1
|
Shokrani A, Almasi A, Feng B, Pierce DM. Understanding mechanotransduction in the distal colon and rectum via multiscale and multimodal computational modeling. J Mech Behav Biomed Mater 2024; 160:106771. [PMID: 39476532 DOI: 10.1016/j.jmbbm.2024.106771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 11/14/2024]
Abstract
Visceral pain in the large bowel is a defining symptom of irritable bowel syndrome (IBS) and the primary reason that patients visit gastroenterologists. This pain is reliably triggered by mechanical distension of the distal colon and rectum (colorectum). Consequently, the process of mechanotransduction by sensory afferents, responsible for translating mechanical colorectal stimuli into neural action potentials, plays a central role in IBS-related bowel pain. In this study, we aim to enhance our understanding of colorectal mechanotransduction by combining experimental findings in colorectal biomechanics and afferent neural encoding within a comprehensive computational simulation framework. To achieve this, we implemented a three-layered, fiber-reinforced finite element model that accurately replicates the nonlinear, heterogeneous, and anisotropic mechanical characteristics of the mouse colorectum. This model facilitates the computation of local mechanical stresses and strains around individual afferent endings, which have diameters on the micron-scale. We then integrated a neural membrane model to simulate the encoding of action potentials by afferent nerves in response to microscopic stresses and strains along the afferent endings. Our multiscale simulation framework enables the assessment of three hypotheses regarding the mechanical gating of action potential generation: (1) axial stress dominates mechanical gating of mechanosensitive channels, (2) both axial and circumferential stresses contribute, and (3) membrane shear stress dominates. Additionally, we explore how the orientation of afferent endings impacts neural encoding properties. This computational framework not only allows for the virtual investigation of colorectal mechanotransduction in the context of prolonged visceral hypersensitivity but can also guide the development of new experimental studies aimed at uncovering the neural and biomechanical mechanisms underlying IBS-related bowel pain.
Collapse
Affiliation(s)
- Amirhossein Shokrani
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA
| | - Ashkan Almasi
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - David M Pierce
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
2
|
Urciuolo F, Imparato G, Netti PA. Engineering Cell Instructive Microenvironments for In Vitro Replication of Functional Barrier Organs. Adv Healthc Mater 2024; 13:e2400357. [PMID: 38695274 DOI: 10.1002/adhm.202400357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Multicellular organisms exhibit synergistic effects among their components, giving rise to emergent properties crucial for their genesis and overall functionality and survival. Morphogenesis involves and relies upon intricate and biunivocal interactions among cells and their environment, that is, the extracellular matrix (ECM). Cells secrete their own ECM, which in turn, regulates their morphogenetic program by controlling time and space presentation of matricellular signals. The ECM, once considered passive, is now recognized as an informative space where both biochemical and biophysical signals are tightly orchestrated. Replicating this sophisticated and highly interconnected informative media in a synthetic scaffold for tissue engineering is unattainable with current technology and this limits the capability to engineer functional human organs in vitro and in vivo. This review explores current limitations to in vitro organ morphogenesis, emphasizing the interplay of gene regulatory networks, mechanical factors, and tissue microenvironment cues. In vitro efforts to replicate biological processes for barrier organs such as the lung and intestine, are examined. The importance of maintaining cells within their native microenvironmental context is highlighted to accurately replicate organ-specific properties. The review underscores the necessity for microphysiological systems that faithfully reproduce cell-native interactions, for advancing the understanding of developmental disorders and disease progression.
Collapse
Affiliation(s)
- Francesco Urciuolo
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, Napoli, 80125, Italy
| | - Giorgia Imparato
- Centre for Advanced Biomaterials for Health Care (IIT@CRIB), Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, Napoli, 80125, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, Napoli, 80125, Italy
- Centre for Advanced Biomaterials for Health Care (IIT@CRIB), Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, Napoli, 80125, Italy
| |
Collapse
|
3
|
Cameron O, Neves JF, Gentleman E. Listen to Your Gut: Key Concepts for Bioengineering Advanced Models of the Intestine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302165. [PMID: 38009508 PMCID: PMC10837392 DOI: 10.1002/advs.202302165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/12/2023] [Indexed: 11/29/2023]
Abstract
The intestine performs functions central to human health by breaking down food and absorbing nutrients while maintaining a selective barrier against the intestinal microbiome. Key to this barrier function are the combined efforts of lumen-lining specialized intestinal epithelial cells, and the supportive underlying immune cell-rich stromal tissue. The discovery that the intestinal epithelium can be reproduced in vitro as intestinal organoids introduced a new way to understand intestinal development, homeostasis, and disease. However, organoids reflect the intestinal epithelium in isolation whereas the underlying tissue also contains myriad cell types and impressive chemical and structural complexity. This review dissects the cellular and matrix components of the intestine and discusses strategies to replicate them in vitro using principles drawing from bottom-up biological self-organization and top-down bioengineering. It also covers the cellular, biochemical and biophysical features of the intestinal microenvironment and how these can be replicated in vitro by combining strategies from organoid biology with materials science. Particularly accessible chemistries that mimic the native extracellular matrix are discussed, and bioengineering approaches that aim to overcome limitations in modelling the intestine are critically evaluated. Finally, the review considers how further advances may extend the applications of intestinal models and their suitability for clinical therapies.
Collapse
Affiliation(s)
- Oliver Cameron
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
| | - Joana F. Neves
- Centre for Host‐Microbiome InteractionsKing's College LondonLondonSE1 9RTUK
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
- Department of Biomedical SciencesUniversity of LausanneLausanne1005Switzerland
| |
Collapse
|
4
|
Durcan C, Hossain M, Chagnon G, Perić D, Girard E. Mechanical experimentation of the gastrointestinal tract: a systematic review. Biomech Model Mechanobiol 2024; 23:23-59. [PMID: 37935880 PMCID: PMC10901955 DOI: 10.1007/s10237-023-01773-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/10/2023] [Indexed: 11/09/2023]
Abstract
The gastrointestinal (GI) organs of the human body are responsible for transporting and extracting nutrients from food and drink, as well as excreting solid waste. Biomechanical experimentation of the GI organs provides insight into the mechanisms involved in their normal physiological functions, as well as understanding of how diseases can cause disruption to these. Additionally, experimental findings form the basis of all finite element (FE) modelling of these organs, which have a wide array of applications within medicine and engineering. This systematic review summarises the experimental studies that are currently in the literature (n = 247) and outlines the areas in which experimentation is lacking, highlighting what is still required in order to more fully understand the mechanical behaviour of the GI organs. These include (i) more human data, allowing for more accurate modelling for applications within medicine, (ii) an increase in time-dependent studies, and (iii) more sophisticated in vivo testing methods which allow for both the layer- and direction-dependent characterisation of the GI organs. The findings of this review can also be used to identify experimental data for the readers' own constitutive or FE modelling as the experimental studies have been grouped in terms of organ (oesophagus, stomach, small intestine, large intestine or rectum), test condition (ex vivo or in vivo), number of directions studied (isotropic or anisotropic), species family (human, porcine, feline etc.), tissue condition (intact wall or layer-dependent) and the type of test performed (biaxial tension, inflation-extension, distension (pressure-diameter), etc.). Furthermore, the studies that investigated the time-dependent (viscoelastic) behaviour of the tissues have been presented.
