1
|
Allum Saib Z, Abed F, Ghayesh MH, Amabili M. Interaction of a self-expandable stent with the arterial wall in the presence of hypocellular and calcified plaques. Biomech Model Mechanobiol 2024:10.1007/s10237-024-01896-6. [PMID: 39369168 DOI: 10.1007/s10237-024-01896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024]
Abstract
Self-expandable stents manufactured from nitinol alloys are commonly utilized alongside traditional balloon-expandable stents to provide scaffolding to stenosed arteries. However, a significant limitation hampering stent efficacy is restenosis, triggered by neointimal hyperplasia and resulting in the loss of gain in lumen size, post-intervention. In this study, a nonlinear finite element model was developed to simulate stent crimping and expansion and its interaction with the surrounding vessel in the presence of a plaque. The main aim was to determine contact pressures and forces induced at the interface between an artery wall with hypocellular and calcified plaques and an expanded stent. The results demonstrated the drawbacks of plaque calcification, which triggered a sharp contact pressure and radial force surge at the interface as well as a significant rise in von Mises stress within the vessel, potentially leading to rupture and restenosis. A regression line was then established to relate hypocellular and calcified plaques. The adjusted coefficient of determination indicated a good correlation between contact pressures for calcified and hypocellular plaque models. Regarding the directionality of wall properties, contact pressure and force observations were not significantly different between isotropic and anisotropic arteries. Moreover, variations in friction coefficients did not substantially affect the interfacial contact pressures.
Collapse
Affiliation(s)
- Zubeir Allum Saib
- Biomedical Engineering Graduate Program, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Farid Abed
- Department of Civil Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
| | - Mergen H Ghayesh
- School of Electrical and Mechanical Engineering, University of Adelaide, Adelaide, South Australia, Australia
| | - Marco Amabili
- School of Engineering, Westlake University, Zhejiang Province, Hangzhou, People's Republic of China
- Department of Mechanical Engineering, McGill University, Montreal, Canada
| |
Collapse
|
2
|
Relationship between annular calcification of plaques in the carotid sinus and perioperative hemodynamic disorder in carotid angioplasty and stenting. J Stroke Cerebrovasc Dis 2022; 31:106634. [PMID: 35963212 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To investigate the correlation between annular plaque calcification in the carotid sinus and perioperative hemodynamic disorder (HD) in carotid angioplasty and stenting (CAS). METHODS The clinical data of 49 patients undergoing CAS due to narrowing of the carotid sinus were retrospectively analyzed. All patients had preoperative carotid computed tomography angiography (CTA) and were divided into HD and non-HD groups based on the occurrence of HD in the perioperative period of CAS. HD was defined as persistent bradycardia (heart rate < 60 beats per min) or persistent hypotension (systolic blood pressure < 90 mmHg) in the perioperative period and lasting for at least 1 h. The baseline data, including the degree of carotid artery stenosis, plaque length, plaque thickness, calcified plaque morphologies (i.e., plaque circumferential angle: < 90° defined as dotted calcification; 90°-180° defined as arcuate calcification; > 180° defined as annular calcification), contralateral carotid artery conditions, balloon diameter, and stent types, were compared between the two groups. Binary logistic regression was used to analyze the risk factors for the occurrence of HD. RESULTS Among the 49 patients undergoing CAS, 14 (28.57%) developed perioperative HD, and 35 did not. Annular calcification was more common in the patients in the HD group than in the non-HD group. No significant differences in the probabilities of dotted and arcuate calcifications were found between the two groups (p > 0.05). The duration of continuous dopamine consumption in the HD group was 9-71 h. The average hospital stay of the HD group (10.14 ± 4.17 days) was significantly longer than that of the non-HD group (6.57 ± 1.9 days; p < 0.001). Patients in the HD group had significantly more pronounced lumen stenosis (p = 0.033) and longer plaque length (p = 0.034) than those in the non-HD group. After adjusting for age and sex, multivariate regression analysis showed that the presence of annular plaque calcification was an independent predictor of HD (odds ratio: 7.68, 95% confidence interval: 1.46-40.37, p = 0.016). CONCLUSIONS The occurrence of annular plaque calcification in the carotid sinus was an independent risk factor for perioperative HD in CAS. Preoperative carotid CTA assists with the early identification of high-risk patients who may develop HD.
Collapse
|
3
|
Patel NR, Setya K, Pradhan S, Lu M, Demer LL, Tintut Y. Microarchitectural Changes of Cardiovascular Calcification in Response to In Vivo Interventions Using Deep-Learning Segmentation and Computed Tomography Radiomics. Arterioscler Thromb Vasc Biol 2022; 42:e228-e241. [PMID: 35708025 PMCID: PMC9339530 DOI: 10.1161/atvbaha.122.317761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Coronary calcification associates closely with cardiovascular risk, but its progress is accelerated in response to some interventions widely used to reduce risk. This paradox suggests that qualitative, not just quantitative, changes in calcification may affect plaque stability. To determine if the microarchitecture of calcification varies with aging, Western diet, statin therapy, and high intensity, progressive exercise, we assessed changes in a priori selected computed tomography radiomic features (intensity, size, shape, and texture). METHODS Longitudinal computed tomography scans of mice (Apoe-/-) exposed to each of these conditions were autosegmented by deep learning segmentation, and radiomic features of the largest deposits were analyzed. RESULTS Over 20 weeks of aging, intensity and most size parameters increased, but surface-area-to-volume ratio (a measure of porosity) decreased, suggesting stabilization. However, texture features (coarseness, cluster tendency, and nonuniformity) increased, suggesting heterogeneity and likely destabilization. Shape parameters showed no significant changes, except sphericity, which showed a decrease. The Western diet had significant effects on radiomic features related to size and texture, but not intensity or shape. In mice undergoing either pravastatin treatment or exercise, the selected radiomic features of their computed tomography scans were not significantly different from those of their respective controls. Interestingly, the total number of calcific deposits increased significantly less in the 2 intervention groups compared with the respective controls, suggesting more coalescence and/or fewer de novo deposits. CONCLUSIONS Thus, aging and standard interventions alter the microarchitectural features of vascular calcium deposits in ways that may alter plaque biomechanical stability.
