1
|
Propst S, Mueller J. Time Code for multifunctional 3D printhead controls. Nat Commun 2025; 16:1035. [PMID: 39863581 PMCID: PMC11763051 DOI: 10.1038/s41467-025-56140-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Direct Ink Writing, an extrusion-based 3D printing technique, has attracted growing interest due to its ability to process a broad range of materials and integrate multifunctional printheads with features such as shape-changing nozzles, in-situ curing, material switching, and material mixing. Despite these advancements, incorporating auxiliary controls into Geometry Code (G-Code), the standard programming language for these printers, remains challenging. G-Code's line-by-line execution requires auxiliary control commands to interrupt the print path motion, causing defects in the printed structure. We propose a generalizable time-based synchronization approach called Time Code (T-Code), which decouples auxiliary control from G-Code, enabling uninterrupted print path enrichment. We demonstrate the method's effectiveness with both high-end and affordable 3D printers by fabricating functional gradients and parallelizing printhead auxiliary devices for mass customization. Our method reduces defects, enhances print speed, and minimizes the mechanical burden on 3D printers, enabling the rapid creation of complex multimaterial structures.
Collapse
Affiliation(s)
- Sarah Propst
- Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jochen Mueller
- Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Sadat Hashemi T, Jaiswal S, McCarthy HO, Levingstone TJ, Dunne NJ. Biofunctionalisation of porous additively manufactured magnesium-based alloys for Orthopaedic applications: A review. BIOMATERIALS ADVANCES 2025; 169:214170. [PMID: 39793150 DOI: 10.1016/j.bioadv.2024.214170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 12/05/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
Magnesium (Mg) alloys have gained significant attention as a desirable choice of biodegradable implant for use in bone repair applications, largely owing to their unique material properties. More recently, Mg and Mg-based alloys have been used as load-bearing metallic scaffolds for bone tissue engineering applications, offering promising opportunities in the field. The mechanical properties and relative density of Mg-based alloys closely approximate those of natural human bone tissue, thereby mitigating the risk of stress-shielding effects. Furthermore, the inherent biodegradability of Mg-based alloys eliminates the necessity for a second surgical procedure for the removal of the implant, a frequent requirement with conventional non-degradable implants. However, a notable challenge remains in managing the high corrosion rate of Mg and Mg-based alloys within physiological environments to ensure that they meet the necessary functional requirements. Consequently, a comprehensive analysis and understanding of the corrosion behaviour of Mg and Mg-based alloys, coupled with optimisation of their surface properties, assume pivotal significance to ensure successful clinical application. The personalized 3D printing of Mg and Mg-based alloy implants represents a paradigm shift, offering a plethora of advantages, foremost among them being the enhancement of the bone healing process facilitated by the degradable porous structure conducive to bone ingrowth. Also, the emergence of surface functionalisation techniques for Mg-based implants amalgamates the mechanical and degradation properties inherent to metals with the enhanced biofunctionality offered by these coatings. This synergy presents a highly promising avenue for using Mg-based implants as temporary orthopaedic and dental solutions. This comprehensive review provides a detailed analysis of recent advancements encompassing alloying elements, additive manufacturing processes, lattice structures and biofunctionalised coatings to tailor the corrosion resistance, mechanical properties and biocompatibility of Mg-based orthopaedic implants.
Collapse
Affiliation(s)
- Tina Sadat Hashemi
- School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; Centre for Medical Engineering Research, Dublin City University, D09 NA55 Dublin, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland
| | - Satish Jaiswal
- School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; Centre for Medical Engineering Research, Dublin City University, D09 NA55 Dublin, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, United Kingdom
| | - Tanya J Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; Centre for Medical Engineering Research, Dublin City University, D09 NA55 Dublin, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland; Tissue, Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 PN40 Dublin, Ireland; Advanced Processing Technology Research Centre, Dublin City University, D09 NA55 Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Nicholas J Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; Centre for Medical Engineering Research, Dublin City University, D09 NA55 Dublin, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; School of Pharmacy, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, United Kingdom; Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland; Tissue, Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 PN40 Dublin, Ireland; Advanced Processing Technology Research Centre, Dublin City University, D09 NA55 Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, D02 PN40 Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland.
| |
Collapse
|
3
|
Pazhamannil RV, Alkhedher M. Advances in additive manufacturing for bone tissue engineering: materials, design strategies, and applications. Biomed Mater 2024; 20:012002. [PMID: 39662052 DOI: 10.1088/1748-605x/ad9dce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024]
Abstract
The growing annual demand for bone grafts and artificial implants emphasizes the need for effective solutions to repair or replace injured bones. Additive manufacturing technology offers unique merits for advancing bone tissue engineering (BTE), enabling the creation of scaffolds and implants with customized shapes and designs, interconnected architecture, controlled mechanical properties and compositions, and broadening its range of applications. It overcomes the limitations of traditional manufacturing methods such as electrospinning, salt leaching, freeze drying, solvent casting etc. This review highlights additive manufacturing technologies and their applications in BTE, as well as materials and scaffold architectures to widen the potential of the biomedical sector. The selection of optimal printing methods for BTE requires careful consideration of the advantages and disadvantages against the needs for degradation, strength, and biocompatibility. Material extrusion and powder bed fusion techniques are the most widely used additive manufacturing processes in BTE. The comprehensive review also revealed that parametric designs such as triply periodic minimal surface (TPMS) and Voronoi hold better characteristics for their application in BTE. Voronoi designs exhibit exceptional randomness whereas TPMS structures feature high permeability with continuous surfaces. Topology optimized and gradient models exhibited superior physical and mechanical properties compared to uniform lattices. Future research should focus on the development of novel biomaterials, multi-material printing, assessing long-term impacts, and enhancing 3D printing technologies.
Collapse
Affiliation(s)
- Ribin Varghese Pazhamannil
- Mechanical and Industrial Engineering Department, Abu Dhabi University, PO 59911 Abu Dhabi, United Arab Emirates
| | - Mohammad Alkhedher
- Mechanical and Industrial Engineering Department, Abu Dhabi University, PO 59911 Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Feng P, Liu L, Yang F, Min R, Wu P, Shuai C. Shape/properties collaborative intelligent manufacturing of artificial bone scaffold: structural design and additive manufacturing process. Biofabrication 2024; 17:012005. [PMID: 39514965 DOI: 10.1088/1758-5090/ad905f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Artificial bone graft stands out for avoiding limited source of autograft as well as susceptibility to infection of allograft, which makes it a current research hotspot in the field of bone defect repair. However, traditional design and manufacturing method cannot fabricate bone scaffold that well mimics complicated bone-like shape with interconnected porous structure and multiple properties akin to human natural bone. Additive manufacturing, which can achieve implant's tailored external contour and controllable fabrication of internal microporous structure, is able to form almost any shape of designed bone scaffold via layer-by-layer process. As additive manufacturing is promising in building artificial bone scaffold, only combining excellent structural design with appropriate additive manufacturing process can produce bone scaffold with ideal biological and mechanical properties. In this article, we sum up and analyze state of art design and additive manufacturing methods for bone scaffold to realize shape/properties collaborative intelligent manufacturing. Scaffold design can be mainly classified into design based on unit cells and whole structure, while basic additive manufacturing and 3D bioprinting are the recommended suitable additive manufacturing methods for bone scaffold fabrication. The challenges and future perspectives in additive manufactured bone scaffold are also discussed.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Lingxi Liu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Feng Yang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Rui Min
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Ping Wu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, People's Republic of China
| | - Cijun Shuai
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People's Republic of China
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, People's Republic of China
- College of Mechanical Engineering, Xinjiang University, Urumqi 830017, People's Republic of China
| |
Collapse
|
5
|
Idaszek J, Wysocki B, Ura-Bińczyk E, Dobkowska A, Nowak W, Yamamoto A, Sulka GD, Święszkowski W. Graded or random - Effect of pore distribution in 3D titanium scaffolds on corrosion performance and response of hMSCs. BIOMATERIALS ADVANCES 2024; 163:213955. [PMID: 38986318 DOI: 10.1016/j.bioadv.2024.213955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Researchers agree that the ideal scaffold for tissue engineering should possess a 3D and highly porous structure, biocompatibility to encourage cell/tissue growth, suitable surface chemistry for cell attachment and differentiation, and mechanical properties that match those of the surrounding tissues. However, there is no consensus on the optimal pore distribution. In this study, we investigated the effect of pore distribution on corrosion resistance and performance of human mesenchymal stem cells (hMSC) using titanium scaffolds fabricated by laser beam powder bed fusion (PBF-LB). We designed two scaffold architectures with the same porosities (i.e., 75 %) but different distribution of pores of three sizes (200, 500, and 700 μm). The pores were either grouped in three zones (graded, GRAD) or distributed randomly (random, RAND). Microfocus X-ray computed tomography revealed that the chemically polished scaffolds had the porosity of 69 ± 4 % (GRAD) and 71 ± 4 % (RAND), and that the GRAD architecture had the higher surface area (1580 ± 101 vs 991 ± 62 mm2) and the thinner struts (221 ± 37 vs 286 ± 14 μm). The electrochemical measurements demonstrated that the apparent corrosion rate of chemically polished GRAD scaffold decreased with the immersion time extension, while that for polished RAND was increased. The RAND architecture outperformed the GRAD one with respect to hMSC proliferation (over two times higher although the GRAD scaffolds had 85 % higher initial cell retention) and migration from a monolayer. Our findings demonstrate that the pore distribution affects the biological properties of the titanium scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- J Idaszek
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland.
| | - B Wysocki
- Cardinal Stefan Wyszynski University in Warsaw, Multidisciplinary Research Center, Dziekanow Lesny, Poland
| | - E Ura-Bińczyk
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland
| | - A Dobkowska
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland
| | - W Nowak
- Cardinal Stefan Wyszynski University in Warsaw, Multidisciplinary Research Center, Dziekanow Lesny, Poland
| | - A Yamamoto
- National Institute for Materials Science, Research Center for Macromolecules and Biomaterials, Tsukuba, Japan
| | - G D Sulka
- Jagiellonian University, Faculty of Chemistry, Department of Physical Chemistry and Electrochemistry, Gronostajowa 2, 30387 Krakow, Poland
| | - W Święszkowski
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland
| |
Collapse
|
6
|
Zhang H, Wang Y, Hu Q, Liu Q. Morphological Integrated Preparation Method and Implementation of Inorganic/Organic Dual-Phase Composite Gradient Bionic Bone Scaffold. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:e607-e618. [PMID: 38689928 PMCID: PMC11057529 DOI: 10.1089/3dp.2022.0111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Large bone defects caused by congenital deformities and acquired accidents are increasing day by day. A large number of patients mainly rely on artificial bone for repair. However, artificial bone cannot fully imitate the structure and composition of human bone, resulting in a large gap with autologous bone function. Therefore, this article proposes a continuous preparation method for inorganic/organic biphasic composite gradient biomimetic bulk bone scaffolds. First, a controllable gradient hybrid forming platform for inorganic/organic dual-phase biomaterials was constructed, and the feeding control strategy was studied to achieve precise control of the feeding of sodium alginate/gelatin composite organic materials and hydroxyapatite inorganic materials. The speed is, respectively, sent from the corresponding feeding nozzle to the mixing chamber to realize the uniform mixing of the biphasic material and the extrusion of the composite material, and the inorganic/organic biphasic composite gradient biomimetic bone scaffold with gradual structure and composition is prepared. Second, to prove the superiority of the preparation method, the physicochemical and biological properties of the prepared scaffolds were evaluated. The test results showed that the morphological characteristics of the biphasic composite gradient bone scaffold showed good microscopic porosity and the structure and composition showed gradients. The mechanical properties are close to that of human bone tissue and in vitro cell experiments show that the scaffold has good biocompatibility and bioactivity. In conclusion, this article provides a new type of bone scaffold preparation technology and equipment for the field of tissue engineering, which has research value and application prospects.