Collapse
Affiliation(s)
- Ciara Durcan
- Zienkiewicz Centre for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Mokarram Hossain
- Zienkiewicz Centre for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK.
| | - Grégory Chagnon
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Djordje Perić
- Zienkiewicz Centre for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK
| | - Edouard Girard
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
- Laboratoire d'Anatomie des Alpes Françaises, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
5
|
Caulk AW, Chatterjee M, Barr SJ, Contini EM. Mechanobiological considerations in colorectal stapling: Implications for technology development. Surg Open Sci 2023; 13:54-65. [PMID: 37159635 PMCID: PMC10163679 DOI: 10.1016/j.sopen.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 05/11/2023] Open
Abstract
Technological advancements in minimally invasive surgery have led to significant improvements in patient outcomes. One such technology is surgical stapling, which has evolved into a key component of many operating rooms by facilitating ease and efficacy in resection and repair of diseased or otherwise compromised tissue. Despite such advancements, adverse post-operative outcomes such as anastomotic leak remain a persistent problem in surgical stapling and its correlates (i.e., hand-sewing), most notably in low colorectal or coloanal procedures. Many factors may drive anastomotic leaks, including tissue perfusion, microbiome composition, and patient factors such as pre-existing disease. Surgical intervention induces complex acute and chronic changes to the mechanical environment of the tissue; however, roles of mechanical forces in post-operative healing remain poorly characterized. It is well known that cells sense and respond to their local mechanical environment and that dysfunction of this "mechanosensing" phenomenon contributes to a myriad of diseases. Mechanosensing has been investigated in wound healing contexts such as dermal incisional and excisional wounds and development of pressure ulcers; however, reports investigating roles of mechanical forces in adverse post-operative gastrointestinal wound healing are lacking. To understand this relationship well, it is critical to understand: 1) the intraoperative material responses of tissue to surgical intervention, and 2) the post-operative mechanobiological response of the tissue to surgically imposed forces. In this review, we summarize the state of the field in each of these contexts while highlighting areas of opportunity for discovery and innovation which can positively impact patient outcomes in minimally invasive surgery.
Collapse
|
6
|
Computational Simulation of Colorectal Cancer Biomarker Particle Mobility in a 3D Model. Molecules 2023; 28:molecules28020589. [PMID: 36677649 PMCID: PMC9865637 DOI: 10.3390/molecules28020589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Even though some methods for the detection of colorectal cancer have been used clinically, most of the techniques used do not consider the in situ detection of colorectal cancer (CRC) biomarkers, which would favor in vivo real-time monitoring of the carcinogenesis process and consequent studies of the disease. In order to give a scientific and computational framework ideal for the evaluation of diagnosis techniques based on the early detection of biomarker molecules modeled as spherical particles from the computational point of view, a computational representation of the rectum, stool and biomarker particles was developed. As consequence of the transport of stool, there was a displacement of CRC biomarker particles that entered the system as a result of the cellular apoptosis processes in polyps with a length lower than 1 cm, reaching a maximum velocity of 3.47×10-3 m/s. The biomarkers studied showed trajectories distant to regions of the polyp of origin in 1 min of simulation. The research results show that the biomarker particles for CRC respond to the variations in the movements of the stool with trajectories and speeds that depend on the location of the injury, which will allow locating the regions with the highest possibilities of catching particles through in situ measurement instruments in the future.
Collapse
|
7
|
Baidoo N, Crawley E, Knowles CH, Sanger GJ, Belai A. Total collagen content and distribution is increased in human colon during advancing age. PLoS One 2022; 17:e0269689. [PMID: 35714071 PMCID: PMC9205511 DOI: 10.1371/journal.pone.0269689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/25/2022] [Indexed: 12/26/2022] Open
Abstract
Background The effect of ageing on total collagen content of human colon has been poorly investigated. The aim of this study was to determine if ageing altered total collagen content and distribution in the human colon. Methods Macroscopically normal ascending colon was obtained at surgery from cancer patients (n = 31) without diagnosis of diverticular disease or inflammatory bowel disease. Masson’s trichrome and Picrosirius red stains were employed to identify the total collagen content and distribution within the sublayers of the colonic wall for adult (22–60 years; 6 males, 6 females) and elderly (70 – 91years; 6 males, 4 female) patients. A hydroxyproline assay evaluated the total collagen concentration for adult (30–64 years; 9 male, 6 female) and elderly (66–91 years; 8 male, 8 female) patients. Key results Histological studies showed that the percentage mean intensity of total collagen staining in the mucosa, submucosa and muscularis externa was, respectively, 14(1.9) %, 74(3.2) % and 12(1.5) % in the adult ascending colon. Compared with the adults, the total collagen fibres content was increased in the submucosa (mean intensity; 163.1 ± 11.1 vs. 124.5 ± 7.8; P < 0.05) and muscularis externa (42.5 ± 8.0 vs. 20.6 ± 2.8; P < 0.01) of the elderly patients. There was no change in collagen content of the mucosa. The total collagen concentration was increased in the elderly by 16%. Sex-related differences were not found, and data were combined for analysis. Conclusions Greater total collagen content was found in the submucosa and muscularis externa of the elderly human male and female colon. These changes may contribute to a possible loss of function with ageing.
Collapse
Affiliation(s)
- Nicholas Baidoo
- University of Roehampton, School of Life Sciences, London, United Kingdom
| | - Ellie Crawley
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Charles H. Knowles
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Gareth J. Sanger
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Abi Belai
- University of Roehampton, School of Life Sciences, London, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Patel B, Gizzi A, Hashemi J, Awakeem Y, Gregersen H, Kassab G. Biomechanical constitutive modeling of the gastrointestinal tissues: a systematic review. MATERIALS & DESIGN 2022; 217:110576. [PMID: 35935127 PMCID: PMC9351365 DOI: 10.1016/j.matdes.2022.110576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The gastrointestinal (GI) tract is a continuous channel through the body that consists of the esophagus, the stomach, the small intestine, the large intestine, and the rectum. Its primary functions are to move the intake of food for digestion before storing and ultimately expulsion of feces. The mechanical behavior of GI tissues thus plays a crucial role for GI function in health and disease. The mechanical properties are characterized by a biomechanical constitutive model, which is a mathematical representation of the relation between load and deformation in a tissue. Hence, validated biomechanical constitutive models are essential to characterize and simulate the mechanical behavior of the GI tract. Here, a systematic review of these constitutive models is provided. This review is limited to studies where a model of the strain energy function is proposed to characterize the stress-strain relation of a GI tissue. Several needs are identified for more advanced modeling including: 1) Microstructural models that provide actual structure-function relations; 2) Validation of coupled electro-mechanical models accounting for active muscle contractions; 3) Human data to develop and validate models. The findings from this review provide guidelines for using existing constitutive models as well as perspective and directions for future studies.
Collapse
Affiliation(s)
- Bhavesh Patel
- California Medical Innovations Institute, 11107 Roselle St, San Diego, CA 92121, USA
| | - Alessio Gizzi
- Department of Engineering, Campus Bio-Medico University of Rome, Via A. del Portillo 21, 00128 Rome, IT
| | - Javad Hashemi
- California Medical Innovations Institute, 11107 Roselle St, San Diego, CA 92121, USA
| | - Yousif Awakeem
- California Medical Innovations Institute, 11107 Roselle St, San Diego, CA 92121, USA
| | - Hans Gregersen
- California Medical Innovations Institute, 11107 Roselle St, San Diego, CA 92121, USA
| | - Ghassan Kassab
- California Medical Innovations Institute, 11107 Roselle St, San Diego, CA 92121, USA
| |
Collapse
|
9
|
Zhao Y, Feng B, Pierce DM. Predicting the micromechanics of embedded nerve fibers using a novel three-layered model of mouse distal colon and rectum. J Mech Behav Biomed Mater 2022; 127:105083. [PMID: 35093713 PMCID: PMC8916824 DOI: 10.1016/j.jmbbm.2022.105083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/21/2021] [Accepted: 01/08/2022] [Indexed: 11/20/2022]
Abstract
Mechanotransduction plays a central role in evoking pain from the distal colon and rectum (colorectum) where embedded sensory nerve endings convert micromechanical stresses and strains into neural action potentials. The colorectum displays strong through-thickness and longitudinal heterogeneity with collagen concentrated in the submucosa thus indicating the significant load-bearing role of this layer. The density of sensory nerve endings is also significantly the greatest in the submucosa, suggesting a nociceptive function. Thus biomechanical heterogeneity in the colorectum influences the micromechanical stresses and strains surrounding afferent endings embedded within different layers of the colorectum which is critical for the mechanotransduction of various mechanical stimuli. In this study we aimed to: (1) calibrate and validate a three-layered computational model of the colorectum; (2) predict intra-tissue distributions of stresses and strains during mechanical stimulation of the colorectum ex vivo (i.e. circumferential stretching, punctuate probing, and mucosal shearing); and (3) establish a methodology to calculate local micromechanical stresses and strains surrounding afferent nerve endings embedded in the colorectum. We established three-layered FE models that include mucosa, submucosa, and muscular layers, and incorporated residual stretches, to calculate intra-tissue stresses and strains when the colorectum undergoes the mechanical stimuli used to characterize afferent neural encoding ex vivo. Finally, we established a methodology for detailed calculations of the local micromechanical stresses and strains surrounding afferent endings embedded in the colorectum and demonstrated this with a representative example. Our novel methodologies will bridge the existing neurophysiological and biomechanical evidence from experiments to advance our mechanistic understanding of colorectal mechanotransduction.
