF) under 6 mg/ml BSA at 10 N was the lowest as 0.10. A higher COF of 0.13 was obtained under 20 mg/ml BSA. The boundary absorption layer of protein is the main factor for the counterparts. However, the continous DLC transfer layer was observed under PS solution, which make a lower COF of 0.08.
Collapse
Affiliation(s)
- Feifei Guo
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhifeng Zhou
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Meng Hua
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Guangneng Dong
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
40
|
Souza JCM, Henriques M, Teughels W, Ponthiaux P, Celis JP, Rocha LA. Wear and Corrosion Interactions on Titanium in Oral Environment: Literature Review. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40735-015-0013-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Corrosion kinetics and topography analysis of Ti–6Al–4V alloy subjected to different mouthwash solutions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:1-10. [DOI: 10.1016/j.msec.2014.06.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/30/2014] [Accepted: 06/30/2014] [Indexed: 11/18/2022]
|
42
|
Wang Z, Huang W, Ma Y. Micro-scale abrasive wear behavior of medical implant material Ti–25Nb–3Mo–3Zr–2Sn alloy on various friction pairs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:211-8. [DOI: 10.1016/j.msec.2014.05.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 04/07/2014] [Accepted: 05/18/2014] [Indexed: 10/25/2022]
|
43
|
Tribocorrosion and oral and maxillofacial surgical devices. Br J Oral Maxillofac Surg 2014; 52:396-400. [DOI: 10.1016/j.bjoms.2014.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/11/2014] [Indexed: 02/08/2023]
|
44
|
Faverani LP, Assunção WG, de Carvalho PSP, Yuan JCC, Sukotjo C, Mathew MT, Barao VA. Effects of dextrose and lipopolysaccharide on the corrosion behavior of a Ti-6Al-4V alloy with a smooth surface or treated with double-acid-etching. PLoS One 2014; 9:e93377. [PMID: 24671257 PMCID: PMC3966875 DOI: 10.1371/journal.pone.0093377] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/03/2014] [Indexed: 12/28/2022] Open
Abstract
Diabetes and infections are associated with a high risk of implant failure. However, the effects of such conditions on the electrochemical stability of titanium materials remain unclear. This study evaluated the corrosion behavior of a Ti-6Al-4V alloy, with a smooth surface or conditioned by double-acid-etching, in simulated body fluid with different concentrations of dextrose and lipopolysaccharide. For the electrochemical assay, the open-circuit-potential, electrochemical impedance spectroscopy, and potentiodynamic test were used. The disc surfaces were characterized by scanning electron microscopy and atomic force microscopy. Their surface roughness and Vickers microhardness were also tested. The quantitative data were analyzed by Pearson's correlation and independent t-tests (α = 0.05). In the corrosion parameters, there was a strong lipopolysaccharide correlation with the Ipass (passivation current density), Cdl (double-layer capacitance), and Rp (polarization resistance) values (p<0.05) for the Ti-6Al-4V alloy with surface treatment by double-acid-etching. The combination of dextrose and lipopolysaccharide was correlated with the Icorr (corrosion current density) and Ipass (p<0.05). The acid-treated groups showed a significant increase in Cdl values and reduced Rp values (p<0.05, t-test). According to the topography, there was an increase in surface roughness (R2 = 0.726, p<0.0001 for the smooth surface; R2 = 0.405, p = 0.036 for the double-acid-etching-treated surface). The microhardness of the smooth Ti-6Al-4V alloy decreased (p<0.05) and that of the treated Ti-6Al-4V alloy increased (p<0.0001). Atomic force microscopy showed changes in the microstructure of the Ti-6Al-4V alloy by increasing the surface thickness mainly in the group associated with dextrose and lipopolysaccharide. The combination of dextrose and lipopolysaccharide affected the corrosion behavior of the Ti-6Al-4V alloy surface treated with double-acid-etching. However, no dose-response corrosion behavior could be observed. These results suggest a greater susceptibility to corrosion of titanium implants in diabetic patients with associated infections.
