1
|
Zhong J, Huang W, Zhou H. Multifunctionality in Nature: Structure-Function Relationships in Biological Materials. Biomimetics (Basel) 2023; 8:284. [PMID: 37504172 PMCID: PMC10807375 DOI: 10.3390/biomimetics8030284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Modern material design aims to achieve multifunctionality through integrating structures in a diverse range, resulting in simple materials with embedded functions. Biological materials and organisms are typical examples of this concept, where complex functionalities are achieved through a limited material base. This review highlights the multiscale structural and functional integration of representative natural organisms and materials, as well as biomimetic examples. The impact, wear, and crush resistance properties exhibited by mantis shrimp and ironclad beetle during predation or resistance offer valuable inspiration for the development of structural materials in the aerospace field. Investigating cyanobacteria that thrive in extreme environments can contribute to developing living materials that can serve in places like Mars. The exploration of shape memory and the self-repairing properties of spider silk and mussels, as well as the investigation of sensing-actuating and sensing-camouflage mechanisms in Banksias, chameleons, and moths, holds significant potential for the optimization of soft robot designs. Furthermore, a deeper understanding of mussel and gecko adhesion mechanisms can have a profound impact on medical fields, including tissue engineering and drug delivery. In conclusion, the integration of structure and function is crucial for driving innovations and breakthroughs in modern engineering materials and their applications. The gaps between current biomimetic designs and natural organisms are also discussed.
Collapse
Affiliation(s)
| | - Wei Huang
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (J.Z.); (H.Z.)
| | | |
Collapse
|
2
|
Wang D, Han S, Yang M. Tooth Diversity Underpins Future Biomimetic Replications. Biomimetics (Basel) 2023; 8:biomimetics8010042. [PMID: 36810373 PMCID: PMC9944091 DOI: 10.3390/biomimetics8010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Although the evolution of tooth structure seems highly conserved, remarkable diversity exists among species due to different living environments and survival requirements. Along with the conservation, this diversity of evolution allows for the optimized structures and functions of teeth under various service conditions, providing valuable resources for the rational design of biomimetic materials. In this review, we survey the current knowledge about teeth from representative mammals and aquatic animals, including human teeth, herbivore and carnivore teeth, shark teeth, calcite teeth in sea urchins, magnetite teeth in chitons, and transparent teeth in dragonfish, to name a few. The highlight of tooth diversity in terms of compositions, structures, properties, and functions may stimulate further efforts in the synthesis of tooth-inspired materials with enhanced mechanical performance and broader property sets. The state-of-the-art syntheses of enamel mimetics and their properties are briefly covered. We envision that future development in this field will need to take the advantage of both conservation and diversity of teeth. Our own view on the opportunities and key challenges in this pathway is presented with a focus on the hierarchical and gradient structures, multifunctional design, and precise and scalable synthesis.
Collapse
|
3
|
Zhang L, Zhang Y, Yu T, Peng L, Sun Q, Han B. Engineered Fabrication of Enamel-Mimetic Materials. ENGINEERING 2022; 14:113-123. [DOI: 10.1016/j.eng.2021.02.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
|
4
|
Zhang M, Zhao N, Yu Q, Liu Z, Qu R, Zhang J, Li S, Ren D, Berto F, Zhang Z, Ritchie RO. On the damage tolerance of 3-D printed Mg-Ti interpenetrating-phase composites with bioinspired architectures. Nat Commun 2022; 13:3247. [PMID: 35668100 PMCID: PMC9170714 DOI: 10.1038/s41467-022-30873-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/13/2022] [Indexed: 12/20/2022] Open
Abstract
Bioinspired architectures are effective in enhancing the mechanical properties of materials, yet are difficult to construct in metallic systems. The structure-property relationships of bioinspired metallic composites also remain unclear. Here, Mg-Ti composites were fabricated by pressureless infiltrating pure Mg melt into three-dimensional (3-D) printed Ti-6Al-4V scaffolds. The result was composite materials where the constituents are continuous, mutually interpenetrated in 3-D space and exhibit specific spatial arrangements with bioinspired brick-and-mortar, Bouligand, and crossed-lamellar architectures. These architectures promote effective stress transfer, delocalize damage and arrest cracking, thereby bestowing improved strength and ductility than composites with discrete reinforcements. Additionally, they activate a series of extrinsic toughening mechanisms, including crack deflection/twist and uncracked-ligament bridging, which enable crack-tip shielding from the applied stress and lead to “Γ”-shaped rising fracture resistance R-curves. Quantitative relationships were established for the stiffness and strengths of the composites by adapting classical laminate theory to incorporate their architectural characteristics. Bioinspired architectures are desired to achieve improved mechanical properties, but challenging to achieve in metallic systems. Here the authors fabricate a Mg-Ti interpenetrating phase composite with brick-and-mortar, Bouligand, and crossed-lamellar architectures by pressureless infiltrating method.
