1
|
Youness RA, Taha MA. Role of Ti 3AlC 2 MAX phase in regulating biodegradation and improving electrical properties of calcium silicate ceramic for bone repair applications. Sci Rep 2024; 14:25811. [PMID: 39468168 PMCID: PMC11519508 DOI: 10.1038/s41598-024-74859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Calcium silicate ceramic is a promising bioceramic for various biomedical applications, but its high biodegradation rate and low strength restrict its clinical utility. As a result, the study devised an innovative solution to address these issues by utilizing the titanium aluminum carbide phase, potentially for the first time in biological applications, in conjugation with hydroxyapatite. Then, using powder metallurgy technology, they added these phases to calcium silicate to create nanocomposites. After soaking in simulated body fluid for ten days, the produced nanocomposites were assessed for bioactivity and biodegradability using scanning electron microscopy, inductively coupled plasma-atomic emission spectroscopy, and weight loss assays. Their electrical and dielectric properties were also measured before and after soaking in the simulated body fluid solution. Furthermore, the tribo-mechanical properties of all sintered samples were measured. Interestingly, adding 40% hydroxyapatite nanoparticles to calcium silicate reduced the porosity from 12 to 6%. However, adding five vol% of the titanium aluminum carbide phase to the same sample increased the porosity to 8%. Importantly, these recorded percentages of porosity were comparable to those of compact bone porosity, which range from 5 to 13%. The addition of hydroxyapatite and titanium aluminum carbide phase significantly improved the rapid biodegradation of calcium silicate, albeit with a slight decrease in its bioactive properties, as evidenced by the incomplete surface coverage of the samples with the hydroxyapatite layer in the scanning electron microscopy images. The electrical properties of the nanocomposites were better with the addition of hydroxyapatite and titanium aluminum carbide phase, which helped the bone heal faster. The addition of a titanium aluminum carbide phase significantly improved the mechanical properties of the resulting nanocomposites. For example, the calculated values for compressive strength of all examined samples were 131, 115, 105, 147, and 135 MPa. Based on the results, the prepared samples can be used in orthopaedic and dental applications.
Collapse
Affiliation(s)
- Rasha A Youness
- Spectroscopy Department, National Research Centre, El Buhouth St, Dokki, Giza, 12622, Egypt.
| | - Mohammed A Taha
- Solid State Physics Department, National Research Centre, El Buhouth St, Dokki, Giza, 12622, Egypt.
- Pharos University in Alexandria, Canal Mahmoudiah Street, Smouha, Alexandria, Egypt.
| |
Collapse
|
2
|
Wei Y, Wang Z, Lei L, Han J, Zhong S, Yang X, Gou Z, Chen L. Appreciable biosafety, biocompatibility and osteogenic capability of 3D printed nonstoichiometric wollastonite scaffolds favorable for clinical translation. J Orthop Translat 2024; 45:88-99. [PMID: 38516038 PMCID: PMC10955556 DOI: 10.1016/j.jot.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Background Alveolar bone destruction due to periodontal disease often requires a bone graft substitute to reconstruct the anatomical structures and biological functions of the bone tissue. Despite significant advances in the development of foreign ion-doped nonstoichiometric wollastonite bioceramics (CaSiO3, nCSi) for alveolar bone regeneration over the past decade, the in vivo biosafety and osteogenesis of nCSi scaffolds remain uncertain. In this study, we developed a customized porous nCSi scaffold to investigate the in vivo biocompatibility and osteogenic properties of nCSi bioceramics. Methods Six percent Mg-doped nCSi bioceramic scaffolds were fabricated by digital light processing (DLP), and the scaffold morphology, pore architecture, compressive strength, in vitro biodegradation, and apatite-forming ability of the bioceramic scaffolds were investigated systematically. Subsequently, an alveolar bone defect rabbit model was used to evaluate the biocompatibility and osteogenic efficacy of the nCSi bioceramics. Animal weight, hematological test, blood biochemical test, wet weight of the main organs, and pathological examination of the main organs were conducted. Micro-CT and histological staining were performed to analyze the osteogenic potential of the personalized bioceramic scaffolds. Results The nCSi scaffolds exhibited appreciable initial compressive strength (>30 MPa) and mild mechanical decay over time during in vitro biodissolution. In addition, the scaffolds induced apatite remineralization in SBF. Bioceramic scaffolds have been proven to have good biocompatibility in vivo after implantation into the alveolar bone defect of rabbits. No significant effects on the hematological indices, blood biochemical parameters, organ wet weight, or organ histopathology were detected from 3 to 180 days postoperatively. The porous scaffolds exhibited strong bone regeneration capability in the alveolar bone defect model of rabbits. Micro-CT and histological examination showed effective maintenance of bone morphology in the bioceramic scaffold group; however, depressed bone tissue was observed in the control group. Conclusions Our results suggest that personalized nCSi bioceramic scaffolds can be fabricated using the DLP technique. These newly developed strong bioceramic scaffolds exhibit good biocompatibility and osteogenic capability in vivo and have excellent potential as next-generation oral implants. The translational potential of this article Tissue-engineered strategies for alveolar bone repair require a bone graft substitute with appreciable biocompatibility and osteogenic capability. This article provides a systematic investigation of the in vivo biosafety and osteogenic property of nCSi to further development of a silicate-based bioceramics materials for clinical applications.