Collapse
Affiliation(s)
- Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Yuping Wang
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
| | - Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Qiong Liu
- Translational Research Institute of Brain and Brain-Like Intelligence, School of Medicine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Gallab M, Le PTM, Shintani SA, Takadama H, Ito M, Kitagaki H, Matsushita T, Honda S, Okuzu Y, Fujibayashi S, Yamaguchi S. Mechanical, bioactive, and long-lasting antibacterial properties of a Ti scaffold with gradient pores releasing iodine ions. BIOMATERIALS ADVANCES 2024; 158:213781. [PMID: 38335763 DOI: 10.1016/j.bioadv.2024.213781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/30/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
The ideal bone implant would effectively prevent aseptic as well as septic loosening by minimizing stress shielding, maximizing bone ingrowth, and preventing implant-associated infections. Here, a novel gradient-pore-size titanium scaffold was designed and manufactured to address these requirements. The scaffold features a larger pore size (900 μm) on the top surface, gradually decreasing to small sizes (600 μm to 300 μm) towards the center, creating a gradient structure. To enhance its functionality, the additively manufactured scaffolds were biofunctionalized using simple chemical and heat treatments so as to incorporate calcium and iodine ions throughout the surface. This unique combination of varying pore sizes with a biofunctional surface provides highly desirable mechanical properties, bioactivity, and notably, long-lasting antibacterial activity. The target mechanical aspects, including low elastic modulus, high compression, compression-shear, and fatigue strength, were effectively achieved. Furthermore, the biofunctional surface exhibits remarkable in vitro bioactivity and potent antibacterial activity, even under conditions specifically altered to be favorable for bacterial growth. More importantly, the integration of small pores alongside larger ones ensures a sustained high release of iodine, resulting in antimicrobial activity that persisted for over three months, with full eradication of the bacteria. Taken together, this gradient structure exhibits obvious superiority in combining most of the desired properties, making it an ideal candidate for orthopedic and dental implant applications.
Collapse
Affiliation(s)
- Mahmoud Gallab
- Biomedical Sciences Department, Chubu University, Kasugai, Aichi 487-0027, Japan; Faculty of Engineering, Minia University, Minia 61111, Egypt.
| | - Phuc Thi Minh Le
- Biomedical Sciences Department, Chubu University, Kasugai, Aichi 487-0027, Japan; Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
| | - Seine A Shintani
- Biomedical Sciences Department, Chubu University, Kasugai, Aichi 487-0027, Japan
| | - Hiroaki Takadama
- Biomedical Sciences Department, Chubu University, Kasugai, Aichi 487-0027, Japan
| | - Morihiro Ito
- Biomedical Sciences Department, Chubu University, Kasugai, Aichi 487-0027, Japan
| | - Hisashi Kitagaki
- Osaka Yakin Kogyo Co., Ltd., Zuiko 4-4-28, Higashi Yodogawa-ku, Osaka City, Osaka 533-0005, Japan
| | - Tomiharu Matsushita
- Biomedical Sciences Department, Chubu University, Kasugai, Aichi 487-0027, Japan
| | - Shintaro Honda
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Yaichiro Okuzu
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Shunsuke Fujibayashi
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Seiji Yamaguchi
- Biomedical Sciences Department, Chubu University, Kasugai, Aichi 487-0027, Japan.
| |
Collapse
|
8
|
Salehi Abar E, Vandghanooni S, Torab A, Jaymand M, Eskandani M. A comprehensive review on nanocomposite biomaterials based on gelatin for bone tissue engineering. Int J Biol Macromol 2024; 254:127556. [PMID: 37884249 DOI: 10.1016/j.ijbiomac.2023.127556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
The creation of a suitable scaffold is a crucial step in the process of bone tissue engineering (BTE). The scaffold, acting as an artificial extracellular matrix, plays a significant role in determining the fate of cells by affecting their proliferation and differentiation in BTE. Therefore, careful consideration should be given to the fabrication approach and materials used for scaffold preparation. Natural polypeptides such as gelatin and collagen have been widely used for this purpose. The unique properties of nanoparticles, which vary depending on their size, charge, and physicochemical properties, have demonstrated potential in solving various challenges encountered in BTE. Therefore, nanocomposite biomaterials consisting of polymers and nanoparticles have been extensively used for BTE. Gelatin has also been utilized in combination with other nanomaterials to apply for this purpose. Composites of gelatin with various types of nanoparticles are particularly promising for creating scaffolds with superior biological and physicochemical properties. This review explores the use of nanocomposite biomaterials based on gelatin and various types of nanoparticles together for applications in bone tissue engineering.
Collapse
Affiliation(s)
- Elaheh Salehi Abar
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Torab
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Chmielewska A, Dean D. The role of stiffness-matching in avoiding stress shielding-induced bone loss and stress concentration-induced skeletal reconstruction device failure. Acta Biomater 2024; 173:51-65. [PMID: 37972883 DOI: 10.1016/j.actbio.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
It is well documented that overly stiff skeletal replacement and fixation devices may fail and require revision surgery. Recent attempts to better support healing and sustain healed bone have looked at stiffness-matching of these devices to the desired role of limiting the stress on fractured or engrafted bone to compressive loads and, after the reconstructed bone has healed, to ensure that reconstructive medical devices (implants) interrupt the normal loading pattern as little as possible. The mechanical performance of these devices can be optimized by adjusting their location, integration/fastening, material(s), geometry (external and internal), and surface properties. This review highlights recent research that focuses on the optimal design of skeletal reconstruction devices to perform during and after healing as the mechanical regime changes. Previous studies have considered auxetic materials, homogeneous or gradient (i.e., adaptive) porosity, surface modification to enhance device/bone integration, and choosing the device's attachment location to ensure good osseointegration and resilient load transduction. By combining some or all of these factors, device designers work hard to avoid problems brought about by unsustainable stress shielding or stress concentrations as a means of creating sustainable stress-strain relationships that best repair and sustain a surgically reconstructed skeletal site. STATEMENT OF SIGNIFICANCE: Although standard-of-care skeletal reconstruction devices will usually allow normal healing and improved comfort for the patient during normal activities, there may be significant disadvantages during long-term use. Stress shielding and stress concentration are amongst the most common causes of failure of a metallic device. This review highlights recent developments in devices for skeletal reconstruction that match the stiffness, while not interrupting the normal loading pattern of a healthy bone, and help to combat stress shielding and stress concentration. This review summarises various approaches to achieve stiffness-matching: application of materials with modulus close to that of the bone; adaptation of geometry with pre-defined mechanical properties; and/or surface modification that ensures good integration and proper load transfer to the bone.
Collapse
Affiliation(s)
- Agnieszka Chmielewska
- The Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - David Dean
- The Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Plastic & Reconstructive Surgery, The Ohio State University, Columbus, OH 43212, USA
| |
Collapse
|
10
|
Hijazi KM, Dixon SJ, Armstrong JE, Rizkalla AS. Titanium Alloy Implants with Lattice Structures for Mandibular Reconstruction. MATERIALS (BASEL, SWITZERLAND) 2023; 17:140. [PMID: 38203994 PMCID: PMC10779528 DOI: 10.3390/ma17010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
In recent years, the field of mandibular reconstruction has made great strides in terms of hardware innovations and their clinical applications. There has been considerable interest in using computer-aided design, finite element modelling, and additive manufacturing techniques to build patient-specific surgical implants. Moreover, lattice implants can mimic mandibular bone's mechanical and structural properties. This article reviews current approaches for mandibular reconstruction, their applications, and their drawbacks. Then, we discuss the potential of mandibular devices with lattice structures, their development and applications, and the challenges for their use in clinical settings.
Collapse
Affiliation(s)
- Khaled M. Hijazi
- School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON N6A 3K7, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON N6G 2V4, Canada
| | - S. Jeffrey Dixon
- Bone and Joint Institute, The University of Western Ontario, London, ON N6G 2V4, Canada
- Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jerrold E. Armstrong
- Division of Oral and Maxillofacial Surgery, Department of Otolaryngology Head and Neck Surgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Amin S. Rizkalla
- School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON N6A 3K7, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON N6G 2V4, Canada
- Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
11
|
Tan L, Ye Z, Zhuang W, Mao B, Li H, Li X, Wu J, Sang H. 3D printed PLGA/MgO/PDA composite scaffold by low-temperature deposition manufacturing for bone tissue engineering applications. Regen Ther 2023; 24:617-629. [PMID: 38034857 PMCID: PMC10681881 DOI: 10.1016/j.reth.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Bones are easily damaged. Biomimetic scaffolds are involved in tissue engineering. This study explored polydopamine (PDA)-coated poly lactic-co-glycolic acid (PLGA)-magnesium oxide (MgO) scaffold properties and its effects on bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation. Methods PLGA/MgO scaffolds were prepared by low-temperature 3D printing technology and PDA coatings were prepared by immersion method. Scaffold structure was observed by scanning electron microscopy with an energy dispersive spectrometer (SEM-EDS), fourier transform infrared spectrometer (FTIR). Scaffold hydrophilicity, compressive/elastic modulus, and degradation rates were analyzed by water contact angle measurement, mechanical tests, and simulated-body fluid immersion. Rat BMSCs were cultured in scaffold extract. Cell activity on days 1, 3, and 7 was detected by MTT. Cells were induced by osteogenic differentiation, followed by evaluation of alkaline phosphatase (ALP) activity on days 3, 7, and 14 of induction and Osteocalcin, Osteocalcin, and Collagen I expressions. Results The prepared PLGA/MgO scaffolds had dense microparticles. With the increase of MgO contents, the hydrophilicity was enhanced, scaffold degradation rate was accelerated, magnesium ion release rate and scaffold extract pH value were increased, and cytotoxicity was less when magnesium mass ratio was less than 10%. Compared with other scaffolds, compressive and elastic modulus of PLGA/MgO (10%) scaffolds were increased; BMSCs incubated with PLGA/MgO (10%) scaffold extract had higher ALP activity and Osteocalcin, Osteopontin, and Collagen I expressions. PDA coating was prepared in PLGA/MgO (10%) scaffolds and the mechanical properties were not affected. PLGA/MgO (10%)/PDA scaffolds had better hydrophilicity and biocompatibility and promoted BMSC osteogenic differentiation. Conclusion Low-temperature 3D printing PLGA/MgO (10%)/PDA scaffolds had good hydrophilicity and biocompatibility, and were conducive to BMSC osteogenic differentiation.
Collapse
Affiliation(s)
- Liang Tan
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, Guangdong, 518000, PR China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhuofeng Ye
- Department of Orthopedics, Jiangmen Central Hospital, Jiangmen, China
| | - Weida Zhuang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, Guangdong, 518000, PR China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Beini Mao
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, Guangdong, 518000, PR China
| | - Hetong Li
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, Guangdong, 518000, PR China
| | - Xiuwang Li
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, Guangdong, 518000, PR China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiachang Wu
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, Guangdong, 518000, PR China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hongxun Sang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, Guangdong, 518000, PR China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Wu Y, Liu J, Kang L, Tian J, Zhang X, Hu J, Huang Y, Liu F, Wang H, Wu Z. An overview of 3D printed metal implants in orthopedic applications: Present and future perspectives. Heliyon 2023; 9:e17718. [PMID: 37456029 PMCID: PMC10344715 DOI: 10.1016/j.heliyon.2023.e17718] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
With the ability to produce components with complex and precise structures, additive manufacturing or 3D printing techniques are now widely applied in both industry and consumer markets. The emergence of tissue engineering has facilitated the application of 3D printing in the field of biomedical implants. 3D printed implants with proper structural design can not only eliminate the stress shielding effect but also improve in vivo biocompatibility and functionality. By combining medical images derived from technologies such as X-ray scanning, CT, MRI, or ultrasonic scanning, 3D printing can be used to create patient-specific implants with almost the same anatomical structures as the injured tissues. Numerous clinical trials have already been conducted with customized implants. However, the limited availability of raw materials for printing and a lack of guidance from related regulations or laws may impede the development of 3D printing in medical implants. This review provides information on the current state of 3D printing techniques in orthopedic implant applications. The current challenges and future perspectives are also included.
Collapse
Affiliation(s)
- Yuanhao Wu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jieying Liu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lin Kang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jingjing Tian
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xueyi Zhang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jin Hu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yue Huang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fuze Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hai Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhihong Wu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Bone and Joint Disease, Beijing, China
| |
Collapse
|
13
|
Zhao Z, Wu Z, Yao D, Wei Y, Li J. Mechanical properties and failure mechanisms of polyamide 12 gradient scaffolds developed with selective laser sintering. J Mech Behav Biomed Mater 2023; 143:105915. [PMID: 37257310 DOI: 10.1016/j.jmbbm.2023.105915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Developing a functional gradient scaffold compatible with the fantastic biological and mechanical properties of natural bone tissue is imperative in bone tissue engineering. In this work, the stretch-dominated (cubical and circular) and bending-dominant (diamond and gyroid) pore styles were employed to design custom-graded scaffolds based on the curve interference method and then were fabricated by selective laser sintering (SLS) using polyamide 12 (PA12) powder. Subsequently, the mechanical behavior, failure mechanism, and energy absorption performance of porous structures were investigated via compression experiments and finite element (FE) simulation. The results indicated that the stretch-dominated radial gradient structures entire exhibited transverse shear failure and the bending-dominant radial gradient structures whole exhibited progressive destruction, while all of the axial gradient scaffolds suffered a predictable layer-by-layer fracture. Among them, the bending-dominated radial gradient structure of gyroid had been proven to sustain stronger deformability and energy absorption capacity. Meanwhile, the FE method powerfully predicted the mechanical behavior of the scaffold, and this research thereby possessed significant implications for the development of bone tissue engineering.