Collapse
Affiliation(s)
- Nikhil Rajesh Patel
- Department of Medicine, University of California, Los Angeles. (N.R.P., K.S., S.P., M.L., L.L.D., Y.T.)
| | - Kulveer Setya
- Department of Medicine, University of California, Los Angeles. (N.R.P., K.S., S.P., M.L., L.L.D., Y.T.)
| | - Stuti Pradhan
- Department of Medicine, University of California, Los Angeles. (N.R.P., K.S., S.P., M.L., L.L.D., Y.T.)
| | - Mimi Lu
- Department of Medicine, University of California, Los Angeles. (N.R.P., K.S., S.P., M.L., L.L.D., Y.T.)
| | - Linda L Demer
- Department of Medicine, University of California, Los Angeles. (N.R.P., K.S., S.P., M.L., L.L.D., Y.T.).,Department of Bioengineering, University of California, Los Angeles. (L.L.D.).,Department of Physiology, University of California, Los Angeles. (L.L.D., Y.T.).,VA Greater Los Angeles Healthcare System, CA (L.L.D., Y.T.)
| | - Yin Tintut
- Department of Medicine, University of California, Los Angeles. (N.R.P., K.S., S.P., M.L., L.L.D., Y.T.).,Department of Physiology, University of California, Los Angeles. (L.L.D., Y.T.).,Department of Orthopaedic Surgery, University of California, Los Angeles. (Y.T.).,VA Greater Los Angeles Healthcare System, CA (L.L.D., Y.T.)
| |
Collapse
|
4
|
Colombi D, Bodini FC, Morelli N, Ciatti C, Maniscalco P, Michieletti E. Predictors of the multiwire technique use in carotid artery stenting. Eur J Radiol 2021; 147:110120. [PMID: 34974365 DOI: 10.1016/j.ejrad.2021.110120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The multiwire technique (MWT) in carotid artery stenting (CAS), characterized by the use of more than one guidewire to support guiding catheter in patients with hostile neck anatomy, increases procedural time, enhancing the risk of periprocedural stroke. The aim of the present study was to identify which factors are predictors of the MWT use in CAS, in order to stratify patients with longer procedure at potential higher risk of periprocedural stroke. METHODS The study retrospectively included patients who underwent CAS for stenotic plaque between January 2015 and December 2019. Exclusion criteria was incomplete clinical data. For each patients were registered clinical data, main aortic arch and supra-aortic vessel anatomical features, carotid plaque characteristics, and procedural details. The sample was divided in two group on the basis of the number of guides used during the stenting procedure: one guide (standard technique, ST) or more than one guidewire (MWT) to support the guiding catheter. Differences between groups were tested by Chi-square text or Fisher's exact test and Mann-Whitney U test. Logistic regression analysis was used to identify predictors for the use of the MWT. The area under the ROC (AUC) curve was used to assess performance of the model to predict the use of the multiwire technique. RESULTS The final sample included 146 of the 204 (71%) patients who underwent CAS during the study period. The median age of the patients was 79 years (IQR 71-83 years) with 47/146 (32%) females. CAS was performed with MWT in 17/146 (12%) of the cases. MWT was used more likely in patients with aortic arch type II or III as compared to ST (71% vs 37%, P = 0.02) while plaques with heavy concentric calcifications were more frequent in ST as compared to MWT (38% vs 12%, P = 0.03). At multivariable analysis aortic arch type II or III (OR 5.08, 95% CI 1.48-17.93, P < 0.01), plaque stenosis > 79% (OR 4.13, 95% CI 1.03-16.61, P = 0.04), and plaque heavy concentric calcifications (OR 0.19, 95% CI 0.04-0.94, P = 0.04) were independent predictors of MWT use. The model showed an AUC of 0.827 (95% CI 0.756-0.884) for the prediction of the MWT use during CAS. CONCLUSIONS Aortic arch type II or III, carotid plaque with stenosis higher than 79% of the lumen or without heavy concentric calcifications were predictors for the use of the MWT during CAS. These features should be considered during planning of CAS as hallmark of vascular stiffness and therefore of higher procedure complexity.
Collapse
Affiliation(s)
- Davide Colombi
- Department of Radiological Functions, Radiology Unit, "Guglielmo da Saliceto" Hospital, Via Taverna 49, 29121, Piacenza, Italy (IT).
| | - Flavio Cesare Bodini
- Department of Radiological Functions, Radiology Unit, "Guglielmo da Saliceto" Hospital, Via Taverna 49, 29121, Piacenza, Italy (IT).
| | - Nicola Morelli
- Department of Radiological Functions, Radiology Unit, "Guglielmo da Saliceto" Hospital, Via Taverna 49, 29121, Piacenza, Italy (IT).
| | - Corrado Ciatti
- Orthopedics and Traumatology Department, "Guglielmo da Saliceto" Hospital, Via Taverna 49, 29121, Piacenza, Italy (IT).
| | - Pietro Maniscalco
- Orthopedics and Traumatology Department, "Guglielmo da Saliceto" Hospital, Via Taverna 49, 29121, Piacenza, Italy (IT).
| | - Emanuele Michieletti
- Department of Radiological Functions, Radiology Unit, "Guglielmo da Saliceto" Hospital, Via Taverna 49, 29121, Piacenza, Italy (IT).