Collapse
Affiliation(s)
- Yingming Wei
- Department of Oral Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, 310008, China
| | - Zhongxiu Wang
- Department of Oral Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, 310008, China
| | - Lihong Lei
- Department of Oral Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, 310008, China
| | - Jiayin Han
- Department of Oral Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, 310008, China
| | - Shuaiqi Zhong
- Department of Oral Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, 310008, China
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, 310058, China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, 310058, China
| | - Lili Chen
- Department of Oral Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, 310008, China
| |
Collapse
|
3
|
Lin H, Zhang L, Zhang Q, Wang Q, Wang X, Yan G. Mechanism and application of 3D-printed degradable bioceramic scaffolds for bone repair. Biomater Sci 2023; 11:7034-7050. [PMID: 37782081 DOI: 10.1039/d3bm01214j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Bioceramics have attracted considerable attention in the field of bone repair because of their excellent osteogenic properties, degradability, and biocompatibility. To resolve issues regarding limited formability, recent studies have introduced 3D printing technology for the fabrication of bioceramic bone repair scaffolds. Nevertheless, the mechanisms by which bioceramics promote bone repair and clinical applications of 3D-printed bioceramic scaffolds remain elusive. This review provides an account of the fabrication methods of 3D-printed degradable bioceramic scaffolds. In addition, the types and characteristics of degradable bioceramics used in clinical and preclinical applications are summarized. We have also highlighted the osteogenic molecular mechanisms in biomaterials with the aim of providing a basis and support for future research on the clinical applications of degradable bioceramic scaffolds. Finally, new developments and potential applications of 3D-printed degradable bioceramic scaffolds are discussed with reference to experimental and theoretical studies.
Collapse
Affiliation(s)
- Hui Lin
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Liyun Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Qiyue Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Xue Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
| | - Guangqi Yan
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Sadeghzade S, Liu J, Wang H, Li X, Cao J, Cao H, Tang B, Yuan H. Recent advances on bioactive baghdadite ceramic for bone tissue engineering applications: 20 years of research and innovation (a review). Mater Today Bio 2022; 17:100473. [PMID: 36345364 PMCID: PMC9636580 DOI: 10.1016/j.mtbio.2022.100473] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Various artificial bone graft substitutes based on ceramics have been developed over the last 20 years. Among them, calcium-silicate-based ceramics, which are osteoconductive and can attach directly to biological organs, have received great attention for bone tissue engineering applications. However, the degradation rate of calcium-silicate and bone formation is often out of balance, resulting in stress shielding (osteopenia). A new strategy to improve the drawbacks of these ceramics is incorporating trace elements such as Zn, Mg, and Zr into their lattice structures, enhancing their physical and biological properties. Recently, baghdadite (Ca3ZrSi2O9) ceramic, one of the most appealing calcium-silicate-based ceramics, has demonstrated high bioactivity, biocompatibility, biodegradability, and cell interaction. Because of its physical, mechanical, and biological properties and ability to be shaped using various fabrication techniques, baghdadite has found high potential in various biomedical applications such as coatings, fillers, cement, scaffolds, and drug delivery systems. Undoubtedly, there is a high potential for this newly developed ceramic to contribute significantly to therapies to provide a tremendous clinical outcome. This review paper aims to summarize and discuss the most relevant studies performed on baghdadite-based ceramics and composites by focusing on their behavior in vivo and in vitro.
