1
|
Montoya C, Babariya M, Ogwo C, Querido W, Patel JS, Melo MA, Orrego S. Synergistic effects of bacteria, enzymes, and cyclic mechanical stresses on the bond strength of composite restorations. BIOMATERIALS ADVANCES 2025; 166:214049. [PMID: 39368439 PMCID: PMC11560555 DOI: 10.1016/j.bioadv.2024.214049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/22/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024]
Abstract
Predicting how tooth and dental material bonds perform in the mouth requires a deep understanding of degrading factors. Yet, this understanding is incomplete, leading to significant uncertainties in designing and evaluating new dental adhesives. The durability of dental bonding interfaces in the oral microenvironment is compromised by bacterial acids, salivary enzymes, and masticatory fatigue. These factors degrade the bond between dental resins and tooth surfaces, making the strength of these bonds difficult to predict. Traditionally studied separately, a combined kinetic analysis of these interactions could enhance our understanding and improvement of dental adhesive durability. To address this issue, we developed and validated an original model to evaluate the bond strength of dental restorations using realistic environments that consider the different mechanical, chemical, and biological degradative challenges working simultaneously: bacteria, salivary esterases, and cyclic loading. We herein describe a comprehensive investigation on dissociating the factors that degrade the bond strength of dental restorations. Our results showed that cariogenic bacteria are the number one factor contributing to the degradation of the bonded interface, followed by cyclic loading and salivary esterases. When tested in combinatorial mode, negative and positive synergies towards the degradation of the interface were observed. Masticatory loads (i.e., cycling loading) enhanced the lactic acid bacterial production and the area occupied by the biofilm at the bonding interface, resulting in more damage at the interface and a reduction of 73 % in bond strength compared to no-degraded samples. Salivary enzymes also produced bond degradation caused by changes in the chemical composition of the resin/adhesive. However, the degradation rates are slowed compared to the bacteria and cyclic loading. These results demonstrate that our synergetic model could guide the design of new dental adhesives for biological applications without laborious trial-and-error experimentation.
Collapse
Affiliation(s)
- Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA 19140, USA
| | - Mansi Babariya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA 19140, USA
| | - Chukwuebuka Ogwo
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA 19140, USA
| | - William Querido
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Jay S Patel
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA 19140, USA
| | - Mary Anne Melo
- Division of Cariology and Operative Dentistry, Department of Comprehensive Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA 19140, USA; Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
2
|
Vilde T, Stewart CA, Finer Y. Simulating the Intraoral Aging of Dental Bonding Agents: A Narrative Review. Dent J (Basel) 2022; 10:dj10010013. [PMID: 35049611 PMCID: PMC8775087 DOI: 10.3390/dj10010013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/27/2021] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Despite their popularity, resin composite restorations fail earlier and at higher rates than comparable amalgam restorations. One of the reasons for these rates of failure are the properties of current dental bonding agents. Modern bonding agents are vulnerable to gradual chemical and mechanical degradation from a number of avenues such as daily use in chewing, catalytic hydrolysis facilitated by salivary or bacterial enzymes, and thermal fluctuations. These stressors have been found to work synergistically, all contributing to the deterioration and eventual failure of the hybrid layer. Due to the expense and difficulty in conducting in vivo experiments, in vitro protocols meant to accurately simulate the oral environment’s stressors are important in the development of bonding agents and materials that are more resistant to these processes of degradation. This narrative review serves to summarize the currently employed methods of aging dental materials and critically appraise them in the context of our knowledge of the oral environment’s parameters.
Collapse
Affiliation(s)
- Tomas Vilde
- Faculty of Dentistry, University of Toronto, Toronto, ON M5S 1A1, Canada; (T.V.); (C.A.S.)
| | - Cameron A. Stewart
- Faculty of Dentistry, University of Toronto, Toronto, ON M5S 1A1, Canada; (T.V.); (C.A.S.)
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Yoav Finer
- Faculty of Dentistry, University of Toronto, Toronto, ON M5S 1A1, Canada; (T.V.); (C.A.S.)
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada
- Correspondence:
| |
Collapse
|
3
|
Vidal O, de Paris Matos T, Núñez A, Méndez-Bauer L, Sutil E, Ñaupari-Villasante R, Souta MC, Pitlovanciv M, Gutiérrez MF, Loguercio AD. A universal adhesive containing copper nanoparticles improves the stability of hybrid layer in a cariogenic oral environment: An in situ study. J Mech Behav Biomed Mater 2021; 126:105017. [PMID: 34894497 DOI: 10.1016/j.jmbbm.2021.105017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 01/14/2023]
Abstract
PURPOSE To evaluate how incorporating copper nanoparticles (CuNp) into a universal adhesive affects the antimicrobial activity (AMA), bond strength (μTBS), nanoleakage (NL), elastic modulus (EM) and nanohardness (NH) of resin-dentin interfaces, at 24 h (24 h) and after in situ cariogenic challenge (CC). METHODS CuNp (0% [control] and 0.1 wt%) was added to an adhesive. After enamel removal, the adhesives were applied to dentine surfaces. Each restored tooth was sectioned longitudinally to obtain two hemi-teeth; one of them was evaluated after 24 h, and the other was included in one of the intra-oral palatal devices placed in the mouths of 10 volunteers for 14 days in CC. After that, each hemi-tooth was removed, and any oral biofilm that formed was collected. The AMA was evaluated against Streptococcus mutans. For the 24 h and CC groups, each hemi-tooth was sectioned in the "x" direction to obtain one slice for each EM/NH evaluation. The remains of each hemi-tooth were sectioned in the "x" and "y" directions to obtain resin-dentin beams for μTBS and NL evaluation (24 h and CC). ANOVA and Tukey's test were applied (α = 0.05). RESULTS The presence of CuNp significantly improved AMA as well as all of the evaluated properties (24 h; p < 0.05). Although the adhesive properties (μTBS/NL) for all groups decreased after CC (p < 0.05), the adhesive containing CuNp showed higher μTBS and lower NL as compared to the copper-free adhesive (p < 0.05). The incorporation of CuNp maintained NH/EM values after CC (p < 0.05). CONCLUSIONS Adding 0.1% CuNp to an adhesive may provide antimicrobial activity and increase its bonding and mechanical properties, even under a cariogenic challenge. SIGNIFICANCE This is the first in situ study proving that incorporating CuNp into an adhesive is an achievable alternative to provide antimicrobial properties and improve the integrity of the hybrid layer under in situ cariogenic challenge.
