1
|
Jafri NF, Salleh KM, Ghazali NA, Hua CC, Wang C, Zakaria S. Effects of carboxymethyl cellulose mesofiber with chitosan incorporation as reinforcing agent in regenerated cellulose hydrogel. Int J Biol Macromol 2025; 303:140707. [PMID: 39920938 DOI: 10.1016/j.ijbiomac.2025.140707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/15/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
To maintain the versatility of a hydrogel, extensive modifications are necessary, particularly to overcome the daunting mechanical trait of this material. In agriculture especially, achieving the desired balance between strength and high water absorption ability with this polymer is a significant challenge. Therefore, this study used and evaluated both carboxymethyl cellulose (CMC) mesofiber (CMCF) and CMC-chitosan mesofiber (CMC/CHF) as a reinforcing agent at varying concentrations in the widely known regenerated cellulose hydrogel. These fibers were fined and revamped as mesofiber before being integrated into the cellulose solution for crosslinking and formation stages. The hydrogel filled with 2 wt% mesofiber, especially CMC/CHF exhibited the highest storage modulus value (3300 Pa), compression strength (0.315 MPa), and thermal stability, showing the resistivity of this composite towards external pressure. Morphologically, the distribution of smaller pores within the mesofiber-reinforced hydrogel improved along with the water absorption ability. The composite hydrogels, however, demonstrated lower transparency compared to the plain hydrogel due to the high loading of CMCF and complex CMC/CHF. The utilization of CMC/CHF is especially successful and effective in enhancing the resulting composite's mechanical strength and hydrophilicity. Thus, it is expected to be beneficial as a planting medium that provides both functionality and vitality.
Collapse
Affiliation(s)
- Nur Fathihah Jafri
- Bioresource and Biorefinery Laboratory, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Selangor, Malaysia; Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Kushairi Mohd Salleh
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Nursyamimi Ahmad Ghazali
- Bioresource and Biorefinery Laboratory, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Selangor, Malaysia
| | - Chia Chin Hua
- Bioresource and Biorefinery Laboratory, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Selangor, Malaysia
| | - Chunhong Wang
- School of Textile Science and Engineering, Tiangong University, Xiqing District, Tianjin, PR China
| | - Sarani Zakaria
- Bioresource and Biorefinery Laboratory, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Selangor, Malaysia.
| |
Collapse
|
2
|
Kim SY, Muthuramalingam K, Lee HJ. Effects of fragmented polycaprolactone electrospun nanofiber in a hyaluronic acid hydrogel on fibroblasts. Tissue Cell 2024; 91:102582. [PMID: 39413457 DOI: 10.1016/j.tice.2024.102582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Hyaluronic acid (HA) hydrogels have shown promise as biomaterials for soft tissue engineering applications due to their biocompatibility and ability to mimic the extracellular matrix (ECM). However, their limited cell adhesion properties and the need for improved crosslinking methods have hindered their widespread use. In this study, we developed an ECM-mimicking HA hydrogel reinforced with alkaline hydrolyzed (1 M NaOH) fragmented (1.5 cm×1.5 cm) electrospun polycaprolactone (PCL) fibers to enhance cell adhesion and mechanical properties of HA hydrogel. Formation of HA hydrogel was achieved through a thiol-ene click reaction, which is initiated by exposure to visible blue light-activated biocompatible photoinitiator, riboflavin phosphate. The incorporation of alkaline hydrolyzed PCL fiber fragments (PFF) (0 %, 0.1 %, and 1 % w/v) into HA hydrogel precursor solution significantly increased the mechanical stiffness of the HA hydrogel, with the storage modulus ranging from 18.6 ± 0.7 Pa to 216.0 ± 38.2 Pa. The cytocompatibility of the PCL fiber-reinforced HA hydrogel was evaluated using NIH/3T3 fibroblasts. The results demonstrated improved cell adhesion, proliferation, and enhanced cellular functions, including increased production of glycosaminoglycans (GAGs) and collagen, in the PCL fiber-reinforced HA hydrogel compared to the control HA hydrogel. These findings suggest that the developed PCL fiber-reinforced HA hydrogel system, with tunable mechanical properties and excellent cytocompatibility, has potential applications in soft tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Seo Young Kim