Collapse
Affiliation(s)
- Ze Zhao
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Zhige Wu
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Dingrou Yao
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Yuan Wei
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Junchao Li
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
14
|
Kedziora S, Decker T, Museyibov E. Application of Functionally Graded Shell Lattice as Infill in Additive Manufacturing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4401. [PMID: 37374591 DOI: 10.3390/ma16124401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/28/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
The significance of lightweight designs has become increasingly paramount due to the growing demand for sustainability. Consequently, this study aims to demonstrate the potential of utilising a functionally graded lattice as an infill structure in designing an additively manufactured bicycle crank arm to achieve construction lightness. The authors seek to determine whether functionally graded lattice structures can be effectively implemented and explore their potential real-world applications. Two aspects determine their realisations: the lack of adequate design and analysis methods and the limitations of existing additive manufacturing technology. To this end, the authors employed a relatively simple crank arm and design exploration methods for structural analysis. This approach facilitated the efficient identification of the optimal solution. A prototype was subsequently developed using fused filament fabrication for metals, enabling the production of a crank arm with the optimised infill. As a result, the authors developed a lightweight and manufacturable crank arm showing a new design and analysis method implementable in similar additively manufactured elements. The percentage increase of a stiffness-to-mass ratio of 109.6% was achieved compared to the initial design. The findings suggest that the functionally graded infill based on the lattice shell improves structural lightness and can be manufactured.
Collapse
Affiliation(s)
- Slawomir Kedziora
- Faculty of Science, Technology and Medicine, University of Luxembourg, 6 rue Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg
| | - Thierry Decker
- Faculty of Science, Technology and Medicine, University of Luxembourg, 6 rue Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg
| | - Elvin Museyibov
- Faculty of Science, Technology and Medicine, University of Luxembourg, 6 rue Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg
| |
Collapse
|
15
|
Mukherjee S, Dhara S, Saha P. Design and Additive Manufacturing of Acetabular Implant with Continuously Graded Porosity. Bioengineering (Basel) 2023; 10:675. [PMID: 37370605 DOI: 10.3390/bioengineering10060675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Porous structured metallic implants are preferable as bone graft substitutes due to their faster tissue integration mediated by bone in-growth and vascularization. The porous scaffolds/implants should also mimic the graded structure of natural bone to ensure a match of mechanical properties. This article presents a method for designing a graded porous structured acetabular implant and identifies suitable parameters for manufacturing the model through additive manufacturing. The design method is based on slice-wise modification to ensure continuity of gradation. Modification of the slices was achieved through the binary image processing route. A geodesic dome-type design was adopted for developing the acetabular cup model from the graded porous structure. The model had a solid shell with the target porosity and pore size gradually changing from 65% and 950 µm, respectively, in the inner side to 75% and 650 µm, respectively, towards the periphery. The required dimensions of the unit structures and the combinations of pore structure and strut diameter necessary to obtain the target porosity and pore size were determined analytically. Suitable process parameters were identified to manufacture the model by Direct Metal Laser Sintering (DMLS) using Ti6Al4V powder after carrying out a detailed experimental study to minimize the variation of surface roughness and warping over different build angles of the strut structures. Dual-contour scanning was implemented to simplify the scan strategy. The minimum diameter of struts that could be manufactured using the selected scanning strategy and scanning parameters was found to be 375 µm. Finally, the model was built and from the micro-CT data, the porosities and pore sizes were found to be closely conforming to the designed values. The stiffness of the structures, as found from compression testing, was also found to match with that of human trabecular bone well. Further, the structure exhibited compliant bending-dominated behaviour under compressive loading.
Collapse
Affiliation(s)
- Sumanta Mukherjee
- Production Engineering Department, BIT Sindri, Dhanbad 828123, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Partha Saha
- Mechanical Engineering Department, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
16
|
Liu J, Ma H, Meng L, Yang H, Yang C, Ruan S, Ouyang D, Mei S, Deng L, Chen J, Cao Y. Laser Powder Bed Fusion of 316L Stainless Steel: Effect of Laser Polishing on the Surface Morphology and Corrosion Behavior. MICROMACHINES 2023; 14:850. [PMID: 37421082 DOI: 10.3390/mi14040850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 07/09/2023]
Abstract
Recently, laser polishing, as an effective post-treatment technology for metal parts fabricated by laser powder bed fusion (LPBF), has received much attention. In this paper, LPBF-ed 316L stainless steel samples were polished by three different types of lasers. The effect of laser pulse width on surface morphology and corrosion resistance was investigated. The experimental results show that, compared to the nanosecond (NS) and femtosecond (FS) lasers, the surface material's sufficient remelting realized by the continuous wave (CW) laser results in a significant improvement in roughness. The surface hardness is increased and the corrosion resistance is the best. The microcracks on the NS laser-polished surface lead to a decrease in the microhardness and corrosion resistance. The FS laser does not significantly improve surface roughness. The ultrafast laser-induced micro-nanostructures increase the contact area of the electrochemical reaction, resulting in a decrease in corrosion resistance.
Collapse
Affiliation(s)
- Jun Liu
- Zhejiang Provincial Key Laboratory of Laser Processing Robotics, College of Mechanical & Electrical Engineering, Wenzhou University, Wenzhou 325035, China
| | - Haojun Ma
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China
| | - Lingjian Meng
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China
| | - Huan Yang
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China
| | - Can Yang
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China
| | - Shuangchen Ruan
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China
| | - Deqin Ouyang
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China
| | - Shuwen Mei
- Nantong Jinyuan Intelligent Technology Co., Nantong 226007, China
| | - Leimin Deng
- Wuhan National Research Center for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jie Chen
- Wenzhou University Rui'an Graduate College, Wenzhou University, Ruian 325207, China
| | - Yu Cao
- Zhejiang Provincial Key Laboratory of Laser Processing Robotics, College of Mechanical & Electrical Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
17
|
Berger MB, Cohen DJ, Snyder K, Sions J, Boyan BD, Schwartz Z. Bone marrow stromal cells are sensitive to discrete surface alterations in build and post-build modifications of bioinspired Ti6Al4V 3D-printed in vitro testing constructs. J Biomed Mater Res B Appl Biomater 2023; 111:829-845. [PMID: 36372947 DOI: 10.1002/jbm.b.35194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/13/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
Abstract
Current standards in bone-facing implant fabrication by metal 3D (M3D) printing require post-manufacturing modifications to create distinct surface properties and create implant microenvironments that promote osseointegration. However, the biological consequences of build parameters and surface modifications are not well understood. This study evaluated the relative contributions of build parameters and post-manufacturing modification techniques to cell responses that impact osseointegration in vivo. Biomimetic testing constructs were created by using a M3D printer with standard titanium-aluminum-vanadium (Ti6Al4V) print parameters. These constructs were treated by either grit-blasting and acid-etching (GB + AE) or GB + AE followed by hot isostatic pressure (HIP) (GB + AE, HIP). Next, nine constructs were created by using a M3D printer with three build parameters: (1) standard, (2) increased hatch spacing, and (3) no infill, and additional contour trace. Each build type was further processed by either GB + AE, or HIP, or a combination of HIP treatment followed by GB + AE (GB + AE, HIP). Resulting constructs were assessed by SEM, micro-CT, optical profilometry, XPS, and mechanical compression. Cellular response was determined by culturing human bone marrow stromal cells (MSCs) for 7 days. Surface topography differed depending on processing method; HIP created micro-/nano-ridge like structures and GB + AE created micro-pits and nano-scale texture. Micro-CT showed decreases in closed pore number and closed porosity after HIP treatment in the third build parameter constructs. Compressive moduli were similar for all constructs. All constructs exhibited ability to differentiate MSCs into osteoblasts. MSCs responded best to micro-/nano-structures created by final post-processing by GB + AE, increasing OCN, OPG, VEGFA, latent TGFβ1, IL4, and IL10. Collectively these data demonstrate that M3D-printed constructs can be readily manufactured with distinct architectures based on the print parameters and post-build modifications. MSCs are sensitive to discrete surface topographical differences that may not show up in qualitative assessments of surface properties and respond by altering local factor production. These factors are vital for osseointegration after implant insertion, especially in patients with compromised bone qualities.
Collapse
Affiliation(s)
- Michael B Berger
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - D Joshua Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kyle Snyder
- Commonwealth Center for Advanced Manufacturing, Virginia, USA
| | - John Sions
- Commonwealth Center for Advanced Manufacturing, Virginia, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Periodontology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
18
|
Zhou J, Xiong S, Liu M, Yang H, Wei P, Yi F, Ouyang M, Xi H, Long Z, Liu Y, Li J, Ding L, Xiong L. Study on the influence of scaffold morphology and structure on osteogenic performance. Front Bioeng Biotechnol 2023; 11:1127162. [PMID: 37051275 PMCID: PMC10083331 DOI: 10.3389/fbioe.2023.1127162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/17/2023] [Indexed: 03/28/2023] Open
Abstract
The number of patients with bone defects caused by various bone diseases is increasing yearly in the aging population, and people are paying increasing attention to bone tissue engineering research. Currently, the application of bone tissue engineering mainly focuses on promoting fracture healing by carrying cytokines. However, cytokines implanted into the body easily cause an immune response, and the cost is high; therefore, the clinical treatment effect is not outstanding. In recent years, some scholars have proposed the concept of tissue-induced biomaterials that can induce bone regeneration through a scaffold structure without adding cytokines. By optimizing the scaffold structure, the performance of tissue-engineered bone scaffolds is improved and the osteogenesis effect is promoted, which provides ideas for the design and improvement of tissue-engineered bones in the future. In this study, the current understanding of the bone tissue structure is summarized through the discussion of current bone tissue engineering, and the current research on micro-nano bionic structure scaffolds and their osteogenesis mechanism is analyzed and discussed.
Collapse
Affiliation(s)
- Jingyu Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Clinical Medicine, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Shilang Xiong
- Institute of Clinical Medicine, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Min Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Hao Yang
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Wei
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Clinical Medicine, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Feng Yi
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Min Ouyang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Hanrui Xi
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Zhisheng Long
- Department of Orthopedics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Yayun Liu
- Department of Traumatology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Jingtang Li
- Department of Traumatology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Linghua Ding
- Department of Orthopedics, Jinhua People’s Hospital, Jinhua, Zhejiang, China
| | - Long Xiong
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- *Correspondence: Long Xiong,
| |
Collapse
|
19
|
Ostolaza M, Arrizubieta JI, Lamikiz A, Plaza S, Ortega N. Latest Developments to Manufacture Metal Matrix Composites and Functionally Graded Materials through AM: A State-of-the-Art Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1746. [PMID: 36837375 PMCID: PMC9966884 DOI: 10.3390/ma16041746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/05/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Multi-material structure fabrication has the potential to address some critical challenges in today's industrial paradigm. While conventional manufacturing processes cannot deliver multi-material structures in a single operation, additive manufacturing (AM) has come up as an appealing alternative. In particular, laser-directed energy deposition (L-DED) is preferred for multi-material AM. The most relevant applications envisioned for multi-material L-DED are alloy design, metal matrix composites (MMC), and functionally graded materials (FGM). Nonetheless, there are still some issues that need to be faced before multi-material L-DED is ready for industrial use. Driven by this need, in this literature review, the suitability of L-DED for multi-material component fabrication is first demonstrated. Then, the main defects associated with multi-material L-DED and current opportunities and challenges in the field are reported. In view of the industrial relevance of high-performance coatings as tools to mitigate wear, emphasis is placed on the development of MMCs and FGMs. The identified challenges include-but are not limited to-tightly controlling the composition of the multi-material powder mixture injected into the melt pool; understanding the influence of the thermal history of the process on microstructural aspects, including the interactions between constituents; and studying the in-service behaviours of MMCs and FGMs with regard to their durability and failure modes.