Collapse
Affiliation(s)
- Omar Vidal
- Department of Restorative Dentistry, School of Dentistry, State University of Ponta Grossa, Rua Carlos Cavalcanti, 4748, Zip Code 84030-900, Campus Uvaranas, Ponta Grossa, Paraná, Brazil.
| | - Thalita de Paris Matos
- Department of Dentistry, Tuiuti University of Parana, Rua Sydnei Antonio Rangel Santos, 238, Zip Code 82010-330, Curitiba, Paraná, Brazil.
| | - Alejandra Núñez
- Department of Restorative Dentistry, School of Dentistry, State University of Ponta Grossa, Rua Carlos Cavalcanti, 4748, Zip Code 84030-900, Campus Uvaranas, Ponta Grossa, Paraná, Brazil; Departamento de Odontologia Restauradora y Materiales Dentales, Escuela de Odontologia Universidad San Francisco de Quito (USFQ), Av. Pampite y Diego de Robles, Zip Code 170901, Quito, Ecuador.
| | - Luján Méndez-Bauer
- Department of Restorative Dentistry, School of Dentistry, State University of Ponta Grossa, Rua Carlos Cavalcanti, 4748, Zip Code 84030-900, Campus Uvaranas, Ponta Grossa, Paraná, Brazil; Department of Research, Faculty of Dentistry. Universidad Francisco Marroquín, 6th Street 7-11 Zone 10, Zip Code 01010, Guatemala City, Guatemala.
| | - Elisama Sutil
- Department of Restorative Dentistry, School of Dentistry, State University of Ponta Grossa, Rua Carlos Cavalcanti, 4748, Zip Code 84030-900, Campus Uvaranas, Ponta Grossa, Paraná, Brazil
| | - Romina Ñaupari-Villasante
- Department of Restorative Dentistry, School of Dentistry, State University of Ponta Grossa, Rua Carlos Cavalcanti, 4748, Zip Code 84030-900, Campus Uvaranas, Ponta Grossa, Paraná, Brazil.
| | - Melissa Caroline Souta
- Department of Restorative Dentistry, School of Dentistry, State University of Ponta Grossa, Rua Carlos Cavalcanti, 4748, Zip Code 84030-900, Campus Uvaranas, Ponta Grossa, Paraná, Brazil.
| | - Murilo Pitlovanciv
- Department of Restorative Dentistry, School of Dentistry, State University of Ponta Grossa, Rua Carlos Cavalcanti, 4748, Zip Code 84030-900, Campus Uvaranas, Ponta Grossa, Paraná, Brazil.
| | - Mario F Gutiérrez
- Universidad de los Andes, Chile, Facultad de Odontología, Av. Monseñor Álvaro del Portillo 12455, Zip code 7550000, Las Condes, Santiago, Chile; University of Chile, Physiology Laboratory, Institute for Research in Dental Sciences, Faculty of Dentistry, Av. Olivos 943, Santiago, Zip code 8380544, Chile.
| | - Alessandro D Loguercio
- Department of Restorative Dentistry, School of Dentistry, State University of Ponta Grossa, Rua Carlos Cavalcanti, 4748, Zip Code 84030-900, Campus Uvaranas, Ponta Grossa, Paraná, Brazil.
| |
Collapse
|
4
|
Montoya C, Jain A, Londoño JJ, Correa S, Lelkes PI, Melo MA, Orrego S. Multifunctional Dental Composite with Piezoelectric Nanofillers for Combined Antibacterial and Mineralization Effects. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43868-43879. [PMID: 34494813 DOI: 10.1021/acsami.1c06331] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
After nearly seven decades of development, dental composite restorations continue to show limited clinical service. The triggering point for restoration failure is the degradation of the bond at the tooth-biomaterial interface from chemical, biological, and mechanical sources. Oral biofilms form at the bonded interfaces, producing enzymes and acids that demineralize hard tissues and damage the composite. Removing bacteria from bonded interfaces and remineralizing marginal gaps will increase restorations' clinical service. To address this need, we propose for the first time the use of piezoelectric nanoparticles of barium titanate (BaTiO3) as a multifunctional bioactive filler in dental resin composites, offering combined antibacterial and (re)mineralization effects. In this work, we developed and characterized the properties of dental piezoelectric resin composites, including the degree of conversion and mechanical and physical properties, for restorative applications. Moreover, we evaluated the antibacterial and mineralization responses of piezoelectric composites in vitro. We observed a significant reduction in biofilm growth (up to 90%) and the formation of thick and dense layers of calcium phosphate minerals in piezoelectric composites compared to control groups. The antibacterial mechanism was also revealed. Additionally, we developed a unique approach evaluating the bond strength of dentin-adhesive-composite interfaces subjected to simultaneous attacks from bacteria and cyclic mechanical loading operating in synergy. Our innovative bioactive multifunctional composite provides an ideal technology for restorative applications using a single filler with combined long-lasting nonrechargeable antibacterial/remineralization effects.
Collapse
Affiliation(s)
- Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Anubhav Jain
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Juan José Londoño
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
- Bioengineering Research Group (GIB), Department of Mechanical Engineering, Universidad EAFIT, Medellin 050022, Colombia
| | - Santiago Correa
- Bioengineering Research Group (GIB), Department of Mechanical Engineering, Universidad EAFIT, Medellin 050022, Colombia
| | - Peter I Lelkes
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Mary Anne Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
5
|
Zhang A, Ye N, Aregawi W, Zhang L, Salah M, VanHeel B, Chew HP, Fok ASL. A Review of Mechano-Biochemical Models for Testing Composite Restorations. J Dent Res 2021; 100:1030-1038. [PMID: 34365857 DOI: 10.1177/00220345211026918] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Due to the severe mechano-biochemical conditions in the oral cavity, many dental restorations will degrade and eventually fail. For teeth restored with resin composite, the major modes of failure are secondary caries and fracture of the tooth or restoration. While clinical studies can answer some of the more practical questions, such as the rate of failure, fundamental understanding on the failure mechanism can be obtained from laboratory studies using simplified models more effectively. Reviewed in this article are the 4 main types of models used to study the degradation of resin-composite restorations, namely, animal, human in vivo or in situ, in vitro biofilm, and in vitro chemical models. The characteristics, advantages, and disadvantages of these models are discussed and compared. The tooth-restoration interface is widely considered the weakest link in a resin composite restoration. To account for the different types of degradation that can occur (i.e., demineralization, resin hydrolysis, and collagen degradation), enzymes such as esterase and collagenase found in the oral environment are used, in addition to acids, to form biochemical models to test resin-composite restorations in conjunction with mechanical loading. Furthermore, laboratory tests are usually performed in an accelerated manner to save time. It is argued that, for an accelerated multicomponent model to be representative and predictive in terms of both the mode and the speed of degradation, the individual components must be synchronized in their rates of action and be calibrated with clinical data. The process of calibrating the in vitro models against clinical data is briefly described. To achieve representative and predictive in vitro models, more comparative studies of in vivo and in vitro models are required to calibrate the laboratory studies.
Collapse
Affiliation(s)
- A Zhang
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - N Ye
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - W Aregawi
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - L Zhang
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.,The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - M Salah
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.,Faculty of Dentistry, Ain-Shams University, Cairo, Egypt
| | - B VanHeel
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - H P Chew
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - A S L Fok
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
6
|
Polymeric nanoparticles protect the resin-dentin bonded interface from cariogenic biofilm degradation. Acta Biomater 2020; 111:316-326. [PMID: 32439613 DOI: 10.1016/j.actbio.2020.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/15/2022]
Abstract
The objective was to assess doxycycline (Dox) and zinc (Zn) doped nanoparticles' (NPs) potential to protect the resin-dentin interface from cariogenic biofilm. Three groups of polymeric NPs were tested: unloaded, loaded with zinc and with doxycycline. NPs were applied after dentin etching. The disks were exposed to a cariogenic biofilm challenge in a Drip-Flow Reactor during 72 h and 7 d. Half of the specimens were not subjected to biofilm formation but stored 72 h and 7 d. LIVE/DEAD® viability assay, nano-dynamic mechanical assessment, Raman spectroscopy and field emission electron microscopy (FESEM) analysis were performed. The measured bacterial death rates, at 7 d were 46% for the control group, 51% for the undoped-NPs, 32% for Dox-NPs, and 87% for Zn-NPs; being total detected bacteria reduced five times in the Dox-NPs group. Zn-NPs treated samples reached, in general, the highest complex modulus values at the resin-dentin interface over time. Regarding the mineral content, Zn-NPs-treated dentin interfaces showed the highest mineralization degree associated to the phosphate peak and the relative mineral concentration. FESEM images after Zn-NPs application permitted to observe remineralization of the etched and non-resin infiltrated collagen layer, and bacteria were scarcely encountered. The combined antibacterial and remineralizing effects, when Zn-NPs were applied, reduced biofilm formation. Dox-NPs exerted an antibacterial role but did not remineralize the bonded interface. Undoped-NPs did not improve the properties of the interfaces. Application of Zn-doped NPs during the bonding procedure is encouraged. STATEMENT OF SIGNIFICANCE: Application of Zn-doped nanoparticles on acid etched dentin reduced biofilm formation and viability at the resin-dentin interface due to both remineralization and antibacterial properties. Doxycycline-doped nanoparticles also diminished oral biofilm viability, but did not remineralize the resin-dentin interface.