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Karthika Muthuramalingam
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| | - Hyun Jong Lee
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
3
|
Zhang W, Wu W, Wang T, Wu Z, Li Y, Ding T, Fang Z, Tian D, He X, Huang F. Novel Supramolecular Hydrogel for Infected Diabetic Foot Ulcer Treatment. Adv Healthc Mater 2024; 13:e2402092. [PMID: 39225408 DOI: 10.1002/adhm.202402092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Multifunctional responsive hydrogels hold significant promise for diabetic foot ulcer (DFU) treatment, though their complex design and manufacturing present challenges. This study introduces a novel supramolecular guanosine-phenylboronic-chlorogenic acid (GBC) hydrogel developed using a dynamic covalent strategy. The hydrogel forms through guanosine quadruplex assembly in the presence of potassium ions and chlorogenic acid (CA) linkage via dynamic borate bonds. GBC hydrogels exhibit pH and glucose responsiveness, releasing more chlorogenic acid under acidic and high glucose conditions due to borate bond dissociation and G-quadruplex (G4) hydrogel disintegration. Experimental results indicate that GBC hydrogels exhibit good self-healing, shear-thinning, injectability, and swelling properties. Both in vitro and in vivo studies demonstrate the GBC hydrogel's good biocompatibility, ability to eliminate bacteria and reactive oxygen species (ROS), facilitate macrophage polarization from the M1 phenotype to the M2 phenotype (decreasing CD86 expression and increasing CD206 expression), exhibit anti-inflammatory effects (reducing TNF-α expression and increasing IL-10 expression), and promote angiogenesis (increasing VEGF, CD31, and α-SMA expression). Thus, GBC hydrogels accelerate DFU healing and enhance tissue remodeling and collagen deposition. This work provides a new approach to developing responsive hydrogels to expedite DFU healing.
Collapse
Affiliation(s)
- Wenbiao Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Weiwei Wu
- Department of Anaesthesia, The First Affiliated Hospital of Anhui Medical University North district, Anhui Public Health Clinical Center, Hefei, Anhui, 230011, China
| | - Tao Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Zhiwei Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Yang Li
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Tao Ding
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Zhennan Fang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Dasheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Xiaoyan He
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Fei Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| |
Collapse
|
4
|
Aydin H, Ozcelikkale A, Acar A. Exploiting Matrix Stiffness to Overcome Drug Resistance. ACS Biomater Sci Eng 2024; 10:4682-4700. [PMID: 38967485 PMCID: PMC11322920 DOI: 10.1021/acsbiomaterials.4c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
Drug resistance is arguably one of the biggest challenges facing cancer research today. Understanding the underlying mechanisms of drug resistance in tumor progression and metastasis are essential in developing better treatment modalities. Given the matrix stiffness affecting the mechanotransduction capabilities of cancer cells, characterization of the related signal transduction pathways can provide a better understanding for developing novel therapeutic strategies. In this review, we aimed to summarize the recent advancements in tumor matrix biology in parallel to therapeutic approaches targeting matrix stiffness and its consequences in cellular processes in tumor progression and metastasis. The cellular processes governed by signal transduction pathways and their aberrant activation may result in activating the epithelial-to-mesenchymal transition, cancer stemness, and autophagy, which can be attributed to drug resistance. Developing therapeutic strategies to target these cellular processes in cancer biology will offer novel therapeutic approaches to tailor better personalized treatment modalities for clinical studies.