Collapse
|
20
|
Liu L, Liu C, Deng C, Wang X, Liu X, Luo M, Wang S, Liu J. Design and performance analysis of 3D-printed stiffness gradient femoral scaffold. J Orthop Surg Res 2023; 18:120. [PMID: 36804017 PMCID: PMC9938570 DOI: 10.1186/s13018-023-03612-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 02/20/2023] Open
Abstract
Studies on 3D-printed porous bone scaffolds mostly focus on materials or structural parameters, while the repair of large femoral defects needs to select appropriate structural parameters according to the needs of different parts. In this paper, a kind of stiffness gradient scaffold design idea is proposed. Different structures are selected according to the different functions of different parts of the scaffold. At the same time, an integrated fixation device is designed to fix the scaffold. Finite element method was used to analyze the stress and strain of homogeneous scaffolds and the stiffness gradient scaffolds, and the relative displacement and stress between stiffness gradient scaffolds and bone in the case of integrated fixation and steel plate fixation. The results showed that the stress distribution of the stiffness gradient scaffolds was more uniform, and the strain of host bone tissue was changed greatly, which was beneficial to the growth of bone tissue. The integrated fixation method is more stable, less stress and evenly distributed. Therefore, the integrated fixation device combined with the design of stiffness gradient can repair the large femoral bone defect well.
Collapse
Affiliation(s)
- Linlin Liu
- grid.411587.e0000 0001 0381 4112School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065 China
| | - Chang Liu
- grid.411587.e0000 0001 0381 4112School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065 China
| | - Congying Deng
- School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Xin Wang
- grid.411587.e0000 0001 0381 4112School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065 China
| | - Xiangde Liu
- grid.411587.e0000 0001 0381 4112School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065 China
| | - Maolin Luo
- grid.411587.e0000 0001 0381 4112School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065 China
| | - Shuxian Wang
- grid.411587.e0000 0001 0381 4112School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065 China
| | - Juncai Liu
- grid.488387.8Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, 646000 Sichuan China
| |
Collapse
|
21
|
Xu Y, Han G, Huang G, Li T, Xia J, Guo D. Properties Evaluations of Topology Optimized Functionally Graded Lattice Structures Fabricated by Selective Laser Melting. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16041700. [PMID: 36837329 PMCID: PMC9965893 DOI: 10.3390/ma16041700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 06/01/2023]
Abstract
Owning to their lightweight characteristic and high performance, functionally graded lattice structures (FGLSs) show great potential in orthopedics, automotive industries and aerospace applications. Here, two types of uniform lattice structures (ULSs) with RD = 0.50 and 0.20, and two types of FGLSs with RD = 0.30-0.50 and RD = 0.20-0.40, were designed by topology optimization and fabricated by SLM technology. Subsequently, their surface morphology, compressive deformation behavior and energy absorption abilities were evaluated by use of the finite element method (FEM) and compression tests. From these results, both elastic modulus and yield strength of specimens decreased with the lowering of the RD value. ULSs had a uniform deformation behavior with bending and bulking of struts, while FGLSs presented a mixed deformation behavior of different layers. Additionally, the energy absorption capability (Wv) of specimens was proportional to the RD value. When the value of RD increased from 0.20 to 0.50, the Wv of specimens increased from 0.3657 to 1.7469 MJ/m3. Furthermore, mathematical models were established successfully to predict the mechanical properties of FGLSs with percentage deviations < 10%. This work provides a comprehensive understanding regarding how to design and manufacture FGLSs with the properties desired for satisfying the demand of different application scenarios.
Collapse
Affiliation(s)
- Yangli Xu
- Institute of Manufacturing Engineering, Huaqiao University, Xiamen 361021, China
| | - Guangyao Han
- Institute of Manufacturing Engineering, Huaqiao University, Xiamen 361021, China
| | - Guoqin Huang
- Institute of Manufacturing Engineering, Huaqiao University, Xiamen 361021, China
| | - Tingting Li
- Xiamen Institute of Software Technology, Xiamen 361024, China
| | - Jiaxu Xia
- Institute of Manufacturing Engineering, Huaqiao University, Xiamen 361021, China
| | - Donghai Guo
- Eplus 3D Tech (Beijing) Co., Ltd., Beijing 102206, China
| |
Collapse
|
22
|
Rico-Baeza G, Cuan-Urquizo E, Pérez-Soto GI, Alcaraz-Caracheo LA, Camarillo-Gómez KA. Additively Manufactured Lattice Materials with a Double Level of Gradation: A Comparison of Their Compressive Properties when Fabricated with Material Extrusion and Vat Photopolymerization Processes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:649. [PMID: 36676385 PMCID: PMC9865958 DOI: 10.3390/ma16020649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Natural porous materials adjust their resulting mechanical properties by the optimal use of matter and space. When these are produced synthetically, they are known as mechanical metamaterials. This paper adds degrees of tailoring of mechanical properties by producing double levels of gradation in lattice structures via cross-section variation in struts in uniformly periodic lattice structures (UPLS) and layered lattice structures (LLS). These were then additively manufactured via material extrusion (ME) and vat photopolymerization (VP). Their effective mechanical properties under compressive loads were characterized, and their stiffness contrasted with finite element models (FEM). According to the simulation and experimental results, a better correlation was obtained in the structures manufactured via VP than by ME, denoting that printing defects affect the correlation results. The brittle natural behavior of the resin caused a lack of a plateau region in the stress-strain curves for the UPLS structures, as opposed to those fabricated with ME. The LLS increased energy absorption up to 244% and increased the plateau stress up to 100% compared to the UPLS. The results presented in this paper demonstrate that the mechanical properties of lattice structures with the same base topology could be modified by incorporating variations in the strut diameter and then arranging these differently.
Collapse
Affiliation(s)
- Genaro Rico-Baeza
- Tecnológico Nacional de México en Celaya, División de Estudios de Posgrado e Investigación, Celaya, Guanajuato 38010, Mexico
| | - Enrique Cuan-Urquizo
- Tecnológico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, Nuevo León 64849, Mexico
| | - Gerardo I. Pérez-Soto
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro 76010, Mexico
| | - Luis A. Alcaraz-Caracheo
- Tecnológico Nacional de México en Celaya, Department of Mechatronics Engineering, Celaya, Guanajuato 38010, Mexico
| | - Karla A. Camarillo-Gómez
- Tecnológico Nacional de México en Celaya, Department of Mechanical Engineering, Celaya, Guanajuato 38010, Mexico
| |
Collapse
|
23
|
Lin Y, Shi W, Sun X, Liu S, Li J, Zhou Y, Han Y. Influence of Density Gradient on the Compression of Functionally Graded BCC Lattice Structure. MATERIALS (BASEL, SWITZERLAND) 2023; 16:520. [PMID: 36676254 PMCID: PMC9866278 DOI: 10.3390/ma16020520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
In this paper, five grading functional gradient lattice structures with a different density perpendicular to the loading direction were proposed, and the surface morphology, deformation behavior, and compression properties of the functional gradient lattice structures prepared by selective laser melting (SLM) with Ti-6Al-4V as the building material were investigated. The results show that the characteristics of the laser energy distribution of the SLM molding process make the spherical metal powder adhere to the surface of the lattice structure struts, resulting in the actual relative density of the lattice structure being higher than the designed theoretical relative density, but the maximum error does not exceed 3.33%. With the same relative density, all lattice structures with density gradients perpendicular to the loading direction have better mechanical properties than the uniform lattice structure, in particular, the elastic modulus of LF, the yield strength of LINEAR, and the first maximum compression strength of INDEX are 28.99%, 16.77%, and 14.46% higher than that of the UNIFORM. In addition, the energy absorption per unit volume of the INDEX and LINEAR is 38.38% and 48.29% higher, respectively, than that of the UNIFORM. Fracture morphology analysis shows that the fracture morphology of these lattice structures shows dimples and smooth planes, indicating that the lattice structure exhibits a mixed brittle and ductile failure mechanism under compressive loading. Finite element analysis results show that when the loading direction is perpendicular to the density gradient-forming direction, the higher density part of the lattice structure is the main bearing part, and the greater the density difference between the two ends of the lattice structure, the greater the elastic modulus.
Collapse
|
24
|
Li Z, Chen Z, Chen X, Zhao R. Mechanical properties of triply periodic minimal surface (TPMS) scaffolds: considering the influence of spatial angle and surface curvature. Biomech Model Mechanobiol 2022; 22:541-560. [PMID: 36550240 DOI: 10.1007/s10237-022-01661-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 11/19/2022] [Indexed: 12/24/2022]
Abstract
Triply periodic minimal surface (TPMS) has a promising application in the design of bone scaffolds due to its relevance in bone structure. Notably, the mechanical properties of TPMS scaffolds can be affected by many factors, including the spatial angle and surface curvature, which, however, remain to be discovered. This paper illustrates our study on the mechanical properties of tissue scaffolds consisting of TPMS structures (Primitive and I-WP) by considering the influence of spatial angle and surface curvature. Also, the development of a novel model representative of the mechanical properties of scaffolds based on the entropy weight fuzzy comprehensive evaluation method is also presented. For experimental investigation and validation, we employed the selective laser melting technology to manufacture scaffolds with varying structures from AlSi10Mg powder and then performed mechanical testing on the scaffolds. Our results show that for a given porosity, the Gaussian curvature of the stretched TPMS structures is more concentrated and have a higher elastic modulus and fatigue life. At the spatial angle θ = 27°, the shear modulus of the primitive unit reaches its largest value; the shear modulus of the I-WP unit is positively correlated with the spatial angle. Additionally, it is found that the comprehensive mechanical properties of TPMS structures can be significantly improved after changing the surface curvature. Taken together, the identified influence of spatial angle and surface curvature and the developed models of scaffold mechanical properties would be of significant advance and guidance for the design and development of bone scaffolds.
Collapse
Affiliation(s)
- Zhitong Li
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150000, Heilongjiang, China
| | - Zhaobo Chen
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150000, Heilongjiang, China.
| | - Xiongbiao Chen
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, S7N5A9, Canada
| | - Runchao Zhao
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150000, Heilongjiang, China
| |
Collapse
|
25
|
Ravichander BB, Jagdale SH, Kumar G. Surface Morphology, Compressive Behavior, and Energy Absorption of Graded Triply Periodic Minimal Surface 316L Steel Cellular Structures Fabricated by Laser Powder Bed Fusion. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8294. [PMID: 36499790 PMCID: PMC9740850 DOI: 10.3390/ma15238294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/10/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Laser powder bed fusion (LPBF) is an emerging technique for the fabrication of triply periodic minimal surface (TPMS) structures in metals. In this work, different TPMS structures such as Diamond, Gyroid, Primitive, Neovius, and Fisher-Koch S with graded relative densities are fabricated from 316L steel using LPBF. The graded TPMS samples are subjected to sandblasting to improve the surface finish before mechanical testing. Quasi-static compression tests are performed to study the deformation behavior and energy absorption capacity of TPMS structures. The results reveal superior stiffness and energy absorption capabilities for the graded TPMS samples compared to the uniform TPMS structures. The Fisher-Koch S and Primitive samples show higher strength whereas the Fisher-Koch S and Neovius samples exhibit higher elastic modulus. The Neovius type structure shows the highest energy absorption up to 50% strain among all the TPMS structures. The Gibson-Ashby coefficients are calculated for the TPMS structures, and it is found that the C2 values are in the range suggested by Gibson and Ashby while C1 values differ from the proposed range.
Collapse
|
26
|
Ouldyerou A, Mehboob H, Merdji A, Aminallah L, Mehboob A, Mukdadi OM. Biomechanical analysis of printable functionally graded material (FGM) dental implants for different bone densities. Comput Biol Med 2022; 150:106111. [PMID: 36195043 DOI: 10.1016/j.compbiomed.2022.106111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/18/2022] [Accepted: 09/17/2022] [Indexed: 11/24/2022]
Abstract
The long-term success of a dental implant is related to the material and design of the implant, and bone density. Conventional implants cause stress-shielding due to a mismatch between the implant and bone stiffness. Functionally graded porous materials and designs are a great choice for the design of implants to control the local stiffness at a certain location to meet the biomechanical requirements. The purpose of this study is to analyze five designs of axial and radial functionally graded materials (FGM) implants besides the conventional implant and conical and cylindrical shapes that were simulated with five different bone densities. The results showed that strain in bone increased with a decrease in cancellous bone density. The shape of the implant did not play an important role in strain/stress distribution. Conventional implants showed optimal strain (1000-2240 με) in low-density (0.7-0.8 g/cm3) bone, however, FGM implants produced optimal strain (990-1280 με) in the high-density bone (0.9-1 g/cm3) as compared to conventional implants. The proposed designs of FGM implants have the potential to address the complications of conventional implants in high-density bone.