Collapse
Affiliation(s)
- Mingyang Zhang
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang, China.,School of Materials Science and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Ning Zhao
- School of Materials Science and Engineering, Lanzhou University of Technology, 730050, Lanzhou, China
| | - Qin Yu
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Zengqian Liu
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang, China. .,School of Materials Science and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| | - Ruitao Qu
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang, China.,State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Jian Zhang
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang, China
| | - Shujun Li
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang, China.,School of Materials Science and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Dechun Ren
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang, China.,School of Materials Science and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Richard Birkelands vei 2B, Trondheim, 7034, Norway
| | - Zhefeng Zhang
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang, China. .,School of Materials Science and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
5
|
Pham L, Lu G, Tran P. Influences of Printing Pattern on Mechanical Performance of Three-Dimensional-Printed Fiber-Reinforced Concrete. 3D PRINTING AND ADDITIVE MANUFACTURING 2022; 9:46-63. [PMID: 36660133 PMCID: PMC9831533 DOI: 10.1089/3dp.2020.0172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Underperformed interfacial bond and anisotropic properties are often observed in three-dimensional-printed concrete, where the printing pattern is unidirectional. Such issues could be potentially alleviated by replicating microstructures of natural materials or applying different architectures, where printed layers are arranged into unique and unconventional patterns. Furthermore, the quest to develop printing methods for highly complex or self-support concrete architecture could benefit from these nature-inspired patterns. In this work, the influences of different architectural arrangements of layers on mechanical properties of hardened concrete on compressive and flexural strengths are investigated. Specifically, unidirectional (0°), cross-ply (0°/90°), quasi-isotropic (0°/ ± 45°/90°), and helicoidal patterns (with pitch angles of 10°, 20°, and 30°) are used to create unidirectional, bidirectional, and multidirectional layers in printed objects without and with 0.75% by volume of 6 mm-long steel fibers. The experimental results demonstrate considerable improvements in the flexural strengths of nontraditional specimens without steel fibers over the unidirectional control with a few exceptions. Among investigated patterns, the quasi-isotropic demonstrates significant influences in both compressive and flexural responses of printed concrete samples without steel fibers. The addition of steel fibers leads to noticeable improvement on both compressive and flexural strengths of samples in any pattern compared with their counterparts without fibers. Besides, the inclusion of steel fibers into unconventional layups (cross-ply, quasi-isotropic, and helicoidal patterns) leads to the alleviation of directional dependence of mechanical properties, which is a limitation of the unidirectional samples with fibers. Of all helicoidal patterns, the one with a 10°-angle layup is shown to be more beneficial to the flexural strength enhancement and damage resistance in bending. X-ray microcomputed tomography measurements are performed to visualize the direction and distribution of fibers.
Collapse
Affiliation(s)
- Luong Pham
- Department of Civil & Infrastructure Engineering, RMIT University, Melbourne, Australia
- Department of Civil Engineering, Vinh University, Vinh City, Vietnam
| | - Guoxing Lu
- Department of Mechanical and Product Design Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Australia
| | - Phuong Tran
- Department of Civil & Infrastructure Engineering, RMIT University, Melbourne, Australia
| |
Collapse
|
6
|
Curto M, Kao AP, Keeble W, Tozzi G, Barber AH. X-ray computed tomography evaluations of additive manufactured multimaterial composites. J Microsc 2021; 285:131-143. [PMID: 34057229 DOI: 10.1111/jmi.13034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 02/01/2023]
Abstract
Additive Manufacturing (AM) often produces complex engineered structures by precisely distributing materials in a layer-by-layer fashion. Multimaterial AM is a particularly flexible technique able to combine a range of hard and soft materials to produce designed composites. Critically, the design of AM multimaterial structures requires the development of precise three-dimensional (3D) computed aided design (CAD) files. While such digital design is heavily used, techniques able to validate the physically manufactured composite against the digital design from which it is generated are lacking for AM, especially as any evaluations must be able to distinguish material variation across the 3D space. Nowadays, there is a growing interest in volumetric tools that can provide topological information hidden by