Collapse
Affiliation(s)
- Yunmei Zhao
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - David M Pierce
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
10
|
Xi W, Saleh J, Yamada A, Tomba C, Mercier B, Janel S, Dang T, Soleilhac M, Djemat A, Wu H, Romagnolo B, Lafont F, Mège RM, Chen Y, Delacour D. Modulation of designer biomimetic matrices for optimized differentiated intestinal epithelial cultures. Biomaterials 2022; 282:121380. [DOI: 10.1016/j.biomaterials.2022.121380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 12/22/2022]
|
11
|
Jung SM, Kim S. In vitro Models of the Small Intestine for Studying Intestinal Diseases. Front Microbiol 2022; 12:767038. [PMID: 35058894 PMCID: PMC8765704 DOI: 10.3389/fmicb.2021.767038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
The small intestine is a digestive organ that has a complex and dynamic ecosystem, which is vulnerable to the risk of pathogen infections and disorders or imbalances. Many studies have focused attention on intestinal mechanisms, such as host–microbiome interactions and pathways, which are associated with its healthy and diseased conditions. This review highlights the intestine models currently used for simulating such normal and diseased states. We introduce the typical models used to simulate the intestine along with its cell composition, structure, cellular functions, and external environment and review the current state of the art for in vitro cell-based models of the small intestine system to replace animal models, including ex vivo, 2D culture, organoid, lab-on-a-chip, and 3D culture models. These models are described in terms of their structure, composition, and co-culture availability with microbiomes. Furthermore, we discuss the potential application for the aforementioned techniques to these in vitro models. The review concludes with a summary of intestine models from the viewpoint of current techniques as well as their main features, highlighting potential future developments and applications.
Collapse
Affiliation(s)
- Sang-Myung Jung
- Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea
| | - Seonghun Kim
- Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, South Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|
12
|
Bhattarai A, Kowalczyk W, Tran TN. A literature review on large intestinal hyperelastic constitutive modeling. Clin Biomech (Bristol, Avon) 2021; 88:105445. [PMID: 34416632 DOI: 10.1016/j.clinbiomech.2021.105445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/29/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
Impacts, traumas and strokes are spontaneously life-threatening, but chronic symptoms strangle patient every day. Colorectal tissue mechanics in such chronic situations not only regulates the physio-psychological well-being of the patient, but also confirms the level of comfort and post-operative clinical outcomes. Numerous uniaxial and multiaxial tensile experiments on healthy and affected samples have evidenced significant differences in tissue mechanical behavior and strong colorectal anisotropy across each layer in thickness direction and along the length. Furthermore, this study reviewed various forms of passive constitutive models for the highly fibrous colorectal tissue ranging from the simplest linearly elastic and the conventional isotropic hyperelastic to the most sophisticated second harmonic generation image based anisotropic mathematical formulation. Under large deformation, the isotropic description of tissue mechanics is unequivocally ineffective which demands a microstructural based tissue definition. Therefore, the information collected in this review paper would present the current state-of-the-art in colorectal biomechanics and profoundly serve as updated computational resources to develop a sophisticated characterization of colorectal tissues.
Collapse
Affiliation(s)
- Aroj Bhattarai
- Department of Orthopaedic Surgery, University of Saarland, Germany
| | | | - Thanh Ngoc Tran
- Department of Orthopaedic Surgery, University of Saarland, Germany.
| |
Collapse
|
13
|
Nagaraja S, Leichsenring K, Ambati M, De Lorenzis L, Böl M. On a phase-field approach to model fracture of small intestine walls. Acta Biomater 2021; 130:317-331. [PMID: 34119714 DOI: 10.1016/j.actbio.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
We address anisotropic elasticity and fracture in small intestine walls (SIWs) with both experimental and computational methods. Uniaxial tension experiments are performed on porcine SIW samples with varying alignments and quantify their nonlinear elastic anisotropic behavior. Fracture experiments on notched SIW strips reveal a high sensitivity of the crack propagation direction and the failure stress on the tissue orientation. From a modeling point of view, the observed anisotropic elastic response is studied with a continuum mechanical model stemming from a strain energy density with a neo-Hookean component and an anisotropic component with four families of fibers. Fracture is addressed with the phase-field approach, featuring two-fold anisotropy in the fracture toughness. Elastic and fracture model parameters are calibrated based on the experimental data, using the maximum and minimum limits of the experimental stress-stretch data set. A very good agreement between experimental data and computational results is obtained, the role of anisotropy being effectively captured by the proposed model in both the elastic and the fracture behavior. STATEMENT OF SIGNIFICANCE: This article reports a comprehensive experimental data set on the mechanical failure behavior of small intestinal tissue, and presents the corresponding protocols for preparing and testing the samples. On the one hand, the results of this study contribute to the understanding of small intestine mechanics and thus to understanding of load transfer mechanisms inside the tissue. On the other hand, these results are used as input for a phase-field modelling approach, presented in this article. The presented model can reproduce the mechanical failure behavior of the small intestine in an excellent way and is thus a promising tool for the future mechanical description of diseased small intestinal tissue.
Collapse
|
14
|
Zan P, Ding Q, Yang B, Zhang G, Xue Y, Zhao Y. Research on Biomechanical Compatibility for the Artificial Anal Sphincter Based on Improved Actuator. J Med Device 2021. [DOI: 10.1115/1.4050659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
Anal incontinence, also known as fecal incontinence, refers to the loss of the body's ability to accumulate and control the liquid, solid, and gas contents in the rectum, increasing the frequency of bowel movements. It is a symptom of defecation disorders. The artificial anal sphincter provides a new solution for clinical treatment. In this paper, in order to solve the problem of biomechanical compatibility of the actuator of the artificial anal sphincter system, the original actuator was improved. The model of the rectum and the actuator was constructed by ANSYS. The mechanical finite element analysis of the clamping mechanism was carried out by simulating sphincter behavior, and the displacement cloud diagram and stress cloud diagram of the clamping rectum were obtained. in vitro experiments were carried out using pig intestine to simulate the rectum, which verified the effectiveness of the actuator. The results of the experiment show that the successful rate of holding the rectum reached 96% under the condition of ensuring the normal blood supply to the rectum. It fully proves that the actuator has good biomechanical compatibility.
