1
|
Sumam P, Kumar P R A, Parameswaran R. Aligned Fibroporous Matrix Generated from a Silver Ion and Graphene Oxide-Incorporated Ethylene Vinyl Alcohol Copolymer as a Potential Biomaterial for Peripheral Nerve Repair. ACS APPLIED BIO MATERIALS 2024; 7:6617-6630. [PMID: 39295150 DOI: 10.1021/acsabm.4c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Developing an ideal nerve conduit for proper nerve regeneration still faces several challenges. The attempts to fabricate aligned substrates for neuronal growth have enhanced the hope of successful nerve regeneration. In this wok, we have attempted to generate an electrospun matrix with aligned fibers from a silver and graphene oxide-incorporated ethylene vinyl alcohol copolymer (EVAL). The presence of silver was analyzed using UV-visible spectra, XPS spectra, and ICP. Raman spectra and FTIR spectra confirmed the presence of GO. The complexation of Ag+ with - OH of EVAL enabled the generation of aligned fibers. The fiber diameter (>1 μm) provided sufficient space for forming focal adhesion by the neurites and filopodia of N2a and C6 cells, respectively. The fiber diameter enabled the neurites and filopodia of the cells to align on the fibers. The incorporation of GO has contributed to the cell-material interactions. The morphological and mechanical properties of fibers obtained in the study ensure that the EVAL-Ag-GO-0.01 matrix is a potential substrate for developing a nerve guidance conduit/nerve wrap (NGC/W).
Collapse
Affiliation(s)
- Prima Sumam
- Division of Polymeric Medical Devices, Department of Medical Devices Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, 695 012 Kerala, India
| | - Anil Kumar P R
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, 695 012 Kerala, India
| | - Ramesh Parameswaran
- Division of Polymeric Medical Devices, Department of Medical Devices Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, 695 012 Kerala, India
| |
Collapse
|
2
|
Chen X, Liu Z, Ma R, Lu J, Zhang L. Electrospun nanofibers applications in caries lesions: prevention, treatment and regeneration. J Mater Chem B 2024; 12:1429-1445. [PMID: 38251708 DOI: 10.1039/d3tb02616g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Dental caries is a multifactorial disease primarily mediated by biofilm formation, resulting in a net loss of mineral content and degradation of organic matrix in dental hard tissues. Caries lesions of varying depths can result in demineralization of the superficial enamel, the formation of deep cavities extending into the dentin, and even pulp infection. Electrospun nanofibers (ESNs) exhibit an expansive specific surface area and a porous structure, closely mimicking the unique architecture of the natural extracellular matrix (ECM). This unique topography caters to the transport of small molecules and facilitates localized therapeutic drug delivery, offering great potential in regulating cell behavior, and thereby attracting interest in ESNs' applications in the treatment of caries lesions and the reconditioning of the affected dental tissues. Thus, this review aims to consolidate the recent developments in ESNs' applications for caries lesions. This review begins with an introduction to the electrospinning technique and provides a comprehensive overview of the biological properties and modification methods of ESNs, followed by an introduction outlining the basic pathological processes, classification and treatment requirements of caries lesions. Finally, the review offers a detailed examination of the research progress on the ESNs' application in caries lesions and concludes by addressing the limitations.
Collapse
Affiliation(s)
- Xiangshu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Zhenqi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Rui Ma
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Junzhuo Lu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin Road South, Chengdu, 610041, China
| |
Collapse
|
3
|
Maletin A, Ristić I, Nešić A, Knežević MJ, Koprivica DĐ, Cakić S, Ilić D, Milekić B, Puškar T, Pilić B. Development of Light-Polymerized Dental Composite Resin Reinforced with Electrospun Polyamide Layers. Polymers (Basel) 2023; 15:2598. [PMID: 37376244 DOI: 10.3390/polym15122598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
As the mechanical properties of resin-based dental composite materials are highly relevant in clinical practice, diverse strategies for their potential enhancement have been proposed in the extant literature, aiming to facilitate their reliable use in dental medicine. In this context, the focus is primarily given to the mechanical properties with the greatest influence on clinical success, i.e., the longevity of the filling in the patient's mouth and its ability to withstand very strong masticatory forces. Guided by these objectives, the goal of the present study was to ascertain whether the reinforcement of dental composite resins with electrospun polyamide (PA) nanofibers would improve the mechanical strength of dental restoration materials. For this purpose, light-cure dental composite resins were interspersed with one and two layers comprising PA nanofibers in order to investigate the influence of such reinforcement on the mechanical properties of the resulting hybrid resins. One set of the obtained samples was investigated as prepared, while another set was immersed in artificial saliva for 14 days and was subsequently subjected to the same set of analyses, namely Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). Findings yielded by the FTIR analysis confirmed the structure of the produced dental composite resin material. They also provided evidence that, while the presence of PA nanofibers did not influence the curing process, it strengthened the dental composite resin. Moreover, flexural strength measurements revealed that the inclusion of a 16 μm-thick PA nanolayer enabled the dental composite resin to withstand a load of 3.2 MPa. These findings were supported by the SEM results, which further indicated that immersing the resin in saline solution resulted in a more compact composite material structure. Finally, DSC results indicated that as-prepared as well as saline-treated reinforced samples had a lower glass transition temperature (Tg) compared to pure resin. Specifically, while pure resin had a Tg of 61.6 °C, each additional PA nanolayer decreased the Tg by about 2 °C, while the further reduction was obtained when samples were immersed in saline for 14 days. These results show that electrospinning is a facile method for producing different nanofibers that can be incorporated into resin-based dental composite materials to modify their mechanical properties. Moreover, while their inclusion strengthens the resin-based dental composite materials, it does not affect the course and outcome of the polymerization reaction, which is an important factor for their use in clinical practice.