the surface of shaped materials. So far, technologies such as Optical microscopy (OM), Scanning Electron Microscopy (SEM), and Coordinate Measuring Machine (CMM) have paved the way into the metrology field to measure the external geometry of physical objects. Currently, alongside conventional metrology tools, X-ray computed tomography (XCT) is emerging to measure the subsurface of the objects but maintaining the integrity of the probed samples. Thereby, the volumetric nature of the XCT investigations and its associated imaging techniques, ensure 3D quantitative measurements comparable to the output data from 2D metrology tools, but above all, supply the missing subsurface description for an exhaustive metrology study. The reward associated with XCT applied to multimaterial AM is a map reflecting the fabricated distribution of materials following CAD, with the benefits of better understanding the mechanical interplay within phases, hence, describing the hidden processes as well as the changes in phases due to a range of mechanical or chemical phenomena. In this study, a nondestructive approach using X-ray computed tomography (XCT) is used to fully evaluate the 3D distribution of multimaterials from an AM process. Specifically, two diverse hard and soft materials are alternatively produced in the form of a fibre embedded in a matrix via ink-jet printing. XCT coupled with imaging evaluation were able to distinguish between the differing materials and, importantly, to demonstrate a reduction in the expected fabricated volumes when compared to the respective CAD designs. LAY DESCRIPTION: Additive Manufacturing (AM) has recently become important in producing complex engineered structures. Using 3D CAD files and/or reconstructed data sets from imaging, hard and soft materials are manufactured independently or in combination, according to geometrical features and shapes in the input data. However, the evaluation of the resultant manufactured parts in comparison with the original 3D drawing is currently lacking. In this sense, X-ray computed tomography (XCT) provides an important metrology tool for mono and multimaterial AM. In this work a volumetric metrology investigation is proposed using higher resolution XCT to provide 3D information comparable to that of the 3D CAD drawings. A commercial high-resolution multijetting material printer (ProJet 5500X, 3D Systems, USA) is used to manufacture single fibre composites, through a complementary deposition of photo sensible polymers. Hard and soft plastics are produced using a UV curable step, resulting in materials of similar attenuation under an X-ray probe. A critical aim of the evaluations is the potential for XCT to distinguish between different UV curable 3D printing materials.
Collapse
Affiliation(s)
- M Curto
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| | - A P Kao
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK.,Zeiss Global Centre, University of Portsmouth, Portsmouth, UK
| | - W Keeble
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| | - G Tozzi
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK.,Zeiss Global Centre, University of Portsmouth, Portsmouth, UK
| | - A H Barber
- School of Engineering, London South Bank University, UK
| |
Collapse
|
7
|
Zampetakis I, Dobah Y, Liu D, Woods B, Bezazi A, Perriman A, Scarpa F. Abnormal stiffness behaviour in artificial cactus-inspired reinforcement materials. BIOINSPIRATION & BIOMIMETICS 2020; 16:026004. [PMID: 33065569 DOI: 10.1088/1748-3190/abc1f2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Cactus fibres have previously shown unusual mechanical properties in terms of bending and axial stiffness due to their hierarchical structural morphology. Bioinspiration from those cactus fibres could potentially generate architected materials with exciting properties. To that end we have built bioinspired artificial analogues of cactus fibres to evaluate their mechanical properties. We have generated 3D printed specimens from rendered models of the cactus structure using two different printing techniques to assess the reproducibility of the structural topology. Bioinspired additive manufactured materials with unusual mechanical properties constitute an ever-evolving field for applications ranging from novel wing designs to lightweight plant-inspired analogues. The cactus-inspired 3D printed specimens developed here demonstrate an unusually high bending to axial stiffness ratios regardless of the manufacturing method used. Moreover, when compared to their equivalent beam analogues the cactus specimens demonstrate a significant potential in terms of specific (weight averaged) flexural modulus. Imaging of the artificial cactus reinforcements has enabled the generation of a one-dimensional reduced order finite element model of the cactus structure, with a distribution of cross sections along the length that simulate the inertia and mechanical behaviour of the cactus topology. The novel bioinspired material structure shows an excellent reproducibility across different manufacturing methods and suggest that the tree-like topology of the cactus fibre could be very suited to applications where high bending to axial stiffness ratios are critical.