Collapse
|
7
|
Jain A, Armstrong SR, Banas JA, Qian F, Maia RR, Teixeira EC. Dental adhesive microtensile bond strength following a biofilm-based in vitro aging model. J Appl Oral Sci 2020; 28:e20190737. [PMID: 32609185 PMCID: PMC7340208 DOI: 10.1590/1678-7757-2019-0737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/11/2020] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Laboratory tests are routinely used to test bonding properties of dental adhesives. Various aging methods that simulate the oral environment are used to complement these tests for assessment of adhesive bond durability. However, most of these methods challenge hydrolytic and mechanical stability of the adhesive- enamel/dentin interface, and not the biostability of dental adhesives. To compare resin-dentin microtensile bond strength (μTBS) after a 15-day Streptococcus mutans (SM) or Streptococcus sobrinus (SS) bacterial exposure to the 6-month water storage (WS) ISO 11405 type 3 test. METHODOLOGY A total of 31 molars were flattened and their exposed dentin was restored with Optibond-FL adhesive system and Z-100 dental composite. Each restored molar was sectioned and trimmed into four dumbbell-shaped specimens, and randomly distributed based on the following aging conditions: A) 6 months of WS (n=31), B) 5.5 months of WS + 15 days of a SM-biofilm challenge (n=31), C) 15 days of a SM-biofilm challenge (n=31) and D) 15 days of a SS-biofilm challenge (n=31). μTBS were determined and the failure modes were classified using light microscopy. RESULTS Statistical analyses showed that each type of aging condition affected μTBS (p<0.0001). For Group A (49.7±15.5MPa), the mean μTBS was significantly greater than in Groups B (19.3±6.3MPa), C (19.9±5.9MPa) and D (23.6±7.9MPa). For Group D, the mean μTBS was also significantly greater than for Groups B and C, but no difference was observed between Groups B and C. CONCLUSION A Streptococcus mutans- or Streptococcus sobrinus-based biofilm challenge for 15 days resulted in a significantly lower μTBS than did the ISO 11405 recommended 6 months of water storage. This type of biofilm-based aging model seems to be a practical method for testing biostability of resin-dentin bonding.
Collapse
Affiliation(s)
- Aditi Jain
- University of Iowa, Department of Operative Dentistry, Iowa City, IA, USA
| | - Steve R Armstrong
- University of Iowa, Department of Operative Dentistry, Iowa City, IA, USA
| | - Jeffrey A Banas
- University of Iowa, Iowa Institute for Oral Health Research, Iowa City, IA, USA
| | - Fang Qian
- University of Iowa, Iowa Institute for Oral Health Research, Iowa City, IA, USA
| | - Rodrigo R Maia
- University of Iowa, Department of Operative Dentistry, Iowa City, IA, USA
| | - Erica C Teixeira
- University of Iowa, Department of Operative Dentistry, Iowa City, IA, USA
| |
Collapse
|
8
|
Stencel R, Kasperski J, Pakieła W, Mertas A, Bobela E, Barszczewska-Rybarek I, Chladek G. Properties of Experimental Dental Composites Containing Antibacterial Silver-Releasing Filler. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1031. [PMID: 29912158 PMCID: PMC6025467 DOI: 10.3390/ma11061031] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 12/19/2022]
Abstract
Secondary caries is one of the important issues related to using dental composite restorations. Effective prevention of cariogenic bacteria survival may reduce this problem. The aim of this study was to evaluate the antibacterial activity and physical properties of composite materials with silver sodium hydrogen zirconium phosphate (SSHZP). The antibacterial filler was introduced at concentrations of 1%, 4%, 7%, 10%, 13%, and 16% (w/w) into model composite material consisting of methacrylate monomers and silanized glass and silica fillers. The in vitro reduction in the number of viable cariogenic bacteria Streptococcus mutans ATCC 33535 colonies, Vickers microhardness, compressive strength, diametral tensile strength, flexural strength, flexural modulus, sorption, solubility, degree of conversion, and color stability were investigated. An increase in antimicrobial filler concentration resulted in a statistically significant reduction in bacteria. There were no statistically significant differences caused by the introduction of the filler in compressive strength, diametral tensile strength, flexural modulus, and solubility. Statistically significant changes in degree of conversion, flexural strength, hardness (decrease), solubility (increase), and in color were registered. A favorable combination of antibacterial properties and other properties was achieved at SSHZP concentrations from 4% to 13%. These composites exhibited properties similar to the control material and enhanced in vitro antimicrobial efficiency.
Collapse
Affiliation(s)
- Robert Stencel
- Private Practice, Center of Dentistry and Implantology, ul. Karpińskiego 3, 41-500 Chorzów, Poland.
| | - Jacek Kasperski
- Department of Prosthetic Dentistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, pl. Akademicki 17, 41-902 Bytom, Poland.
| | - Wojciech Pakieła
- Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland.
| | - Anna Mertas
- Chair and Department of Microbiology and Immunology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland.
| | - Elżbieta Bobela
- Chair and Department of Microbiology and Immunology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland.
| | - Izabela Barszczewska-Rybarek
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland.
| | - Grzegorz Chladek
- Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland.
| |
Collapse
|
9
|
El Gezawi M, Haridy R, Abo Elazm E, Al-Harbi F, Zouch M, Kaisarly D. Microtensile bond strength, 4-point bending and nanoleakage of resin-dentin interfaces: Effects of two matrix metalloproteinase inhibitors. J Mech Behav Biomed Mater 2017; 78:206-213. [PMID: 29172125 DOI: 10.1016/j.jmbbm.2017.11.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/11/2017] [Accepted: 11/16/2017] [Indexed: 02/09/2023]
Abstract
Chronic degradation of hybrid layer collagen by matrix metalloproteinases (MMPs) jeopardizes resin-dentin interfacial integrity and limits the durability of dental restorations. The 4-point bending strength (BS) is a valid but uncommon method of testing the mechanical behavior of resin-dentin interfaces. The present study aims to analyze the influence of two matrix metalloproteinase inhibitors on microtensile bond strength (µTBS), BS and nanoleakage. A total of 48M were divided into three groups according to bonding procedure. Teeth were horizontally sectioned to produce a flat dentin surface. In the control group, etch-and-rinse Prime&Bond One (Dentsply) bonding was used; in the self-etch group, methacryloyloxydodecylpyridinium bromide (MDPB)-containing Clearfil SE Protect (Kuraray) was used; and in the benzalkonium chloride (BAC)-etch group, BAC-etchant (Bisco) was used. A Ceram.X-One (Dentsply) composite was built as three successive layers and was light-cured. Samples were sectioned to produce microrods that were randomly divided into two groups for analysis at baseline and after 6 months of water immersion (n = 32), plus one slab for nanoleakage analysis (n = 8) via scanning electron microscopy (SEM) and digital image analysis (Fiji). Data were analyzed using the Weibull distribution and a mixed-model ANOVA with a post hoc Tukey test. All groups showed deterioration of the initial bonds. The self-etch group had a worse baseline µTBS than the control but had the best BS after aging. BAC-etch did not improve bond stability of etch-and-rinse adhesive. The µTBS and BS test results after aging were moderately correlated. Mixed fractures prevailed with regard to µTBS, whereas adhesive fractures dominated with regard to BS. Nanoleakage was not eliminated in any group and increased after aging. MDPB self-etch resisted bond degradation better than etch-and-rinse adhesives, even after BAC-etching. Integrating BS in studies of µTBS and nanoleakage might provide more clinically relevant outcomes for predicting the performance of dental adhesives.