Collapse
Affiliation(s)
- Hakan
Berk Aydin
- Department
of Biological Sciences, Middle East Technical
University, 06800, Ankara, Turkey
| | - Altug Ozcelikkale
- Department
of Mechanical Engineering, Middle East Technical
University, 06800, Ankara, Turkey
- Graduate
Program of Biomedical Engineering, Middle
East Technical University, 06800, Ankara, Turkey
| | - Ahmet Acar
- Department
of Biological Sciences, Middle East Technical
University, 06800, Ankara, Turkey
| |
Collapse
|
5
|
Xu D, Meng X, Liu S, Poisson J, Vana P, Zhang K. Dehydration regulates structural reorganization of dynamic hydrogels. Nat Commun 2024; 15:6886. [PMID: 39128898 PMCID: PMC11317490 DOI: 10.1038/s41467-024-51219-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024] Open
Abstract
The dehydration process is widely recognized as a significant phenomenon in nature. Hydrogels, which are important functional materials with high water content and crosslinked networks, encounter the issue of dehydration in their practical applications. Here, we report the distinctive anisotropic dehydration modality of dynamic hydrogels, which is fundamentally different from the more commonly observed isotropic dehydration of covalent hydrogels. Xerogels derived from dynamic hydrogel dehydration will fully cover a curved substrate surface and exhibit hollow structures with internal knots, in contrast to the bulk xerogels produced by covalent hydrogel dehydration. Depending on the competing cohesion of polymer chains and the adhesion at the hydrogel-substrate interface, the previously overlooked reorganization of polymer networks within dynamic hydrogels, triggered by dehydration-induced stress, has been discovered to regulate such macroscopic structural reconstruction for dynamic hydrogel dehydration. With the attached hydrogel-substrate interface, the surface microstructures of substrates can also be engraved onto xerogels with high resolution and on a large scale. This work will greatly enhance our understanding of the soft matter dehydration process and broaden the applications of dehydration technologies using water-containing materials.
Collapse
Affiliation(s)
- Dan Xu
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Göttingen, Germany
| | - Xintong Meng
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Göttingen, Germany
| | - Siyuan Liu
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Göttingen, Germany
| | - Jade Poisson
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Göttingen, Germany
| | - Philipp Vana
- Institute of Physical Chemistry, University of Göttingen, Göttingen, Germany
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Göttingen, Germany.
- Biotechnology Center (Biotechnikum), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
6
|
Qin X, Zhao Z, Deng J, Zhao Y, Liang S, Yi Y, Li J, Wei Y. Tough, conductive hydrogels based on gelatin and oxidized sodium carboxymethyl cellulose as flexible sensors. Carbohydr Polym 2024; 335:121920. [PMID: 38616070 DOI: 10.1016/j.carbpol.2024.121920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 04/16/2024]
Abstract
Natural polymer-based hydrogels have been wildly used in electronic skin, health monitoring and human motion sensing. However, the construction of hydrogel with excellent mechanical strength and electrical conductivity totally using natural polymers still faces many challenges. In this paper, gelatin and oxidized sodium carboxymethylcellulose were used to synthesize a double-network hydrogel through the dynamic Schiff base bonds. Then, the mechanical strength of the hydrogel was further enhanced by immersing it in an ammonium sulfate solution based on the Hofmeister effect between gelatin and salt. Finally, the gelatin/oxidized sodium carboxymethylcellulose hydrogel exhibited high tensile properties (614 %), tensile fracture strength (2.6 MPa), excellent compressive fracture strength (64 MPa), and compressive toughness (4.28 MJ/m3). Also, the electrical conductivity reached 3.94 S/m. The hydrogel after salt soaked was fabricated as strain sensors, which could accurately monitor the movement of many joints in the human body, such as fingers, wrists, elbows, neck, and throat. Therefore, the designed hydrogel fully originated from natural polymers and has great application potential in motion detection and information recording.
Collapse
Affiliation(s)
- Xuzhe Qin
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, PR China
| | - Zhijie Zhao
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, PR China
| | - Jinxuan Deng
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, PR China
| | - Yupeng Zhao
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, PR China
| | - Shuhao Liang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, PR China
| | - Yunfeng Yi
- Southeast Hospital of Xiamen University, Zhangzhou 363000, Fujian Province, PR China.