Collapse
Affiliation(s)
- Ioannis Zampetakis
- Bristol Composites Institute (ACCIS), University of Bristol, BS8 1TR Bristol, United Kingdom
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD Bristol, United Kingdom
| | - Yousef Dobah
- Bristol Composites Institute (ACCIS), University of Bristol, BS8 1TR Bristol, United Kingdom
| | - Dong Liu
- School of Physics, HH Wills Physics Laboratory, Tyndall Avenue, University of Bristol, BS8 1TL Bristol, United Kingdom
| | - Ben Woods
- Bristol Composites Institute (ACCIS), University of Bristol, BS8 1TR Bristol, United Kingdom
| | - Abderrezak Bezazi
- Laboratoire de Mécanique Appliquée des Nouveaux Matériaux (LMANM), Université 8 Mai 1945-Guelma, Algeria
| | - Adam Perriman
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD Bristol, United Kingdom
| | - Fabrizio Scarpa
- Bristol Composites Institute (ACCIS), University of Bristol, BS8 1TR Bristol, United Kingdom
| |
Collapse
|
8
|
Fiber reorientation in hybrid helicoidal composites. J Mech Behav Biomed Mater 2020; 110:103914. [PMID: 32957213 DOI: 10.1016/j.jmbbm.2020.103914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/24/2020] [Accepted: 06/04/2020] [Indexed: 11/23/2022]
Abstract
Naturally occurring biological materials with stiff fibers embedded in a ductile matrix are commonly known to achieve excellent balance between stiffness, strength and ductility. In particular, biological composite materials with helicoidal architecture have been shown to exhibit enhanced damage tolerance and increased impact energy absorption. However, the role of fiber reorientation inside the flexible matrix of helicoid composites on their mechanical behaviors have not yet been extensively investigated. In the present work, we introduce a Discontinuous Fiber Helicoid (DFH) composite inspired by both the helicoid microstructure in the cuticle of mantis shrimp and the nacreous architecture of the red abalone shell. We employ 3D printed specimens, analytical models and finite element models to analyze and quantify in-plane fiber reorientation in helicoid architectures with different geometrical features. We also introduce additional architectures, i.e., single unidirectional lamina and mono-balanced architectures, for comparison purposes. Compared with associated mono-balanced architectures, helicoid architectures exhibit less fiber reorientation values and lower values of strain stiffening. The explanation for this difference is addressed in terms of the measured in-plane deformation, due to uniaxial tensile of the laminae, correlated to lamina misorientation with respect to the loading direction and lay-up sequence.
Collapse
|
9
|
Thompson VP. The tooth: An analogue for biomimetic materials design and processing. Dent Mater 2020; 36:25-42. [DOI: 10.1016/j.dental.2019.08.106] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 01/05/2023]
|
10
|
Huang W, Restrepo D, Jung JY, Su FY, Liu Z, Ritchie RO, McKittrick J, Zavattieri P, Kisailus D. Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901561. [PMID: 31268207 DOI: 10.1002/adma.201901561] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/08/2019] [Indexed: 05/04/2023]
Abstract
Biological materials found in Nature such as nacre and bone are well recognized as light-weight, strong, and tough structural materials. The remarkable toughness and damage tolerance of such biological materials are conferred through hierarchical assembly of their multiscale (i.e., atomic- to macroscale) architectures and components. Herein, the toughening mechanisms of different organisms at multilength scales are identified and summarized: macromolecular deformation, chemical bond breakage, and biomineral crystal imperfections at the atomic scale; biopolymer fibril reconfiguration/deformation and biomineral nanoparticle/nanoplatelet/nanorod translation, and crack reorientation at the nanoscale; crack deflection and twisting by characteristic features such as tubules and lamellae at the microscale; and structure and morphology optimization at the macroscale. In addition, the actual loading conditions of the natural organisms are different, leading to energy dissipation occurring at different time scales. These toughening mechanisms are further illustrated by comparing the experimental results with computational modeling. Modeling methods at different length and time scales are reviewed. Examples of biomimetic designs that realize the multiscale toughening mechanisms in engineering materials are introduced. Indeed, there is still plenty of room mimicking the strong and tough biological designs at the multilength and time scale in Nature.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, 92521, USA
| | - David Restrepo
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Jae-Young Jung
- Materials Science and Engineering Program, University of California San Diego, La Jolla, 92093, USA
| | - Frances Y Su
- Materials Science and Engineering Program, University of California San Diego, La Jolla, 92093, USA
| | - Zengqian Liu
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Fatigue and Fracture Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Joanna McKittrick
- Materials Science and Engineering Program, University of California San Diego, La Jolla, 92093, USA
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, 92093, USA
| | - Pablo Zavattieri
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - David Kisailus
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, 92521, USA
- Materials Science and Engineering Program, University of California Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
11
|
Drol CJ, Kennedy EB, Hsiung BK, Swift NB, Tan KT. Bioinspirational understanding of flexural performance in hedgehog spines. Acta Biomater 2019; 94:553-564. [PMID: 31129360 DOI: 10.1016/j.actbio.2019.04.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/20/2019] [Accepted: 04/12/2019] [Indexed: 12/01/2022]
Abstract