Collapse
Affiliation(s)
- Peng Zan
- School of Mechatronics Engineering and Automation, Shanghai Key Laboratory of Power Station Automation Technology, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Qiao Ding
- School of Mechatronics Engineering and Automation, Shanghai Key Laboratory of Power Station Automation Technology, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Banghua Yang
- School of Mechatronics Engineering and Automation, Shanghai Key Laboratory of Power Station Automation Technology, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Guofu Zhang
- School of Mechatronics Engineering and Automation, Shanghai Key Laboratory of Power Station Automation Technology, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yingjie Xue
- School of Mechatronics Engineering and Automation, Shanghai Key Laboratory of Power Station Automation Technology, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yutong Zhao
- School of Mechatronics Engineering and Automation, Shanghai Key Laboratory of Power Station Automation Technology, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
15
|
Malijauskaite S, Connolly S, Newport D, McGourty K. Gradients in the in vivo intestinal stem cell compartment and their in vitro recapitulation in mimetic platforms. Cytokine Growth Factor Rev 2021; 60:76-88. [PMID: 33858768 DOI: 10.1016/j.cytogfr.2021.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Intestinal tissue, and specifically its mucosal layer, is a complex and gradient-rich environment. Gradients of soluble factor (BMP, Noggin, Notch, Hedgehog, and Wnt), insoluble extracellular matrix proteins (laminins, collagens, fibronectin, and their cognate receptors), stromal stiffness, oxygenation, and sheer stress induced by luminal fluid flow at the crypt-villus axis controls and supports healthy intestinal tissue homeostasis. However, due to current technological challenges, very few of these features have so far been included in in vitro intestinal tissue mimetic platforms. In this review, the tightly defined and dynamic microenvironment of the intestinal tissue is presented in detail. Additionally, the authors introduce the current state-of-the-art intestinal tissue mimetic platforms, as well as the design drawbacks and challenges they face while attempting to capture the complexity of the intestinal tissue's physiology. Finally, the compositions of an "idealized" mimetic system is presented to guide future developmental efforts.
Collapse
Affiliation(s)
- Sigita Malijauskaite
- Dept. of Chemical Sciences, University of Limerick, Limerick, Ireland; Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Sinead Connolly
- Bernal Institute, University of Limerick, Limerick, Ireland; School of Engineering, University of Limerick, Limerick, Ireland.
| | - David Newport
- Bernal Institute, University of Limerick, Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Limerick, Ireland; School of Engineering, University of Limerick, Limerick, Ireland.
| | - Kieran McGourty
- Dept. of Chemical Sciences, University of Limerick, Limerick, Ireland; Bernal Institute, University of Limerick, Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Limerick, Ireland.
| |
Collapse
|
16
|
Variation of Passive Biomechanical Properties of the Small Intestine along Its Length: Microstructure-Based Characterization. Bioengineering (Basel) 2021; 8:bioengineering8030032. [PMID: 33652760 PMCID: PMC7996941 DOI: 10.3390/bioengineering8030032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
Multiaxial testing of the small intestinal wall is critical for understanding its biomechanical properties and defining material models, but limited data and material models are available. The aim of the present study was to develop a microstructure-based material model for the small intestine and test whether there was a significant variation in the passive biomechanical properties along the length of the organ. Rat tissue was cut into eight segments that underwent inflation/extension testing, and their nonlinearly hyper-elastic and anisotropic response was characterized by a fiber-reinforced model. Extensive parametric analysis showed a non-significant contribution to the model of the isotropic matrix and circumferential-fiber family, leading also to severe over-parameterization. Such issues were not apparent with the reduced neo-Hookean and (axial and diagonal)-fiber family model, that provided equally accurate fitting results. Absence from the model of either the axial or diagonal-fiber families led to ill representations of the force- and pressure-diameter data, respectively. The primary direction of anisotropy, designated by the estimated orientation angle of diagonal-fiber families, was about 35° to the axial direction, corroborating prior microscopic observations of submucosal collagen-fiber orientation. The estimated model parameters varied across and within the duodenum, jejunum, and ileum, corroborating histologically assessed segmental differences in layer thicknesses.
Collapse
|
17
|
Zhao Y, Siri S, Feng B, Pierce DM. Computational Modeling of Mouse Colorectum Capturing Longitudinal and Through-thickness Biomechanical Heterogeneity. J Mech Behav Biomed Mater 2021; 113:104127. [PMID: 33125950 PMCID: PMC8053306 DOI: 10.1016/j.jmbbm.2020.104127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 09/03/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022]
Abstract
Mechanotransduction, the encoding of local mechanical stresses and strains at sensory endings into neural action potentials at the viscera, plays a critical role in evoking visceral pain, e.g., in the distal colon and rectum (colorectum). The wall of the colorectum is structurally heterogeneous, including two major composites: the inner consists of muscular and submucosal layers, and the outer consists of circular muscular, intermuscular, longitudinal muscular, and serosal layers. In fact the colorectum presents biomechanical heterogenity across both the longitudinal and through-thickness directions thus highlighting the differential roles of sensory nerve endings within different regions of the colorectum in visceral mechanotransduction. We determined constitutive models and model parameters for individual layers of the colorectum from three longitudinal locations (colonic, intermediate, and distal) using nonlinear optimization to fit our experimental results from biaxial extension tests on layer-separated colorectal tissues (mouse model, 7×7 mm2, Siri et al., Am. J. Physiol. Gastrointest. Liver Physiol. 316, G473-G481 and 317, G349-G358), and quantified the thicknesses of the layers. In this study we also quantified the residual stretches stemming from separating colorectal specimens into inner and outer composites and we completed new pressure-diameter mechanical testing to provide an additional validation case. We implemented the constitutive equations and created two-layered, 3-D finite element models using FEBio (University of Utah), and incorporated the residual stretches. We validated the modeling framework by comparing FE-predicted results for both biaxial extension testing of bulk specimens of colorectum and pressure-diameter testing of bulk segments against corresponding experimental results independent of those used in our model fitting. We present the first theoretical framework to simulate the biomechanics of distal colorectum, including both longitudinal and through-thickness heterogeneity, based on constitutive modeling of biaxial extension tests of colon tissues from mice. Our constitutive models and modeling framework facilitate analyses of both fundamental questions (e.g., the impact of organ/tissue biomechanics on mechanotransduction of the sensory nerve endings, structure-function relationships, and growth and remodeling in health and disease) and specific applications (e.g., device design, minimally invasive surgery, and biomedical research).
Collapse
Affiliation(s)
- Y Zhao
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - S Siri
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - B Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - D M Pierce
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
18
|
Zhao Y, Siri S, Feng B, Pierce DM. The Macro- and Micro-Mechanics of the Colon and Rectum II: Theoretical and Computational Methods. Bioengineering (Basel) 2020; 7:bioengineering7040152. [PMID: 33255522 PMCID: PMC7712199 DOI: 10.3390/bioengineering7040152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
Abnormal colorectal biomechanics and mechanotransduction associate with an array of gastrointestinal diseases, including inflammatory bowel disease, irritable bowel syndrome, diverticula disease, anorectal disorders, ileus, and chronic constipation. Visceral pain, principally evoked from mechanical distension, has a unique biomechanical component that plays a critical role in mechanotransduction, the process of encoding mechanical stimuli to the colorectum by sensory afferents. To fully understand the underlying mechanisms of visceral mechanical neural encoding demands focused attention on the macro- and micro-mechanics of colon tissue. Motivated by biomechanical experiments on the colon and rectum, increasing efforts focus on developing constitutive frameworks to interpret and predict the anisotropic and nonlinear biomechanical behaviors of the multilayered colorectum. We will review the current literature on computational modeling of the colon and rectum as well as the mechanical neural encoding by stretch sensitive afferent endings, and then highlight our recent advances in these areas. Current models provide insight into organ- and tissue-level biomechanics as well as the stretch-sensitive afferent endings of colorectal tissues yet an important challenge in modeling theory remains. The research community has not connected the biomechanical models to those of mechanosensitive nerve endings to create a cohesive multiscale framework for predicting mechanotransduction from organ-level biomechanics.
Collapse
Affiliation(s)
- Yunmei Zhao
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (Y.Z.); (S.S.); (B.F.)
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Saeed Siri
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (Y.Z.); (S.S.); (B.F.)
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (Y.Z.); (S.S.); (B.F.)
| | - David M. Pierce
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (Y.Z.); (S.S.); (B.F.)