Collapse
Affiliation(s)
| | - Ivan Ristić
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Aleksandra Nešić
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | | | | | - Suzana Cakić
- Faculty of Technology, University of Niš, 16000 Leskovac, Serbia
| | - Dušica Ilić
- Faculty of Electronic Engineering, University of Niš, 18000 Niš, Serbia
| | - Bojana Milekić
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Tatjana Puškar
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Branka Pilić
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| |
Collapse
|
4
|
Sumam P, Parameswaran R. Neuronal cell response on aligned fibroporous electrospun mat generated from silver ion complexed ethylene vinyl alcohol copolymer. J Biomed Mater Res B Appl Biomater 2023; 111:782-794. [PMID: 36333924 DOI: 10.1002/jbm.b.35189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/12/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Generating electrospun mats with aligned fibers and obtaining neurite extension in the aligned fiber direction could provide hope for fabricating nerve guidance conduits or wraps through an easy method. The growing interest in generating electrospun mats with aligned fibers for tissue engineering is looking for simple methods to generate the same. Here, in this study, ethylene vinyl alcohol copolymer (EVAL) chains were complexed with silver ions (Ag+ ) to generate aligned fibers during the electrospinning process. The fibers thus produced were subjected to physico-chemical characterization and biological studies to ensure their properties and to examine whether suitable for neuronal cell attachment and neurite extension that may be useful in making nerve guidance conduits or wraps. The presence of silver ions and its complex formation with -OH of EVAL has been confirmed with EDX and XPS analysis respectively. The alignment of fibers was visualized from SEM analysis and confirmed using directionality analysis using Fiji-ImageJ software. Mechanical properties done with dumbbells punched out in longitudinal and transverse directions also substantiated the alignment of fibers. The results obtained from direct contact, MTT, and live/dead assay showed the cells are viable on the material. From the actin staining and immunostaining assays, it was evident that the PC12 cells could attach and extend their neurites in an aligned manner on the fibers. The maximum neurite extension was up to 200 μm in length. These properties of electrospun EVAL-Ag mat with aligned fibers indicated that it could be developed as a biocompatible nerve guidance conduit or wrap.
Collapse
Affiliation(s)
- Prima Sumam
- Division of Polymeric Medical Devices, Department of Medical Devices Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Ramesh Parameswaran
- Division of Polymeric Medical Devices, Department of Medical Devices Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| |
Collapse
|
5
|
Rodrigues RAA, Silva RMFDCE, Ferreira LDAQ, Branco NTT, Ávila ÉDS, Peres AM, Fernandes-Braga W, Sette-Dias AC, Andrade ÂL, Palma-Dibb RG, Magalhães CSD, Ladeira LO, Silveira RRD, Moreira AN, Martins Júnior PA, Yamauti M, Diniz IMA. Enhanced mechanical properties, anti-biofilm activity, and cytocompatibility of a methacrylate-based polymer loaded with native multiwalled carbon nanotubes. J Mech Behav Biomed Mater 2022; 136:105511. [PMID: 36252425 DOI: 10.1016/j.jmbbm.2022.105511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES We aimed to optimize the mechanical and biological properties of a conventional methacrylate-based dental polymer by loading it with double- and triple-walled carbon nanotubes as growth (DTWCNTG). METHODS A formulation of bisphenol A-glycidyl methacrylate and triethylene glycol dimethacrylate (mass ratio = 2:1) was mixed with DTWCNTG at concentrations of 0.0% (control), 0.001%, 0.005%, and 0.010%. The concentrations were physicochemical and morphologically evaluated, and antibacterial activity was assessed by seeding a Streptococcus mutans strain (ATCC 25175) on the experimental polymeric surfaces. Cellular survival and osteodifferentiation were evaluated in epithelial (HaCat) and preosteoblast cells (MC3T3-E1). RESULTS The 0.001% DTWCNTG concentration yielded higher compressive strength, elastic modulus, flexural strength, flexural modulus, water sorption, and solubility than the control. The degree of conversion and color did not significantly change with a low amount of DTWCNTG incorporated into the polymer. Antibacterial activity significantly improved when tested on the 0.001% DTWCNTG discs. No groups showed cytotoxicity in a short-term analysis and adding DTWCNTG favored MC3T3-E1 mineralization over the control, particularly in the 0.001% formulation. SIGNIFICANCE The micro-addition of 0.001% DTWCNTG confers mechanical resistance, antimicrobial properties, and bioactivity to methacrylate-based polymers without significantly compromising color. Incorporating DTWCNTG improved dental composite properties and could be a biomodified material for minimally invasive procedures.
Collapse
Affiliation(s)
- Ricardo Antonio Alpino Rodrigues
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, Brazil
| | | | - Luiza de Almeida Queiroz Ferreira
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, Brazil
| | - Natália Tavares Teixeira Branco
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, Brazil
| | - Érick de Souza Ávila
- Department of Physics, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Anderson Maia Peres
- Department of Metallurgical and Materials Engineering, School of Engineering, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, Brazil
| | - Augusto César Sette-Dias
- School of Dentistry, Centro Universitário Newton Paiva, Av. Silva Lobo, 1730, 30431-259, Belo Horizonte, Brazil
| | - Ângela Leão Andrade
- Department of Chemistry, Universidade Federal de Ouro Preto, Rua Morro do Cruzeiro, Ouro Preto, 35400-000, Ouro Preto, Brazil
| | - Regina Guenka Palma-Dibb
- Department of Restorative Dentistry, School of Dentistry, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Cláudia Silami de Magalhães
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, Brazil
| | - Luiz Orlando Ladeira
- Department of Physics, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Rodrigo Richard da Silveira
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, Brazil
| | - Allyson Nogueira Moreira
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, Brazil
| | - Paulo Antônio Martins Júnior
- Department of Child and Adolescent Oral Health, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, Brazil
| | - Mônica Yamauti
- Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, 060-8586, Sapporo, Japan; Department of Cariology and Operative Dentistry, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, 113-8510, Tokyo, Japan.
| | - Ivana Márcia Alves Diniz
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901, Belo Horizonte, Brazil.