Collapse
|
5
|
Bai R, Sun Q, He Y, Peng L, Zhang Y, Zhang L, Lu W, Deng J, Zhuang Z, Yu T, Wei Y. Ceramic Toughening Strategies for Biomedical Applications. Front Bioeng Biotechnol 2022; 10:840372. [PMID: 35330627 PMCID: PMC8940218 DOI: 10.3389/fbioe.2022.840372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/09/2022] [Indexed: 11/21/2022] Open
Abstract
Aiming at shortage of metal materials, ceramic is increasingly applied in biomedicine due to its high strength, pleasing esthetics and good biocompatibility, especially for dental restorations and implants, artificial joints, as well as synthetic bone substitutes. However, the inherent brittleness of ceramic could lead to serious complications, such as fracture and disfunction of biomedical devices, which impede their clinical applications. Herein, several toughening strategies have been summarized in this review, including reinforcing phase addition, surface modification, and manufacturing processes improvement. Doping metal and/or non-metal reinforcing fillers modifies toughness of bulk ceramic, while surface modifications, mainly coating, chemical and thermal methods, regulate toughness on the surface layer. During fabrication, optimization should be practiced in powder preparation, green forming and densification processes. Various toughening strategies utilize mechanisms involving fine-grained, stress-induced phase transformation, and microcrack toughening, as well as crack deflection, bifurcation, bridging and pull-out. This review hopes to shed light on systematic combination of different toughening strategies and mechanisms to drive progress in biomedical devices.
Collapse
Affiliation(s)
- Rushui Bai
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Qiannan Sun
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Ying He
- National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China.,Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Liying Peng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Lingyun Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Wenhsuan Lu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Jingjing Deng
- National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China.,Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zimeng Zhuang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yan Wei
- National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China.,Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
6
|
Electrochemical, Tribological and Biocompatible Performance of Electron Beam Modified and Coated Ti6Al4V Alloy. Int J Mol Sci 2021; 22:ijms22126369. [PMID: 34198700 PMCID: PMC8232333 DOI: 10.3390/ijms22126369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 12/30/2022] Open
Abstract
Vacuum cathodic arc TiN coatings with overlaying TiO2 film were deposited on polished and surface roughened by electron beam modification (EBM) Ti6Al4V alloy. The substrate microtopography consisted of long grooves formed by the liner scan of the electron beam with appropriate frequencies (500 (AR500) and 850 (AR850) Hz). EBM transformed the α + β Ti6Al4V mixed structure into a single α'-martensite phase. Тhe gradient TiN/TiO2 films deposited on mechanically polished (AR) and EBM (AR500 and AR850) alloys share the same surface chemistry and composition (almost stoichiometric TiN, anatase and rutile in different ratios) but exhibit different topographies (Sa equal to approximately 0.62, 1.73, and 1.08 μm, respectively) over areas of 50 × 50 μm. Although the nanohardness of the coatings on AR500 and AR850 alloy (approximately 10.45 and 9.02 GPa, respectively) was lower than that measured on the film deposited on AR alloy (about 13.05 GPa), the hybrid surface treatment offered improvement in critical adhesive loads, coefficient of friction, and wear-resistance of the surface. In phosphate buffer saline, all coated samples showed low corrosion potentials and passivation current densities, confirming their good corrosion protection. The coated EBM samples cultured with human osteoblast-like MG63 cells demonstrated increased cell attachment, viability, and bone mineralization activity especially for the AR500-coated alloy, compared to uncoated polished alloy. The results underline the synergetic effect between the sub-micron structure and composition of TiN/TiO2 coating and microarchitecture obtained by EBM.
Collapse
|
7
|
Minguella-Canela J, Calero JA, Korkusuz F, Korkusuz P, Kankılıç B, Bilgiç E, De los Santos-López MA. Biological Responses of Ceramic Bone Spacers Produced by Green Processing of Additively Manufactured Thin Meshes. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2497. [PMID: 32486136 PMCID: PMC7321431 DOI: 10.3390/ma13112497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 11/21/2022]
Abstract
Bone spacers are exclusively used for replacing the tissue after trauma and/or diseases. Ceramic materials bring positive opportunities to enhance greater osteointegration and performance of implants, yet processing of porous geometries can be challenging. Additive Manufacturing (AM) opens opportunities to grade porosity levels in a part; however, its productivity may be low due to its batch processing approach. The paper studies the biological responses yielded by hydroxyapatite with β-TCP (tricalcium phosphate) ceramic porous bone spacers manufactured by robocasting 2-layer meshes that are rolled in green and sintered. The implants are assessed in vitro and in vivo for their compatibility. Human bone marrow mesenchymal stem cells attached, proliferated and differentiated on the bone spacers produced. Cells on the spacers presented alkaline phosphatase staining, confirming osteogenic differentiation. They also expressed bone-specific COL1A1, BGAP, BSP, and SPP1 genes. The fold change of these genes ranged between 8 to 16 folds compared to controls. When implanted into the subcutaneous tissue of rabbits, they triggered collagen fibre formation and mild fibroblastic proliferation. In conclusion, rolled AM-meshes bone spacers stimulated bone formation in vitro and were biocompatible in vivo. This technology may give the advantage to custom produce spacers at high production rates if industrially upscaled.