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Correspondence:
| |
Collapse
|
19
|
The Macro- and Micro-Mechanics of the Colon and Rectum I: Experimental Evidence. Bioengineering (Basel) 2020; 7:bioengineering7040130. [PMID: 33086503 PMCID: PMC7712174 DOI: 10.3390/bioengineering7040130] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
Many lower gastrointestinal diseases are associated with altered mechanical movement and deformation of the large intestine, i.e., the colon and rectum. The leading reason for patients' visits to gastrointestinal clinics is visceral pain, which is reliably evoked by mechanical distension rather than non-mechanical stimuli such as inflammation or heating. The macroscopic biomechanics of the large intestine were characterized by mechanical tests and the microscopic by imaging the load-bearing constituents, i.e., intestinal collagen and muscle fibers. Regions with high mechanical stresses in the large intestine (submucosa and muscularis propria) coincide with locations of submucosal and myenteric neural plexuses, indicating a functional interaction between intestinal structural biomechanics and enteric neurons. In this review, we systematically summarized experimental evidence on the macro- and micro-scale biomechanics of the colon and rectum in both health and disease. We reviewed the heterogeneous mechanical properties of the colon and rectum and surveyed the imaging methods applied to characterize collagen fibers in the intestinal wall. We also discussed the presence of extrinsic and intrinsic neural tissues within different layers of the colon and rectum. This review provides a foundation for further advancements in intestinal biomechanics by synergistically studying the interplay between tissue biomechanics and enteric neurons.
Collapse
|
20
|
Sokolis DP. Alterations with age in the biomechanical behavior of human ureteral wall: Microstructure-based modeling. J Biomech 2020; 109:109940. [PMID: 32807335 DOI: 10.1016/j.jbiomech.2020.109940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/11/2020] [Accepted: 07/02/2020] [Indexed: 02/02/2023]
Abstract
The human ureters have not been thoroughly explored from the biomechanics perspective, despite the wealth of such data for other soft-tissue types. This study was motivated by the need to use relevant biomechanical data from human ureters and microstructure-based material formulations for simulations of ureteral peristalsis and stenting. Our starting choice was the four-fiber family model that has proven its validity as a descriptor of the multiaxial response of cardiovascular tissues. The degree of model complexity, required for rigorous fits to passive quasi-static pressure-diameter-force data at several axial stretches, was systematically investigated. Ureteral segments from sixteen human autopsy subjects were evaluated. A diagonal and axial family model allowed equally-good fits as the full model for all age groups and ureteral regions; considerably better than those allowed by the phenomenological Fung-type model whose root-mean-square error of fitting was three-fold greater. This reduced model mimicked the structure seen in histologic sections, namely plentiful diagonal collagen fibers in the lamina propria and axial fibers in the muscle and adventitia. The paucity of elastin fibers and mixed muscle orientation justified the use of isotropic muscle-dominated matrix with small neo-Hookean parameter values. The significantly thicker lamina propria in the lower than the upper ureter of young subjects (312 ± 27 vs. 232 ± 26 μm; mean ± standard error) corroborated the significant regional differences in diagonal-fiber family parameter values. The significant muscle thickening with age (upper ureter: 373 ± 48 vs. 527 ± 67 μm; middle: 388 ± 29 vs. 575 ± 69 μm; lower: 440 ± 21 vs. 602 ± 71 μm) corroborated the significant age-related increase in axial-fiber family parameter values.
Collapse
Affiliation(s)
- Dimitrios P Sokolis
- Laboratory of Biomechanics, Center of Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
21
|
Computational analysis of mechanical stress in colonic diverticulosis. Sci Rep 2020; 10:6014. [PMID: 32265489 PMCID: PMC7138845 DOI: 10.1038/s41598-020-63049-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Diverticulosis results from the development of pouch-like structures, called diverticula, over the colon. The etiology of the disease is poorly understood resulting in a lack of effective treatment approaches. It is well known that mechanical stress plays a major role in tissue remodeling, yet its role in diverticulosis has not been studied. Here, we used computational mechanics to investigate changes in stress distribution engendered over the colon tissue by the presence of a pouch-like structure. The objectives of the study were twofold: (1) observe how stress distribution changes around a single pouch and (2) evaluate how stress elevation correlates with the size of the pouch. Results showed that high stresses are concentrated around the neck of a pouch, and their values and propagation increase with the size of the pouch neck rather than the pouch surface area. These findings suggest that stress distribution may change in diverticulosis and a vicious cycle may occur where pouch size increases due to stress elevation, which in turn elevates stress further and so on. Significant luminal pressure reduction would be necessary to maintain stress at normal level according to our results and therapeutic approaches aimed directly at reducing stress should rather be sought after.
Collapse
|
22
|
Feng B, Guo T. Visceral pain from colon and rectum: the mechanotransduction and biomechanics. J Neural Transm (Vienna) 2019; 127:415-429. [PMID: 31598778 DOI: 10.1007/s00702-019-02088-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/28/2019] [Indexed: 12/14/2022]
Abstract
Visceral pain is the cardinal symptom of functional gastrointestinal (GI) disorders such as the irritable bowel syndrome (IBS) and the leading cause of patients' visit to gastroenterologists. IBS-related visceral pain usually arises from the distal colon and rectum (colorectum), an intraluminal environment that differs greatly from environment outside the body in chemical, biological, thermal, and mechanical conditions. Accordingly, visceral pain is different from cutaneous pain in several key psychophysical characteristics, which likely underlies the unsatisfactory management of visceral pain by drugs developed for other types of pain. Colorectal visceral pain is usually elicited from mechanical distension/stretch, rather than from heating, cutting, pinching, or piercing that usually evoke pain from the skin. Thus, mechanotransduction, i.e., the encoding of colorectal mechanical stimuli by sensory afferents, is crucial to the underlying mechanisms of GI-related visceral pain. This review will focus on colorectal mechanotransduction, the process of converting colorectal mechanical stimuli into trains of action potentials by the sensory afferents to inform the central nervous system (CNS). We will summarize neurophysiological studies on afferent encoding of colorectal mechanical stimuli, highlight recent advances in our understanding of colorectal biomechanics that plays critical roles in mechanotransduction, and review studies on mechano-sensitive ion channels in colorectal afferents. This review calls for focused attention on targeting colorectal mechanotransduction as a new strategy for managing visceral pain, which can also have an added benefit of limited CNS side effects, because mechanotransduction arises from peripheral organs.
Collapse
Affiliation(s)
- Bin Feng
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269-3247, USA.
| | - Tiantian Guo
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269-3247, USA
| |
Collapse
|
23
|
Henninger HB, Ellis BJ, Scott SA, Weiss JA. Contributions of elastic fibers, collagen, and extracellular matrix to the multiaxial mechanics of ligament. J Mech Behav Biomed Mater 2019; 99:118-126. [PMID: 31351401 DOI: 10.1016/j.jmbbm.2019.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/29/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022]
Abstract
Elastin is a biopolymer known to provide resilience to extensible biologic tissues through elastic recoil of its highly crosslinked molecular network. Recent studies have demonstrated that elastic fibers in ligament provide significant resistance to tensile and especially shear stress. We hypothesized that the biomechanics of elastic fibers in ligament could be described as transversely isotropic with both fiber and matrix components in a multi-material mixture. Similarly, we hypothesized that material coefficients derived using the experimental tensile response could be used to predict the experimental shear response. Experimental data for uniaxial and transverse tensile testing of control tissues, and those enzymatically digested to disrupt elastin, were used as inputs to a material coefficient optimization algorithm. An additive decomposition of the strain energy was used to model the total stress as the sum of contributions from collagen fibers, elastic fibers, elastic matrix, and ground substance matrix. Matrices were modeled as isotropic Veronda-Westmann hyperelastic materials, whereas fiber families were modeled as piecewise exponential-linear hyperelastic materials. Optimizations provided excellent fits to the tensile experimental data for each treatment case and material model. Given the disparity in magnitude of stresses between longitudinal and transverse/shear tests and agreement between models and experiments, the hypothesized transversely isotropic material of elastin symmetry was supported. In addition, the coefficients derived from uniaxial and transverse tensile experiments provided reasonable predictions of the experimental behavior during shear deformation. The magnitudes of coefficients representing stress, nonlinearity, and stiffness supported the experimental evidence that elastic fibers dominate the low strain tensile and shear response of ligament. These findings demonstrate that the additive decomposition modeling strategy can represent each discrete fiber and matrix constituent and their relative contribution to the material response of the tissue. These experimental data and the validated constitutive model provide essential inputs and a framework to refine existing computational models of ligament and tendon mechanics by explicitly representing the mechanical contributions of elastic fibers.