Collapse
Affiliation(s)
- Moataz El Gezawi
- Department of Restorative Dental Science, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Rasha Haridy
- Department of Conservative Dentistry, Faculty Oral and Dental Medicine, Cairo University, Egypt; Department of Clinical Dental Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Emad Abo Elazm
- Department of Restorative Dentistry, Suez Canal University, Egypt
| | - Fahad Al-Harbi
- Department of Substitutive Dental Sciences, Imam Abdulrahman bin Faisal University, Saudi Arabia
| | - Mariem Zouch
- Department of Mathematics, Imam Abdulrahman bin Faisal University, Saudi Arabia
| | - Dalia Kaisarly
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethestrasse 70, 80336 Munich, Germany; Biomaterials Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
10
|
Elbahie E, Beitzel D, Mutluay MM, Majd H, Yahyazadehfar M, Arola D. Durability of adhesive bonds to tooth structure involving the DEJ. J Mech Behav Biomed Mater 2017; 77:557-565. [PMID: 29078196 DOI: 10.1016/j.jmbbm.2017.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/21/2017] [Accepted: 10/01/2017] [Indexed: 10/18/2022]
Abstract
The importance of the Dentin Enamel Junction (DEJ) to the durability of adhesive bonds to tooth structure is unclear. In fact, no investigation has been reported on contributions of the DEJ to the fatigue resistance of the bonded interface. In this study, the durability of adhesive bonds to tooth structure involving the DEJ was quantified and compared to that of adhesive bonds to enamel only, not including the DEJ. Two different configurations of enamel bonding were considered, including when tensile stress is focused on the outer enamel (occlusal configuration) or the inner decussated enamel (decussated configuration). The resistance to failure for all bonded interfaces was assessed under both static and cyclic loading to failure. Results showed that the durability of the bonded interfaces was primarily a function of their resistance to crack initiation and growth. The bonded interface strength involving the DEJ was significantly (p ≤ 0.05) greater than that of bonds to enamel only with occlusal configuration, under both static and cyclic loading. While the fatigue strength of bonds involving the DEJ was approximately 20% greater than that for enamel bonds with occlusal configuration (7.7MPa) it was lower than that of enamel with the decussated configuration. The DEJ deterred cracks from extending readily into the dentin but it did not prevent fatigue failure. These results suggest that the durability of bonds to enamel are most dependent on the enamel rod decussation and that the DEJ plays a minor role.
Collapse
Affiliation(s)
- Enas Elbahie
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Dylan Beitzel
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Mustafa Murat Mutluay
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA; Adhesive Dentistry Research Group, Department of Cariology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Hessam Majd
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Mobin Yahyazadehfar
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Dwayne Arola
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA; Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, WA, USA; Department of Oral Health, School of Dentistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
11
|
Rego GF, Vidal ML, Viana GM, Cabral LM, Schneider LFJ, Portela MB, Cavalcante LM. Antibiofilm properties of model composites containing quaternary ammonium methacrylates after surface texture modification. Dent Mater 2017; 33:1149-1156. [PMID: 28822582 DOI: 10.1016/j.dental.2017.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/21/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Investigate antimicrobial properties and surface texture of model composites with different concentration and alkyl chain length of quaternary ammonium monomers (QAS). METHODS Monomers derived from QAS salts with alkyl chain lengths of 12 carbons ((dimethylaminododecyl methacrylate) DMADDM) and 16 carbons (dimethylaminohexadecyl methacrylate-DMAHDM) were obtained from the reactions of their respective organo-halides with the tertiary amine 2-(dimethylamino)ethyl methacrylate (DMAEMA). DMADDM and DMAHDM were incorporated into model composite in concentrations of 5 or 10%, resulting the following groups: G12.5 (DMADDM 5%), G12.10 (DMADDM 10%), G16.5 (DMAHDM 5%), G16.10 (DMAHDM 10%) and GC (control). Biofilm viability, lactic acid production and surface roughness were analysed 24h after samples preparation (initial), repeated after toothbrush abrasion and after polishing simulation. Data were submitted to ANOVA and Tukey's test (p≤0.05). RESULTS The longer the molecular chain size of QAS and the higher its concentration (G16.10), the lower was the viability and the production of lactic acid by the biofilm. No differences were detected in initial roughness' measurements among groups. However, after abrasion, there was an increase of biofilm viability and lactic acid production. Composites containing QAS presented rougher surfaces compared to the CG. After polishing, biofilm viability and surface roughness were statistically similar for all groups. Nevertheless, DMAHDM at 10% showed reduction in lactic acid production. SIGNIFICANCE Chain length and concentration of QAS influenced biofilm development and production of lactic acid. Longer chains and higher concentrations of QAS promoted better antimicrobial properties. Changes in surface texture caused by abrasion, decreased antibiofilm properties.
Collapse
Affiliation(s)
| | - Marina Lermen Vidal
- School of Dentistry, Federal Fluminense University - UFF, Niterói, RJ, Brazil
| | - Gil Mendes Viana
- School of Pharmacy, LabTIF, Federal University of Rio de Janeiro - UFRJ, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Lucio Mendes Cabral
- School of Pharmacy, LabTIF, Federal University of Rio de Janeiro - UFRJ, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Luis Felipe Jochims Schneider
- School of Dentistry, Federal Fluminense University - UFF, Niterói, RJ, Brazil; Nucleus for Dental Biomaterials Research, UVA-Veiga de Almeida University, Rio de Janeiro, RJ, Brazil
| | | | - Larissa Maria Cavalcante
- School of Dentistry, Federal Fluminense University - UFF, Niterói, RJ, Brazil; Nucleus for Dental Biomaterials Research, UVA-Veiga de Almeida University, Rio de Janeiro, RJ, Brazil; School of Dentistry, UNIVERSO-Salgado de Oliveira University, Niterói, RJ, Brazil.
| |
Collapse
|
12
|
Arola D. Fatigue testing of biomaterials and their interfaces. Dent Mater 2017; 33:367-381. [PMID: 28222907 DOI: 10.1016/j.dental.2017.01.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The objective of this article is to describe the importance of fatigue to the success of restorative dentistry, with emphasis on the methods for evaluating the fatigue properties of materials in this field, and the durability of their bonded interfaces. METHODS The stress-life fatigue and fatigue crack growth approaches for evaluating the fatigue resistance of dental biomaterials are introduced. Emphasis is placed on in vitro studies of the hard tissue foundation, restorative materials and their bonded interfaces. The concept of durability is then discussed, including the effects of conventional "mechanical" fatigue combined with pervasive threats of the oral environment, including variations in pH and the activation of endogenous dentin proteases. RESULTS There is growing evidence that fatigue is a principal contributor to the failure of restorations and that measures of static strength, used in qualifying new materials and practices, are not reflective of the fatigue performance. Results of selected studies show that the fundamental steps involved in the placement of restorations, including the cutting of preparations and etching, cause a significant reduction to the fatigue strength of the hard tissue foundation. In regards to the bonded interface, results of studies focused on fatigue resistance highlight the importance of the hybridization of resin tags, and that a reduction in integrity of the dentin collagen is detrimental to the durability of dentin bonds. SIGNIFICANCE Fatigue should be a central concern in the development of new dental materials and in assessing the success of restorative practices. A greater recognition of contributions from fatigue to restoration failures, and the development of approaches with closer connection to in vivo conditions, will be essential for extending the definition of lifelong oral health.