Collapse
Affiliation(s)
- Joaquim Minguella-Canela
- Centre CIM, Departament d’Enginyeria Mecànica, Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain;
| | - Jose Antonio Calero
- AMES PM Tech Center, Camí de Can Ubach, 8. Pol. Ind. “Les Fallulles”, 08620 Sant Vicenç dels Horts, Spain;
| | - Feza Korkusuz
- Department of Sports Medicine, Medical Faculty, Hacettepe University, Sihhiye, Ankara 06100, Turkey;
| | - Petek Korkusuz
- Department of Histology and Embryology, Medical Faculty, Hacettepe University, Sihhiye, Ankara 06100, Turkey; (P.K.); (E.B.)
| | - Berna Kankılıç
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Cankaya, Ankara 06800, Turkey;
| | - Elif Bilgiç
- Department of Histology and Embryology, Medical Faculty, Hacettepe University, Sihhiye, Ankara 06100, Turkey; (P.K.); (E.B.)
| | - M. Antonia De los Santos-López
- Centre CIM, Departament d’Enginyeria Mecànica, Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain;
| |
Collapse
|
8
|
de Vasconcellos LMR, Camporês KL, de Alcântara Abdala JM, Vieira MN, de Oliveira IR. Biological and microbiological behavior of calcium aluminate cement-based blend for filling of bone defects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 31:10. [PMID: 31873807 DOI: 10.1007/s10856-019-6348-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
Calcium aluminate cement (CAC) as a biomaterial has been evaluated for its physical, mechanical and biocompatibility properties. Furthermore, the application of CAC for bone repair is due to its composition and coefficient of thermal expansion, which is similar to that of human bone. Thus, the aim of this study was to evaluate compositions of CAC-based blends as substitutes for bone defects. Five compositions of blends (alumina, zirconia, hydroxyapatite, tricalcium phosphate, chitosan), in addition to the base cement consisting of homogeneous CAC were evaluated as a substitute for bone repair. Additionally, the monotypic biofilm formation was assessed. Creation of a monocortical bone defect was performed on the femurs of rats, which were randomly filled with the different materials. The polymethylmethacrylate (PMMA) group was used as a control. All the animals were euthanized 04 weeks after the surgery procedure. Subsequently, computerized microtomography, histological and histomorphometric analyses were performed to verify the bone repair. To evaluate the formation of biofilms, reference strains of Staphylococcus aureus, Streptococcus mutans and Pseudomonas aeruginosa were cultured on the samples, and the biofilm formed was quantified by the MTT method. In the microtomography and histomorphometry results, it was observed that the blends exhibited better results than the control group, with statistically significant differences (p < 0.05) for alumina and zirconia blends. In the biofilm formation, a statistical difference (p < 0.05) in general was observed between the alumina blends and the control group (p < 0.05). It was concluded that CAC-based blends with alumina and zirconia are promising for use in fillings for bone repair.
Collapse
Affiliation(s)
- Luana Marotta Reis de Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, University Estadual Paulista-UNESP, Sao Jose dos Campos, SP, Brazil.
| | - Kaíke Lessa Camporês
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, University Estadual Paulista-UNESP, Sao Jose dos Campos, SP, Brazil
| | | | - Marilia Nanni Vieira
- Graduated student of Institute of Science and Technology of São José dos Campos, University Estadual Paulista-UNESP, Sao Jose dos Campos, SP, Brazil
| | - Ivone Regina de Oliveira
- Institute for Research and Development, University of Vale do Paraíba, São José dos Campos, SP, Brazil
| |
Collapse
|
9
|
Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.03.001] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Rahmati M, Mozafari M. Biocompatibility of alumina‐based biomaterials–A review. J Cell Physiol 2018; 234:3321-3335. [DOI: 10.1002/jcp.27292] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Maryam Rahmati
- Department of Nanotechnology and Advanced Materials Bioengineering Research Group, Materials and Energy Research Center (MERC) Tehran Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences Tehran Iran
| | - Masoud Mozafari
- Department of Nanotechnology and Advanced Materials Bioengineering Research Group, Materials and Energy Research Center (MERC) Tehran Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences Tehran Iran
- Department of Tissue Engineering & Regenerative Medicine Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
11
|
Makkar H, Verma SK, Panda PK, Pramanik N, Jha E, Suar M. Molecular insight to size and dose-dependent cellular toxicity exhibited by a green synthesized bioceramic nanohybrid with macrophages for dental applications. Toxicol Res (Camb) 2018; 7:959-969. [PMID: 30310673 PMCID: PMC6116807 DOI: 10.1039/c8tx00112j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Improvising bioceramics for enhancing their biocompatibility and physical properties has been a focus area for the dental industry. To further explore this area, this study reports a novel green synthesis and molecular in vitro biocompatibility of calcium aluminosilicate-chitosan nanohybrid (CAS-CH). The nanohybrids were synthesized by using a high energy ball milling (HEBM) technique and then characterized for their physiochemical properties using standard techniques including scanning electron microscopy (SEM) and dynamic light scattering (DLS). In vitro cytotoxicity evaluation of a synthesized nanohybrid was made with a RAW264.7 cell line using cell viability assays, such as, MTT, cellular morphology analysis, induction of oxidative stress, and apoptosis. CAS-CH nanohybrids were synthesized at three milling time points: 1H, 2H, and 3H. With increasing milling time, we found a reduction in sizes of particles and increased zeta potential. Viability of cells was found to be decreased with an increase in concentration. Moreover, toxic effects like ROS generation and apoptosis were reduced with increasing milling time. Computational and experimental analysis elucidated the mechanism of toxicity as a consequence of influential functionality of Sod1 and p53 proteins due to interaction and internalization of the nanohybrids with amino acid residues via hydrogen bonds and hydrophobic interactions. The detailed study depicted a novel way of synthesizing biocompatible bioceramic nanohybrids with a mechanistic insight of its cytotoxicity profile.