In this research, the flexural performance of hedgehog spines is investigated in four ways. First, X-ray micro-computed tomography (μCT) is employed to analyze the complex internal architecture of hedgehog spines. μCT images reveal distinct structural morphology, characterized by longitudinal stringers and transverse central plates, which enhance flexural performance. Second, computer-aided design (CAD) is utilized to create and produce different three-dimensional (3D) computational models that gradually approach resemblance to hedgehog spines. Various levels of models are constructed by including and excluding key internal features of hedgehog spines, resulting in the formation of model levels from the simplest to the most realistic form. Third, finite element analysis (FEA) is exploited to simulate flexural behavior of hedgehog spines undergoing three-point bending. FEA results aim to identify and elucidate how internal structural features affect flexural stiffness and bending stress contours. Fourth, flexural analytical modeling is performed to calculate flexural shear flow and twist angle during transverse loading. The effects of the number of hedgehog outer cells, the spine wall thickness ratio and radius ratio are theoretically investigated to predict the shear stress and twist angle of the hedgehog spine structure. Results demonstrate that longitudinal stringers of the hedgehog spine significantly increase the overall flexural stiffness, while the transverse central plates provide support and rigidity to prevent spines from buckling and collapsing. Interestingly, the 3D model level that most realistically resembles the actual hedgehog spine is evidenced to have the highest specific bending stiffness, demonstrating nature's most efficient design. The findings of this study may be useful for developing hedgehog-inspired lightweight, high-stiffness, impact-tolerant structures. STATEMENT OF SIGNIFICANCE: This research has given much needed insight on the inner morphology of hedgehog spines and the structure-property relationship to the spine's flexural performance. X-ray μCT images reveal inner structural morphology, characterized by longitudinal stringers and transverse plates. Finite element analysis shows that longitudinal stringers significantly increase flexural stiffness, while the transverse plates provide support and rigidity to prevent buckling. The model that resembles the actual hedgehog spine is evidenced to have the highest specific bending stiffness, demonstrating nature's most efficient design. Analytical model studies influence on cell number, spine geometrical ratios, and further confirms nature's perfect design with lowest flexural shear flow and twist angle during transverse loading. This work paths future design for hedgehog-inspired lightweight, high-stiffness, impact-tolerant structures.
Collapse
Affiliation(s)
- Christopher J Drol
- Department of Mechanical Engineering, The University of Akron, Akron, OH 44325, USA
| | - Emily B Kennedy
- Department of Biology, Integrated Bioscience PhD Program, The University of Akron, Akron, OH 44325, USA
| | - Bor-Kai Hsiung
- Department of Biology, Integrated Bioscience PhD Program, The University of Akron, Akron, OH 44325, USA
| | - Nathan B Swift
- Department of Physics, Science Technology Entrepreneurship Master's Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kwek-Tze Tan
- Department of Mechanical Engineering, The University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
12
|
Analysis of bioinspired non-interlocking geometrically patterned interfaces under predominant mode I loading. J Mech Behav Biomed Mater 2019; 96:244-260. [DOI: 10.1016/j.jmbbm.2019.04.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 11/17/2022]
|
13
|
Böhm CF, Harris J, Schodder PI, Wolf SE. Bioinspired Materials: From Living Systems to New Concepts in Materials Chemistry. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2117. [PMID: 31266158 PMCID: PMC6651889 DOI: 10.3390/ma12132117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 11/16/2022]
Abstract
Nature successfully employs inorganic solid-state materials (i.e., biominerals) and hierarchical composites as sensing elements, weapons, tools, and shelters. Optimized over hundreds of millions of years under evolutionary pressure, these materials are exceptionally well adapted to the specifications of the functions that they perform. As such, they serve today as an extensive library of engineering solutions. Key to their design is the interplay between components across length scales. This hierarchical design-a hallmark of biogenic materials-creates emergent functionality not present in the individual constituents and, moreover, confers a distinctly increased functional density, i.e., less material is needed to provide the same performance. The latter aspect is of special importance today, as climate change drives the need for the sustainable and energy-efficient production of materials. Made from mundane materials, these bioceramics act as blueprints for new concepts in the synthesis and morphosynthesis of multifunctional hierarchical materials under mild conditions. In this review, which also may serve as an introductory guide for those entering this field, we demonstrate how the pursuit of studying biomineralization transforms and enlarges our view on solid-state material design and synthesis, and how bioinspiration may allow us to overcome both conceptual and technical boundaries.
Collapse
Affiliation(s)
- Corinna F Böhm
- Department of Materials Science and Engineering (WW), Institute of Glass and Ceramics (WW3), Friedrich-Alexander University Erlangen-Nuremberg (FAU), Martensstrasse 5, D-91058 Erlangen, Germany
| | - Joe Harris
- Department of Materials Science and Engineering (WW), Institute of Glass and Ceramics (WW3), Friedrich-Alexander University Erlangen-Nuremberg (FAU), Martensstrasse 5, D-91058 Erlangen, Germany
| | - Philipp I Schodder
- Department of Materials Science and Engineering (WW), Institute of Glass and Ceramics (WW3), Friedrich-Alexander University Erlangen-Nuremberg (FAU), Martensstrasse 5, D-91058 Erlangen, Germany
| | - Stephan E Wolf
- Department of Materials Science and Engineering (WW), Institute of Glass and Ceramics (WW3), Friedrich-Alexander University Erlangen-Nuremberg (FAU), Martensstrasse 5, D-91058 Erlangen, Germany.