Collapse
Affiliation(s)
- Heath B Henninger
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA; Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
| | - Benjamin J Ellis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | - Sara A Scott
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA; Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
24
|
Siri S, Maier F, Chen L, Santos S, Pierce DM, Feng B. Differential biomechanical properties of mouse distal colon and rectum innervated by the splanchnic and pelvic afferents. Am J Physiol Gastrointest Liver Physiol 2019; 316:G473-G481. [PMID: 30702901 PMCID: PMC6483024 DOI: 10.1152/ajpgi.00324.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Visceral pain is one of the principal complaints of patients with irritable bowel syndrome, and this pain is reliably evoked by mechanical distension and stretch of distal colon and rectum (colorectum). This study focuses on the biomechanics of the colorectum that could play critical roles in mechanical neural encoding. We harvested the distal 30 mm of the colorectum from mice, divided evenly into three 10-mm-long segments (colonic, intermediate and rectal), and conducted biaxial mechanical stretch tests and opening-angle measurements for each tissue segment. In addition, we determined the collagen fiber orientations and contents across the thickness of the colorectal wall by nonlinear imaging via second harmonic generation (SHG). Our results reveal a progressive increase in tissue compliance and prestress from colonic to rectal segments, which supports prior electrophysiological findings of distinct mechanical neural encodings by afferents in the lumbar splanchnic nerves (LSN) and pelvic nerves (PN) that dominate colonic and rectal innervations, respectively. The colorectum is significantly more viscoelastic in the circumferential direction than in the axial direction. In addition, our SHG results reveal a rich collagen network in the submucosa and orients approximately ±30° to the axial direction, consistent with the biaxial test results presenting almost twice the stiffness in axial direction versus the circumferential direction. Results from current biomechanical study strongly indicate the prominent roles of local tissue biomechanics in determining the differential mechanical neural encoding functions in different regions of the colorectum. NEW & NOTEWORTHY Mechanical distension and stretch-not heat, cutting, or pinching-reliably evoke pain from distal colon and rectum. We report different local mechanics along the longitudinal length of the colorectum, which is consistent with the existing literature on distinct mechanotransduction of afferents innervating proximal and distal regions of the colorectum. This study draws attention to local mechanics as a potential determinant factor for mechanical neural encoding of the colorectum, which is crucial in visceral nociception.
Collapse
Affiliation(s)
- Saeed Siri
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - Franz Maier
- 2Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut
| | - Longtu Chen
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - Stephany Santos
- 2Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut
| | - David M. Pierce
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut,2Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut
| | - Bin Feng
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
25
|
Devarasetty M, Skardal A, Cowdrick K, Marini F, Soker S. Bioengineered Submucosal Organoids for In Vitro Modeling of Colorectal Cancer. Tissue Eng Part A 2018; 23:1026-1041. [PMID: 28922975 DOI: 10.1089/ten.tea.2017.0397] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The physical nature of the tumor microenvironment significantly impacts tumor growth, invasion, and response to drugs. Most in vitro tumor models are designed to study the effects of extracellular matrix (ECM) stiffness on tumor cells, while not addressing the effects of ECM's specific topography. In this study, we bioengineered submucosal organoids, using primary smooth muscle cells embedded in collagen I hydrogel, which produce aligned and parallel fiber topography similar to those found in vivo. The fiber organization in the submucosal organoids induced an epithelial phenotype in spheroids of colorectal carcinoma cells (HCT-116), which were embedded within the organoids. Conversely, unorganized fibers drove a mesenchymal phenotype in the tumor cells. HCT-116 cells in organoids with aligned fibers showed no WNT signaling activation, and conversely, WNT signaling activation was observed in organoids with disrupted fibers. Consequently, HCT-116 cells in the aligned condition exhibited decreased cellular proliferation and reduced sensitivity to 5-fluorouracil chemotherapeutic treatment compared to cells in the unorganized construct. Collectively, the results establish a unique colorectal tumor organoid model to study the effects of stromal topography on cancer cell phenotype, proliferation, and ultimately, chemotherapeutic susceptibility. In the future, such organoids can utilize patient-derived cells for precision medicine applications.
Collapse
Affiliation(s)
- Mahesh Devarasetty
- 1 Wake Forest Institute for Regenerative Medicine , Wake Forest School of Medicine, Winston-Salem, North Carolina.,2 Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Aleksander Skardal
- 1 Wake Forest Institute for Regenerative Medicine , Wake Forest School of Medicine, Winston-Salem, North Carolina.,2 Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine , Winston-Salem, North Carolina.,3 Comprehensive Cancer Center at Wake Forest Baptist Medical , Winston-Salem, North Carolina.,4 Department of Cancer Biology, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Kyle Cowdrick
- 1 Wake Forest Institute for Regenerative Medicine , Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Frank Marini
- 1 Wake Forest Institute for Regenerative Medicine , Wake Forest School of Medicine, Winston-Salem, North Carolina.,3 Comprehensive Cancer Center at Wake Forest Baptist Medical , Winston-Salem, North Carolina.,4 Department of Cancer Biology, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Shay Soker
- 1 Wake Forest Institute for Regenerative Medicine , Wake Forest School of Medicine, Winston-Salem, North Carolina.,2 Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine , Winston-Salem, North Carolina.,3 Comprehensive Cancer Center at Wake Forest Baptist Medical , Winston-Salem, North Carolina.,4 Department of Cancer Biology, Wake Forest School of Medicine , Winston-Salem, North Carolina
| |
Collapse
|
26
|
Wang Y, Kim R, Hinman SS, Zwarycz B, Magness ST, Allbritton NL. Bioengineered Systems and Designer Matrices That Recapitulate the Intestinal Stem Cell Niche. Cell Mol Gastroenterol Hepatol 2018; 5:440-453.e1. [PMID: 29675459 PMCID: PMC5904029 DOI: 10.1016/j.jcmgh.2018.01.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
The relationship between intestinal stem cells (ISCs) and the surrounding niche environment is complex and dynamic. Key factors localized at the base of the crypt are necessary to promote ISC self-renewal and proliferation, to ultimately provide a constant stream of differentiated cells to maintain the epithelial barrier. These factors diminish as epithelial cells divide, migrate away from the crypt base, differentiate into the postmitotic lineages, and end their life span in approximately 7 days when they are sloughed into the intestinal lumen. To facilitate the rapid and complex physiology of ISC-driven epithelial renewal, in vivo gradients of growth factors, extracellular matrix, bacterial products, gases, and stiffness are formed along the crypt-villus axis. New bioengineered tools and platforms are available to recapitulate various gradients and support the stereotypical cellular responses associated with these gradients. Many of these technologies have been paired with primary small intestinal and colonic epithelial cells to re-create select aspects of normal physiology or disease states. These biomimetic platforms are becoming increasingly sophisticated with the rapid discovery of new niche factors and gradients. These advancements are contributing to the development of high-fidelity tissue constructs for basic science applications, drug screening, and personalized medicine applications. Here, we discuss the direct and indirect evidence for many of the important gradients found in vivo and their successful application to date in bioengineered in vitro models, including organ-on-chip and microfluidic culture devices.