| |
Collapse
|
6
|
Electrospinning and its potential in fabricating pharmaceutical dosage form. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
A Bibliometric Analysis of Electrospun Nanofibers for Dentistry. J Funct Biomater 2022; 13:jfb13030090. [PMID: 35893458 PMCID: PMC9326643 DOI: 10.3390/jfb13030090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Electrospun nanofibers have been widely used in dentistry due to their excellent properties, such as high surface area and high porosity, this bibliometric study aimed to review the application fields, research status, and development trends of electrospun nanofibers in different fields of dentistry in recent years. All of the data were obtained from the Web of Science from 2004 to 2021. Origin, Microsoft Excel, VOSviewer, and Carrot2 were used to process, analyze, and evaluate the publication year, countries/region, affiliations, authors, citations, keywords, and journal data. After being refined by the year of publication, document types and research fields, a total of 378 publications were included in this study, and an increasing number of publications was evident. Through linear regression calculations, it is predicted that the number of published articles in 2022 will be 66. The most published journal about electrospun dental materials is Materials Science & Engineering C-Materials for Biological Applications, among the six core journals identified, the percent of journals with Journal Citation Reports (JCR) Q1 was 60%. A total of 17.60% of the publications originated from China, and the most productive institution was the University of Sheffield. Among all the 1949 authors, the most productive author was Marco C. Bottino. Most electrospun dental nanofibers are used in periodontal regeneration, and Polycaprolactone (PCL) is the most frequently used material in all studies. With the global upsurge in research on electrospun dental materials, bone regeneration, tissue regeneration, and cell differentiation and proliferation will still be the research hotspots of electrospun dental materials in recent years. Extensive collaboration and citations among authors, institutions and countries will also reach a new level.
Collapse
|
8
|
Joseph J, Parameswaran R, Gopalakrishna Panicker U. Recent advancements in blended and reinforced polymeric systems as bioscaffolds. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2066666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jasmin Joseph
- Department of Chemistry, National Institute of Technology, Calicut, India
- Division of Polymeric Medical Devices, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Ramesh Parameswaran
- Division of Polymeric Medical Devices, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | |
Collapse
|
9
|
Chen J, Ghosh T, Tang T, Ayranci C. Optimization of high‐quality carbon fiber production from electrospun aligned lignin fibers. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiawei Chen
- Department of Mechanical Engineering University of Alberta Edmonton Alberta Canada
| | - Tanushree Ghosh
- Department of Mechanical Engineering University of Alberta Edmonton Alberta Canada
- Center for Earth Sciences Indian Institute of Science Bengaluru Karnataka India
| | - Tian Tang
- Department of Mechanical Engineering University of Alberta Edmonton Alberta Canada
| | - Cagri Ayranci
- Department of Mechanical Engineering University of Alberta Edmonton Alberta Canada
| |
Collapse
|
10
|
Yadav R, Meena A, Patnaik A. Biomaterials for dental composite applications: A comprehensive review of physical, chemical, mechanical, thermal, tribological, and biological properties. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5648] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ramkumar Yadav
- Department of Mechanical Engineering Malaviya National Institute of Technology Jaipur Rajasthan India
| | - Anoj Meena
- Department of Mechanical Engineering Malaviya National Institute of Technology Jaipur Rajasthan India
| | - Amar Patnaik
- Department of Mechanical Engineering Malaviya National Institute of Technology Jaipur Rajasthan India
| |
Collapse
|
11
|
Atila D, Hasirci V, Tezcaner A. Coaxial electrospinning of composite mats comprised of core/shell poly(methyl methacrylate)/silk fibroin fibers for tissue engineering applications. J Mech Behav Biomed Mater 2022; 128:105105. [DOI: 10.1016/j.jmbbm.2022.105105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 01/01/2023]
|
12
|
Liu J, Zhang H, Sun H, Liu Y, Liu W, Su B, Li S. The Development of Filler Morphology in Dental Resin Composites: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5612. [PMID: 34640020 PMCID: PMC8509641 DOI: 10.3390/ma14195612] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022]
Abstract
Dental resin composites (DRCs) with diverse fillers added are widely-used restorative materials to repair tooth defects. The addition of fillers brings an improvement in the mechanical properties of DRCs. In the past decade, diverse fillers have emerged. However, the change of emerging fillers mainly focuses on the chemical composition, while the morphologic characteristics changes are often ignored. The fillers with new morphologies not only have the advantages of traditional fillers (particles, fibrous filler, etc.), but also endow some additional functional characteristics (stronger bonding ability to resin matrix, polymerization resistance, and wear resistance, drug release control ability, etc.). Moreover, some new morphologies are closely related to the improvement of traditional fillers, porous filler vs. glass particles, core-sheath fibrous vs. fibrous, etc. Some other new morphology fillers are combinations of traditional fillers, UHA vs. HA particles and fibrous, tetrapod-like whisker vs. whisker and fibrous filler, mesoporous silica vs. porous and silica particles. In this review, we give an overall description and a preliminary summary of the fillers, as well as our perspectives on the future direction of the development of novel fillers for next-generation DRCs.
Collapse
Affiliation(s)
- Jiani Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Dental Materials, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (J.L.); (H.Z.); (Y.L.); (W.L.)
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Hao Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Dental Materials, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (J.L.); (H.Z.); (Y.L.); (W.L.)
| | - Huijun Sun
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK; (H.S.); (B.S.)
| | - Yanru Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Dental Materials, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (J.L.); (H.Z.); (Y.L.); (W.L.)
| | - Wenlin Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Dental Materials, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (J.L.); (H.Z.); (Y.L.); (W.L.)
| | - Bo Su
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK; (H.S.); (B.S.)
| | - Shibao Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Dental Materials, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (J.L.); (H.Z.); (Y.L.); (W.L.)
| |
Collapse
|
13
|
Nakano LJN, Lopes GDRS, Firmino AS, de Matos JDM, Tango RN, Paes-Junior TJDA. Analysis of bond strength between a nylon reinforcement structure and dental resins. J Clin Exp Dent 2021; 13:e505-e510. [PMID: 33981399 PMCID: PMC8106934 DOI: 10.4317/jced.57654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/02/2020] [Indexed: 12/03/2022] Open
Abstract
Background Nylon is a polymer that its use to reinforce dental resins has shown positive results such as increased flexural strength. The aim of this study was to evaluate the bond strength between dental resins and a nylon reinforcement.