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
14
|
Debus C, Wu B, Kollmann T, Duchstein P, Siglreitmeier M, Herrera S, Benke D, Kisailus D, Schwahn D, Pipich V, Faivre D, Zahn D, Cölfen H. Bioinspired multifunctional layered magnetic hybrid materials. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2019. [DOI: 10.1680/jbibn.18.00030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Christian Debus
- Department of Physical Chemistry, University of Konstanz, Konstanz, Germany
| | - Baohu Wu
- Jülich Centre for Neutron Science, Heinz Maier-Leibnitz Zentrum, Garching, Germany
| | - Tina Kollmann
- Computer Chemistry Centre, University Erlangen–Nuremberg, Erlangen, Germany
| | - Patrick Duchstein
- Computer Chemistry Centre, University Erlangen–Nuremberg, Erlangen, Germany
| | | | - Steven Herrera
- Materials Science and Engineering Program, University of California Riverside, Riverside, CA, USA
| | - Dominik Benke
- Department of Physical Chemistry I, University of Bayreuth, Bayreuth, Germany
| | - David Kisailus
- Department of Chemical and Environmental Engineering and Materials Science and Engineering Program, University of California Riverside, Riverside, CA, USA
| | - Dietmar Schwahn
- Jülich Centre for Neutron Science, Heinz Maier-Leibnitz Zentrum, Garching, Germany; Technische Universität München, Forschungs-Neutronenquelle Heinz Maier-Leibnitz, Garching, Germany
| | - Vitaliy Pipich
- Jülich Centre for Neutron Science, Heinz Maier-Leibnitz Zentrum, Garching, Germany
| | - Damien Faivre
- Biosciences and Biotechnologies Institute, Aix Marseille Universite, CEA and CNRS, Saint-Paul-lès-Durance, France
| | - Dirk Zahn
- Computer Chemistry Centre, University Erlangen–Nuremberg, Erlangen, Germany
| | - Helmut Cölfen
- Department of Physical Chemistry, University of Konstanz, Konstanz, Germany
| |
Collapse
|
15
|
Integrated transcriptomic and proteomic analyses of a molecular mechanism of radular teeth biomineralization in Cryptochiton stelleri. Sci Rep 2019; 9:856. [PMID: 30696920 PMCID: PMC6351634 DOI: 10.1038/s41598-018-37839-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/14/2018] [Indexed: 11/13/2022] Open
Abstract
Many species of chiton are known to deposit magnetite (Fe3O4) within the cusps of their heavily mineralized and ultrahard radular teeth. Recently, much attention has been paid to the ultrastructural design and superior mechanical properties of these radular teeth, providing a promising model for the development of novel abrasion resistant materials. Here, we constructed de novo assembled transcripts from the radular tissue of C. stelleri that were used for transcriptome and proteome analysis. Transcriptomic analysis revealed that the top 20 most highly expressed transcripts in the non-mineralized teeth region include the transcripts encoding ferritin, while those in the mineralized teeth region contain a high proportion of mitochondrial respiratory chain proteins. Proteomic analysis identified 22 proteins that were specifically expressed in the mineralized cusp. These specific proteins include a novel protein that we term radular teeth matrix protein1 (RTMP1), globins, peroxidasins, antioxidant enzymes and a ferroxidase protein. This study reports the first de novo transcriptome assembly from C. stelleri, providing a broad overview of radular teeth mineralization. This new transcriptomic resource and the proteomic profiles of mineralized cusp are valuable for further investigation of the molecular mechanisms of radular teeth mineralization in chitons.
Collapse
|
16
|
Moini M, Olek J, Youngblood JP, Magee B, Zavattieri PD. Additive Manufacturing and Performance of Architectured Cement-Based Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802123. [PMID: 30159935 DOI: 10.1002/adma.201802123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/11/2018] [Indexed: 06/08/2023]
Abstract
There is an increasing interest in hierarchical design and additive manufacturing (AM) of cement-based materials. However, the brittle behavior of these materials and the presence of interfaces from the AM process currently present a major challenge. Contrary to the commonly adopted approach in AM of cement-based materials to eliminate the interfaces in 3D-printed hardened cement paste (hcp) elements, this work focuses on harnessing the heterogeneous interfaces by employing novel architectures (based on bioinspired Bouligand structures). These architectures are found to generate unique damage mechanisms, which allow inherently brittle hcp materials to attain flaw-tolerant properties and novel performance characteristics. It is hypothesized that combining heterogeneous interfaces with carefully designed architectures promotes such damage mechanisms as, among others, interfacial microcracking and crack twisting. This, in turn, leads to damage delocalization in brittle 3D-printed architectured hcp and therefore results in quasi-brittle behavior, enhanced fracture and damage tolerance, and unique load-displacement response, all without sacrificing strength. It is further found that in addition to delocalization of the cracks, the Bouligand architectures can also enhance work of failure and inelastic deflection of the architectured hcp elements by over 50% when compared to traditionally cast elements from the same materials.