Collapse
Affiliation(s)
- Abdelhak Ouldyerou
- Department of Mechanical Engineering, Faculty of Science and Technology, University of Mascara, Mascara, Algeria.
| | - Hassan Mehboob
- Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh, 11586, Saudi Arabia.
| | - Ali Merdji
- Department of Mechanical Engineering, Faculty of Science and Technology, University of Mascara, Mascara, Algeria; Laboratory of Mechanics Physics of Materials (LMPM), Faculty of Technology, Djillali Liabes University, Sidi Bel-Abbes, 22000, Algeria.
| | - Laid Aminallah
- Department of Mechanical Engineering, Faculty of Science and Technology, University of Mascara, Mascara, Algeria.
| | - Ali Mehboob
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad, Pakistan.
| | - Osama M Mukdadi
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
27
|
Wang J, Peng Y, Chen M, Dai X, Lou L, Wang C, Bao Z, Yang X, Gou Z, Ye J. Next-generation finely controlled graded porous antibacterial bioceramics for high-efficiency vascularization in orbital reconstruction. Bioact Mater 2022; 16:334-345. [PMID: 35386326 PMCID: PMC8965696 DOI: 10.1016/j.bioactmat.2021.12.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 12/21/2022] Open
Abstract
Eyeball loss due to severe ocular trauma, intraocular malignancy or infection often requires surgical treatment called orbital implant reconstruction to rehabilitate the orbital volume and restore the aesthetic appearance. However, it remains a challenge to minimize the postoperative exposure and infection complications due to the inert nature of conventional orbital implants. Herein, we developed a novel Ca-Zn-silicate bioceramic implant with multi-functions to achieve the expected outcomes. The porous hardystonite (Ca2ZnSi2O7) scaffolds with triply periodic minimal surfaces (TPMS)-based pore architecture and graded pore size distribution from center to periphery (from 500 to 800 μm or vice versa) were fabricated through the digital light processing (DLP) technique, and the scaffolds with homogeneous pores (500 or 800 μm) were fabricated as control. The graded porous scaffolds exhibited a controlled bio-dissolving behavior and intermediate mechanical strength in comparison with the homogeneous counterparts, although all of porous implants presented significant antibacterial potential against S. aureus and E. coli. Meanwhile, the pore size-increasing scaffolds indicated more substantial cell adhesion, cell viability and angiogenesis-related gene expression in vitro. Furthermore, the gradually increasing pore feature exhibited a stronger blood vessel infiltrating potential in the dorsal muscle embedding model, and the spherical implants with such pore structure could achieve complete vascularization within 4 weeks in the eyeball enucleation rabbit models. Overall, our results suggested that the novel antibacterial hardystonite bioceramic with graded pore design has excellent potential as a next-generation orbital implant, and the pore topological features offer an opportunity for the improvement of biological performances in orbital reconstruction.
Collapse
Affiliation(s)
- Jingyi Wang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, PR China
| | - Yiyu Peng
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, PR China
| | - Menglu Chen
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, PR China
| | - Xizhe Dai
- Department of Ophthalmology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310051, PR China
| | - Lixia Lou
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, PR China
| | - Changjun Wang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, PR China
| | - Zhaonan Bao
- Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, 310029, PR China
| | - Xianyan Yang
- Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, 310029, PR China
| | - Zhongru Gou
- Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, 310029, PR China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, PR China
| |
Collapse
|
28
|
Liu B, Xu W, Chen M, Chen D, Sun G, Zhang C, Pan Y, Lu J, Guo E, Lu X. Structural Design and Finite Element Simulation Analysis of Grade 3 Graded Porous Titanium Implant. Int J Mol Sci 2022; 23:10090. [PMID: 36077485 PMCID: PMC9456369 DOI: 10.3390/ijms231710090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/20/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
The metal titanium is often used as a dental implant material, and the elastic modulus of solid titanium implants does not match the biological bone tissue, which can easily produce a stress shielding effect and cause implant failure. In this paper, a three-level gradient porous structure implant was designed, and its mechanical and biological adaptability were studied by finite element simulation analysis. Combined with the comprehensive evaluation of the mechanical and biological properties of implants of various structures, the analysis found that a porous implant with porosity of 59.86% of the gradient was the best structure. The maximum equivalent stress of this structure in the mandible that simulated the oral environment was 154.34 MPa, which was less than half of its theoretical compression yield strength. The strain of the surrounding bone tissue lies in the bone compared with other structures, the proportion of the active state of plastic construction is larger, at 10.51%, and the fretting value of this structure and the bone tissue interface is the smallest, at only 10 μm.
Collapse
Affiliation(s)
- Bowen Liu
- Shunde Graduate School, University of Science and Technology Beijing, Foshan 528399, China
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Wei Xu
- Shunde Graduate School, University of Science and Technology Beijing, Foshan 528399, China
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Mingying Chen
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongdong Chen
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Guyu Sun
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Ce Zhang
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yu Pan
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinchao Lu
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Enbo Guo
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Lu
- Shunde Graduate School, University of Science and Technology Beijing, Foshan 528399, China
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
29
|
Davoodi E, Montazerian H, Mirhakimi AS, Zhianmanesh M, Ibhadode O, Shahabad SI, Esmaeilizadeh R, Sarikhani E, Toorandaz S, Sarabi SA, Nasiri R, Zhu Y, Kadkhodapour J, Li B, Khademhosseini A, Toyserkani E. Additively manufactured metallic biomaterials. Bioact Mater 2022; 15:214-249. [PMID: 35386359 PMCID: PMC8941217 DOI: 10.1016/j.bioactmat.2021.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Metal additive manufacturing (AM) has led to an evolution in the design and fabrication of hard tissue substitutes, enabling personalized implants to address each patient's specific needs. In addition, internal pore architectures integrated within additively manufactured scaffolds, have provided an opportunity to further develop and engineer functional implants for better tissue integration, and long-term durability. In this review, the latest advances in different aspects of the design and manufacturing of additively manufactured metallic biomaterials are highlighted. After introducing metal AM processes, biocompatible metals adapted for integration with AM machines are presented. Then, we elaborate on the tools and approaches undertaken for the design of porous scaffold with engineered internal architecture including, topology optimization techniques, as well as unit cell patterns based on lattice networks, and triply periodic minimal surface. Here, the new possibilities brought by the functionally gradient porous structures to meet the conflicting scaffold design requirements are thoroughly discussed. Subsequently, the design constraints and physical characteristics of the additively manufactured constructs are reviewed in terms of input parameters such as design features and AM processing parameters. We assess the proposed applications of additively manufactured implants for regeneration of different tissue types and the efforts made towards their clinical translation. Finally, we conclude the review with the emerging directions and perspectives for further development of AM in the medical industry.
Collapse
Affiliation(s)
- Elham Davoodi
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Anooshe Sadat Mirhakimi
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Isfahan 84156-83111, Iran
| | - Masoud Zhianmanesh
- School of Biomedical Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Osezua Ibhadode
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Shahriar Imani Shahabad
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Reza Esmaeilizadeh
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Einollah Sarikhani
- Department of Nanoengineering, Jacobs School of Engineering, University of California, San Diego, California 92093, United States
| | - Sahar Toorandaz
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Shima A. Sarabi
- Mechanical and Aerospace Engineering Department, University of California, Los Angeles, California 90095, United States
| | - Rohollah Nasiri
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Javad Kadkhodapour
- Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Tehran 16785-163, Iran
- Institute for Materials Testing, Materials Science and Strength of Materials, University of Stuttgart, Stuttgart 70569, Germany
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
- Department of Manufacturing Systems Engineering and Management, California State University, Northridge, California 91330, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Ehsan Toyserkani
- Multi-Scale Additive Manufacturing (MSAM) Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
30
|
Rouf S, Malik A, Raina A, Irfan Ul Haq M, Naveed N, Zolfagharian A, Bodaghi M. Functionally graded additive manufacturing for orthopedic applications. J Orthop 2022; 33:70-80. [PMID: 35874041 PMCID: PMC9304666 DOI: 10.1016/j.jor.2022.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/22/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Background Additive Manufacturing due to its benefits in developing parts with complex geometries and shapes, has evolved as an alternate manufacturing process to develop implants with desired properties. The structure of human bones being anisotropic in nature is biologically functionally graded i,e. The structure possesses different properties in different directions. Therefore, various orthopedic implants such as knee, hip and other bone plates, if functionally graded can perform better. In this context, the development of functionally graded (FG) parts for orthopedic application with tailored anisotropic properties has become easier through the use of additive manufacturing (AM). Objectives and Rationale: The current paper aims to study the various aspects of additively manufactured FG parts for orthopedic applications. It presents the details of various orthopedic implants such as knee, hip and other bone plates in a structured manner. A systematic literature review is conducted to study the various material and functional aspects of functionally graded parts for orthopedic applications. A section is also dedicated to discuss the mechanical properties of functionally graded parts. Conclusion The literature revealed that additive manufacturing can provide lot of opportunities for development of functionally graded orthopedic implants with improved properties and durability. Further, the effect of various FG parameters on the mechanical behavior of these implants needs to be studied in detail. Also, with the advent of various AM technologies, the functional grading can be achieved by various means e.g. density, porosity, microstructure, composition, etc. By varying the AM parameters. However, the current limitations of cost and material biocompatibility prevent the widespread exploitation of AM technologies for various orthopedic applications.
Collapse
Affiliation(s)
- Saquib Rouf
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, J&K, India
| | - Abrar Malik
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, J&K, India
| | - Ankush Raina
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, J&K, India
| | - Mir Irfan Ul Haq
- School of Mechanical Engineering, Shri Mata Vaishno Devi University, J&K, India
| | - Nida Naveed
- Faculty of Technology, University of Sunderland, UK
| | | | - Mahdi Bodaghi
- School of Science and Technology, Nottingham Trent University, UK
| |
Collapse
|
31
|
Mirzaali MJ, Moosabeiki V, Rajaai SM, Zhou J, Zadpoor AA. Additive Manufacturing of Biomaterials-Design Principles and Their Implementation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5457. [PMID: 35955393 PMCID: PMC9369548 DOI: 10.3390/ma15155457] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 05/04/2023]
Abstract
Additive manufacturing (AM, also known as 3D printing) is an advanced manufacturing technique that has enabled progress in the design and fabrication of customised or patient-specific (meta-)biomaterials and biomedical devices (e.g., implants, prosthetics, and orthotics) with complex internal microstructures and tuneable properties. In the past few decades, several design guidelines have been proposed for creating porous lattice structures, particularly for biomedical applications. Meanwhile, the capabilities of AM to fabricate a wide range of biomaterials, including metals and their alloys, polymers, and ceramics, have been exploited, offering unprecedented benefits to medical professionals and patients alike. In this review article, we provide an overview of the design principles that have been developed and used for the AM of biomaterials as well as those dealing with three major categories of biomaterials, i.e., metals (and their alloys), polymers, and ceramics. The design strategies can be categorised as: library-based design, topology optimisation, bio-inspired design, and meta-biomaterials. Recent developments related to the biomedical applications and fabrication methods of AM aimed at enhancing the quality of final 3D-printed biomaterials and improving their physical, mechanical, and biological characteristics are also highlighted. Finally, examples of 3D-printed biomaterials with tuned properties and functionalities are presented.
Collapse
Affiliation(s)
- Mohammad J. Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | | | | | | | | |
Collapse
|
32
|
Xia H, Meng J, Liu J, Ao X, Lin S, Yang Y. Evaluation of the Equivalent Mechanical Properties of Lattice Structures Based on the Finite Element Method. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2993. [PMID: 35591329 PMCID: PMC9104921 DOI: 10.3390/ma15092993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/31/2022]
Abstract
Lattice structures have excellent mechanical properties and can be designed by changing the cellular structure. However, the computing scale is extremely large to directly analyze a large-size structure containing a huge number of lattice cells. Evaluating the equivalent mechanical properties instead of the complex geometry of such lattice cells is a feasible way to deal with this problem. This paper aims to propose a series of formulas, including critical structural and material parameters, to fast evaluate the equivalent mechanical properties of lattice structures. A reduced-order model based on the finite element method and beam theory was developed and verified by comparing it with the corresponding full model. This model was then applied to evaluate the equivalent mechanical properties of 25 types of lattice cells. The effects of the material Young's modulus and Poisson's ratio, strut diameter, cell size, and cell number on those equivalent mechanical properties were investigated and discussed, and the linear relationship with the material parameters and the non-linear relationship with the structural parameters were found. Finally, a series of analytical-fitting formulas involving the structural and material parameters were obtained, which allows us to fast predict the equivalent mechanical properties of the lattice cells.