Collapse
Affiliation(s)
- Dwayne Arola
- Department of Materials Science and Engineering, University of Washington Seattle, WA, USA; Departments of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, USA; Departments of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
13
|
Zane A, Zuo R, Villamena FA, Rockenbauer A, Digeorge Foushee AM, Flores K, Dutta PK, Nagy A. Biocompatibility and antibacterial activity of nitrogen-doped titanium dioxide nanoparticles for use in dental resin formulations. Int J Nanomedicine 2016; 11:6459-6470. [PMID: 27980404 PMCID: PMC5147409 DOI: 10.2147/ijn.s117584] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The addition of antibacterial functionality to dental resins presents an opportunity to extend their useful lifetime by reducing secondary caries caused by bacterial recolonization. In this study, the potential efficacy of nitrogen-doped titanium dioxide nanoparticles for this purpose was determined. Nitrogen doping was carried out to extend the ultraviolet absorbance into longer wavelength blue light for increased biocompatibility. Titanium dioxide nanoparticles (approximately 20-30 nm) were synthesized with and without nitrogen doping using a sol-gel method. Ultraviolet-Visible spectroscopy indicated a band of trap states, with increasing blue light absorbance as the concentration of the nitrogen dopant increased. Electron paramagnetic resonance measurements indicated the formation of superoxide and hydroxyl radicals upon particle exposure to visible light and oxygen. The particles were significantly toxic to Escherichia coli in a dose-dependent manner after a 1-hour exposure to a blue light source (480 nm). Intracellular reactive oxygen species assay demonstrated that the particles caused a stress response in human gingival epithelial cells when exposed to 1 hour of blue light, though this did not result in detectable release of cytokines. No decrease in cell viability was observed by water-soluble tetrazolium dye assay. The results show that nitrogen-doped titanium dioxide nanoparticles have antibacterial activity when exposed to blue light, and are biocompatible at these concentrations.
Collapse
Affiliation(s)
- Andrew Zane
- Biomaterials and Environmental Surveillance Department, Naval Medical Research Unit San Antonio, Joint Base San Antonio, Fort Sam Houston, San Antonio, TX
| | | | - Frederick A Villamena
- Department of Biological Chemistry and Pharmacology, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Antal Rockenbauer
- Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Institute of Materials and Environmental Chemistry; Department of Physics, MTA-BME Condensed Matter Research Group, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ann Marie Digeorge Foushee
- Biomaterials and Environmental Surveillance Department, Naval Medical Research Unit San Antonio, Joint Base San Antonio, Fort Sam Houston, San Antonio, TX
| | - Kristin Flores
- Biomaterials and Environmental Surveillance Department, Naval Medical Research Unit San Antonio, Joint Base San Antonio, Fort Sam Houston, San Antonio, TX
| | | | - Amber Nagy
- Biomaterials and Environmental Surveillance Department, Naval Medical Research Unit San Antonio, Joint Base San Antonio, Fort Sam Houston, San Antonio, TX
| |
Collapse
|
14
|
Montagner AF, Opdam NJ, Ruben JL, Cenci MS, Huysmans MC. Bonding effectiveness of composite-dentin interfaces after mechanical loading with a new device (Rub&Roll). Dent Mater J 2016; 35:855-861. [PMID: 27725366 DOI: 10.4012/dmj.2015-395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study evaluated the effect of mechanical loading with a new device on the microtensile bond strength (µTBS) of adhesive systems to dentin. Forty molars were divided according to adhesive systems: self-etch (ClearfilTM SE Bond -CSE) and etch-and-rinse (Adper ScotchbondTM 1XT -ASB); and to aging (n=5): control; MC1-250,000; MC2-500,000; and MC3-750,000 mechanical cycles. Microtensile bond strength was measured and fracture modes were analyzed. Data for µTBS were subjected to Kruskal-Wallis and post hoc tests (p<0.05). Mechanical loading (p<0.001) and adhesive systems (p=0.024) affected µTBS values. The adhesive systems showed a similar behavior, except in the MC3 group, which the self-etch CSE showed the highest µTBS. The new device promotes a decreasing of µTBS as the number of cycles increased. Difference between materials was observed only after 750,000 mechanical cycles.
Collapse
|
15
|
Pereira SMB, Anami LC, Pereira CA, Souza ROA, Kantorski KZ, Bottino MA, Jorge AOC, Valandro LF. Bacterial Colonization in the Marginal Region of Ceramic Restorations: Effects of Different Cement Removal Methods and Polishing. Oper Dent 2016; 41:642-654. [DOI: 10.2341/15-206-l] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SUMMARY
This study evaluated the effects of excess cement removal techniques, with or without subsequent polishing, on biofilm formation and micromorphology in the marginal region of the tooth/restoration. From bovine teeth, 96 dentin blocks (4 × 8 × 2 mm) were produced, molded, and reproduced in type IV gypsum, on which 96 pressed ceramic blocks (Vita PM9, Vita Zahnfabrik; 4 × 8 × 2 mm) were produced via the lost wax technique. The dentin blocks and their respective ceramic blocks were cemented with a self-adhesive resin cement (RelyX U200, 3M ESPE), and cement excess was removed from the margin using four different techniques, followed or not by polishing with silicone rubber tips: MBr, removal with microbrush and photoactivation; MBr-Pol, MBr + polishing; Br, removal with brush and photoactivation; Br-Pol, Br + polishing; Photo-Expl, 5 seconds of initial photoactivation, removal with explorer, and final curing; Photo-Expl-Pol, Photo-Expl + polishing; Photo-SB, 5 seconds of initial photoactivation, removal with scalpel, and final curing; and Photo-SB-Pol, Photo-SB + polishing. After 24 hours, the roughness in the marginal region was analyzed using a profilometer (three measurements on each sample). Micromorphological analyses of the region were performed by stereomicroscope and scanning electron microscopy (SEM). Then the samples were contaminated with sucrose broth standardized suspension with Streptococcus mutans, Staphylococcus aureus, and Candida albicans and incubated for a period of 48 hours. The samples were quantitatively analyzed for bacterial adherence in the marginal region by confocal laser scanning microscopy and counting of colony-forming units (CFUs/mL) and qualitatively analyzed using SEM. Roughness data (Ra) were submitted to two-way analysis of variance, Tukey test at a confidence level of 95%, and Student t-tests. CFU, biomass, and biothickness data were analyzed by Kruskal-Wallis, Mann-Whitney, and Dunn tests. The removing technique statistically influenced Ra (MBr, p=0.0019; Br, p=0.002; Photo-Expl, p=0.0262; Photo-SB, p=0.0196) when comparing the polished and unpolished groups. The MBr and MBr-Pol technique differed significantly for CFU/mL values (p=0.010). There was no significant difference in the amounts of biomass and biothickness comparing polished and unpolished groups and when all groups were compared (p>0.05). Different morphological patterns were observed (more regular surface for polished groups). We conclude that margin polishing after cementation of feldspar/pressed ceramic restorations is decisive for achieving smoother surfaces, as the excess cement around the edges can increase the surface roughness in these areas, influencing bacterial adhesion.