Collapse
Affiliation(s)
- Mohamadreza Moini
- Lyles School of Civil Engineering, Purdue University at West Lafayette, IN, 47907, USA
| | - Jan Olek
- Lyles School of Civil Engineering, Purdue University at West Lafayette, IN, 47907, USA
| | - Jeffrey P Youngblood
- School of Materials Engineering, Purdue University at West Lafayette, IN, 47907, USA
| | - Bryan Magee
- Built Environment Research Institute, Ulster University at Newtownabbey, Newtownabbey, BT37 0QB, UK
| | - Pablo D Zavattieri
- Lyles School of Civil Engineering, Purdue University at West Lafayette, IN, 47907, USA
| |
Collapse
|
17
|
Salinas CL, de Obaldia EE, Jeong C, Hernandez J, Zavattieri P, Kisailus D. Enhanced toughening of the crossed lamellar structure revealed by nanoindentation. J Mech Behav Biomed Mater 2017; 76:58-68. [DOI: 10.1016/j.jmbbm.2017.05.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/25/2017] [Accepted: 05/28/2017] [Indexed: 10/19/2022]
|
18
|
|
19
|
Porter MM, Ravikumar N, Barthelat F, Martini R. 3D-printing and mechanics of bio-inspired articulated and multi-material structures. J Mech Behav Biomed Mater 2017; 73:114-126. [DOI: 10.1016/j.jmbbm.2016.12.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 12/16/2016] [Accepted: 12/20/2016] [Indexed: 01/13/2023]
|
20
|
Fousova M, Vojtech D, Jablonska E, Fojt J, Lipov J. Novel Approach in the Use of Plasma Spray: Preparation of Bulk Titanium for Bone Augmentations. MATERIALS 2017; 10:ma10090987. [PMID: 28837101 PMCID: PMC5615642 DOI: 10.3390/ma10090987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/14/2017] [Accepted: 08/21/2017] [Indexed: 01/08/2023]
Abstract
Thermal plasma spray is a common, well-established technology used in various application fields. Nevertheless, in our work, this technology was employed in a completely new way; for the preparation of bulk titanium. The aim was to produce titanium with properties similar to human bone to be used for bone augmentations. Titanium rods sprayed on a thin substrate wire exerted a porosity of about 15%, which yielded a significant decrease of Young′s modulus to the bone range and provided rugged topography for enhanced biological fixation. For the first verification of the suitability of the selected approach, tests of the mechanical properties in terms of compression, bending, and impact were carried out, the surface was characterized, and its compatibility with bone cells was studied. While preserving a high enough compressive strength of 628 MPa, the elastic modulus reached 11.6 GPa, thus preventing a stress-shielding effect, a generally known problem of implantable metals. U-2 OS and Saos-2 cells derived from bone osteosarcoma grown on the plasma-sprayed surface showed good viability.
Collapse
Affiliation(s)
- Michaela Fousova
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic.
| | - Dalibor Vojtech
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic.
| | - Eva Jablonska
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic.
| | - Jaroslav Fojt
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic.
| | - Jan Lipov
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
21
|
Dai X, Liu L, Ouyang J, Li X, Zhang X, Lan Q, Xu T. Coaxial 3D bioprinting of self-assembled multicellular heterogeneous tumor fibers. Sci Rep 2017; 7:1457. [PMID: 28469183 PMCID: PMC5431218 DOI: 10.1038/s41598-017-01581-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/31/2017] [Indexed: 02/08/2023] Open
Abstract
Three-dimensional (3D) bioprinting of living structures with cell-laden biomaterials has been achieved in vitro, however, some cell-cell interactions are limited by the existing hydrogel. To better mimic tumor microenvironment, self-assembled multicellular heterogeneous brain tumor fibers have been fabricated by a custom-made coaxial extrusion 3D bioprinting system, with high viability, proliferative activity and efficient tumor-stromal interactions. Therein, in order to further verify the sufficient interactions between tumor cells and stroma MSCs, CRE-LOXP switch gene system which contained GSCs transfected with "LOXP-STOP-LOXP-RFP" genes and MSCs transfected with "CRE recombinase" gene was used. Results showed that tumor-stroma cells interacted with each other and fused, the transcription of RFP was higher than that of 2D culture model and control group with cells mixed directly into alginate, respectively. RFP expression was observed only in the cell fibers but not in the control group under confocal microscope. In conclusion, coaxial 3D bioprinted multicellular self-assembled heterogeneous tumor tissue-like fibers provided preferable 3D models for studying tumor microenvironment in vitro, especially for tumor-stromal interactions.