Material and Methods Forty cylindrical nylon blocks with 13 x 23 mm with 0.5% by volume of silica and 40 without were made. Half of the samples of each nylon composition were sandblasted with aluminum oxide (50μm) for 3 s (2.8 bar pressure, distance: 20 mm, incidence angle: 90o). On the nylon blocks, cylinders of chemically activated acrylic resin and indirect composite resin were made, with a bonding area of 6,28 mm2. Eight different groups were obtained according to the material used and the surface treatment (n = 10): Acrylic Resin + Nylon; GAS: Acrylic Resin + Nylon with Silica; GAT: Acrylic Resin + Nylon (Al2O3); GAST: Acrylic Resin + Nylon with Silica (Al2O3); GC: Composite Resin + Nylon; GCS: Composite Resin + Nylon with Silica; GCT: Composite Resin + Nylon (Al2O3); GCST: Composite Resin + Nylon with Silica (Al2O3). The shear test was carried out. The Student’s and the Kruskal-Wallis test was adopted.
Results There was no statistically difference in the bond strength for nylon with silica for the acrylic resin group. For the composite groups, nylon with silica did not present a statistically difference without surface treatment (p = 0.10) and with surface treatment the bond strength decreased (p = 0.000). The GCT showed a higher bond strength (0.89 MPa). The surface treatment improved the bond strength for the both groups.
Conclusions The presence of silica in the nylon composition did not influence the bond strength between materials evaluated. However, the surface treatment with aluminum oxide proved to be favorable for this adhesion. Key words:Nylons - Resins, Synthetic - Structures Strengthening - Dental Research.
Collapse
Affiliation(s)
- Leonardo-Jiro-Nomura Nakano
- Department of Prosthodontics and Dental Materials, São Paulo State University (Unesp) - Institute of Science and Technology, São José dos Campos - SP, Brazil
| | - Guilherme-da Rocha-Scalzer Lopes
- Department of Prosthodontics and Dental Materials, São Paulo State University (Unesp) - Institute of Science and Technology, São José dos Campos - SP, Brazil
| | - Aline-Silva Firmino
- Department of Dentistry, Universidade São Francisco UFS, Bragança Paulista - SP, Brazil
| | - Jefferson-David-Melo de Matos
- Department of Prosthodontics and Dental Materials, São Paulo State University (Unesp) - Institute of Science and Technology, São José dos Campos - SP, Brazil
| | - Rubens-Nisie Tango
- Department of Prosthodontics and Dental Materials, São Paulo State University (Unesp) - Institute of Science and Technology, São José dos Campos - SP, Brazil
| | - Tarcisio-José-de Arruda Paes-Junior
- Department of Prosthodontics and Dental Materials, São Paulo State University (Unesp) - Institute of Science and Technology, São José dos Campos - SP, Brazil
| |
Collapse
|
14
|
Münchow EA, da Silva AF, Piva E, Cuevas-Suárez CE, de Albuquerque MTP, Pinal R, Gregory RL, Breschi L, Bottino MC. Development of an antibacterial and anti-metalloproteinase dental adhesive for long-lasting resin composite restorations. J Mater Chem B 2020; 8:10797-10811. [PMID: 33169763 PMCID: PMC7744429 DOI: 10.1039/d0tb02058c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite all the advances in adhesive dentistry, dental bonds are still fragile due to degradation events that start during application of adhesive agents and the inherent hydrolysis of resin-dentin bonds. Here, we combined two outstanding processing methods (electrospinning and cryomilling) to obtain bioactive (antimicrobial and anti-metalloproteinase) fiber-based fillers containing a potent matrix metalloproteinase (MMP) inhibitor (doxycycline, DOX). Poly(ε)caprolactone solutions containing different DOX amounts (0, 5, 25, and 50 wt%) were processed via electrospinning, resulting in non-toxic submicron fibers with antimicrobial activity against Streptococcus mutans and Lactobacillus. The fibers were embedded in a resin blend, light-cured, and cryomilled for the preparation of fiber-containing fillers, which were investigated with antibacterial and in situ gelatin zymography analyzes. The fillers containing 0, 25, and 50 wt% DOX-releasing fibers were added to aliquots of a two-step, etch-and-rinse dental adhesive system. Mechanical strength, hardness, degree of conversion (DC), water sorption and solubility, bond strength to dentin, and nanoleakage analyses were performed to characterize the physico-mechanical, biological, and bonding properties of the modified adhesives. Statistical analyses (ANOVA; Kruskal-Wallis) were used when appropriate to analyze the data (α = 0.05). DOX-releasing fibers were successfully obtained, showing proper morphological architecture, cytocompatibility, drug release ability, slow degradation profile, and antibacterial activity. Reduced metalloproteinases (MMP-2 and MMP-9) activity was observed only for the DOX-containing fillers, which have also demonstrated antibacterial properties against tested bacteria. Adhesive resins modified with DOX-containing fillers demonstrated greater DC and similar mechanical properties as compared to the fiber-free adhesive (unfilled control). Concerning bonding performance to dentin, the experimental adhesives showed similar immediate bond strengths to the control. After 12 months of water storage, the fiber-modified adhesives (except the group consisting of 50 wt% DOX-loaded fillers) demonstrated stable bonds to dentin. Nanoleakage was similar among all groups investigated. DOX-releasing fibers showed promising application in developing novel dentin adhesives with potential therapeutic properties and MMP inhibition ability; antibacterial activity against relevant oral pathogens, without jeopardizing the physico-mechanical characteristics; and bonding performance of the adhesive.