Collapse
Affiliation(s)
- Hardik Makkar
- KIIT Technology Business incubator , KIIT University , Bhubaneswar , Orissa 751024 , India .
| | - Suresh K Verma
- School of Biotechnology , KIIT University , Bhubaneswar , Orissa 751024 , India
| | - Pritam Kumar Panda
- University of Freiburg , Division of Paediatric Haematology and Oncology , Freiburg , 79106 , Germany
| | - Nandini Pramanik
- Advance Science and Technology Research Centre , Vinoba Bhave University , Hazaribagh , Jharkhand 825301 , India
| | - Ealisha Jha
- Memorial University of Newfoundland , Department of Physics and Physical Oceanography , St John's , Newfoundland and Labrador , NL A1C 5S7 Canada
| | - Mrutyunjay Suar
- KIIT Technology Business incubator , KIIT University , Bhubaneswar , Orissa 751024 , India .
- School of Biotechnology , KIIT University , Bhubaneswar , Orissa 751024 , India
| |
Collapse
|
12
|
Diermann SH, Lu M, Zhao Y, Vandi LJ, Dargusch M, Huang H. Synthesis, microstructure, and mechanical behaviour of a unique porous PHBV scaffold manufactured using selective laser sintering. J Mech Behav Biomed Mater 2018; 84:151-160. [DOI: 10.1016/j.jmbbm.2018.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/21/2018] [Accepted: 05/02/2018] [Indexed: 01/10/2023]
|
13
|
Abstract
Tantalum films were deposited on negatively biased Ti6Al4V substrates using filtered cathodic vacuum arc deposition to enhance the corrosion resistance of the Ti6Al4V alloy. The effect of substrate voltage bias on the microstructure, mechanical and corrosion properties was examined and the cytocompatibility of the deposited films was verified with mammalian cell culturing. The Ta films deposited with substrate bias of -100V and -200V show a mixture of predominantly β phase and minority of α phase. The Ta/-100V film shows adhesive failure at the Ti/Ta interface and a cohesive fracture is observed in Ta/-200V film. The Ta/-100V showed a significant improvement in corrosion resistance, which is attributed to the stable oxide layer. The in-vitro cytocompatibility of the materials was investigated using rat bone mesenchymal stem cells, and the results show that the Ta films have no adverse effect on mammalian cell adhesion and spreading proliferation.
Collapse
|
14
|
Gao C, Feng P, Peng S, Shuai C. Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair. Acta Biomater 2017; 61:1-20. [PMID: 28501710 DOI: 10.1016/j.actbio.2017.05.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/19/2022]
Abstract
The high brittleness and low strength of bioactive ceramics have severely restricted their application in bone repair despite the fact that they have been regarded as one of the most promising biomaterials. In the last few years, low-dimensional nanomaterials (LDNs), including carbon nanotubes, graphene and boron nitride nanotubes, have gained increasing attention owing to their favorable biocompatibility, large surface specific area and super mechanical properties. These qualities make LDNs potential nanofillers in reinforcing bioactive ceramics. In this review, the types, characteristics and applications of the commonly used LDNs in ceramic composites are summarized. In addition, the fabrication methods for LDNs/ceramic composites, such as hot pressing, spark plasma sintering and selective laser sintering, are systematically reviewed and compared. Emphases are placed on how to obtain the uniform dispersion of LDNs in a ceramic matrix and maintain the structural stability of LDNs during the high-temperature fabrication process of ceramics. The reinforcing mechanisms of LDNs in ceramic composites are then discussed in-depth. The in vitro and in vivo studies of LDNs/ceramic in bone repair are also summarized and discussed. Finally, new developments and potential applications of LDNs/ceramic composites are further discussed with reference to experimental and theoretical studies. STATEMENT OF SIGNIFICANCE Despite bioactive ceramics having been regarded as promising biomaterials, their high brittleness and low strength severely restrict their application in bone scaffolds. In recent years, low-dimensional nanomaterials (LDNs), including carbon nanotubes, graphene and boron nitride nanotubes, have shown great potential in reinforcing bioactive ceramics owing to their unique structures and properties. However, so far it has been difficult to maintain the structural stability of LDNs during fabrication of LDNs/ceramic composites, due to the lengthy, high-temperature process involved. This review presents a comprehensive overview of the developments and applications of LDNs in bioactive ceramics. The newly-developed fabrication methods for LDNs/ceramic composites, the reinforcing mechanisms and the in vitro and in vivo performance of LDNs are also summarized and discussed in detail.