Collapse
Key Words
- 3D, 3-dimensional
- BMP, Bone morphogenetic protein
- Bioengineering
- ECM, extracellular matrix
- Eph, erythropoietin-producing human hepatocellular receptor
- Ephrin, Eph family receptor interacting proteins
- Gradients
- IFN-γ, interferon-γ
- ISC, intestinal stem cell
- Intestinal Epithelial Cells
- NO, nitric oxide
- SFCA, short-chain fatty acids
- Stem Cell Niche
- TA, transit amplifying
- Wnt, wingless-related integration site
Collapse
Affiliation(s)
- Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Raehyun Kim
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina
| | - Samuel S. Hinman
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Bailey Zwarycz
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - Scott T. Magness
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina,Department of Medicine, University of North Carolina, Chapel Hill, North Carolina,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina,Scott T. Magness, PhD, Department of Biomedical Engineering, 111 Mason Farm Road, Room 4337 Medical Biomolecular Research Building, University of North Carolina, Chapel Hill, North Carolina 27599. fax: (919) 966-2284.
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina,Correspondence Address correspondence to: Nancy L. Allbritton, MD, PhD, Department of Biomedical Engineering, Chapman Hall, Room 241, University of North Carolina, Chapel Hill, North Carolina 27599. fax: (919) 966-2963.
| |
Collapse
|
27
|
Sokolis DP. Experimental study and biomechanical characterization for the passive small intestine: Identification of regional differences. J Mech Behav Biomed Mater 2017; 74:93-105. [DOI: 10.1016/j.jmbbm.2017.05.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/11/2017] [Accepted: 05/19/2017] [Indexed: 12/16/2022]
|
28
|
Liu Y, Zhao J, Liao D, Wang G, Gregersen H. Intestinal Mechanomorphological Remodeling Induced by Long-Term Low-Fiber Diet in Rabbits. Ann Biomed Eng 2017; 45:2867-2878. [DOI: 10.1007/s10439-017-1922-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 09/11/2017] [Indexed: 12/23/2022]
|
29
|
Patel B, Chen H, Ahuja A, Krieger JF, Noblet J, Chambers S, Kassab GS. Constitutive modeling of the passive inflation-extension behavior of the swine colon. J Mech Behav Biomed Mater 2017; 77:176-186. [PMID: 28922650 DOI: 10.1016/j.jmbbm.2017.08.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022]
Abstract
In the present work, we propose the first structural constitutive model of the passive mechanical behavior of the swine colon that is validated against physiological inflation-extension tests, and accounts for residual strains. Sections from the spiral colon and the descending colon were considered to investigate potential regional variability. We found that the proposed constitutive model accurately captures the passive inflation-extension behavior of both regions of the swine colon (coefficient of determination R2=0.94±0.02). The model revealed that the circumferential muscle layer does not provide significant mechanical support under passive conditions and the circumferential load is actually carried by the submucosa layer. The stress analysis permitted by the model showed that the colon tissue can distend up to 30% radially without significant increase in the wall stresses suggesting a highly compliant behavior of the tissue. This is in-line with the requirement for the tissue to easily accommodate variable quantities of fecal matter. The analysis also showed that the descending colon is significantly more compliant than the spiral colon, which is relevant to the storage function of the descending colon. Histological analysis showed that the swine colon possesses a four-layer structure similar to the human colon, where the longitudinal muscle layer is organized into bands called taeniae, a typical feature of the human colon. The model and the estimated parameters can be used in a Finite Element framework to conduct simulations with realistic geometry of the swine colon. The resulting computational model will provide a foundation for virtual assessment of safe and effective devices for the treatment of colonic diseases.
Collapse
Affiliation(s)
- Bhavesh Patel
- California Medical Innovations Institute, 11107 Roselle st., San Diego, CA 92121, United States
| | - Huan Chen
- California Medical Innovations Institute, 11107 Roselle st., San Diego, CA 92121, United States
| | - Aashish Ahuja
- California Medical Innovations Institute, 11107 Roselle st., San Diego, CA 92121, United States
| | | | | | | | - Ghassan S Kassab
- California Medical Innovations Institute, 11107 Roselle st., San Diego, CA 92121, United States.
| |
Collapse
|
30
|
Chen H, Kassab GS. Microstructure-based constitutive model of coronary artery with active smooth muscle contraction. Sci Rep 2017; 7:9339. [PMID: 28839149 PMCID: PMC5571218 DOI: 10.1038/s41598-017-08748-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/18/2017] [Indexed: 12/27/2022] Open
Abstract
Currently, there is no full three-dimensional (3D) microstructural mechanical model of coronary artery based on measured microstructure including elastin, collagen and smooth muscle cells. Many structural models employ mean values of vessel microstructure, rather than continuous distributions of microstructure, to predict the mechanical properties of blood vessels. Although some models show good agreements on macroscopic vessel responses, they result in a lower elastin stiffness and earlier collagen recruitment. Hence, a full microstructural constitutive model is required for better understanding vascular biomechanics in health and disease. Here, a 3D microstructural model that accounts for all constituent microstructure is proposed to predict macroscopic and microscopic responses of coronary arteries. Coronary artery microstructural parameters were determined based on previous statistical measurements while mechanical testing of arteries (n = 5) were performed in this study to validate the computational predictions. The proposed model not only provides predictions of active and passive stress distributions of vessel wall, but also enables reliable estimations of material parameters of individual fibers and cells and thus predicts microstructural stresses. The validated microstructural model of coronary artery sheds light on vascular biomechanics and can be extend to diseased vessels for better understanding of initiation, progression and clinical treatment of vascular disease.
Collapse
Affiliation(s)
- H Chen
- California Medical Innovations Institute, Inc., San Diego, CA92121, USA
| | - G S Kassab
- California Medical Innovations Institute, Inc., San Diego, CA92121, USA.
| |
Collapse
|
31
|
Venkatasubramanian PB, Toydemir G, de Wit N, Saccenti E, Martins Dos Santos VAP, van Baarlen P, Wells JM, Suarez-Diez M, Mes JJ. Use of Microarray Datasets to generate Caco-2-dedicated Networks and to identify Reporter Genes of Specific Pathway Activity. Sci Rep 2017; 7:6778. [PMID: 28755007 PMCID: PMC5533711 DOI: 10.1038/s41598-017-06355-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/09/2017] [Indexed: 12/30/2022] Open
Abstract
Intestinal epithelial cells, like Caco-2, are commonly used to study the interaction between food, other luminal factors and the host, often supported by microarray analysis to study the changes in gene expression as a result of the exposure. However, no compiled dataset for Caco-2 has ever been initiated and Caco-2-dedicated gene expression networks are barely available. Here, 341 Caco-2-specific microarray samples were collected from public databases and from in-house experiments pertaining to Caco-2 cells exposed to pathogens, probiotics and several food compounds. Using these datasets, a gene functional association network specific for Caco-2 was generated containing 8937 nodes 129711 edges. Two in silico methods, a modified version of biclustering and the new Differential Expression Correlation Analysis, were developed to identify Caco-2-specific gene targets within a pathway of interest. These methods were subsequently applied to the AhR and Nrf2 signalling pathways and altered expression of the predicted target genes was validated by qPCR in Caco-2 cells exposed to coffee extracts, known to activate both AhR and Nrf2 pathways. The datasets and in silico method(s) to identify and predict responsive target genes can be used to more efficiently design experiments to study Caco-2/intestinal epithelial-relevant biological processes.