| |
Collapse
|
5
|
Lisický O, Hrubanová A, Burša J. Interpretation of Experimental Data is Substantial for Constitutive Characterization of Arterial Tissue. J Biomech Eng 2021; 143:104501. [PMID: 33973008 DOI: 10.1115/1.4051120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 11/08/2022]
Abstract
The paper aims at evaluation of mechanical tests of soft tissues and creation of their representative stress-strain responses and respective constitutive models. Interpretation of sets of experimental results depends highly on the approach to the data analysis. Their common representation through mean and standard deviation may be misleading and give nonrealistic results. In the paper, raw data of seven studies consisting of 11 experimental data sets (concerning carotid wall and atheroma tissues) are re-analyzed to show the importance of their rigorous analysis. The sets of individual uniaxial stress-stretch curves are evaluated using three different protocols: stress-based, stretch-based, and constant-based, and the population-representative response is created by their mean or median values. Except for nearly linear responses, there are substantial differences between the resulting curves, being mostly the highest for constant-based evaluation. But also the stretch-based evaluation may change the character of the response significantly. Finally, medians of the stress-based responses are recommended as the most rigorous approach for arterial and other soft tissues with significant strain stiffening.
Collapse
Affiliation(s)
- Ondřej Lisický
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Brno 601 90, Czech Republic
| | - Anna Hrubanová
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Brno 601 90, Czech Republic
| | - Jiří Burša
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Brno 601 90, Czech Republic
| |
Collapse
|
6
|
Lv P, Ji A, Zhang R, Guo D, Tang X, Lin J. Circumferential degree of carotid calcification is associated with new ischemic brain lesions after carotid artery stenting. Quant Imaging Med Surg 2021; 11:2669-2676. [PMID: 34079732 DOI: 10.21037/qims-20-1244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background The relationship between plaque calcification and new ischemic brain lesions after carotid artery stenting (CAS) remains controversial. The purpose of this study was to determine if the circumferential degree of carotid calcification is associated with new ischemic brain lesions on diffusion-weighted imaging (DWI) after CAS. Methods A total of 96 patients with carotid stenosis of ≥50% who underwent CAS were enrolled in the study. All patients underwent preoperative carotid computed tomography (CT), and preoperative and postoperative brain MRI. The brain MRI sequences included T1WI, T2WI, T2-fluid-attenuated inversion recovery (FLAIR), and DWI. The location, circumferential degree, volume, percentage volume, maximum density, mean density, Agatston score of carotid calcification, and total plaque volume were assessed and compared between patients with and without new ischemic brain lesions after CAS. Univariate and multivariate analyses were performed to evaluate predictors of new ischemic brain lesions. Results All of the 96 patients (67.8±6.8 years of age, 83.3% men) were included in the analysis. New ischemic brain lesions on DWI were observed in 40 patients (41.7%). Patients with new ischemic brain lesions after CAS had a larger circumferential degree of calcification than those without new ischemic brain lesions (P<0.001). There was only a possible trend toward significance for the percentage volume of calcification between the two groups with and without new brain ischemic lesions (P=0.07). No significant differences were found regarding the location (P=0.18), volume (P=0.37), maximum density (P=0.44), mean density (P=0.39), Agatston score (P=0.28), and total plaque volume (P=0.33) of carotid calcification between the DWI+ and DWI- groups. In the multivariate analysis, an increased risk of new ischemic brain lesions was observed in patients with a high score for the circumferential degree of calcification [score 3; odds ratio (OR): 10.7, P<0.001; score 4, OR: 11.7, P=0.038]. Conclusions The circumferential degree of carotid calcification was associated with new ischemic brain lesions after CAS. CAS should be avoided if possible for carotid stenosis with large circumferential calcified plaques.
Collapse
Affiliation(s)
- Peng Lv
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, China
| | - Aihua Ji
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, China
| | - Ranying Zhang
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, China
| | - Daqiao Guo
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Tang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiang Lin
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, China
| |
Collapse
|
7
|
Brady L, Stender CJ, Wang YN, Schade GR, Maxwell AD, Wessells H, Ledoux WR. Mechanical characterization of fibrotic and mineralized tissue in Peyronie's disease. Int J Impot Res 2021; 34:477-486. [PMID: 34035467 DOI: 10.1038/s41443-021-00439-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/18/2021] [Accepted: 04/07/2021] [Indexed: 11/09/2022]
Abstract
Peyronie's disease affects penile mechanics, but published research lacks biomechanical characterization of affected tunica albuginea. This work aims to establish mechanical testing methodology and characterize pathological tissue mechanics of Peyronie's disease. Tunica albuginea was obtained from patients (n = 5) undergoing reconstructive surgery for Peyronie's disease, sectioned into test specimens (n = 12), stored frozen at -20 °C, and imaged with micro-computed tomography (µCT). A tensile testing protocol was developed based on similar soft tissues. Correlation of mechanical summary variables (force, displacement, stiffness, work, Young's modulus, ultimate tensile stress, strain at ultimate tensile stress, and toughness) and µCT features were assessed with linear regression. Specimens empirically grouped into hard or soft stress-strain behavior were compared using a Student's t-test. Surface strain and failure patterns were described qualitatively. Specimens displayed high inter- and intra-subject variability. Mineralization volume was not correlated with mechanical parameters. Empirically hard tissue had higher ultimate tensile stress. Failure mechanisms and strain patterns differed between mineralized and non-mineralized specimens. Size, shape, and quantity of mineralization may be more important in determining Peyronie's disease plaque behavior than presence of mineralization alone, and single summary variables like modulus may not fully describe mechanical behavior.