Collapse
Affiliation(s)
- Huanxiong Xia
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.X.); (J.M.); (J.L.); (S.L.)
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314000, China
| | - Junfeng Meng
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.X.); (J.M.); (J.L.); (S.L.)
| | - Jianhua Liu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.X.); (J.M.); (J.L.); (S.L.)
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314000, China
| | - Xiaohui Ao
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.X.); (J.M.); (J.L.); (S.L.)
| | - Shengxiang Lin
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.X.); (J.M.); (J.L.); (S.L.)
| | - Ye Yang
- School of Mechanical and Material Engineering, North China University of Technology, Beijing 100144, China;
| |
Collapse
|
33
|
Dubey A, Jaiswal S, Lahiri D. Promises of Functionally Graded Material in Bone Regeneration: Current Trends, Properties, and Challenges. ACS Biomater Sci Eng 2022; 8:1001-1027. [PMID: 35201746 DOI: 10.1021/acsbiomaterials.1c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functionally graded materials (FGMs) are emerging materials systems, with structures and compositions gradually changing in a particular direction. Consequently, the properties of the materials gradually change in the desired direction to achieve particular nonhomogeneous service demands without abrupting the compositional and behavioral interface at the macroscale. FGMs have been found to have high potential as orthopedic implants; because the functional gradient can be adapted in such a manner that the core of FGM should be compatible with the density and strength of bone, interlayers can maintain the structural integrity and outermost layers would provide bioactivity and corrosion resistance, thus overall tailoring the stress shielding effect. This review article discusses the typical FGM systems existing in nature and the human body, focusing on bone tissue. Further, the reason behind the application of these FGMs systems in orthopedic implants is explored in detail, considering the physical and biological necessities. The substantial focus of the present critical review is devoted to two primary topics related to the usage of FGMs for orthopedic implants: (1) the synthesizing techniques currently available to produce FGMs for load-bearing orthopedic applications and (2) the properties, such as mechanical, structural, and biological behavior of the FGMs. This review article gives an insight into the potential of FGMs for orthopedic applications.
Collapse
Affiliation(s)
- Anshu Dubey
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Satish Jaiswal
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Debrupa Lahiri
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| |
Collapse
|
34
|
Wang N, Meenashisundaram GK, Chang S, Fuh JYH, Dheen ST, Senthil Kumar A. A comparative investigation on the mechanical properties and cytotoxicity of Cubic, Octet, and TPMS gyroid structures fabricated by selective laser melting of stainless steel 316L. J Mech Behav Biomed Mater 2022; 129:105151. [DOI: 10.1016/j.jmbbm.2022.105151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/08/2021] [Accepted: 02/27/2022] [Indexed: 01/10/2023]
|
35
|
Wang D, Wang H, Chen X, Liu Y, Lu D, Liu X, Han C. Densification, Tailored Microstructure, and Mechanical Properties of Selective Laser Melted Ti–6Al–4V Alloy Via Annealing Heat Treatment. MICROMACHINES 2022; 13:mi13020331. [PMID: 35208455 PMCID: PMC8875346 DOI: 10.3390/mi13020331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
This work investigated the influence of process parameters on the densification, microstructure, and mechanical properties of a Ti–6Al–4V alloy printed by selective laser melting (SLM), followed by annealing heat treatment. In particular, the evolution mechanisms of the microstructure and mechanical properties of the printed alloy with respect to the annealing temperature near the β phase transition temperature were investigated. The process parameter optimization of SLM can lead to the densification of the printed Ti–6Al–4V alloy with a relative density of 99.51%, accompanied by an ultimate tensile strength of 1204 MPa and elongation of 7.8%. The results show that the microstructure can be tailored by altering the scanning speed and annealing temperature. The SLM-printed Ti–6Al–4V alloy contains epitaxial growth β columnar grains and internal acicular martensitic α′ grains, and the width of the β columnar grain decreases with an increase in the scanning speed. Comparatively, the printed alloy after annealing in the range of 750–1050 °C obtains the microstructure consisting of α + β dual phases. In particular, network and Widmanstätten structures are formed at the annealing temperatures of 850 °C and 1050 °C, respectively. The maximum elongation of 14% can be achieved at the annealing temperature of 950 °C, which was 79% higher than that of as-printed samples. Meanwhile, an ultimate tensile strength larger than 1000 MPa can be maintained, which still meets the application requirements of the forged Ti–6Al–4V alloy.
Collapse
Affiliation(s)
- Di Wang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China; (D.W.); (H.W.); (X.C.)
| | - Han Wang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China; (D.W.); (H.W.); (X.C.)
| | - Xiaojun Chen
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China; (D.W.); (H.W.); (X.C.)
| | - Yang Liu
- Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China
- Correspondence: (Y.L.); (C.H.)
| | - Dong Lu
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Pangang Group Research Institute Co., Ltd., Panzhihua 617000, China; (D.L.); (X.L.)
- Sichuan Advanced Metal Material Additive Manufacturing Engineering Technology Research Center, Chengdu Advanced Metal Materials Industry Technology Research Institute Co., Ltd., Chengdu 610300, China
| | - Xinyu Liu
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Pangang Group Research Institute Co., Ltd., Panzhihua 617000, China; (D.L.); (X.L.)
- Sichuan Advanced Metal Material Additive Manufacturing Engineering Technology Research Center, Chengdu Advanced Metal Materials Industry Technology Research Institute Co., Ltd., Chengdu 610300, China
| | - Changjun Han
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China; (D.W.); (H.W.); (X.C.)
- Correspondence: (Y.L.); (C.H.)
| |
Collapse
|
36
|
Chávez-Vásconez R, Lascano S, Sauceda S, Reyes-Valenzuela M, Salvo C, Mangalaraja RV, Gotor FJ, Arévalo C, Torres Y. Effect of the Processing Parameters on the Porosity and Mechanical Behavior of Titanium Samples with Bimodal Microstructure Produced via Hot Pressing. MATERIALS (BASEL, SWITZERLAND) 2021; 15:136. [PMID: 35009282 PMCID: PMC8746005 DOI: 10.3390/ma15010136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Commercially pure (c.p.) titanium grade IV with a bimodal microstructure is a promising material for biomedical implants. The influence of the processing parameters on the physical, microstructural, and mechanical properties was investigated. The bimodal microstructure was achieved from the blends of powder particles with different sizes, while the porous structure was obtained using the space-holder technique (50 vol.% of ammonium bicarbonate). Mechanically milled powders (10 and 20 h) were mixed in 50 wt.% or 75 wt.% with c.p. titanium. Four different mixtures of powders were precompacted via uniaxial cold pressing at 400 MPa. Then, the specimens were sintered at 750 °C via hot pressing in an argon gas atmosphere. The presence of a bimodal microstructure, comprised of small-grain regions separated by coarse-grain ones, was confirmed by optical and scanning electron microscopies. The samples with a bimodal microstructure exhibited an increase in the porosity compared with the commercially available pure Ti. In addition, the hardness was increased while the Young's modulus was decreased in the specimens with 75 wt.% of the milled powders (20 h).
Collapse
Affiliation(s)
- Ricardo Chávez-Vásconez
- Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Avenida Vicuña Mackenna 3939, Santiago 8940572, Chile; (R.C.-V.); (S.S.); (M.R.-V.)
| | - Sheila Lascano
- Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Avenida Vicuña Mackenna 3939, Santiago 8940572, Chile; (R.C.-V.); (S.S.); (M.R.-V.)
| | - Sergio Sauceda
- Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Avenida Vicuña Mackenna 3939, Santiago 8940572, Chile; (R.C.-V.); (S.S.); (M.R.-V.)
| | - Mauricio Reyes-Valenzuela
- Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Avenida Vicuña Mackenna 3939, Santiago 8940572, Chile; (R.C.-V.); (S.S.); (M.R.-V.)
| | - Christopher Salvo
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad del Bío-Bío, Avda. Collao 1202, Casilla 5-C, Concepción 4081112, Chile;
| | | | - Francisco José Gotor
- Instituto de Ciencia de Materiales de Sevilla (CSIC-US), Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Cristina Arévalo
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Poliécnica Superior, Calle Virgen de África 7, 41011 Seville, Spain; (C.A.); (Y.T.)
| | - Yadir Torres
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Poliécnica Superior, Calle Virgen de África 7, 41011 Seville, Spain; (C.A.); (Y.T.)
| |
Collapse
|
37
|
Mechanical Behavior and In Vitro Corrosion of Cubic Scaffolds of Pure Magnesium Processed by Severe Plastic Deformation. METALS 2021. [DOI: 10.3390/met11111791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reports in the literature show that severe plastic deformation can improve mechanical strength, ductility, and corrosion resistance of pure magnesium, which suggests good performance for biodegradable applications. However, the reported results were based on testing of small samples on limited directions. The present study reports compression testing of larger samples, at different directions, in pure magnesium processed by hot rolling, equal channel angular pressing (ECAP), and high pressure torsion (HPT). The results show that severe plastic deformation through ECAP and HPT reduces anisotropy and increases strength and strain rate sensitivity. Also, scaffolds were fabricated from the material with different processing histories and immersed in Hank’s solution for up to 14 days. The as-cast material displays higher corrosion rate and localized corrosion and it is reported that severe plastic deformation induces uniform corrosion and reduces the corrosion rate.
Collapse
|
38
|
Programmed Plastic Deformation in Mathematically-Designed Architected Cellular Materials. METALS 2021. [DOI: 10.3390/met11101622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ability to control the exhibited plastic deformation behavior of cellular materials under certain loading conditions can be harnessed to design more reliable and structurally efficient damage-tolerant materials for crashworthiness and protective equipment applications. In this work, a mathematically-based design approach is proposed to program the deformation behavior of cellular materials with minimal surface-based topologies and ductile constituent material by employing the concept of functional grading to control the local relative density of unit cells. To demonstrate the applicability of this design tactic, two examples are presented. Rhombic, and double arrow deformation profiles were programmed as the desired deformation patterns. Grayscale images were used to map the relative density distribution of the cellular material. 316L stainless steel metallic samples were fabricated using the powder bed fusion additive manufacturing technique. Results of compressive tests showed that the designed materials followed the desired programmed deformation behavior. Results of mechanical testing also showed that samples with programmed deformation exhibited higher plateau stress and toughness values as compared to their uniform counterparts while no effect on Young’s modulus was observed. Plateau stress values increased by 8.6% and 13.4% and toughness values increased by 5.6% and 11.2% for the graded-rhombic and graded-arrow patterns, respectively. Results of numerical simulations predicted the exact deformation behavior that was programmed in the samples and that were obtained experimentally.
Collapse
|
39
|
Hossain U, Ghouse S, Nai K, Jeffers JR. Mechanical and morphological properties of additively manufactured SS316L and Ti6Al4V micro-struts as a function of build angle. ADDITIVE MANUFACTURING 2021; 46:None. [PMID: 34603974 PMCID: PMC8448581 DOI: 10.1016/j.addma.2021.102050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Additive manufacturing methods such as laser powder bed fusion (PBF) can produce micro-lattice structures which consist of 'micro-struts', which have properties that differ from the bulk metal and that can vary depending on the orientation of the strut to the build direction (the strut build angle). Characterizing these mechanical and morphological changes would help explain macro-scale lattice behavior. Individual stainless steel (SS316L) and titanium alloy (Ti6Al4V) laser PBF struts were built at 20°, 40°, 70° and 90° to the build platform, with 3 designed diameters and tested in uniaxial tension (n = 5). Micro-CT was used to quantify changes in surface roughness, eccentricity and cross-section. Average elastic modulus was 61.5 GPa and 37.5 GPa for SS316L and Ti6Al4V respectively, less than the bulk material. Yield strength was uniform over build angle for SS316L, but for Ti6Al4V varied from 40% to 98% of the bulk value from 20° to 90° build angles. All lower angle struts had worse morphology, with higher roughness and less circular cross-sections. These data should help inform micro-lattice design, especially in safety critical applications where lower mechanical performance must be compensated for.