Collapse
|
16
|
Influence of frequency on shear fatigue strength of resin composite to enamel bonds using self-etch adhesives. J Mech Behav Biomed Mater 2016; 62:291-298. [DOI: 10.1016/j.jmbbm.2016.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 11/17/2022]
|
17
|
Orrego S, Melo MA, Lee S, Xu HHK, Arola DD. Fatigue of human dentin by cyclic loading and during oral biofilm challenge. J Biomed Mater Res B Appl Biomater 2016; 105:1978-1985. [DOI: 10.1002/jbm.b.33729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/16/2016] [Accepted: 05/24/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Santiago Orrego
- Department of Mechanical EngineeringUniversity of Maryland Baltimore CountyBaltimore Maryland
| | - Mary Anne Melo
- Department of EndodonticsProsthodontics, and Operative Dentistry, Dental School, University of Maryland BaltimoreBaltimore Maryland
| | - Se‐Han Lee
- Division of Mechanical EngineeringKyungnam UniversityChangwon631‐701 Korea
| | - Hockin H. K. Xu
- Department of EndodonticsProsthodontics, and Operative Dentistry, Dental School, University of Maryland BaltimoreBaltimore Maryland
| | - Dwayne D. Arola
- Department of Materials Science and EngineeringUniversity of WashingtonSeattle Washington, DC
- Department of Restorative DentistrySchool of Dentistry, University of WashingtonSeattle Washington, DC
| |
Collapse
|
18
|
|
19
|
Melo MA, Orrego S, Weir MD, Xu HHK, Arola DD. Designing Multiagent Dental Materials for Enhanced Resistance to Biofilm Damage at the Bonded Interface. ACS APPLIED MATERIALS & INTERFACES 2016; 8:11779-87. [PMID: 27081913 DOI: 10.1021/acsami.6b01923] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The oral environment is considered to be an asperous environment for restored tooth structure. Recurrent dental caries is a common cause of failure of tooth-colored restorations. Bacterial acids, microleakage, and cyclic stresses can lead to deterioration of the polymeric resin-tooth bonded interface. Research on the incorporation of cutting-edge anticaries agents for the design of new, long-lasting, bioactive resin-based dental materials is demanding and provoking work. Released antibacterial agents such as silver nanoparticles (NAg), nonreleased antibacterial macromolecules (DMAHDM, dimethylaminohexadecyl methacrylate), and released acid neutralizer amorphous calcium phosphate nanoparticles (NACP) have shown potential as individual and dual anticaries approaches. In this study, these agents were synthesized, and a prospective combination was incorporated into all the dental materials required to perform a composite restoration: dental primer, adhesive, and composite. We focused on combining different dental materials loaded with multiagents to improve the durability of the complex dental bonding interface. A combined effect of bacterial acid attack and fatigue on the bonding interface simulated the harsh oral environment. Human saliva-derived oral biofilm was grown on each sample prior to the cyclic loading. The oral biofilm viability during the fatigue performance was monitored by the live-dead assay. Damage of the samples that developed during the test was quantified from the fatigue life distributions. Results indicate that the resultant multiagent dental composite materials were able to reduce the acidic impact of the oral biofilm, thereby improving the strength and resistance to fatigue failure of the dentin-resin bonded interface. In summary, this study shows that dental restorative materials containing multiple therapeutic agents of different chemical characteristics can be beneficial toward improving resistance to mechanical and acidic challenges in oral environments.
Collapse
Affiliation(s)
- Mary Anne Melo
- Division of Operative Dentistry, Department of General Dentistry, School of Dentistry, University of Maryland Baltimore , Baltimore, Maryland 21201, United States
| | - Santiago Orrego
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Michael D Weir
- Biomaterials and Tissue Engineering Division, Department of Endodontics, Prosthodontics and Periodontics, School of Dentistry, University of Maryland Baltimore , Baltimore, Maryland 21201, United States
| | - Huakun H K Xu
- Biomaterials and Tissue Engineering Division, Department of Endodontics, Prosthodontics and Periodontics, School of Dentistry, University of Maryland Baltimore , Baltimore, Maryland 21201, United States
| | - Dwayne D Arola
- Department of Materials Science & Engineering, College of Engineering, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|
20
|
Defying ageing: An expectation for dentine bonding with universal adhesives? J Dent 2016; 45:43-52. [DOI: 10.1016/j.jdent.2015.11.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 11/24/2015] [Accepted: 11/27/2015] [Indexed: 12/11/2022] Open
|
21
|
Mechanical benefits of conservative restoration for dental fissure caries. J Mech Behav Biomed Mater 2016; 53:11-20. [DOI: 10.1016/j.jmbbm.2015.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/04/2015] [Indexed: 11/22/2022]
|
22
|
Scheidel DD, Takamizawa T, Bakmeier WW, Erickson RL, Tsujimoto A, Miyazaki M. Effect of frequency on the fatigue strength of dentin bonds. J Oral Sci 2016; 58:539-546. [DOI: 10.2334/josnusd.16-0229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Donal D. Scheidel
- Department of Diagnostic Sciences, Creighton University School of Dentistry
| | - Toshiki Takamizawa
- Department of Operative Dentistry, Nihon University School of Dentistry
- Division of Biomaterial Science, Dental Research Center, Nihon University School of Dentistry
| | - Wayne W. Bakmeier
- Department of General Dentistry, Creighton University School of Dentistry
| | - Robert L. Erickson
- Department of General Dentistry, Creighton University School of Dentistry
| | - Akimasa Tsujimoto
- Department of Operative Dentistry, Nihon University School of Dentistry
- Division of Biomaterial Science, Dental Research Center, Nihon University School of Dentistry
| | - Masashi Miyazaki
- Department of Operative Dentistry, Nihon University School of Dentistry
- Division of Biomaterial Science, Dental Research Center, Nihon University School of Dentistry
| |
Collapse
|
23
|
Zhang Z, Beitzel D, Majd H, Mutluay M, Tezvergil-Mutluay A, Tay FR, Pashley DH, Arola D. Effect of carbodiimide on the fatigue crack growth resistance of resin-dentin bonds. Dent Mater 2015; 32:211-22. [PMID: 26739775 DOI: 10.1016/j.dental.2015.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/18/2015] [Accepted: 11/30/2015] [Indexed: 01/12/2023]
Abstract
UNLABELLED Recent studies have shown that ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) inactivates endogenous dentin proteases, thereby preventing collagen degradation and improving the durability of adhesive bonds to dentin. Bond durability is routinely assessed by monotonic microtensile testing, which does not consider the cyclic nature of mastication. OBJECTIVE To characterize the effect of an EDC pretreatment on the fatigue crack growth behavior of resin-dentin bonds. METHODS Bonded interface Compact Tension (CT) specimens were prepared using a three-step etch-and-rinse adhesive and hybrid resin-composite. Adhesive bonding of the treated groups included a 1 min application of an experimental EDC conditioner to the acid-etched dentin. The control groups did not receive EDC treatment. The fatigue crack growth resistance was examined after storage in artificial saliva for 0, 3 and 6 months. RESULTS There was no significant difference in the immediate fatigue crack growth resistance of the EDC-treated and control groups at 0 months. However, after the 3 and 6 months storage periods the EDC-treated groups exhibited significantly greater (p≤0.05) fatigue crack growth resistance than the control specimens. SIGNIFICANCE Although the EDC treatment maintained the fatigue crack growth resistance of the dentin bonds through 6 months of storage, additional studies are needed to assess its effectiveness over longer periods and in relation to other cross-linking agents.