Collapse
Affiliation(s)
- Lynda Brady
- VA RR&D Center for Limb Loss and MoBility (CLiMB), VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Christina J Stender
- VA RR&D Center for Limb Loss and MoBility (CLiMB), VA Puget Sound Health Care System, Seattle, WA, USA
| | - Yak-Nam Wang
- VA RR&D Center for Limb Loss and MoBility (CLiMB), VA Puget Sound Health Care System, Seattle, WA, USA.,Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - George R Schade
- Department of Urology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Adam D Maxwell
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.,Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA.,Department of Urology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Hunter Wessells
- Department of Urology, School of Medicine, University of Washington, Seattle, WA, USA
| | - William R Ledoux
- VA RR&D Center for Limb Loss and MoBility (CLiMB), VA Puget Sound Health Care System, Seattle, WA, USA. .,Department of Mechanical Engineering, University of Washington, Seattle, WA, USA. .,Department of Orthopaedics & Sports Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
8
|
Cahalane RM, Barrett HE, Ross AM, Mulvihill JJE, Purtill H, Selvarajah L, O'Brien J, Kavanagh EG, Moloneye MA, Egan SM, Leahy FC, Griffin TP, Islam MN, O'Shea PM, Walsh MT, O'Connor EM. On the association between circulating biomarkers and atherosclerotic calcification in a cohort of arterial disease participants. Nutr Metab Cardiovasc Dis 2021; 31:1533-1541. [PMID: 33810961 DOI: 10.1016/j.numecd.2021.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Atherosclerotic calcification is a powerful predictor of cardiovascular disease. This study aims to determine whether circulating levels of a local/systemic calcification inhibitor or a marker of bone formation correlate with measures of coronary or extracoronary calcification. METHODS AND RESULTS Clinical computed tomography (CT) was performed on 64 arterial disease participants undergoing carotid and lower extremity endarterectomy. Coronary artery calcium (CAC) scores and volumes were acquired from the CT scans (n = 42). CAC scores and volumes were used to derive CAC density scores. Micro-CT was performed on excised carotid (n = 36) and lower extremity (n = 31) plaques to quantify the volume and volume fraction of extracoronary calcification. Circulating levels of dephospho-uncarboxylated Matrix Gla Protein (dp-ucMGP), fetuin-A, carboxylated and uncarboxylated osteocalcin (ucOC) were quantified using commercial immunoassays. Carotid participant CAC density scores were moderately negatively correlated with plasma dp-ucMGP (rs = -0.592, P = 0.008). A weak negative association was found between CAC scores and %ucOC for all participants (rs = -0.335, P = 0.040). Another weak negative correlation was observed between fetuin-A and the volume of calcification within excised carotid specimens (rs = -0.366, P = 0.031). Despite substantial differences in coronary and extracoronary calcium measurements, the levels of circulating biomarkers did not vary significantly between carotid and lower extremity subgroups. CONCLUSION Correlations identified between circulating biomarkers and measures of coronary and extracoronary calcium were not consistent among participant subgroups. Further research is required to determine the association between circulating biomarkers, coronary and extracoronary calcium.
Collapse
Affiliation(s)
- Rachel M Cahalane
- BioScience and BioEngineering Research, Biomaterials Cluster, Bernal Institute, School of Engineering, University of Limerick, Ireland.
| | - Hilary E Barrett
- BioScience and BioEngineering Research, Biomaterials Cluster, Bernal Institute, School of Engineering, University of Limerick, Ireland.
| | - Aisling M Ross
- BioScience and BioEngineering Research, Biomaterials Cluster, Bernal Institute, School of Engineering, University of Limerick, Ireland.
| | - John J E Mulvihill
- BioScience and BioEngineering Research, Biomaterials Cluster, Bernal Institute, School of Engineering, University of Limerick, Ireland; Health Research Institute, University of Limerick, Ireland.
| | - Helen Purtill
- Health Research Institute, University of Limerick, Ireland; Department of Mathematics and Statistics, Aging Research Centre, University of Limerick, Ireland.
| | | | - Julie O'Brien
- Department of Radiology, University Hospital Limerick, Ireland.
| | - Eamon G Kavanagh
- Department of Vascular Surgery, University Hospital Limerick, Ireland.
| | | | - Siobhan M Egan
- Clinical Research Support Unit, University Hospital Limerick, Ireland.
| | - Fiona C Leahy
- Clinical Research Support Unit, University Hospital Limerick, Ireland.
| | - Tomás P Griffin
- Centre for Endocrinology, Diabetes and Metabolism, Saolta University Health Care Group (SUHCG), Galway University Hospitals, Galway, Ireland; Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, National University of Ireland Galway, Galway, Ireland.
| | - M N Islam
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, National University of Ireland Galway, Galway, Ireland; Department of Clinical Biochemistry, University Hospital Galway, Ireland.
| | - Paul M O'Shea
- Department of Clinical Biochemistry, University Hospital Galway, Ireland.
| | - Michael T Walsh
- BioScience and BioEngineering Research, Biomaterials Cluster, Bernal Institute, School of Engineering, University of Limerick, Ireland; Health Research Institute, University of Limerick, Ireland.