Collapse
Affiliation(s)
- Umar Hossain
- Department of Mechanical Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Shaaz Ghouse
- Department of Mechanical Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Kenneth Nai
- Renishaw PLC, New Mills, Wotton-under-Edge, Gloucestershire GL12 8JR, UK
| | - Jonathan R.T. Jeffers
- Department of Mechanical Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
40
|
Ruiz de Galarreta S, Doyle RJ, Jeffers J, Ghouse S. Laser powder bed fusion of porous graded structures: A comparison between computational and experimental analysis. J Mech Behav Biomed Mater 2021; 123:104784. [PMID: 34419887 DOI: 10.1016/j.jmbbm.2021.104784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
Functionally graded porous structures (FGPSs) are gaining interest in the biomedical sector, specifically for orthopaedic implants. In this study, the compressive behaviour of seven different FGPSs comprised of Face Centred Cubic (FCC) and the Octet truss unit cells (OCT) were analysed. The porosity of the structures were graded in different directions (radially, longitudinally, laterally and longitudinally & radially) by varying the strut diameters or by combining the two types of unit cells. The structures were manufactured by laser power bed fusion and compression tests were performed. Radially and laterally porous graded structures were found to outperform uniform porous structures with an increase in stiffness of 13.7% and 21.1% respectively. The experimental and finite element analysis (FEA) results were in good agreement with differences in elastic modulus of 9.4% and yield strength of 15.8%. A new FEA beam model is proposed in this study to analyse this type of structures with accurate results and the consequent reduction of computational time. The accuracy of the Kelvin-Voight model and the rule of mixtures for predicting the mechanical behaviour of different FGPSs was also investigated. The results demonstrate the adequacy of the analytical models specifically for hybrid structures and for structures with smooth diameter transitions.
Collapse
Affiliation(s)
- Sergio Ruiz de Galarreta
- Department of Mechanical Engineering and Materials, Universidad de Navarra, TECNUN Escuela de Ingenieros, Paseo Manuel de Lardizabal, 13, 20018, San Sebastian, Spain.
| | - Ruben J Doyle
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Jonathan Jeffers
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Shaaz Ghouse
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
41
|
Liverani E, Rogati G, Pagani S, Brogini S, Fortunato A, Caravaggi P. Mechanical interaction between additive-manufactured metal lattice structures and bone in compression: implications for stress shielding of orthopaedic implants. J Mech Behav Biomed Mater 2021; 121:104608. [PMID: 34077904 DOI: 10.1016/j.jmbbm.2021.104608] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
One of the main biomechanical causes for aseptic failure of orthopaedic implants is the stress shielding. This is caused by an uneven load distribution across the bone normally due to a stiff metal prosthesis component, leading to periprosthetic bone resorption and to implant loosening. To reduce the stress shielding and to improve osseointegration, biocompatible porous structures suitable for orthopaedic applications have been developed. Aim of this study was to propose a novel in-vitro model of the mechanical interaction between metal lattice structures and bovine cortical bone in compression. Analysis of the strain distribution between metal structure and bone provides useful information on the potential stress shielding of orthopaedic implants with the same geometry of the porous scaffold. Full density and lattice structures obtained by the repetition of 1.5 mm edge cubic elements via Laser Powder Bed Fusion of CoCrMo powder were characterized for mechanical properties using standard compressive testing. The two porous geometries were characterized by 750 μm and 1000 μm pores resulting in a nominal porosity of 43.5% and 63.2% respectively. Local deformation and strains of metal samples coupled with fresh bovine cortical bone samples were evaluated via Digital Image Correlation analysis up to failure in compression. Visualization and quantification of the local strain gradient across the metal-bone interface was used to assess differences in mechanical behaviour between structures which could be associated to stress-shielding. Overall stiffness and local mechanical properties of lattice and bone were consistent across samples. Full-density metal samples appeared to rigidly transfer the compression force to the bone which was subjected to large deformations (2.2 ± 0.3% at 15 kN). Larger porosity lattice was associated to lower stiffness and compressive modulus, and to a smoother load transfer to the bone. While tested on a limited sample size, the proposed in-vitro model appears robust and repeatable to assess the local mechanical interaction of metal samples suitable for orthopaedic applications with the bone tissue. CoCrMo scaffolds made of 1000 μm pores cubic cells may allow for a smoother load transfer to the bone when used as constitutive material of orthopaedic implants.
Collapse
Affiliation(s)
- Erica Liverani
- Department of Industrial Engineering, Università di Bologna, Bologna, Italy
| | - Giulia Rogati
- IRCCS Istituto Ortopedico Rizzoli, Movement Analysis Laboratory, Bologna, Italy
| | - Stefania Pagani
- IRCCS Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Bologna, Italy
| | - Silvia Brogini
- IRCCS Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Bologna, Italy.
| | | | - Paolo Caravaggi
- IRCCS Istituto Ortopedico Rizzoli, Movement Analysis Laboratory, Bologna, Italy
| |
Collapse
|
42
|
Pagani S, Liverani E, Giavaresi G, De Luca A, Belvedere C, Fortunato A, Leardini A, Fini M, Tomesani L, Caravaggi P. Mechanical and in vitro biological properties of uniform and graded Cobalt-chrome lattice structures in orthopedic implants. J Biomed Mater Res B Appl Biomater 2021; 109:2091-2103. [PMID: 33964120 PMCID: PMC8518749 DOI: 10.1002/jbm.b.34857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/14/2020] [Accepted: 04/24/2021] [Indexed: 12/11/2022]
Abstract
Human bones are biological examples of functionally graded lattice capable to withstand large in vivo loading and allowing optimal stress distribution. Disruption of bone integrity may require biocompatible implants capable to restore the original bone structure and properties. This study aimed at comparing mechanical properties and biological behavior in vitro of uniform (POR‐FIX) and graded (POR‐VAR) Cobalt‐chrome alloy lattice structures manufactured via Selective Laser Melting. In compression, the POR‐VAR equivalent maximum stress was about 2.5 times lower than that of the POR‐FIX. According to the DIC analysis, the graded lattice structures showed a stratified deformation associated to unit cells variation. At each timepoint, osteoblast cells were observed to colonize the surface and the first layer of both scaffolds. Cell activity was always significantly higher in the POR‐VAR (p < 0.0005). In terms of gene expression, the OPG/RANKL ratio increased significantly over time (p < 0.0005) whereas IL1β and COX2 significantly decreased (7 day vs 1 day; p < 0.0005) in both scaffolds. Both uniform‐ and graded‐porosity scaffolds provided a suitable environment for osteoblasts colonization and proliferation, but graded structures seem to represent a better solution to improve stress distribution between implant and bone of orthopedic implants.
Collapse
Affiliation(s)
- Stefania Pagani
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Erica Liverani
- Department of Industrial Engineering, Università di Bologna, Bologna, Italy
| | - Gianluca Giavaresi
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Angela De Luca
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Claudio Belvedere
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Alberto Leardini
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Milena Fini
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Tomesani
- Department of Industrial Engineering, Università di Bologna, Bologna, Italy
| | - Paolo Caravaggi
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
43
|
Li J, Yuan H, Chandrakar A, Moroni L, Habibovic P. 3D porous Ti6Al4V-beta-tricalcium phosphate scaffolds directly fabricated by additive manufacturing. Acta Biomater 2021; 126:496-510. [PMID: 33727193 DOI: 10.1016/j.actbio.2021.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
3D Ti6Al4V-beta-tricalcium phosphate (TCP) hybrid scaffolds with interconnected porous network and controllable porosity and pore size were successfully produced by three-dimensional fiber deposition (3DF). The macrostructure of scaffolds was determined by the 3D design, whereas the micro- and submicron structure were derived from the Ti6Al4V powder sintering and the crystalline TCP powder, respectively. Ti6Al4V-TCP slurry was developed for 3DF by optimizing the TCP powder size, Ti6Al4V-to-TCP powder ratio and Ti6Al4V-TCP powder content. Moreover, the air pressure and fiber deposition rate were optimized. A maximum achievable ceramic content in the Ti6Al4V-TCP slurry that enables 3DF manufacturing was 10 wt%. The chemical analysis showed that limited contamination occurred during sintering. The compressive strength and Young's modulus of the scaffolds exhibited values between those of cancellous and cortical bone. The 3D Ti6Al4V-TCP scaffolds with 10 wt% TCP allowed deposition of a calcium phosphate layer on the surface in a simulated body fluid. Cumulative release of calcium and phosphate ions from the scaffolds was observed in a simulated physiological solution, in contrast to a cell culture medium. A pilot in vivo study, in which the scaffolds were implanted intramuscularly in dogs showed ectopic bone formation in the Ti6Al4V-TCP scaffolds with 10 wt% TCP, showing their osteoinductive potential. The porous 3D Ti6Al4V-TCP scaffolds developed here combine the mechanical properties of the metal with the bioactivity of the ceramic and are therefore likely to yield more effective strategies to control the implant-bone interface and thereby improve long-term clinical results in orthopaedics and craniomaxillofacial surgery. STATEMENT OF SIGNIFICANCE: In this work, 3D porous hybrid scaffolds made of a titanium alloy and a beta-tricalcium phosphate ceramic (Ti6Al4V-TCP) were developed using the direct additive manufacturing technique 3D fiber deposition. Upon optimization of the powders and slurry, scaffolds with up to 10 wt.% TCP with good mechanical properties and controllable porous structure at different length scales were successfully manufactured. A preliminary in vivo study in an intramuscular model demonstrated that the addition of TCP to the metal alloy improved its bioactivity. The combination of the two materials and the use of a direct additive manufacturing technique resulted in scaffolds that may lead to more effective strategies to control the implant-bone interface and thereby improve long-term clinical results in orthopaedics and craniomaxillofacial surgery.
Collapse
Affiliation(s)
- J Li
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands; Department of Instructive Biomaterial Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - H Yuan
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands; Department of Instructive Biomaterial Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands; Kuros Biosciences, Bilthoven, the Netherlands
| | - A Chandrakar
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - L Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - P Habibovic
- Department of Instructive Biomaterial Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
44
|
Khimich MA, Prosolov KA, Mishurova T, Evsevleev S, Monforte X, Teuschl AH, Slezak P, Ibragimov EA, Saprykin AA, Kovalevskaya ZG, Dmitriev AI, Bruno G, Sharkeev YP. Advances in Laser Additive Manufacturing of Ti-Nb Alloys: From Nanostructured Powders to Bulk Objects. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1159. [PMID: 33946726 PMCID: PMC8145374 DOI: 10.3390/nano11051159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 11/24/2022]
Abstract
The additive manufacturing of low elastic modulus alloys that have a certain level of porosity for biomedical needs is a growing area of research. Here, we show the results of manufacturing of porous and dense samples by a laser powder bed fusion (LPBF) of Ti-Nb alloy, using two distinctive fusion strategies. The nanostructured Ti-Nb alloy powders were produced by mechanical alloying and have a nanostructured state with nanosized grains up to 90 nm. The manufactured porous samples have pronounced open porosity and advanced roughness, contrary to dense samples with a relatively smooth surface profile. The structure of both types of samples after LPBF is formed by uniaxial grains having micro- and nanosized features. The inner structure of the porous samples is comprised of an open interconnected system of pores. The volume fraction of isolated porosity is 2 vol. % and the total porosity is 20 vol. %. Cell viability was assessed in vitro for 3 and 7 days using the MG63 cell line. With longer culture periods, cells showed an increased cell density over the entire surface of a porous Ti-Nb sample. Both types of samples are not cytotoxic and could be used for further in vivo studies.
Collapse
Affiliation(s)
- Margarita A. Khimich
- Laboratory of Nanobioengineering, Laboratory of Nanostructured Biocomposites, Laboratory of Computer-Aided Design of Materials, Institute of Strength Physics and Materials Science of SB RAS, 2/4, Akademicheskii pr., 634055 Tomsk, Russia; (M.A.K.); (K.A.P.); (Y.P.S.)