Collapse
Affiliation(s)
- Zihou Zhang
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Dylan Beitzel
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Hessam Majd
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Mustafa Mutluay
- Adhesive Dentistry Research Group, Department of Cariology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Arzu Tezvergil-Mutluay
- Adhesive Dentistry Research Group, Department of Cariology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Franklin R Tay
- Department of Oral Biology, College of Dental Medicine, Georgia Health Sciences University, Augusta, GA, USA; Department of Endodontics, College of Dental Medicine, Georgia Health Sciences University, Augusta, GA, USA
| | - David H Pashley
- Department of Oral Biology, College of Dental Medicine, Georgia Health Sciences University, Augusta, GA, USA
| | - Dwayne Arola
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA; Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
24
|
Zhang Z, Beitzel D, Mutluay M, Tay FR, Pashley DH, Arola D. On the durability of resin-dentin bonds: Identifying the weakest links. Dent Mater 2015; 31:1109-18. [PMID: 26169318 DOI: 10.1016/j.dental.2015.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/04/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
Abstract
UNLABELLED Fatigue of resin-dentin adhesive bonds is critical to the longevity of resin composite restorations. OBJECTIVES The objectives were to characterize the fatigue and fatigue crack growth resistance of resin-dentin bonds achieved using two different commercial adhesives and to identify apparent "weak-links". METHODS Bonded interface specimens were prepared using Adper Single Bond Plus (SB) or Adper Scotchbond Multi-Purpose (SBMP) adhesives and 3M Z100 resin composite according to the manufacturers' instructions. The stress-life fatigue behavior was evaluated using the twin bonded interface approach and the fatigue crack growth resistance was examined using bonded interface Compact Tension (CT) specimens. Fatigue properties of the interfaces were compared to those of the resin-adhesive, resin composite and coronal dentin. RESULTS The fatigue strength of the SBMP interface was significantly greater than that achieved by SB (p≤0.01). Both bonded interfaces exhibited significantly lower fatigue strength than that of the Z100 and dentin. Regarding the fatigue crack growth resistance, the stress intensity threshold (ΔKth) of the SB interface was significantly greater (p≤0.01) than that of the SBMP, whereas the ΔKth of the interfaces was more than twice that of the parent adhesives. SIGNIFICANCE Collagen fibril reinforcement of the resin adhesive is essential to the fatigue crack growth resistance of resin-dentin bonds. Resin tags that are not well hybridized into the surrounding intertubular dentin and/or poor collagen integrity are detrimental to the bonded interface durability.
Collapse
Affiliation(s)
- Zihou Zhang
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Dylan Beitzel
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Mustafa Mutluay
- Adhesive Dentistry Research Group, Department of Cariology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Franklin R Tay
- Department of Oral Biology, College of Dental Medicine, Georgia Regents University, Augusta, GA, USA; Department of Endodontics, College of Dental Medicine, Georgia Regents University, Augusta, GA, USA
| | - David H Pashley
- Department of Oral Biology, College of Dental Medicine, Georgia Regents University, Augusta, GA, USA
| | - Dwayne Arola
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA; Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
25
|
Modeling of damage driven fracture failure of fiber post-restored teeth. J Mech Behav Biomed Mater 2015; 49:277-89. [PMID: 26056997 DOI: 10.1016/j.jmbbm.2015.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/25/2015] [Accepted: 05/07/2015] [Indexed: 11/23/2022]
Abstract
Mechanical failure of biomaterials, which can be initiated by either violent force, or progressive stress fatigue, is a serious issue. Great efforts have been made to improve the mechanical performances of dental restorations. Virtual simulation is a promising approach for biomechanical investigations, which presents significant advantages in improving efficiency than traditional in vivo/in vitro studies. Over the past few decades, a number of virtual studies have been conducted to investigate the biomechanical issues concerning dental biomaterials, but only with limited incorporation of brittle failure phenomena. Motivated by the contradictory findings between several finite element analyses and common clinical observations on the fracture resistance of post-restored teeth, this study aimed to provide an approach using numerical simulations for investigating the fracture failure process through a non-linear fracture mechanics model. The ability of this approach to predict fracture initiation and propagation in a complex biomechanical status based on the intrinsic material properties was investigated. Results of the virtual simulations matched the findings of experimental tests, in terms of the ultimate fracture failure strengths and predictive areas under risk of clinical failure. This study revealed that the failure of dental post-restored restorations is a typical damage-driven continuum-to-discrete process. This approach is anticipated to have ramifications not only for modeling fracture events, but also for the design and optimization of the mechanical properties of biomaterials for specific clinically determined requirements.
Collapse
|
26
|
Li Y, Carrera C, Chen R, Li J, Chen Y, Lenton P, Rudney JD, Jones RS, Aparicio C, Fok A. Fatigue failure of dentin-composite disks subjected to cyclic diametral compression. Dent Mater 2015; 31:778-88. [PMID: 25958269 DOI: 10.1016/j.dental.2015.03.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 12/30/2014] [Accepted: 03/30/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Our aim was to establish the relationship between cyclic loading and fatigue life of the dentin-composite interface using the newly developed disk in diametral compression tests. The results were then used to estimate the fatigue life of restored teeth under occlusal loading. METHODS Disk specimens (5mm dia.×2mm thick) were prepared using bovine incisors and restored with either a methacrylate-based composite Z100™ with Adper Single Bond Plus (Z100) or silorane-based composite Filtek™ LS with LS System adhesive (LS). The dentin-composite disks were tested under cyclic diametral compression to determine the number of cycles to failure (Nf) at three load levels (n=3 per group). Finite element analysis (FEA) was used to calculate the interfacial stresses (σ) within the specimen, to establish the σ vs. Nf curves, and those within a restored tooth under normal chewing forces (15N maximum). These were then used to estimate the lifetime of the restored tooth for the two restorative systems. RESULTS The disks restored with LS had a higher fatigue resistance than those restored with Z100. The maximum interfacial stress in the restored tooth determined by FEA was ∼0.5MPa. Based on the estimate of 300,000 cycles of chewing per year, the predicted lifetime under occlusal loading for teeth restored with LS and Z100 was 33 and 10 years, respectively. SIGNIFICANCE The disk in cyclic diametral compression has been used successfully to provide fatigue data which allows the lifetime of composite-restored teeth under occlusal loading to be predicted using numerical simulation.