| | - Eibhlís M O'Connor
- Health Research Institute, University of Limerick, Ireland; Department of Biological Sciences, School of Natural Sciences, University of Limerick, Ireland; Alimentary Pharmabiotic Centre, Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
9
|
Gijsen FJH, Vis B, Barrett HE, Zadpoor AA, Verhagen HJ, Bos D, van der Steen AFW, Akyildiz AC. Morphometric and Mechanical Analyses of Calcifications and Fibrous Plaque Tissue in Carotid Arteries for Plaque Rupture Risk Assessment. IEEE Trans Biomed Eng 2020; 68:1429-1438. [PMID: 33186100 DOI: 10.1109/tbme.2020.3038038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Atherosclerotic plaque rupture in carotid arteries is a major source of cerebrovascular events. Calcifications are highly prevalent in carotid plaques, but their role in plaque rupture remains poorly understood. This work studied the morphometric features of calcifications in carotid plaques and their effect on the stress distribution in the fibrous plaque tissue at the calcification interface, as a potential source of plaque rupture and clinical events. METHODS A comprehensive morphometric analysis of 65 histology cross-sections from 16 carotid plaques was performed to identify the morphology (size and shape) and location of plaque calcifications, and the fibrous tissue fiber organization around them. Calcification-specific finite element models were constructed to examine the fibrous plaque tissue stresses at the calcification interface. Statistical correlation analysis was performed to elucidate the impact of calcification morphology and fibrous tissue organization on interface stresses. RESULTS Hundred-seventy-one calcifications were identified on the histology cross-sections, which showed great variation in morphology. Four distinct patterns of fiber organization in the plaque tissue were observed around the calcification. They were termed as attached, pushed-aside, encircling and random patterns. The stress analyses showed that calcifications are correlated with high interface stresses, which might be comparable to or even above the plaque strength. The stress levels depended on the calcification morphology and fiber organization. Thicker calcification with a circumferential slender shape, located close to the lumen were correlated most prominently to high interface stresses. CONCLUSION Depending on its morphology and the fiber organization around it, a calcification in an atherosclerotic plaque can act as a stress riser and cause high interface stresses. SIGNIFICANCE This study demonstrated the potential of calcifications in atherosclerotic plaques to cause elevated stresses in plaque tissue and provided a biomechanical explanation for the histopathological findings of calcification-associated plaque rupture.
Collapse
|
10
|
Dong P, Ye G, Kaya M, Gu L. Simulation-Driven Machine Learning for Predicting Stent Expansion in Calcified Coronary Artery. APPLIED SCIENCES (BASEL, SWITZERLAND) 2020; 10:5820. [PMID: 35903558 PMCID: PMC9328568 DOI: 10.3390/app10175820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we integrated finite element (FE) method and machine learning (ML) method to predict the stent expansion in a calcified coronary artery. The stenting procedure was captured in a patient-specific artery model, reconstructed based on optical coherence tomography images. Following FE simulation, eight geometrical features in each of 120 cross sections in the pre-stenting artery model, as well as the corresponding post-stenting lumen area, were extracted for training and testing the ML models. A linear regression model and a support vector regression (SVR) model with three different kernels (linear, polynomial, and radial basis function kernels) were adopted in this work. Two subgroups of the eight features, i.e., stretch features and calcification features, were further assessed for the prediction capacity. The influence of the neighboring cross sections on the prediction accuracy was also investigated by averaging each feature over eight neighboring cross sections. Results showed that the SVR models provided better predictions than the linear regression model in terms of bias. In addition, the inclusion of stretch features based on mechanistic understanding could provide a better prediction, compared with the calcification features only. However, there were no statistically significant differences between neighboring cross sections and individual ones in terms of the prediction bias and range of error. The simulation-driven machine learning framework in this work could enhance the mechanistic understanding of stenting in calcified coronary artery lesions, and also pave the way toward precise prediction of stent expansion.
Collapse
Affiliation(s)
| | | | | | - Linxia Gu
- Correspondence: ; Tel.: +1-321-6748447
| |
Collapse
|
11
|
O'Reilly BL, Hynes N, Sultan S, McHugh PE, McGarry JP. An experimental and computational investigation of the material behaviour of discrete homogenous iliofemoral and carotid atherosclerotic plaque constituents. J Biomech 2020; 106:109801. [DOI: 10.1016/j.jbiomech.2020.109801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/28/2020] [Accepted: 04/14/2020] [Indexed: 12/23/2022]
|
12
|
Paritala PK, Yarlagadda PKDV, Kansky R, Wang J, Mendieta JB, Gu Y, McGahan T, Lloyd T, Li Z. Stress-Relaxation and Cyclic Behavior of Human Carotid Plaque Tissue. Front Bioeng Biotechnol 2020; 8:60. [PMID: 32117939 PMCID: PMC7026010 DOI: 10.3389/fbioe.2020.00060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
Atherosclerotic plaque rupture is a catastrophic event that contributes to mortality and long-term disability. A better understanding of the plaque mechanical behavior is essential for the identification of vulnerable plaques pre-rupture. Plaque is subjected to a natural dynamic mechanical environment under hemodynamic loading. Therefore, it is important to understand the mechanical response of plaque tissue under cyclic loading conditions. Moreover, experimental data of such mechanical properties are fundamental for more clinically relevant biomechanical modeling and numerical simulations for risk stratification. This study aims to experimentally and numerically characterize the stress-relaxation and cyclic mechanical behavior of carotid plaque tissue. Instron microtester equipped with a custom-developed setup was used for the experiments. Carotid plaque samples excised at endarterectomy were subjected to uniaxial tensile, stress-relaxation, and cyclic loading protocols. Thirty percent of the underlying load level obtained from the uniaxial tensile test results was used to determine the change in mechanical properties of the tissue over time under a controlled testing environment (Control tests). The stress-relaxation test data was used to calibrate the hyperelastic (neo-Hookean, Ogden, Yeoh) and linear viscoelastic (Prony series) material parameters. The normalized relaxation force increased initially and slowly stabilized toward the end of relaxation phase, highlighting the viscoelastic behavior. During the cyclic tests, there was a decrease in the peak force as a function of the cycle number indicating mechanical distension due to repeated loading that varied with different frequencies. The material also accumulated residual deformation, which increased with the cycle number. This trend showed softening behavior of the samples. The results of this preliminary study provide an enhanced understanding of in vivo stress-relaxation and cyclic behavior of the human atherosclerotic plaque tissue.