- Physics Technical Faculty, Tomsk Material Science Common Use Center, National Research Tomsk State University, 36, Lenina pr., 634050 Tomsk, Russia
| | - Konstantin A. Prosolov
- Laboratory of Nanobioengineering, Laboratory of Nanostructured Biocomposites, Laboratory of Computer-Aided Design of Materials, Institute of Strength Physics and Materials Science of SB RAS, 2/4, Akademicheskii pr., 634055 Tomsk, Russia; (M.A.K.); (K.A.P.); (Y.P.S.)
| | - Tatiana Mishurova
- Department of Non-Destructive Testing, Division 8.5 Micro NDE, Bundesanstalt für Materialforschung und -Prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany; (T.M.); (S.E.); (G.B.)
| | - Sergei Evsevleev
- Department of Non-Destructive Testing, Division 8.5 Micro NDE, Bundesanstalt für Materialforschung und -Prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany; (T.M.); (S.E.); (G.B.)
| | - Xavier Monforte
- Department of Life Science Engineering, University of Applied Sciences Technikum Wien, Höchstädtpl. 6, 1200 Vienna, Austria; (X.M.); (A.H.T.)
| | - Andreas H. Teuschl
- Department of Life Science Engineering, University of Applied Sciences Technikum Wien, Höchstädtpl. 6, 1200 Vienna, Austria; (X.M.); (A.H.T.)
| | - Paul Slezak
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria;
| | - Egor A. Ibragimov
- Material Science Department, Research School of Physics of High Energy Processes, National Research Tomsk Polytechnic University, Yurga Technical University TPU Affiliate, 30, Lenina pr., 634050 Tomsk, Russia; (E.A.I.); (A.A.S.); (Z.G.K.)
| | - Alexander A. Saprykin
- Material Science Department, Research School of Physics of High Energy Processes, National Research Tomsk Polytechnic University, Yurga Technical University TPU Affiliate, 30, Lenina pr., 634050 Tomsk, Russia; (E.A.I.); (A.A.S.); (Z.G.K.)
| | - Zhanna G. Kovalevskaya
- Material Science Department, Research School of Physics of High Energy Processes, National Research Tomsk Polytechnic University, Yurga Technical University TPU Affiliate, 30, Lenina pr., 634050 Tomsk, Russia; (E.A.I.); (A.A.S.); (Z.G.K.)
| | - Andrey I. Dmitriev
- Laboratory of Nanobioengineering, Laboratory of Nanostructured Biocomposites, Laboratory of Computer-Aided Design of Materials, Institute of Strength Physics and Materials Science of SB RAS, 2/4, Akademicheskii pr., 634055 Tomsk, Russia; (M.A.K.); (K.A.P.); (Y.P.S.)
| | - Giovanni Bruno
- Department of Non-Destructive Testing, Division 8.5 Micro NDE, Bundesanstalt für Materialforschung und -Prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany; (T.M.); (S.E.); (G.B.)
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Yurii P. Sharkeev
- Laboratory of Nanobioengineering, Laboratory of Nanostructured Biocomposites, Laboratory of Computer-Aided Design of Materials, Institute of Strength Physics and Materials Science of SB RAS, 2/4, Akademicheskii pr., 634055 Tomsk, Russia; (M.A.K.); (K.A.P.); (Y.P.S.)
- Material Science Department, Research School of Physics of High Energy Processes, National Research Tomsk Polytechnic University, Yurga Technical University TPU Affiliate, 30, Lenina pr., 634050 Tomsk, Russia; (E.A.I.); (A.A.S.); (Z.G.K.)
| |
Collapse
|
45
|
Timercan A, Sheremetyev V, Brailovski V. Mechanical properties and fluid permeability of gyroid and diamond lattice structures for intervertebral devices: functional requirements and comparative analysis. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:285-300. [PMID: 33967629 PMCID: PMC8079052 DOI: 10.1080/14686996.2021.1907222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Current intervertebral fusion devices present multiple complication risks such as a lack of fixation, device migration and subsidence. An emerging solution to these problems is the use of additively manufactured lattice structures that are mechanically compliant and permeable to fluids, thus promoting osseointegration and reducing complication risks. Strut-based diamond and sheet-based gyroid lattice configurations having a pore diameter of 750 µm and levels of porosity of 60, 70 and 80% are designed and manufactured from Ti-6Al-4V alloy using laser powder bed fusion. The resulting structures are CT-scanned, compression tested and subjected to fluid permeability evaluation. The stiffness of both structures (1.9-4.8 GPa) is comparable to that of bone, while their mechanical resistance (52-160 MPa) is greater than that of vertebrae (3-6 MPa), thus decreasing the risks of wither bone or implant failure. The fluid permeability (5-57 × 10-9 m2) and surface-to-volume ratios (~3) of both lattice structures are close to those of vertebrae. This study shows that both types of lattice structures can be produced to suit the application specifications within certain limits imposed by physical and equipment-related constraints, providing potential solutions for reducing the complication rate of spinal devices by offering a better fixation through osseointegration.
Collapse
Affiliation(s)
- Anatolie Timercan
- Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Quebec, Canada
| | - Vadim Sheremetyev
- Metal Forming Department, National University of Science and Technology MISiS, Moscow, Russia
| | - Vladimir Brailovski
- Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Quebec, Canada
| |
Collapse
|
46
|
Lv Y, Wang B, Liu G, Tang Y, Lu E, Xie K, Lan C, Liu J, Qin Z, Wang L. Metal Material, Properties and Design Methods of Porous Biomedical Scaffolds for Additive Manufacturing: A Review. Front Bioeng Biotechnol 2021; 9:641130. [PMID: 33842445 PMCID: PMC8033174 DOI: 10.3389/fbioe.2021.641130] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/23/2021] [Indexed: 12/03/2022] Open
Abstract
Design an implant similar to the human bone is one of the critical problems in bone tissue engineering. Metal porous scaffolds have good prospects in bone tissue replacement due to their matching elastic modulus, better strength, and biocompatibility. However, traditional processing methods are challenging to fabricate scaffolds with a porous structure, limiting the development of porous scaffolds. With the advancement of additive manufacturing (AM) and computer-aided technologies, the development of porous metal scaffolds also ushers in unprecedented opportunities. In recent years, many new metal materials and innovative design methods are used to fabricate porous scaffolds with excellent mechanical properties and biocompatibility. This article reviews the research progress of porous metal scaffolds, and introduces the AM technologies used in porous metal scaffolds. Then the applications of different metal materials in bone scaffolds are summarized, and the advantages and limitations of various scaffold design methods are discussed. Finally, we look forward to the development prospects of AM in porous metal scaffolds.
Collapse
Affiliation(s)
- Yuting Lv
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China.,State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| | - Binghao Wang
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Guohao Liu
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Yujin Tang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Eryi Lu
- Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kegong Xie
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Changgong Lan
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jia Liu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zhenbo Qin
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin, China
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
47
|
Nasello G, Vautrin A, Pitocchi J, Wesseling M, Kuiper JH, Pérez MÁ, García-Aznar JM. Mechano-driven regeneration predicts response variations in large animal model based on scaffold implantation site and individual mechano-sensitivity. Bone 2021; 144:115769. [PMID: 33276152 DOI: 10.1016/j.bone.2020.115769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/02/2020] [Accepted: 11/20/2020] [Indexed: 02/02/2023]
Abstract
It is well founded that the mechanical environment may regulate bone regeneration in orthopedic applications. The purpose of this study is to investigate the mechanical contributions of the scaffold and the host to bone regeneration, in terms of subject specificity, implantation site and sensitivity to the mechanical environment. Using a computational approach to model mechano-driven regeneration, bone ingrowth in porous titanium scaffolds was simulated in the distal femur and proximal tibia of three goats and compared to experimental results. The results showed that bone ingrowth shifted from a homogeneous distribution pattern, when scaffolds were in contact with trabecular bone (max local ingrowth 12.47%), to a localized bone ingrowth when scaffolds were implanted in a diaphyseal location (max local ingrowth 20.64%). The bone formation dynamics revealed an apposition rate of 0.37±0.28%/day in the first three weeks after implantation, followed by limited increase in bone ingrowth until the end of the experiment (12 weeks). According to in vivo data, we identified one animal whose sensitivity to mechanical stimulation was higher than the other two. Moreover, we found that the stimulus initiating bone formation was consistently higher in the femur than in the tibia for all the individuals. Overall, the dependence of the osteogenic response on the host biomechanics means that, from a mechanical perspective, the regenerative potential depends on both the scaffold and the host environment. Therefore, this work provides insights on how the mechanical conditions of both the recipient and the scaffold contribute to meet patient and location-specific characteristics.
Collapse
Affiliation(s)
- Gabriele Nasello
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, Zaragoza, Spain; Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Antoine Vautrin
- Ecole Nationale d'Ingénieurs de Metz, University of Lorraine, Metz, France
| | - Jonathan Pitocchi
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, Zaragoza, Spain; Biomechanics Section, KU Leuven, Leuven, Belgium; Materialise NV, Leuven, Belgium
| | | | - Jan Herman Kuiper
- Institute for Science and Technology in Medicine, Keele University, Keele, UK; The Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, UK
| | - María Ángeles Pérez
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - José Manuel García-Aznar
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
48
|
Shi H, Zhou P, Li J, Liu C, Wang L. Functional Gradient Metallic Biomaterials: Techniques, Current Scenery, and Future Prospects in the Biomedical Field. Front Bioeng Biotechnol 2021; 8:616845. [PMID: 33553121 PMCID: PMC7863761 DOI: 10.3389/fbioe.2020.616845] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/10/2020] [Indexed: 11/25/2022] Open
Abstract
Functional gradient materials (FGMs), as a modern group of materials, can provide multiple functions and are able to well mimic the hierarchical and gradient structure of natural systems. Because biomedical implants usually substitute the bone tissues and bone is an organic, natural FGM material, it seems quite reasonable to use the FGM concept in these applications. These FGMs have numerous advantages, including the ability to tailor the desired mechanical and biological response by producing various gradations, such as composition, porosity, and size; mitigating some limitations, such as stress-shielding effects; improving osseointegration; and enhancing electrochemical behavior and wear resistance. Although these are beneficial aspects, there is still a notable lack of comprehensive guidelines and standards. This paper aims to comprehensively review the current scenery of FGM metallic materials in the biomedical field, specifically its dental and orthopedic applications. It also introduces various processing methods, especially additive manufacturing methods that have a substantial impact on FGM production, mentioning its prospects and how FGMs can change the direction of both industry and biomedicine. Any improvement in FGM knowledge and technology can lead to big steps toward its industrialization and most notably for much better implant designs with more biocompatibility and similarity to natural tissues that enhance the quality of life for human beings.
Collapse
Affiliation(s)
- Hongyuan Shi
- School of Aeronautical Materials Engineering, Xi'an Aeronautical Polytechnic Institute, Xi'an, China
| | - Peng Zhou
- School of Aeronautical Materials Engineering, Xi'an Aeronautical Polytechnic Institute, Xi'an, China
| | - Jie Li
- School of Aeronautical Materials Engineering, Xi'an Aeronautical Polytechnic Institute, Xi'an, China
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London, United Kingdom
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
49
|
Dziaduszewska M, Zieliński A. Structural and Material Determinants Influencing the Behavior of Porous Ti and Its Alloys Made by Additive Manufacturing Techniques for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:712. [PMID: 33546358 PMCID: PMC7913507 DOI: 10.3390/ma14040712] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 11/20/2022]
Abstract
One of the biggest challenges in tissue engineering is the manufacturing of porous structures that are customized in size and shape and that mimic natural bone structure. Additive manufacturing is known as a sufficient method to produce 3D porous structures used as bone substitutes in large segmental bone defects. The literature indicates that the mechanical and biological properties of scaffolds highly depend on geometrical features of structure (pore size, pore shape, porosity), surface morphology, and chemistry. The objective of this review is to present the latest advances and trends in the development of titanium scaffolds concerning the relationships between applied materials, manufacturing methods, and interior architecture determined by porosity, pore shape, and size, and the mechanical, biological, chemical, and physical properties. Such a review is assumed to show the real achievements and, on the other side, shortages in so far research.
Collapse
Affiliation(s)
- Magda Dziaduszewska
- Biomaterials Technology Division, Institute of Machines Technology and Materials, Faculty of Mechanical Engineering and Ship Building, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| | | |
Collapse
|
50
|
Liu Q, Wang Y, Hua XY, Zhang B, Zhang HQ, Liu JW, Ye F, Wang W. A novel approach for developing boron carbide (B4C)/cyanate ester (CE) co-continuous Functionally Graded Materials (FGMs) with eliminated abrupt interfaces. Ann Ital Chir 2021. [DOI: 10.1016/j.jeurceramsoc.2020.08.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|