Collapse
Affiliation(s)
- Xingliang Dai
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Libiao Liu
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing, 100084, China
| | - Jia Ouyang
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xinda Li
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing, 100084, China
| | - Xinzhi Zhang
- Medprin Biotech GmbH, Gutleutstraße 163-167, Frankfurt am Main, 60327, Germany
| | - Qing Lan
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Tao Xu
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing, 100084, China.
- Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, China.
| |
Collapse
|
22
|
Stabile L, Scungio M, Buonanno G, Arpino F, Ficco G. Airborne particle emission of a commercial 3D printer: the effect of filament material and printing temperature. INDOOR AIR 2017; 27:398-408. [PMID: 27219830 DOI: 10.1111/ina.12310] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/19/2016] [Indexed: 05/05/2023]
Abstract
The knowledge of exposure to the airborne particle emitted from three-dimensional (3D) printing activities is becoming a crucial issue due to the relevant spreading of such devices in recent years. To this end, a low-cost desktop 3D printer based on fused deposition modeling (FDM) principle was used. Particle number, alveolar-deposited surface area, and mass concentrations were measured continuously during printing processes to evaluate particle emission rates (ERs) and factors. Particle number distribution measurements were also performed to characterize the size of the emitted particles. Ten different materials and different extrusion temperatures were considered in the survey. Results showed that all the investigated materials emit particles in the ultrafine range (with a mode in the 10-30-nm range), whereas no emission of super-micron particles was detected for all the materials under investigation. The emission was affected strongly by the extrusion temperature. In fact, the ERs increase as the extrusion temperature increases. Emission rates up to 1×1012 particles min-1 were calculated. Such high ERs were estimated to cause large alveolar surface area dose in workers when 3D activities run. In fact, a 40-min-long 3D printing was found to cause doses up to 200 mm2 .
Collapse
Affiliation(s)
- L Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| | - M Scungio
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| | - G Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
- Queensland University of Technology, Brisbane, Qld, Australia
| | - F Arpino
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| | - G Ficco
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| |
Collapse
|
23
|
Abstract
Additive manufacturing (AM) technologies offer an attractive pathway towards the fabrication of functional materials featuring complex heterogeneous architectures inspired by biological systems. In this paper, recent research on the use of AM approaches to program the local chemical composition, structure and properties of biologically-inspired materials is reviewed. A variety of structural motifs found in biological composites have been successfully emulated in synthetic systems using inkjet-based, direct-writing, stereolithography and slip casting technologies. The replication in synthetic systems of design principles underlying such structural motifs has enabled the fabrication of lightweight cellular materials, strong and tough composites, soft robots and autonomously shaping structures with unprecedented properties and functionalities. Pushing the current limits of AM technologies in future research should bring us closer to the manufacturing capabilities of living organisms, opening the way for the digital fabrication of advanced materials with superior performance, lower environmental impact and new functionalities.
Collapse
Affiliation(s)
- André R Studart
- Complex Materials, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
24
|
Zhang C, Mcadams DA, Grunlan JC. Nano/Micro-Manufacturing of Bioinspired Materials: a Review of Methods to Mimic Natural Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:6292-321. [PMID: 27144950 DOI: 10.1002/adma.201505555] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/19/2016] [Indexed: 05/11/2023]
Abstract
Through billions of years of evolution and natural selection, biological systems have developed strategies to achieve advantageous unification between structure and bulk properties. The discovery of these fascinating properties and phenomena has triggered increasing interest in identifying characteristics of biological materials, through modern characterization and modeling techniques. In an effort to produce better engineered materials, scientists and engineers have developed new methods and approaches to construct artificial advanced materials that resemble natural architecture and function. A brief review of typical naturally occurring materials is presented here, with a focus on chemical composition, nano-structure, and architecture. The critical mechanisms underlying their properties are summarized, with a particular emphasis on the role of material architecture. A review of recent progress on the nano/micro-manufacturing of bio-inspired hybrid materials is then presented in detail. In this case, the focus is on nacre and bone-inspired structural materials, petals and gecko foot-inspired adhesive films, lotus and mosquito eye inspired superhydrophobic materials, brittlestar and Morpho butterfly-inspired photonic structured coatings. Finally, some applications, current challenges and future directions with regard to manufacturing bio-inspired hybrid materials are provided.
Collapse
Affiliation(s)
- Chaoqun Zhang
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas, 77843, United States
| | - Daniel A Mcadams
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas, 77843, United States
| | - Jaime C Grunlan
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas, 77843, United States
| |
Collapse
|
25
|
Swift NB, Hsiung BK, Kennedy EB, Tan KT. Dynamic impact testing of hedgehog spines using a dual-arm crash pendulum. J Mech Behav Biomed Mater 2016; 61:271-282. [DOI: 10.1016/j.jmbbm.2016.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/24/2016] [Accepted: 03/20/2016] [Indexed: 01/01/2023]
|