Collapse
Affiliation(s)
- Phani Kumari Paritala
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Prasad K D V Yarlagadda
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rhys Kansky
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jiaqiu Wang
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jessica Benitez Mendieta
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - YuanTong Gu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Tim McGahan
- Department of Vascular Surgery, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Thomas Lloyd
- Department of Radiology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Zhiyong Li
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Cahalane RM, Broderick SP, Kavanagh EG, Moloney MA, Mongrain R, Purtill H, Walsh MT, O'Brien JM. Comparative analysis of calcification parameters with Agatston Score approximations for ex vivo atherosclerotic lesions. J Cardiovasc Comput Tomogr 2019; 14:20-26. [PMID: 31303579 DOI: 10.1016/j.jcct.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/25/2019] [Accepted: 07/07/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND The Agatston Calcium Score is a predictor of major adverse cardiovascular events but it is unable to identify high-risk lesions. Recent research suggests that examining calcification phenotype could be more indicative of plaque stability. OBJECTIVE To examine the Agatston score's ability to determine atherosclerotic calcification phenotype. METHODS Micro-Computed Tomography was performed on 20 carotid and 20 peripheral lower limb lesions. ImageJ pixel histogram analysis quantified the non-calcified (≥30HU, <130HU) and calcified (≥130HU) tissue volumes. ImageJ '3D Objects Counter' plugin determined the calcified particle count, volumes and maximum attenuation density of each particle. Image stacks were subsequently downsampled to a resolution of 0.7 × 0.7 × 3 mm and an approximation for the Extra-Coronary Calcium Scores (ECCS) were calculated. Spearman's correlation examined the relationships between ECCS approximations and calcification parameters. RESULTS ECCS has a strong positive correlation with the Calcified Volume Fraction (CVF) (rs = 0.865, p < 0.0005), weak positive correlations with Calcified Particle Fraction (CPF) (rs = 0.422, p = 0.007) and Microcalcification Fraction (micro-CF) (rs = 0.361, p = 0.022). There is no correlation evident between ECCS and Calcified Particle Index (CPI) (rs = -0.162, p = 0.318). It is apparent that there is a high prevalence of microcalcifications in both carotid and peripheral lower limb lesions. Additionally, an inverse relationship exists between calcified particle volume and maximum-recorded attenuation density. CONCLUSION The density-weighted Agatston calcium scoring methodology needs to be reviewed. Calcium scoring which differentiates between critical calcification morphologies, rather than presenting a density-weighted score, is required to direct high-risk plaques towards tailored treatment.
Collapse
Affiliation(s)
- Rachel M Cahalane
- BioScience and BioEngineering Research (BioSciBer), Biomaterials Cluster, Bernal Institute, School of Engineering, University of Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Ireland
| | - Stephen P Broderick
- BioScience and BioEngineering Research (BioSciBer), Biomaterials Cluster, Bernal Institute, School of Engineering, University of Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Ireland
| | - Eamon G Kavanagh
- Department of Vascular Surgery, University Hospital Limerick, Ireland
| | - Michael A Moloney
- Department of Vascular Surgery, University Hospital Limerick, Ireland
| | - Rosaire Mongrain
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St. W., Montreal, Quebec, H3A 0C3, Canada
| | - Helen Purtill
- Department of Maths and Statistics, University of Limerick, Ireland
| | - Michael T Walsh
- BioScience and BioEngineering Research (BioSciBer), Biomaterials Cluster, Bernal Institute, School of Engineering, University of Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Ireland
| | - Julie M O'Brien
- Department of Radiology, University Hospital Limerick, Ireland.
| |
Collapse
|
14
|
Barrett HE, Van der Heiden K, Farrell E, Gijsen FJH, Akyildiz AC. Calcifications in atherosclerotic plaques and impact on plaque biomechanics. J Biomech 2019; 87:1-12. [PMID: 30904335 DOI: 10.1016/j.jbiomech.2019.03.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/09/2019] [Indexed: 12/13/2022]
Abstract
The catastrophic mechanical rupture of an atherosclerotic plaque is the underlying cause of the majority of cardiovascular events. The infestation of vascular calcification in the plaques creates a mechanically complex tissue composite. Local stress concentrations and plaque tissue strength properties are the governing parameters required to predict plaque ruptures. Advanced imaging techniques have permitted insight into fundamental mechanisms driving the initiating inflammatory-driven vascular calcification of the diseased intima at the (sub-) micron scale and up to the macroscale. Clinical studies have potentiated the biomechanical relevance of calcification through the derivation of links between local plaque rupture and specific macrocalcification geometrical features. The clinical implications of the data presented in this review indicate that the combination of imaging, experimental testing, and computational modelling efforts are crucial to predict the rupture risk for atherosclerotic plaques. Specialised experimental tests and modelling efforts have further enhanced the knowledge base for calcified plaque tissue mechanical properties. However, capturing the temporal instability and rupture causality in the plaque fibrous caps remains elusive. Is it necessary to move our experimental efforts down in scale towards the fundamental (sub-) micron scales in order to interpret the true mechanical behaviour of calcified plaque tissue interactions that is presented on a macroscale in the clinic and to further optimally assess calcified plaques in the context of biomechanical modelling.