Collapse
Affiliation(s)
- Leonardo P. Faverani
- Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Universidade Estadual Paulista (UNESP), Aracatuba, São Paulo, Brazil
- Department of Surgery and Integrated Clinic, Aracatuba Dental School, Universidade Estadual Paulista (UNESP), Aracatuba, São Paulo, Brazil
| | - Wirley G. Assunção
- Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Universidade Estadual Paulista (UNESP), Aracatuba, São Paulo, Brazil
| | - Paulo Sérgio P. de Carvalho
- Department of Surgery and Integrated Clinic, Aracatuba Dental School, Universidade Estadual Paulista (UNESP), Aracatuba, São Paulo, Brazil
| | - Judy Chia-Chun Yuan
- Department of Restorative Dentistry, University of Illinois at Chicago–College of Dentistry, Chicago, Illinois, United States of America
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois at Chicago–College of Dentistry, Chicago, Illinois, United States of America
| | - Mathew T. Mathew
- Department of Restorative Dentistry, University of Illinois at Chicago–College of Dentistry, Chicago, Illinois, United States of America
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Valentim A. Barao
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
45
|
Barão VAR, Yoon CJ, Mathew MT, Yuan JCC, Wu CD, Sukotjo C. Attachment of Porphyromonas gingivalis to corroded commercially pure titanium and titanium-aluminum-vanadium alloy. J Periodontol 2014; 85:1275-82. [PMID: 24444400 DOI: 10.1902/jop.2014.130595] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Titanium dental material can become corroded because of electrochemical interaction in the oral environment. The corrosion process may result in surface modification. It was hypothesized that a titanium surface modified by corrosion may enhance the attachment of periodontal pathogens. This study evaluates the effects of corroded titanium surfaces on the attachment of Porphyromonas gingivalis. METHODS Commercially pure titanium (cp-Ti) and titanium-aluminum-vanadium alloy (Ti-6Al-4V) disks were used. Disks were anodically polarized in a standard three-electrode setting in a simulated oral environment with artificial saliva at pH levels of 3.0, 6.5, or 9.0. Non-corroded disks were used as controls. Surface roughness was measured before and after corrosion. Disks were inoculated with P. gingivalis and incubated anaerobically at 37°C. After 6 hours, the disks with attached P. gingivalis were stained with crystal violet, and attachment was expressed based on dye absorption at optical density of 550 nm. All assays were performed independently three times in triplicate. Data were analyzed by two-way analysis of variance, the Tukey honestly significant difference test, t test, and Pearson's correlation test (α = 0.05). RESULTS Both cp-Ti and Ti-6Al-4V alloy-corroded disks promoted significantly more bacterial attachment (11.02% and 41.78%, respectively; P <0.0001) than did the non-corroded controls. Significantly more (11.8%) P. gingivalis attached to the cp-Ti disks than to the Ti-6Al-4V alloy disks (P <0.05). No significant difference in P. gingivalis attachment was noted among the corroded groups for both cp-Ti and Ti-6Al-4V alloy (P >0.05). There was no significant correlation between surface roughness and P. gingivalis attachment. CONCLUSION A higher degree of corrosion on the titanium surface may promote increased bacterial attachment by oral pathogens.
Collapse
Affiliation(s)
- Valentim A R Barão
- Department of Prosthodontics and Periodontology, University of Campinas, Piracicaba Dental School, Piracicaba, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
46
|
Barão VAR, Mathew MT, Yuan JCC, Knoernschild KL, Assunção WG, Wimmer MA, Sukotjo C. Influence of corrosion on lipopolysaccharide affinity for two different titanium materials. J Prosthet Dent 2013; 110:462-70. [DOI: 10.1016/j.prosdent.2013.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/12/2013] [Accepted: 04/27/2013] [Indexed: 12/31/2022]
|
47
|
Mehrali M, Shirazi FS, Mehrali M, Metselaar HSC, Kadri NAB, Osman NAA. Dental implants from functionally graded materials. J Biomed Mater Res A 2013; 101:3046-57. [PMID: 23754641 DOI: 10.1002/jbm.a.34588] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/04/2013] [Indexed: 11/05/2022]
Abstract
Functionally graded material (FGM) is a heterogeneous composite material including a number of constituents that exhibit a compositional gradient from one surface of the material to the other subsequently, resulting in a material with continuously varying properties in the thickness direction. FGMs are gaining attention for biomedical applications, especially for implants, owing to their reported superior composition. Dental implants can be functionally graded to create an optimized mechanical behavior and achieve the intended biocompatibility and osseointegration improvement. This review presents a comprehensive summary of biomaterials and manufacturing techniques researchers employ throughout the world. Generally, FGM and FGM porous biomaterials are more difficult to fabricate than uniform or homogenous biomaterials. Therefore, our discussion is intended to give the readers about successful and obstacles fabrication of FGM and porous FGM in dental implants that will bring state-of-the-art technology to the bedside and develop quality of life and present standards of care.