Collapse
Affiliation(s)
- Eliseu A. Münchow
- Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - Adriana F. da Silva
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, RS 96015-560, Brazil
| | - Evandro Piva
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, RS 96015-560, Brazil
| | - Carlos E. Cuevas-Suárez
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, Circuito Ex Hacienda La Concepción S/N, San Agustín Tlaxiaca, Hgo, 42160 Mexico
| | - Maria T. P. de Albuquerque
- Department of Clinical Dentistry, Endodontics, Federal University of Bahia, Salvador, BA 40110-040, Brazil
| | - Rodolfo Pinal
- Department of Industrial and Physical Pharmacy, Purdue University, College of Pharmacy, West Lafayette, IN 47907, USA
| | - Richard L. Gregory
- Department of Biomedical and Applied Sciences, Division of Dental Biomaterials, Indiana University School of Dentistry (IUSD), Indianapolis, IN 46202, USA
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Alma Mater Studiorum, Bologna, Italy
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
The role of nanohydroxyapatite on the morphological, physical, and biological properties of chitosan nanofibers. Clin Oral Investig 2020; 25:3095-3103. [PMID: 33047204 DOI: 10.1007/s00784-020-03633-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES This study aimed to evaluate the effects of nanohydroxyapatite (nHAp) particles on the morphological, chemical, physical, and biological properties of chitosan electrospun nanofibers. MATERIALS AND METHODS nHAp particles with a 1.67 Ca/P ratio were synthesized via the aqueous precipitation method, incorporated into chitosan polymer solution (0.5 wt%), and electrospun into nHAp-loaded fibers (ChHa fibers). Neat chitosan fibers (nHAp-free, Ch fibers) were used as the control. The electrospun fiber mats were characterized using morphological, topographical, chemical, thermal, and a range of biological (antibacterial, antibiofilm, cell viability, and alkaline phosphatase [ALP] activity) analyses. Data were analyzed using ANOVA and Tukey's test (α = 0.05). RESULTS ChHa fibers demonstrated a bead-like morphology, with thinner (331 ± 110 nm) and smoother (Ra = 2.9 ± 0.3 μm) distribution as compared to the control fibers. Despite showing similar cell viability and ALP activity to Ch fibers, the ChHa fibers demonstrated greater antibacterial potential against most tested bacteria (except for P. intermedia), and higher antibiofilm activity against P. gingivalis biofilm. CONCLUSIONS The incorporation of nHAp particles did not jeopardize the overall morphology, topography, physical, and biological characteristics of the chitosan nanofibers. CLINICAL RELEVANCE The combination of nHAp particles with chitosan can be used to engineer bioactive, electrospun composite nanofibers with potential applications in regenerative dentistry.
Collapse
|
16
|
Gonçalves NI, Münchow EA, Santos JD, Sato TP, de Oliveira LR, de Arruda Paes-Junior TJ, Bottino MC, Borges ALS. The role of polymeric nanofibers on the mechanical behavior of polymethyl methacrylate resin. J Mech Behav Biomed Mater 2020; 112:104072. [PMID: 32911228 DOI: 10.1016/j.jmbbm.2020.104072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
This study aimed to synthesize and characterize non-woven acrylonitrile butadiene styrene (ABS), polyamide-6 (P6), and polystyrene (PS) nanofibers, and evaluate their effects on the flexural strength and fracture resistance of fiber-modified polymethyl methacrylate (PMMA) resin. ABS, P6, and PS polymer solutions were prepared and electrospun into fiber mats, which were characterized by means of morphological, chemical, physical, and mechanical analyses. The fiber mats were then used to modify a thermally-activated PMMA resin, resulting in four testing groups: one unmodified group (control) and three fiber-modified groups incorporated with ABS, P6, or PS fiber mats. Flexural strength, work of fracture, and fractographic analysis were performed for all groups. Data were analyzed using Kruskal-Wallis or ANOVA tests (α = 0.05). The fiber diameter decreased, respectively, as follows: ABS > P6 > PS. Only the P6 fiber mats demonstrated a crystalline structure. Wettability was similar among the distinct fiber mats, although tensile strength was significantly greater for P6, followed by ABS, and then PS mats. Flexural strength of the fiber-modified PMMA resins was similar to the control, except for the weaker P6-based material. The work of fracture seemed to be greater and lower when the P6 and PS fibers were used, respectively. The fiber-modified groups exhibited a rougher pattern in the fractured surfaces when compared to the control, which may suggest that the presence of fibers deviates the direction of crack propagation, making the fracture mechanism of the PMMA resin more dynamic. While the neat PMMA showed a typical brittle response, the fiber-modified PMMA resins demonstrated a ductile response, combined with voids, suggesting large shear deformation during fracture. Altogether, despite the lack of direct reinforcement in the mechanical strength of the PMMA resin, the use of electrospun fibers showed promising application for the improvement of fracture behavior of PMMA resins, turning them into more compliant materials, although this effect may depend on the fiber composition.
Collapse
Affiliation(s)
- Natália I Gonçalves
- Graduate Program in Dentistry, São Paulo State University (UNESP), São José dos Campos, SP, Brazil
| | - Eliseu A Münchow
- Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jéssica D Santos
- Graduate Program in Dentistry, São Paulo State University (UNESP), São José dos Campos, SP, Brazil
| | - Tabata P Sato
- Graduate Program in Dentistry, São Paulo State University (UNESP), São José dos Campos, SP, Brazil
| | - Letícia R de Oliveira
- Graduate Program in Dentistry, São Paulo State University (UNESP), São José dos Campos, SP, Brazil
| | | | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
| | - Alexandre L S Borges
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology, UNESP, São José dos Campos, SP, Brazil.
| |
Collapse
|
17
|
Berton F, Porrelli D, Di Lenarda R, Turco G. A Critical Review on the Production of Electrospun Nanofibres for Guided Bone Regeneration in Oral Surgery. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 10:E16. [PMID: 31861582 PMCID: PMC7023267 DOI: 10.3390/nano10010016] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
Nanofibre-based membranes or scaffolds exhibit high surface-to-volume ratio, which allows an improved cell adhesion, representing an attractive subgroup of biomaterials due to their unique properties. Among several techniques of nanofiber production, electrospinning is a cost-effective technique that has been, to date, attractive for several medical applications. Among these, guided bone regeneration is a surgical procedure in which bone regeneration, due to bone atrophy following tooth loss, is "guided" by an occlusive barrier. The membrane should protect the initial blood clot from any compression, shielding the bone matrix during maturation from infiltration of soft tissues cells. This review will focus its attention on the application of electrospinning (ELS) in oral surgery bone regeneration. Despite the abundance of published papers related to the electrospinning technique applied in the field of bone regeneration of the jaws, to the authors' knowledge, no articles report clinical application of these structures. Moreover, only a few records can be found with in vivo application. Therefore, no human studies have to date been detectable. New approaches such as multifunctional multilayering and coupling with bone promoting factors or antimicrobial agents, makes this technology very attractive. However, greater efforts should be made by researchers and companies to turn these results into clinical practice.