Collapse
Affiliation(s)
- Hilary E Barrett
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Kim Van der Heiden
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frank J H Gijsen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ali C Akyildiz
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Cahalane RM, Barrett HE, O'Brien JM, Kavanagh EG, Moloney MA, Walsh MT. Relating the mechanical properties of atherosclerotic calcification to radiographic density: A nanoindentation approach. Acta Biomater 2018; 80:228-236. [PMID: 30218776 DOI: 10.1016/j.actbio.2018.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022]
Abstract
Calcification morphology can determine atherosclerotic plaque stability and is associated with increased failures rates for endovascular interventions. Computational efforts have sought to elucidate the relationship between calcification and plaque rupture in addition to predicting tissue response during aggressive revascularisation techniques. However, calcified material properties are currently estimated and may not reflect real tissue conditions. The objective of this study is to correlate calcification mechanical properties with three radiographic density groups obtained from corresponding Computed Tomography (CT) images. Seventeen human plaques extracted from carotid (n = 10) and peripheral lower limb (n = 7) arteries were examined using micro-computed tomography (µCT), simultaneously locating the calcified deposits within their internal structure and quantifying their densities. Three radiographic density groups were defined based on the sample density distribution: (A) 130-299.99 Hounsfield Units (HU), (B) 300-449.99 HU and (C) >450 HU. Nanoindentation was employed to determine the Elastic Modulus (E) and Hardness (H) values within the three density groups. Results reveal a clear distinction between mechanical properties with respect to radiographic density groups (p < 0.0005). No significant differences exist in the density-specific behaviours observed between carotid and peripheral samples. Previously defined calcification classifications indicate an association with specific radiographic density patterns. Scanning Electron Microscopy (SEM) examination revealed that density group A regions consist of both calcified and non-calcified tissues. Further research is required to define the radiographic thresholds which identify varying degrees of tissue calcification. This study demonstrates that the mechanical properties of fully mineralised atherosclerotic calcification emulate that of bone tissues (17-25 GPa), affording computational models with accurate material parameters. STATEMENT OF SIGNIFICANCE: Global mechanical characterisation techniques disregard the heterogeneous nature of atherosclerotic lesions. Previous nanoindentation results for carotid calcifications have displayed a wide range. This study evaluates calcification properties with respect to radiographic density obtained from Micro-CT images. This is the first work to characterise calcifications from peripheral lower limb arteries using nanoindentation. Results demonstrate a strong positive correlation between radiographic density and calcification mechanical properties. Characterising calcifications using their density values provides clarity on the variation in published properties for calcified tissues. Furthermore, this study confirms the hypothesis that fully calcified plaque tissue behaviour similar to that of bone. Appropriate material parameters for calcified tissues can now be employed in computational simulations.
Collapse
|
16
|
On the influence of wall calcification and intraluminal thrombus on prediction of abdominal aortic aneurysm rupture. J Vasc Surg 2018; 67:1234-1246.e2. [DOI: 10.1016/j.jvs.2017.05.086] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/02/2017] [Indexed: 01/14/2023]
|
17
|
Barrett H, Cunnane E, Hidayat H, O Brien J, Kavanagh E, Walsh M. Calcification Volume Reduces Stretch Capability and Predisposes Plaque to Rupture in an in vitro Model of Carotid Artery Stenting. Eur J Vasc Endovasc Surg 2017; 54:431-438. [DOI: 10.1016/j.ejvs.2017.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/21/2017] [Indexed: 01/18/2023]
|
18
|
Barrett HE, Cunnane EM, O Brien JM, Moloney MA, Kavanagh EG, Walsh MT. On the effect of computed tomography resolution to distinguish between abdominal aortic aneurysm wall tissue and calcification: A proof of concept. Eur J Radiol 2017; 95:370-377. [PMID: 28987694 DOI: 10.1016/j.ejrad.2017.08.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/16/2017] [Accepted: 08/22/2017] [Indexed: 12/15/2022]
Abstract
PURPOSE The purpose of this study is to determine the optimal target CT spatial resolution for accurately imaging abdominal aortic aneurysm (AAA) wall characteristics, distinguishing between tissue and calcification components, for an accurate assessment of rupture risk. MATERIALS AND METHODS Ruptured and non-ruptured AAA-wall samples were acquired from eight patients undergoing open surgical aneurysm repair upon institutional review board approval and informed consent was obtained from all patients. Physical measurements of AAA-wall cross-section were made using scanning electron microscopy. Samples were scanned using high resolution micro-CT scanning. A resolution range of 15.5-155μm was used to quantify the influence of decreasing resolution on wall area measurements, in terms of tissue and calcification. A statistical comparison between the reference resolution (15.5μm) and multi-detector CT resolution (744μm) was also made. RESULTS Electron microscopy examination of ruptured AAAs revealed extremely thin outer tissue structure <200μm in radial distribution which is supporting the aneurysm wall along with large areas of adjacent medial calcifications far greater in area than the tissue layer. The spatial resolution of 155μm is a significant predictor of the reference AAA-wall tissue and calcification area measurements (r=0.850; p<0.001; r=0.999; p<0.001 respectively). The tissue and calcification area at 155μm is correct within 8.8%±1.86 and 26.13%±9.40 respectively with sensitivity of 87.17% when compared to the reference. CONCLUSION The inclusion of AAA-wall measurements, through the use of high resolution-CT will elucidate the variations in AAA-wall tissue and calcification distributions across the wall which may help to leverage an improved assessment of AAA rupture risk.