Collapse
Affiliation(s)
- Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha 410078, China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
| |
Collapse
|
15
|
Bari SS, Mishra S. Calcium silicate nanowires – An effective alternative for improving mechanical properties of chitosan-hydroxyethyl methacrylate (HEMA) copolymer nanocomposites. Carbohydr Polym 2017; 169:426-432. [DOI: 10.1016/j.carbpol.2017.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/16/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
|
16
|
Mechanically Strong CaSiO3 Scaffolds Incorporating B2O3-ZnO Liquid Phase. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7040387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Fahami A, Nasiri-Tabrizi B, Beall GW, Basirun WJ. Structural insights of mechanically induced aluminum-doped hydroxyapatite nanoparticles by Rietveld refinement. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2016.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Effects of silica sol on the microstructure and mechanical properties of CaSiO3 bioceramics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 64:336-340. [DOI: 10.1016/j.msec.2016.03.109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/11/2016] [Accepted: 03/26/2016] [Indexed: 11/21/2022]
|
19
|
The improved mechanical properties of β -CaSiO 3 bioceramics with Si 3 N 4 addition. J Mech Behav Biomed Mater 2016; 55:120-126. [DOI: 10.1016/j.jmbbm.2015.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/14/2015] [Accepted: 10/20/2015] [Indexed: 02/08/2023]
|
20
|
Simultaneous mechanical property and biodegradation improvement of wollastonite bioceramic through magnesium dilute doping. J Mech Behav Biomed Mater 2016; 54:60-71. [DOI: 10.1016/j.jmbbm.2015.09.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 01/10/2023]
|
21
|
Cheng D, Xie R, Jin L, Cao M, Jia X, Cai Q, Yang X. Enhancing the biological properties of carbon nanofibers by controlling the crystallization of incorporated bioactive glass via silicon content. RSC Adv 2016. [DOI: 10.1039/c6ra03229j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mechanism and model of biomineralization behavior of CNF and CNF/BG hybrids containing BG with different silicon contents.
Collapse
Affiliation(s)
- Dan Cheng
- State Key Laboratory of Organic–Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Rongrong Xie
- State Key Laboratory of Organic–Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Le Jin
- State Key Laboratory of Organic–Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Man Cao
- State Key Laboratory of Organic–Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Xiaolong Jia
- State Key Laboratory of Organic–Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Qing Cai
- State Key Laboratory of Organic–Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic–Inorganic Composites
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| |
Collapse
|
22
|
Seyed Shirazi SF, Gharehkhani S, Cornelis Metselaar HS, Nasiri-Tabrizi B, Yarmand H, Ahmadi M, Abu Osman NA. Ion size, loading, and charge determine the mechanical properties, surface apatite, and cell growth of silver and tantalum doped calcium silicate. RSC Adv 2016. [DOI: 10.1039/c5ra17326d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study describes how various loadings of two ions with different size and charge, such as silver and tantalum, can affect the mechanical and biological properties of calcium silicate (CS).
Collapse
Affiliation(s)
- Seyed Farid Seyed Shirazi
- Department of Mechanical Engineering
- Faculty of Engineering and Advanced Material Research Center
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - Samira Gharehkhani
- Department of Mechanical Engineering
- Faculty of Engineering and Advanced Material Research Center
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - Hendrik Simon Cornelis Metselaar
- Department of Mechanical Engineering
- Faculty of Engineering and Advanced Material Research Center
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - Bahman Nasiri-Tabrizi
- Advanced Materials Research Center
- Materials Engineering Department
- Najafabad Branch
- Islamic Azad University
- Najafabad
| | - Hooman Yarmand
- Department of Mechanical Engineering
- Faculty of Engineering and Advanced Material Research Center
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - Mahdi Ahmadi
- School of Aerospace
- Mechanical and Manufacturing Engineering
- RMIT University
- Melbourne
- Australia
| | - Noor Azuan Abu Osman
- Department of Biomedical Engineering
- Faculty of Engineering
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| |
Collapse
|
23
|
Mechanical and physical behavior of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite. J Mech Behav Biomed Mater 2015; 49:321-31. [DOI: 10.1016/j.jmbbm.2015.05.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 01/22/2023]
|
24
|
Shirazi SFS, Gharehkhani S, Mehrali M, Yarmand H, Metselaar HSC, Adib Kadri N, Osman NAA. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2015; 16:033502. [PMID: 27877783 PMCID: PMC5099820 DOI: 10.1088/1468-6996/16/3/033502] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/16/2015] [Accepted: 03/16/2015] [Indexed: 05/02/2023]
Abstract
Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article.