Collapse
Affiliation(s)
- Federico Berton
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, 34100 Trieste, Italy; (D.P.); (R.D.L.); (G.T.)
| | | | | | | |
Collapse
|
18
|
Experimental composites of polyacrilonitrile-electrospun nanofibers containing nanocrystal cellulose. Dent Mater 2019; 35:e286-e297. [DOI: 10.1016/j.dental.2019.08.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/15/2019] [Accepted: 08/30/2019] [Indexed: 11/22/2022]
|
19
|
Velo MMAC, Nascimento TRL, Scotti CK, Bombonatti JFS, Furuse AY, Silva VD, Simões TA, Medeiros ES, Blaker JJ, Silikas N, Mondelli RFL. Improved mechanical performance of self-adhesive resin cement filled with hybrid nanofibers-embedded with niobium pentoxide. Dent Mater 2019; 35:e272-e285. [PMID: 31519351 DOI: 10.1016/j.dental.2019.08.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES In this study hybrid nanofibers embedded with niobium pentoxide (Nb2O5) were synthesized, incorporated in self-adhesive resin cement, and their influence on physical-properties was evaluated. METHODS Poly(D,L-lactide), PDLLA cotton-wool-like nanofibers with and without silica-based sol-gel precursors were formulated and spun into submicron fibers via solution blow spinning, a rapid fiber forming technology. The morphology, chemical composition and thermal properties of the spun fibers were characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS) and Fourier-transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC), respectively. Produced fibers were combined with a self-adhesive resin cement (RelyX U200, 3M ESPE) in four formulations: (1) U200 resin cement (control); (2) U200+1wt.% PDLLA fibers; (3) U200+1wt.% Nb2O5-filled PDLLA composite fibers and (4) U200+1wt.% Nb2O5/SiO2-filled PDLLA inorganic-organic hybrid fibers. Physical properties were assessed in flexure by 3-point bending (n=10), Knoop microhardness (n=5) and degree of conversion (n=3). Data were analyzed with One-way ANOVA and Tukey's HSD (α=5%). RESULTS Composite fibers formed of PDLLA-Nb2O5 exhibited an average diameter of ∼250nm, and hybrid PDLLA+Nb2O5/SiO2 fibers were slightly larger, ∼300nm in diameter. There were significant differences among formulations for hardness and flexural strength (p<0.05). Degree of conversion of resin cement was not affected for all groups, except for Group 4 (p<0.05). SIGNIFICANCE Hybrid reinforcement nanofibers are promising as fillers for dental materials. The self-adhesive resin cement with PDLLA+Nb2O5 and PDLLA+Nb2O5/SiO2 presented superior mechanical performance than the control group.
Collapse
Affiliation(s)
- Marilia M A C Velo
- Bauru School of Dentistry, University of São Paulo-USP, Bauru, SP, Brazil.
| | - Tatiana R L Nascimento
- Materials and Biosystems Laboratory (LAMAB), Department of Materials Engineering (DEMat), Federal University of Paraíba (UFPB), João Pessoa, Brazil; Bio-Active Materials Group, Department of Materials, MSS Tower, The University of Manchester, Manchester, M13 9PL, UK
| | - Cassiana K Scotti
- Bauru School of Dentistry, University of São Paulo-USP, Bauru, SP, Brazil
| | | | - Adilson Y Furuse
- Bauru School of Dentistry, University of São Paulo-USP, Bauru, SP, Brazil
| | - Vinícius D Silva
- Materials and Biosystems Laboratory (LAMAB), Department of Materials Engineering (DEMat), Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Thiago A Simões
- Materials and Biosystems Laboratory (LAMAB), Department of Materials Engineering (DEMat), Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Eliton S Medeiros
- Materials and Biosystems Laboratory (LAMAB), Department of Materials Engineering (DEMat), Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Jonny J Blaker
- Bio-Active Materials Group, Department of Materials, MSS Tower, The University of Manchester, Manchester, M13 9PL, UK
| | - Nikolaos Silikas
- Dentistry, School of Medical Sciences, The University of Manchester, Manchester M13 9PL, UK
| | | |
Collapse
|
20
|
Borges ALS, Tribst JPM, Dal Piva AMO, Souza ACO. In vitro evaluation of multi-walled carbon nanotube reinforced nanofibers composites for dental application. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1655746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Alexandre L. S. Borges
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP/SJC), Institute of Science and Technology, São Paulo, Brazil
| | - João P. M. Tribst
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP/SJC), Institute of Science and Technology, São Paulo, Brazil
| | - Amanda M. O. Dal Piva
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP/SJC), Institute of Science and Technology, São Paulo, Brazil
| | - Ana Carolina O. Souza
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP/SJC), Institute of Science and Technology, São Paulo, Brazil
| |
Collapse
|
21
|
Peres BU, Vidotti HA, de Carvalho LD, Manso AP, Ko F, Carvalho RM. Nanocrystalline cellulose as a reinforcing agent for electrospun polyacrylonitrile (PAN) nanofibers. J Oral Biosci 2019; 61:37-42. [PMID: 30929800 DOI: 10.1016/j.job.2018.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/14/2018] [Accepted: 09/25/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Nanocrystalline cellulose (NCC) is a sustainable material with excellent mechanical properties and can potentially be used as a reinforcement agent. The objective of this work was to test the effects of NCC incorporation on the mechanical properties of electrospun polyacrylonitrile (PAN) nanofibers. METHODS Eleven percent in weight of PAN (molecular weight 150 kD) in a dimethylformamide (DMF) solution was electrospun at 14.6 kV. Nonfunctionalized NCC was added to the solution at 1%, 2%, or 3 wt% (NCC/PAN). Suspensions were mixed and sonicated for 2 h before spinning. Strips (5 × 0.5 cm) were cut from the spun mat, parallel and perpendicular to the rotational direction of the fiber collection drum. Tensile tests were performed, and ultimate tensile strength (UTS), yield strength (YS; 0.3%), elastic modulus (E), and elongation at maximum stress (EMS, %) were calculated from stress-strain plots. Data were analyzed by multiple t tests and one-way ANOVA (α = 0.05). RESULTS Among all groups, samples with 3 wt % NCC loading had significantly superior mechanical properties. The fiber mats showed anisotropic behavior. CONCLUSIONS Regardless of concentration, the addition of NCC resulted in increased UTS, E, and YS of the nanofibers.