Collapse
Affiliation(s)
- Yuping Li
- Minnesota Dental Research Center for Biomaterials and Biomechanics (MDRCBB), School of Dentistry, University of Minnesota, MN, USA
| | - Carola Carrera
- Minnesota Dental Research Center for Biomaterials and Biomechanics (MDRCBB), School of Dentistry, University of Minnesota, MN, USA; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, MN, USA
| | - Ruoqiong Chen
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, MN, USA
| | - Jianying Li
- Minnesota Dental Research Center for Biomaterials and Biomechanics (MDRCBB), School of Dentistry, University of Minnesota, MN, USA
| | - Yungchung Chen
- Minnesota Dental Research Center for Biomaterials and Biomechanics (MDRCBB), School of Dentistry, University of Minnesota, MN, USA
| | - Patricia Lenton
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, MN, USA
| | - Joel D Rudney
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, MN, USA
| | - Robert S Jones
- Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, MN, USA
| | - Conrado Aparicio
- Minnesota Dental Research Center for Biomaterials and Biomechanics (MDRCBB), School of Dentistry, University of Minnesota, MN, USA
| | - Alex Fok
- Minnesota Dental Research Center for Biomaterials and Biomechanics (MDRCBB), School of Dentistry, University of Minnesota, MN, USA.
| |
Collapse
|
27
|
Orrego S, Romberg E, Arola D. Synergistic degradation of dentin by cyclic stress and buffer agitation. J Mech Behav Biomed Mater 2015; 44:121-32. [PMID: 25637823 PMCID: PMC4499057 DOI: 10.1016/j.jmbbm.2015.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 11/30/2022]
Abstract
Secondary caries and non-carious lesions develop in regions of stress concentrations and oral fluid movement. The objective of this study was to evaluate the influence of cyclic stress and fluid movement on material loss and subsurface degradation of dentin within an acidic environment. Rectangular specimens of radicular dentin were prepared from caries-free unrestored 3rd molars. Two groups were subjected to cyclic cantilever loading within a lactic acid solution (pH = 5) to achieve compressive stresses on the inner (pulpal) or outer sides of the specimens. Two additional groups were evaluated in the same solution, one subjected to movement only (no stress) and the second held stagnant (control: no stress or movement). Exterior material loss profiles and subsurface degradation were quantified on the two sides of the specimens. Results showed that under cyclic stress material loss was significantly greater (p ≤ 0.0005) on the pulpal side than on the outer side and significantly greater (p ≤ 0.05) under compression than tension. However, movement only caused significantly greater material loss (p ≤ 0.0005) than cyclic stress. Subsurface degradation was greatest at the location of highest stress, but was not influenced by stress state or movement.
Collapse
Affiliation(s)
- Santiago Orrego
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Elaine Romberg
- Department of Endodontics, Prosthodontics, and Operative Dentistry, Dental School, University of Maryland, Baltimore, MD, USA
| | - Dwayne Arola
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA; Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
28
|
Importance of age on the dynamic mechanical behavior of intertubular and peritubular dentin. J Mech Behav Biomed Mater 2014; 42:229-42. [PMID: 25498296 DOI: 10.1016/j.jmbbm.2014.11.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/20/2014] [Accepted: 11/22/2014] [Indexed: 11/23/2022]
Abstract
An experimental evaluation of human coronal dentin was performed using nanoscopic dynamic mechanical analysis (nanoDMA). The primary objectives were to quantify any unique changes in mechanical behavior of intertubular and peritubular dentin with age, and to evaluate the microstructure and mechanical behavior of the mineral deposited within the lumens. Specimens of coronal dentin were evaluated by nanoDMA using single indents and in scanning mode via scanning probe microscopy. Results showed that there were no significant differences in the storage modulus or complex modulus between the two age groups (18-25 versus 54-83 yrs) for either the intertubular or peritubular tissue. However, there were significant differences in the dampening behavior between the young and old dentin, as represented in the loss modulus and tanδ responses. For both the intertubular and peritubular components, the capacity for dampening was significantly lower in the old group. Scanning based nanoDMA showed that the tubules of old dentin exhibit a gradient in elastic behavior, with decrease in elastic modulus from the cuff to the center of tubules filled with newly deposited mineral.
Collapse
|
29
|
Degradation in the fatigue strength of dentin by cutting, etching and adhesive bonding. Dent Mater 2014; 30:1061-72. [PMID: 24985539 DOI: 10.1016/j.dental.2014.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 06/07/2014] [Accepted: 06/09/2014] [Indexed: 11/20/2022]
Abstract
UNLABELLED The processes involved in placing resin composite restorations may degrade the fatigue strength of dentin and increase the likelihood of fractures in restored teeth. OBJECTIVE The objective of this study was to evaluate the relative changes in strength and fatigue behavior of dentin caused by bur preparation, etching and resin bonding procedures using a 3-step system. METHODS Specimens of dentin were prepared from the crowns of unrestored 3rd molars and subjected to either quasi-static or cyclic flexural loading to failure. Four treated groups were prepared including dentin beams subjected to a bur treatment only with a conventional straight-sided bur, or etching treatment only. An additional treated group received both bur and etching treatments, and the last was treated by bur treatment and etching, followed by application of a commercial resin adhesive. The control group consisted of "as sectioned" dentin specimens. RESULTS Under quasi-static loading to failure there was no significant difference between the strength of the control group and treated groups. Dentin beams receiving only etching or bur cutting treatments exhibited fatigue strengths that were significantly lower (p≤0.0001) than the control; there was no significant difference in the fatigue resistance of these two groups. Similarly, the dentin receiving bur and etching treatments exhibited significantly lower (p≤0.0001) fatigue strength than that of the control, regardless of whether an adhesive was applied. SIGNIFICANCE The individual steps involved in the placement of bonded resin composite restorations significantly decrease the fatigue strength of dentin, and application of a bonding agent does not increase the fatigue strength of dentin.
Collapse
|
30
|
Murakami N, Wakabayashi N. Finite element contact analysis as a critical technique in dental biomechanics: A review. J Prosthodont Res 2014; 58:92-101. [DOI: 10.1016/j.jpor.2014.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
|
31
|
Ruben J, Roeters F, Montagner A, Huysmans M. A multifunctional device to simulate oral ageing: the “Rub&Roll”. J Mech Behav Biomed Mater 2014; 30:75-82. [DOI: 10.1016/j.jmbbm.2013.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022]
|
32
|
Yahyazadehfar M, Mutluay MM, Majd H, Ryou H, Arola D. Fatigue of the resin-enamel bonded interface and the mechanisms of failure. J Mech Behav Biomed Mater 2013; 21:121-32. [PMID: 23571321 DOI: 10.1016/j.jmbbm.2013.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/19/2013] [Accepted: 02/24/2013] [Indexed: 11/19/2022]
Abstract
The durability of adhesive bonds to enamel and dentin and the mechanisms of degradation caused by cyclic loading are important to the survival of composite restorations. In this study a novel method of evaluation was used to determine the strength of resin-enamel bonded interfaces under oth static and cyclic loading, and to identify the mechanisms of failure. Specimens with twin interfaces of enamel bonded to commercial resin composite were loaded in monotonic and cyclic 4-point flexure to failure within a hydrated environment. Results for the resin-enamel interface were compared with those for the resin composite (control) and values reported for resin-dentin adhesive bonds. Under both modes of loading the strength of the resin-enamel interface was significantly (p≤0.0001) lower than that of the resin composite and the resin-dentin bonded interface. Fatigue failure of the interface occurred predominantly by fracture of enamel, adjacent to the interface, and not due to adhesive failures. In the absence of water aging or acid production of biofilms, the durability of adhesive bonds to enamel is lower than that achieved in dentin bonding.
Collapse
Affiliation(s)
- Mobin Yahyazadehfar
- Department of Mechanical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | | | | | |
Collapse
|