Collapse
Affiliation(s)
- Seyed Farid Seyed Shirazi
- Department of Mechanical Engineering and Advanced Material Research Center, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Samira Gharehkhani
- Department of Mechanical Engineering and Advanced Material Research Center, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mehdi Mehrali
- Department of Mechanical Engineering and Advanced Material Research Center, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hooman Yarmand
- Department of Mechanical Engineering and Advanced Material Research Center, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Nahrizul Adib Kadri
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Noor Azuan Abu Osman
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Bai J, Li Y, Xiang J, Ren L, Mao M, Zeng M, Zhao X. Preparation of the Monolith of Hierarchical Macro-/Mesoporous Calcium Silicate Ultrathin Nanosheets with Low Thermal Conductivity by Means of Ambient-Pressure Drying. Chem Asian J 2015; 10:1394-401. [DOI: 10.1002/asia.201500198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Jilin Bai
- State Key Laboratory of Silicate Materials for Architectures; Wuhan University of Technology; 122 Luoshi Road Wuhan 430070 P.R. China
| | - Yuanzhi Li
- State Key Laboratory of Silicate Materials for Architectures; Wuhan University of Technology; 122 Luoshi Road Wuhan 430070 P.R. China
| | - Jiwei Xiang
- State Key Laboratory of Silicate Materials for Architectures; Wuhan University of Technology; 122 Luoshi Road Wuhan 430070 P.R. China
| | - Lu Ren
- State Key Laboratory of Silicate Materials for Architectures; Wuhan University of Technology; 122 Luoshi Road Wuhan 430070 P.R. China
| | - Mingyang Mao
- State Key Laboratory of Silicate Materials for Architectures; Wuhan University of Technology; 122 Luoshi Road Wuhan 430070 P.R. China
| | - Min Zeng
- State Key Laboratory of Silicate Materials for Architectures; Wuhan University of Technology; 122 Luoshi Road Wuhan 430070 P.R. China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures; Wuhan University of Technology; 122 Luoshi Road Wuhan 430070 P.R. China
| |
Collapse
|
26
|
Teimouri A, Ebrahimi R, Chermahini AN, Emadi R. Fabrication and characterization of silk fibroin/chitosan/Nano γ-alumina composite scaffolds for tissue engineering applications. RSC Adv 2015. [DOI: 10.1039/c5ra01018g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of silk fibroin/chitosan/Nano γ-alumina composite scaffolds have been prepared using the lyophilization technique for tissue engineering. These were then characterized using SEM, XRD, EDX, FTIR and TGA.
Collapse
Affiliation(s)
- Abbas Teimouri
- Chemistry Department
- Payame Noor University (PNU)
- Isfahan
- Islamic Republic of Iran
| | - Raheleh Ebrahimi
- Chemistry Department
- Payame Noor University (PNU)
- Isfahan
- Islamic Republic of Iran
| | | | - Rahmatollah Emadi
- Department of Materials Engineering
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| |
Collapse
|
27
|
A comparison in mechanical properties of cermets of calcium silicate with Ti-55Ni and Ti-6Al-4V alloys for hard tissues replacement. ScientificWorldJournal 2014; 2014:616804. [PMID: 25538954 PMCID: PMC4235599 DOI: 10.1155/2014/616804] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/07/2014] [Accepted: 09/14/2014] [Indexed: 11/17/2022] Open
Abstract
This study investigated the impact of calcium silicate (CS) content on composition, compressive mechanical properties, and hardness of CS cermets with Ti-55Ni and Ti-6Al-4V alloys sintered at 1200°C. The powder metallurgy route was exploited to prepare the cermets. New phases of materials of Ni16Ti6Si7, CaTiO3, and Ni31Si12 appeared in cermet of Ti-55Ni with CS and in cermet of Ti-6Al-4V with CS, the new phases Ti5Si3, Ti2O, and CaTiO3, which were emerged during sintering at different CS content (wt%). The minimum shrinkage and density were observed in both groups of cermets for the 50 and 100 wt% CS content, respectively. The cermets with 40 wt% of CS had minimum compressive Young's modulus. The minimum of compressive strength and strain percentage at maximum load were revealed in cermets with 50 and 40 wt% of CS with Ti-55Ni and Ti-6Al-4V cermets, respectively. The cermets with 80 and 90 wt% of CS showed more plasticity than the pure CS. It concluded that the composition and mechanical properties of sintered cermets of Ti-55Ni and Ti-6Al-4V with CS significantly depend on the CS content in raw cermet materials. Thus, the different mechanical properties of the cermets can be used as potential materials for different hard tissues replacements.