Collapse
Affiliation(s)
- Bernardo Urbanetto Peres
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, 2199 Westbrook Mall, JBM 368, Vancouver, Canada BC V6T 1Z3.
| | - Hugo Alberto Vidotti
- Department of Prosthodontics, University of Western São Paulo, Rua José Bongiovani - Cidade Universitária, Presidente Prudente, SP 19050-920, Brazil.
| | - Luana Dutra de Carvalho
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, 2199 Westbrook Mall, JBM 368, Vancouver, Canada BC V6T 1Z3.
| | - Adriana Pigozzo Manso
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, 2199 Westbrook Mall, JBM 368, Vancouver, Canada BC V6T 1Z3.
| | - Frank Ko
- Department of Materials Engineering, Faculty of Applied Sciences, University of British Columbia, 2355 E Mall, BC, Vancouver, Canada BC V6T 1Z4.
| | - Ricardo Marins Carvalho
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, 2199 Westbrook Mall, JBM 368, Vancouver, Canada BC V6T 1Z3.
| |
Collapse
|
22
|
SEDREZ-PORTO JA, MÜNCHOW EA, VALENTE LL, CENCI MS, PEREIRA-CENCI T. New material perspective for endocrown restorations: effects on mechanical performance and fracture behavior. Braz Oral Res 2019; 33:e012. [DOI: 10.1590/1807-3107bor-2019.vol33.0012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 01/10/2019] [Indexed: 01/06/2023] Open
|
23
|
Jabur AR, Abdulmajeed MH, Abd SY. Effect of copper chloride salt(CuCl2) addition on DC,AC conductivity and tensile strength of PVA electrospun polymeric film. TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY: TMREES19GR 2019. [DOI: 10.1063/1.5138502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
24
|
Meireles AB, Corrêa DK, da Silveira JVW, Millás ALG, Bittencourt E, de Brito-Melo GEA, González-Torres LA. Trends in polymeric electrospun fibers and their use as oral biomaterials. Exp Biol Med (Maywood) 2018; 243:665-676. [PMID: 29763386 PMCID: PMC6378505 DOI: 10.1177/1535370218770404] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Electrospinning is one of the techniques to produce structured polymeric fibers in the micro or nano scale and to generate novel materials for biomedical proposes. Electrospinning versatility provides fibers that could support different surgical and rehabilitation treatments. However, its diversity in equipment assembly, polymeric materials, and functional molecules to be incorporated in fibers result in profusion of recent biomaterials that are not fully explored, even though the recognized relevance of the technique. The present article describes the main electrospun polymeric materials used in oral applications, and the main aspects and parameters of the technique. Natural and synthetic polymers, blends, and composites were identified from the available literature and recent developments. Main applications of electrospun fibers were focused on drug delivery systems, tissue regeneration, and material reinforcement or modification, although studies require further investigation in order to enable direct use in human. Current and potential usages as biomaterials for oral applications must motivate the development in the use of electrospinning as an efficient method to produce highly innovative biomaterials, over the next few years. Impact statement Nanotechnology is a challenge for many researchers that look for obtaining different materials behaviors by modifying characteristics at a very low scale. Thus, the production of nanostructured materials represents a very important field in bioengineering, in which the electrospinning technique appears as a suitable alternative. This review discusses and provides further explanation on this versatile technique to produce novel polymeric biomaterials for oral applications. The use of electrospun fibers is incipient in oral areas, mainly because of the unfamiliarity with the technique. Provided disclosure, possibilities and state of the art are aimed at supporting interested researchers to better choose proper materials, understand, and design new experiments. This work seeks to encourage many other researchers-Dentists, Biologists, Engineers, Pharmacists-to develop innovative materials from different polymers. We highlight synthetic and natural polymers as trends in treatments to motivate an advance in the worldwide discussion and exploration of this interdisciplinary field.
Collapse
Affiliation(s)
- Agnes B Meireles
- Pharmacy Department, Laboratory of Immunology, UFVJM and PPGCF-UFVJM, Diamantina, MG 39100-000, Brazil
| | - Daniella K Corrêa
- Institute of Science and Technology – UFVJM, Diamantina, MG 39100-000, Brazil
| | - João VW da Silveira
- Institute of Science and Technology – UFVJM, Diamantina, MG 39100-000, Brazil
| | - Ana LG Millás
- Chemical Engineering Department, UNICAMP, Campinas, SP 13083-852, Brazil
| | - Edison Bittencourt
- Chemical Engineering Department, UNICAMP, Campinas, SP 13083-852, Brazil
| | - Gustavo EA de Brito-Melo
- Pharmacy Department, Laboratory of Immunology, UFVJM and PPGCF-UFVJM, Diamantina, MG 39100-000, Brazil
| | | |
Collapse
|
25
|
Jabur AR, Abdulmajeed MH, Abd SY. Effect of Cu nanoparticles addition on improving the electrical conductivity and mechanical properties of PVA electrospun polymeric film. AIP CONFERENCE PROCEEDINGS 2018. [DOI: 10.1063/1.5039203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
26
|
Jiang S, Chen Y, Duan G, Mei C, Greiner A, Agarwal S. Electrospun nanofiber reinforced composites: a review. Polym Chem 2018. [DOI: 10.1039/c8py00378e] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
High performance electrospun nanofibers could be used to fabricate nanofiber reinforced composites.