Collapse
Affiliation(s)
- Mehdi Mehrali
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | | | | | | | | | | |
Collapse
|
48
|
Faverani LP, Barão VAR, Ramalho-Ferreira G, Ferreira MB, Garcia-Júnior IR, Assunção WG. Effect of bleaching agents and soft drink on titanium surface topography. J Biomed Mater Res B Appl Biomater 2013; 102:22-30. [DOI: 10.1002/jbm.b.32949] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/17/2013] [Accepted: 03/27/2013] [Indexed: 12/23/2022]
Affiliation(s)
- Leonardo P. Faverani
- Department of Surgery and Integrated Clinic; Aracatuba Dental School; Univ Estadual Paulista (UNESP); Aracatuba SP Brazil
| | - Valentim A. R. Barão
- Department of Prosthodontics and Periodontics; Piracicaba Dental School, University of Campinas (UNICAMP); Piracicaba SP Brazil
| | - Gabriel Ramalho-Ferreira
- Department of Surgery and Integrated Clinic; Aracatuba Dental School; Univ Estadual Paulista (UNESP); Aracatuba SP Brazil
| | - Mayara B. Ferreira
- Department of Dental Materials and Prosthodontics; Aracatuba Dental School, Univ Estadual Paulista (UNESP); Aracatuba SP Brazil
| | - Idelmo R. Garcia-Júnior
- Department of Surgery and Integrated Clinic; Aracatuba Dental School; Univ Estadual Paulista (UNESP); Aracatuba SP Brazil
| | - Wirley G. Assunção
- Department of Dental Materials and Prosthodontics; Aracatuba Dental School, Univ Estadual Paulista (UNESP); Aracatuba SP Brazil
| |
Collapse
|
49
|
Mathew MT, Jacobs JJ, Wimmer MA. Wear-corrosion synergism in a CoCrMo hip bearing alloy is influenced by proteins. Clin Orthop Relat Res 2012; 470:3109-17. [PMID: 22956237 PMCID: PMC3462838 DOI: 10.1007/s11999-012-2563-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Although numerous in vitro studies report on the tribological performance of and, separately, on the corrosion properties of cobalt-based alloys in metal-on-metal (MoM) bearings, the few studies that take into account the synergistic interaction of wear and corrosion (tribocorrosion) have used canonical tribo-test methods. We therefore developed synergistic study using a test method that more closely simulates hip bearing conditions. QUESTIONS/PURPOSES (1) Is the total material loss during tribocorrosion larger than the sum of its components generated during isolated mechanical wear and isolated corrosion? (2) How is the tribocorrosive process affected by the presence of protein? METHODS High carbon CoCrMo alloy discs (18) were subjected to corrosion and tribocorrosion tests under potentiostatic conditions in an apparatus simulating hip contact conditions. The input variables were the applied potential and the protein content of the electrolyte (NaCl solution versus bovine serum, 30 g/L protein). The output variables were mass loss resulting from wear in the absence of corrosion, mass loss resulting from corrosion in the absence of wear, and the total mass loss under tribocorrosion, from which the additional mass loss resulting from the combined action of wear and corrosion, or synergism, was determined in the presence and absence of protein. RESULTS The degradation mechanisms were sensitive to the interaction of wear and corrosion. The synergistic component (64 μg) in the presence of protein amounted to 34% of total material loss (187 μg). The presence of protein led to a 23% decrease in the total mass loss and to a considerable reduction in the mean current (4 μA to 0.05 μA) under tribocorrosion. CONCLUSIONS Synergistic effects during tribocorrosion may account for a considerable portion of MoM degradation and are affected by proteins. CLINICAL RELEVANCE The in vivo performance of some large-diameter MoM joints is unsatisfactory. The synergistic component resulting from tribocorrosion may have been missed in conventional preclinical wear tests.
Collapse
Affiliation(s)
- Mathew T. Mathew
- Section of Tribology, Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 USA
| | - Joshua J. Jacobs
- Section of Tribology, Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 USA
| | - Markus A. Wimmer
- Section of Tribology, Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 USA
| |
Collapse
|