Collapse
|
28
|
Mehrali M, Moghaddam E, Seyed Shirazi SF, Baradaran S, Mehrali M, Latibari ST, Metselaar HSC, Kadri NA, Zandi K, Osman NAA. Mechanical and in vitro biological performance of graphene nanoplatelets reinforced calcium silicate composite. PLoS One 2014; 9:e106802. [PMID: 25229540 PMCID: PMC4167702 DOI: 10.1371/journal.pone.0106802] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/02/2014] [Indexed: 11/19/2022] Open
Abstract
Calcium silicate (CaSiO3, CS) ceramic composites reinforced with graphene nanoplatelets (GNP) were prepared using hot isostatic pressing (HIP) at 1150°C. Quantitative microstructural analysis suggests that GNP play a role in grain size and is responsible for the improved densification. Raman spectroscopy and scanning electron microscopy showed that GNP survived the harsh processing conditions of the selected HIP processing parameters. The uniform distribution of 1 wt.% GNP in the CS matrix, high densification and fine CS grain size help to improve the fracture toughness by ∼130%, hardness by ∼30% and brittleness index by ∼40% as compared to the CS matrix without GNP. The toughening mechanisms, such as crack bridging, pull-out, branching and deflection induced by GNP are observed and discussed. The GNP/CS composites exhibit good apatite-forming ability in the simulated body fluid (SBF). Our results indicate that the addition of GNP decreased pH value in SBF. Effect of addition of GNP on early adhesion and proliferation of human osteoblast cells (hFOB) was measured in vitro. The GNP/CS composites showed good biocompatibility and promoted cell viability and cell proliferation. The results indicated that the cell viability and proliferation are affected by time and concentration of GNP in the CS matrix.
Collapse
Affiliation(s)
- Mehdi Mehrali
- Department of Mechanical Engineering and Center of advanced Material, University of Malaya, Kuala Lumpur, Malaysia
| | - Ehsan Moghaddam
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malay, Kuala Lumpur, Malaysia
| | - Seyed Farid Seyed Shirazi
- Department of Mechanical Engineering and Center of advanced Material, University of Malaya, Kuala Lumpur, Malaysia
| | - Saeid Baradaran
- Department of Mechanical Engineering and Center of advanced Material, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohammad Mehrali
- Department of Mechanical Engineering and Center of advanced Material, University of Malaya, Kuala Lumpur, Malaysia
| | - Sara Tahan Latibari
- Department of Mechanical Engineering and Center of advanced Material, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Nahrizul Adib Kadri
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Keivan Zandi
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Azuan Abu Osman
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Shirazi FS, Moghaddam E, Mehrali M, Oshkour AA, Metselaar HSC, Kadri NA, Zandi K, Abu NA. In vitro characterization and mechanical properties of β-calcium silicate/POC composite as a bone fixation device. J Biomed Mater Res A 2014; 102:3973-85. [PMID: 24376053 DOI: 10.1002/jbm.a.35074] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/26/2013] [Accepted: 12/19/2013] [Indexed: 11/06/2022]
Abstract
Calcium silicate (CS, CaSiO3 ) is a bioactive, degradable, and biocompatible ceramic and has been considered for its potential in the field of orthopedic surgery. The objective of this study is the fabrication and characterization of the β-CS/poly(1.8-octanediol citrate) (POC) biocomposite, with the goals of controlling its weight loss and improving its biological and mechanical properties. POC is one of the most biocompatible polymers, and it is widely used in biomedical engineering applications. The degradation and bioactivity of the composites were determined by soaking the composites in phosphate-buffered saline and simulated body fluid, respectively. Human osteoblast cells were cultured on the composites to determine their cell proliferation and adhesion. The results illustrated that the flexural and compressive strengths were significantly enhanced by a modification of 40% POC. It was also concluded that the degradation bioactivity and amelioration of cell proliferation increased significantly with an increasing β-CS content.
Collapse
Affiliation(s)
- F S Shirazi
- Department of Mechanical Engineering and Advanced Material Research Center, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|