Collapse
Affiliation(s)
| | - Gamze Toydemir
- Alanya Alaaddin Keykubat University, Faculty of Engineering, Food Engineering Department, Kestel-Alanya, 07450, Antalya, Turkey
| | - Nicole de Wit
- Wageningen University & Research, Food & Biobased Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Edoardo Saccenti
- Wageningen University & Research, Systems and Synthetic Biology, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Vitor A P Martins Dos Santos
- Wageningen University & Research, Systems and Synthetic Biology, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- LifeGlimmerGmbH, Markelstrasse 38, 12163, Berlin, Germany
| | - Peter van Baarlen
- Wageningen University & Research, Host-Microbe Interactomics, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Jerry M Wells
- Wageningen University & Research, Host-Microbe Interactomics, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Wageningen University & Research, Systems and Synthetic Biology, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Jurriaan J Mes
- Wageningen University & Research, Food & Biobased Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
| |
Collapse
|
32
|
Sokolis DP, Dimitriou CA, Lelovas P, Kostomitsopoulos NG, Dontas IA. Effect of ovariectomy and Sideritis euboea extract administration on large artery mechanics, morphology, and structure in middle-aged rats. Biorheology 2017; 54:1-23. [PMID: 28339395 DOI: 10.3233/bir-16113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Arterial function is regulated by estrogen, but no consistent pattern of arterial mechanical remodeling in response to depleted estrogen levels is available. OBJECTIVE To examine long-term effects of ovariectomy (OVX) on the mechanical properties, morphology, and histological structure of the carotid artery in middle-aged rats and a potentially protective effect of Sideritis euboea extract (SID), commonly consumed as "mountain tea". METHODS 10-month-old female Wistar rats were allocated into control (sham-operated), OVX, OVX+SID, and OVX+MALT (maltodextrin; excipient used for dilution of SID) groups. They were sacrificed after 6 months and their carotid arteries were submitted to inflation/extension tests and to dimensional and histological evaluation. RESULTS Remodeling in OVX rats was characterized by a decreased in situ axial extension ratio, along with increased opening angle, thickness, and area of the vessel wall and of its medial layer, but unchanged lumen diameter. Compositional changes involved increased elastin/collagen densities. Characterization by the "four-fiber" microstructure-motivated model revealed similar in situ biaxial response of carotid arteries in OVX and control rats. CONCLUSIONS Carotid artery remodeling in OVX rats was largely consistent with hypertensive remodeling, despite the minor arterial pressure changes found, and was not altered by administration of SID, despite previous evidence of its osteo-protective effect.
Collapse
Affiliation(s)
- Dimitrios P Sokolis
- Laboratory of Biomechanics, Center of Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Constantinos A Dimitriou
- Laboratory of Biomechanics, Center of Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Pavlos Lelovas
- Laboratory for Research of the Musculoskeletal System, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos G Kostomitsopoulos
- Laboratory Animal Facility, Center of Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ismene A Dontas
- Laboratory for Research of the Musculoskeletal System, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
33
|
Contribution of collagen and elastin fibers to the mechanical behavior of an abdominal connective tissue. J Mech Behav Biomed Mater 2016; 61:308-317. [DOI: 10.1016/j.jmbbm.2016.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/25/2016] [Accepted: 04/05/2016] [Indexed: 12/27/2022]
|
34
|
Sassani SG, Kakisis J, Tsangaris S, Sokolis DP. Layer-dependent wall properties of abdominal aortic aneurysms: Experimental study and material characterization. J Mech Behav Biomed Mater 2015; 49:141-61. [DOI: 10.1016/j.jmbbm.2015.04.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 12/11/2022]
|
35
|
Elasticity and geometry: a computational model of the Heineke–Mikulicz strictureplasty. Biomech Model Mechanobiol 2014; 13:1185-98. [DOI: 10.1007/s10237-014-0565-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 02/21/2014] [Indexed: 12/25/2022]
|
36
|
Koch RG, Tsamis A, D'Amore A, Wagner WR, Watkins SC, Gleason TG, Vorp DA. A custom image-based analysis tool for quantifying elastin and collagen micro-architecture in the wall of the human aorta from multi-photon microscopy. J Biomech 2014; 47:935-943. [PMID: 24524988 DOI: 10.1016/j.jbiomech.2014.01.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 01/09/2014] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
Abstract
The aorta possesses a micro-architecture that imparts and supports a high degree of compliance and mechanical strength. Alteration of the quantity and/or arrangement of the main load-bearing components of this micro-architecture--the elastin and collagen fibers--leads to mechanical, and hence functional, changes associated with aortic disease and aging. Therefore, in the future, the ability to rigorously characterize the wall fiber micro-architecture could provide insight into the complicated mechanisms of aortic wall remodeling in aging and disease. Elastin and collagen fibers can be observed using state-of-the-art multi-photon microscopy. Image-analysis algorithms have been effective at characterizing fibrous constructs using various microscopy modalities. The objective of this study was to develop a custom MATLAB-language automated image-based analysis tool to describe multiple parameters of elastin and collagen micro-architecture in human soft fibrous tissue samples using multi-photon microscopy images. Human aortic tissue samples were used to develop the code. The tool smooths, cleans and equalizes fiber intensities in the image before segmenting the fibers into a binary image. The binary image is cleaned and thinned to a fiber skeleton representation of the image. The developed software analyzes the fiber skeleton to obtain intersections, fiber orientation, concentration, porosity, diameter distribution, segment length and tortuosity. In the future, the developed custom image-based analysis tool can be used to describe the micro-architecture of aortic wall samples in a variety of conditions. While this work targeted the aorta, the software has the potential to describe the architecture of other fibrous materials, tube-like networks and connective tissues.
Collapse
Affiliation(s)
- Ryan G Koch
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alkiviadis Tsamis
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Antonio D'Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Fondazione Ri.MED, Palermo, Italy.,DICGM University of Palermo, Palermo, Italy
| | - William R Wagner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Thomas G Gleason
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
37
|
Sokolis DP. Structurally-motivated characterization of the passive pseudo-elastic response of esophagus and its layers. Comput Biol Med 2013; 43:1273-85. [DOI: 10.1016/j.compbiomed.2013.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/03/2013] [Accepted: 06/13/2013] [Indexed: 12/16/2022]
|
38
|
Sassani SG, Theofani A, Tsangaris S, Sokolis DP. Time-course of venous wall biomechanical adaptation in pressure and flow-overload: assessment by a microstructure-based material model. J Biomech 2013; 46:2451-62. [PMID: 23953505 DOI: 10.1016/j.jbiomech.2013.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/28/2013] [Accepted: 07/11/2013] [Indexed: 12/18/2022]
Abstract
Arteriovenous fistulae have been previously created by our group, through implantation of e-PTFE grafts between the carotid artery and jugular vein in healthy pigs, to gather comprehensive data on the time-course of the adapted geometry, composition, and biomechanical properties of the venous wall exposed to chronic increases in pressure and flow. The aim of this study was to mathematically assess the biomechanical adaptation of venous wall, by characterizing our previous in vitro inflation/extension testing data obtained 2, 4, and 12 weeks post-fistula, using a microstructure-based material model. Our choice for such a model considered a quadratic function for elastin with a four-fiber family term for collagen, and permitted realistic data characterization for both overloaded and control veins. As structural validation to the hemodynamically-driven differences in the material response, computerized histology was employed to quantitate the composition and orientation of collagen and elastin-fiber networks. The parameter values optimized showed marked differences among the overloaded and control veins, namely decrease in the quadratic function parameters and increase in the four-fiber family parameters. Differences among the two vein types were highlighted with respect to the underlying microstructure, namely the reduced elastin and increased collagen contents induced by pressure and flow-overload. Explicit correlations were found of the material parameters with the two basic scleroprotein contents, substantiating the material model used and the characterization findings presented. Our results are expected to improve the current understanding of the dynamics of venous adaptation under sustained pressure- and flow-overload conditions, for which data are largely unavailable and contradictory.
Collapse
Affiliation(s)
- Sofia G Sassani
- Laboratory of Biomechanics, Center for Experimental Surgery, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Laboratory of Biofluid Mechanics and Biomedical Engineering, School of Mechanical Engineering, National Technical University, Athens, Greece
| | | | | | | |
Collapse
|