Collapse
Affiliation(s)
- Shaohua Jiang
- College of Materials Science and Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Yiming Chen
- College of Materials Science and Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Gaigai Duan
- College of Materials Science and Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Changtong Mei
- College of Materials Science and Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Andreas Greiner
- University of Bayreuth
- Faculty of Biology
- Chemistry and Earth Sciences
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces
- Germany
| | - Seema Agarwal
- University of Bayreuth
- Faculty of Biology
- Chemistry and Earth Sciences
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces
- Germany
| |
Collapse
|
27
|
Wang G, Yu D, Kelkar AD, Zhang L. Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.08.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Alzarrug FA, Stojanovic DB, Obradovic V, Kojovic A, Nedeljkovic JM, Rajilic-Stojanovic M, Uskokovic PS. Multiscale characterization of antimicrobial poly(vinyl butyral)/titania nanofibrous composites. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.3996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Faisal Ali Alzarrug
- Faculty of Technology and Metallurgy; University of Belgrade; Karnegijeva 4 11 000 Belgrade Serbia
| | - Dusica B. Stojanovic
- Faculty of Technology and Metallurgy; University of Belgrade; Karnegijeva 4 11 000 Belgrade Serbia
| | - Vera Obradovic
- Faculty of Technology and Metallurgy; University of Belgrade; Karnegijeva 4 11 000 Belgrade Serbia
| | - Aleksandar Kojovic
- Faculty of Technology and Metallurgy; University of Belgrade; Karnegijeva 4 11 000 Belgrade Serbia
| | - Jovan M. Nedeljkovic
- Vinca Institute of Nuclear Sciences; University of Belgrade; PO Box 522 Belgrade Serbia
| | | | - Petar S. Uskokovic
- Faculty of Technology and Metallurgy; University of Belgrade; Karnegijeva 4 11 000 Belgrade Serbia
| |
Collapse
|
29
|
Potential of Electrospun Nanofibers for Biomedical and Dental Applications. MATERIALS 2016; 9:ma9020073. [PMID: 28787871 PMCID: PMC5456492 DOI: 10.3390/ma9020073] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/06/2016] [Accepted: 01/18/2016] [Indexed: 12/26/2022]
Abstract
Electrospinning is a versatile technique that has gained popularity for various biomedical applications in recent years. Electrospinning is being used for fabricating nanofibers for various biomedical and dental applications such as tooth regeneration, wound healing and prevention of dental caries. Electrospun materials have the benefits of unique properties for instance, high surface area to volume ratio, enhanced cellular interactions, protein absorption to facilitate binding sites for cell receptors. Extensive research has been conducted to explore the potential of electrospun nanofibers for repair and regeneration of various dental and oral tissues including dental pulp, dentin, periodontal tissues, oral mucosa and skeletal tissues. However, there are a few limitations of electrospinning hindering the progress of these materials to practical or clinical applications. In terms of biomaterials aspects, the better understanding of controlled fabrication, properties and functioning of electrospun materials is required to overcome the limitations. More in vivo studies are definitely required to evaluate the biocompatibility of electrospun scaffolds. Furthermore, mechanical properties of such scaffolds should be enhanced so that they resist mechanical stresses during tissue regeneration applications. The objective of this article is to review the current progress of electrospun nanofibers for biomedical and dental applications. In addition, various aspects of electrospun materials in relation to potential dental applications have been discussed.
Collapse
|
30
|
Habib E, Wang R, Wang Y, Zhu M, Zhu XX. Inorganic Fillers for Dental Resin Composites: Present and Future. ACS Biomater Sci Eng 2015; 2:1-11. [DOI: 10.1021/acsbiomaterials.5b00401] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Eric Habib
- Department
of Chemistry, Université de Montréal, CP 6128, Succ. Centre-ville, Montreal, Quebec, Canada
| | - Ruili Wang
- Department
of Chemistry, Université de Montréal, CP 6128, Succ. Centre-ville, Montreal, Quebec, Canada
| | - Yazi Wang
- State
Key Laboratory for Modification of Chemical Fibers and Polymer Materials,
College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State
Key Laboratory for Modification of Chemical Fibers and Polymer Materials,
College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - X. X. Zhu
- Department
of Chemistry, Université de Montréal, CP 6128, Succ. Centre-ville, Montreal, Quebec, Canada
| |
Collapse
|
31
|
Chayad FA, Jabur AR, Jalal NM. Effect of MWCNT addition on improving the electrical conductivity and activation energy of electrospun nylon films. KARBALA INTERNATIONAL JOURNAL OF MODERN SCIENCE 2015. [DOI: 10.1016/j.kijoms.2015.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
32
|
Almeida CS, Amaral M, de Cássia Papaiz Gonçalves F, de Arruda Paes-Junior TJ. Effect of an experimental silica-nylon reinforcement on the fracture load and flexural strength of bisacrylic interim partial fixed dental prostheses. J Prosthet Dent 2015; 115:301-5. [PMID: 26548883 DOI: 10.1016/j.prosdent.2015.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 11/16/2022]
Abstract
STATEMENT OF THE PROBLEM Materials used in the fabrication of interim restorations usually have mechanical properties inferior to those used in definitive prostheses. Various techniques may be used to reinforce these materials. PURPOSE The purpose of this in vitro study was to evaluate the fracture strength of interim partial fixed dental prostheses (FDPs) with and without an experimental silica-nylon reinforcement placed in different orientations (horizontal or vertical) before and after thermocycling and to evaluate the flexural strength of the bisacrylic resin used for fabricating these prostheses. MATERIAL AND METHODS For fracture strength testing, 72 four-unit interim partial FDPs were fabricated from bisacrylic resin and divided into 3 groups: no reinforcement, horizontal reinforcement, and vertical reinforcement. Half of the specimens from each group were thermocycled before testing (1000 cycles between 5°C and 55°C) (n=12). An increasing load was applied to the center of the prosthesis until fracture. The flexural strength of bisacrylic resin reinforced with the experimental mesh was measured by using a 3-point bending test with 25×10.5×3.3 mm bars of resin, with or without thermocycling. The results were evaluated with analysis of variance and Kaplan-Meier survival analysis (α=.05). RESULTS The results showed that incorporating the experimental silica-nylon reinforcement in a horizontal orientation provided the highest values of fracture strength for the 4-unit partial FDPs. Reinforcement also enhanced the flexural strength values of bisacrylic resin bars. CONCLUSION Silica-nylon reinforcement is an effective method of increasing the strength of interim restorations.
Collapse
Affiliation(s)
- Carolina Souza Almeida
- Graduate student, Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), Institute of Science and Technology, São José dos Campos Dental School, São José dos Campos, Brazil
| | - Marina Amaral
- Researcher, Post Graduation Program in Dentistry, University of Taubate (UNITAU), Taubate, Brazil
| | - Fernanda de Cássia Papaiz Gonçalves
- Doctoral student, Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), Institute of Science and Technology, São José dos Campos Dental School, São José dos Campos, Brazil
| | - Tarcisio José de Arruda Paes-Junior
- Associate Professor, Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), Institute of Science and Technology, São José dos Campos Dental School, São José dos Campos, Brazil.
| |
Collapse
|