Collapse
Affiliation(s)
- H E Barrett
- Centre for Applied Biomedical Engineering Research (CABER), Health Research Institute (HRI), School of Engineering, Bernal Institute, University of Limerick, Lonsdale Building, Limerick, Ireland
| | - E M Cunnane
- Centre for Applied Biomedical Engineering Research (CABER), Health Research Institute (HRI), School of Engineering, Bernal Institute, University of Limerick, Lonsdale Building, Limerick, Ireland
| | - J M O Brien
- Department of Radiology, University Hospital Limerick, Ireland
| | - M A Moloney
- Department of Vascular Surgery, University Hospital Limerick, Ireland
| | - E G Kavanagh
- Department of Vascular Surgery, University Hospital Limerick, Ireland
| | - M T Walsh
- Centre for Applied Biomedical Engineering Research (CABER), Health Research Institute (HRI), School of Engineering, Bernal Institute, University of Limerick, Lonsdale Building, Limerick, Ireland.
| |
Collapse
|
19
|
Numerical Modeling of Nitinol Stent Oversizing in Arteries with Clinically Relevant Levels of Peripheral Arterial Disease: The Influence of Plaque Type on the Outcomes of Endovascular Therapy. Ann Biomed Eng 2017; 45:1420-1433. [PMID: 28150055 DOI: 10.1007/s10439-017-1803-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/27/2017] [Indexed: 10/20/2022]
|
20
|
Cunnane EM, Mulvihill JJE, Barrett HE, Hennessy MM, Kavanagh EG, Walsh MT. Mechanical properties and composition of carotid and femoral atherosclerotic plaques: A comparative study. J Biomech 2016; 49:3697-3704. [PMID: 27776741 DOI: 10.1016/j.jbiomech.2016.09.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 01/25/2023]
Abstract
This study compares the mechanical properties of excised carotid and femoral human plaques and also develops a predictor of these properties based on plaque composition. Circumferential planar tension tests were performed on 24 carotid and 16 femoral plaque samples. Composition was characterised using Fourier Transform Infrared spectroscopy. Stretch at failure, strength, and stiffness are significantly higher in the carotid group (P=.012, P<.001 and P=.002, respectively). The ratio of calcified to lipid plaque content demonstrates the strongest correlation with the stretch at failure and strength (R2=.285, P<.001 and R2=.347, P<.001). No composition based parameter correlates significantly with stiffness. The significantly different mechanical properties of the two groups aids in explaining the varying endovascular treatment outcomes clinically observed in these vessels. Furthermore, determining the ratio of calcified to lipid plaque content may be useful in predicting individual plaque mechanical response to endovascular treatment.
Collapse
Affiliation(s)
- Eoghan M Cunnane
- School of Engineering, Bernal Institute, and the Health Research Institute, University of Limerick, Ireland
| | - John J E Mulvihill
- School of Engineering, Bernal Institute, and the Health Research Institute, University of Limerick, Ireland
| | - Hilary E Barrett
- School of Engineering, Bernal Institute, and the Health Research Institute, University of Limerick, Ireland
| | - Mairead M Hennessy
- Department of Vascular Surgery, University Hospital Limerick, Limerick, Ireland
| | - Eamon G Kavanagh
- Department of Vascular Surgery, University Hospital Limerick, Limerick, Ireland
| | - Michael T Walsh
- School of Engineering, Bernal Institute, and the Health Research Institute, University of Limerick, Ireland.
| |
Collapse
|
21
|
Barrett HE, Cunnane EM, Kavanagh EG, Walsh MT. Towards the characterisation of carotid plaque tissue toughness: Linking mechanical properties to plaque composition. Acta Biomater 2016; 43:88-100. [PMID: 27475529 DOI: 10.1016/j.actbio.2016.07.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/06/2016] [Accepted: 07/26/2016] [Indexed: 01/20/2023]
Abstract
UNLABELLED The morphological manifestation of calcification within an atherosclerotic plaque is diverse and the response to cutting balloon angioplasty remains an elusive target to predict in the presence of extensive calcification. This study examines the resistance of plaque tissue to blade penetration by characterising the underlying toughness properties and stratifying the upper and lower scale toughness limits based on the strong mechanical influence of calcification. Mechanical toughness properties of the common, bifurcation and internal carotid artery (n=62) were determined using guillotine-cutting tests measuring the energy required to pass a surgical blade through a unit length of plaque tissue. The corresponding structural composition of the dissected plaque segments was characterised using Fourier transform infrared analysis, electron microscopy and energy dispersive x-ray spectroscopy. Mechanical results reveal a clear distinction in toughness properties within each region of the carotid vessel with significantly tougher properties localised in the bifurcation (p=0.004) and internal region (p=0.0003) compared to the common. The severity of the intra-plaque variance is highest in plaques with high toughness localised in the bifurcation region (p<0.05). Structural examination reveals that the diverse mechanical influence of the level of calcification present is characteristic of specific regions within the carotid plaque. The energy required to overcome the calcific resistance and propagate a controlled cut in the calcified tissue at each region varies further with the degree of plaque progression. The identification of the localised calcification characteristics is a key determinant in achieving successful dissection of the severely toughened plaque segments during cutting balloon angioplasty. STATEMENT OF SIGNIFICANCE Calcification plays a fundamental role in plaque tissue mechanics and demonstrates a diverse range of material moduli properties. This work addresses the characterisation of the toughness properties in human carotid plaque tissue using a fracture mechanics approach. Toughness determines the energy required to propagate a controlled cut in the plaque material. This parameter is crucial for predicting the cutting forces required during endovascular cutting balloon angioplasty intervention. Results demonstrate that a strong relationship exists between the structural calcification configurations, fracture mechanisms and associated toughness properties that are characteristic of specific regions within the carotid artery plaque. The identification of the morphological characteristics of localised calcification may serve as a valuable quantitative measure for cutting balloon angioplasty treatment.
Collapse
Affiliation(s)
- H E Barrett
- Centre for Applied Biomedical Engineering Research (CABER), Health Research Institute (HRI), School of Engineering, Bernal Institute, University of Limerick, Ireland
| | - E M Cunnane
- Centre for Applied Biomedical Engineering Research (CABER), Health Research Institute (HRI), School of Engineering, Bernal Institute, University of Limerick, Ireland
| | - E G Kavanagh
- Department of Vascular Surgery, University Hospital Limerick, Ireland
| | - M T Walsh
- Centre for Applied Biomedical Engineering Research (CABER), Health Research Institute (HRI), School of Engineering, Bernal Institute, University of Limerick, Ireland.
| |
Collapse
|