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China.
| | - Yuping Wei
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, PR China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
7
|
Phillips M, Tronci G, Pask CM, Russell SJ. Nonwoven Reinforced Photocurable Poly(glycerol sebacate)-Based Hydrogels. Polymers (Basel) 2024; 16:869. [PMID: 38611127 PMCID: PMC11013675 DOI: 10.3390/polym16070869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024] Open
Abstract
Implantable hydrogels should ideally possess mechanical properties matched to the surrounding tissues to enable adequate mechanical function while regeneration occurs. This can be challenging, especially when degradable systems with a high water content and hydrolysable chemical bonds are required in anatomical sites under constant mechanical stimulation, e.g., a foot ulcer cavity. In these circumstances, the design of hydrogel composites is a promising strategy for providing controlled structural features and macroscopic properties over time. To explore this strategy, the synthesis of a new photocurable elastomeric polymer, poly(glycerol-co-sebacic acid-co-lactic acid-co-polyethylene glycol) acrylate (PGSLPA), is investigated, along with its processing into UV-cured hydrogels, electrospun nonwovens and fibre-reinforced variants, without the need for a high temperature curing step or the use of hazardous solvents. The mechanical properties of bioresorbable PGSLPA hydrogels were studied with and without electrospun nonwoven reinforcement and with varied layered configurations, aiming to determine the effects of the microstructure on the bulk compressive strength and elasticity. The nonwoven reinforced PGSLPA hydrogels exhibited a 60% increase in compressive strength and an 80% increase in elastic moduli compared to the fibre-free PGSLPA samples. The mechanical properties of the fibre-reinforced hydrogels could also be modulated by altering the layering arrangement of the nonwoven and hydrogel phase. The nanofibre-reinforced PGSLPA hydrogels also exhibited good elastic recovery, as evidenced by the hysteresis in compression fatigue stress-strain evaluations showing a return to the original dimensions.
Collapse
Affiliation(s)
- Michael Phillips
- Clothworkers’ Centre for Textile Materials Innovation for Healthcare, Leeds Institute of Textiles & Colour, School of Design, University of Leeds, Leeds LS2 9JT, UK (G.T.)
| | - Giuseppe Tronci
- Clothworkers’ Centre for Textile Materials Innovation for Healthcare, Leeds Institute of Textiles & Colour, School of Design, University of Leeds, Leeds LS2 9JT, UK (G.T.)
| | | | - Stephen J. Russell
- Clothworkers’ Centre for Textile Materials Innovation for Healthcare, Leeds Institute of Textiles & Colour, School of Design, University of Leeds, Leeds LS2 9JT, UK (G.T.)
| |
Collapse
|
8
|
Aqel S, Al-Thani N, Haider MZ, Abdelhady S, Al Thani AA, Kobeissy F, Shaito AA. Biomaterials in Traumatic Brain Injury: Perspectives and Challenges. BIOLOGY 2023; 13:21. [PMID: 38248452 PMCID: PMC10813103 DOI: 10.3390/biology13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 01/23/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and long-term impairment globally. TBI has a dynamic pathology, encompassing a variety of metabolic and molecular events that occur in two phases: primary and secondary. A forceful external blow to the brain initiates the primary phase, followed by a secondary phase that involves the release of calcium ions (Ca2+) and the initiation of a cascade of inflammatory processes, including mitochondrial dysfunction, a rise in oxidative stress, activation of glial cells, and damage to the blood-brain barrier (BBB), resulting in paracellular leakage. Currently, there are no FDA-approved drugs for TBI, but existing approaches rely on delivering micro- and macromolecular treatments, which are constrained by the BBB, poor retention, off-target toxicity, and the complex pathology of TBI. Therefore, there is a demand for innovative and alternative therapeutics with effective delivery tactics for the diagnosis and treatment of TBI. Tissue engineering, which includes the use of biomaterials, is one such alternative approach. Biomaterials, such as hydrogels, including self-assembling peptides and electrospun nanofibers, can be used alone or in combination with neuronal stem cells to induce neurite outgrowth, the differentiation of human neural stem cells, and nerve gap bridging in TBI. This review examines the inclusion of biomaterials as potential treatments for TBI, including their types, synthesis, and mechanisms of action. This review also discusses the challenges faced by the use of biomaterials in TBI, including the development of biodegradable, biocompatible, and mechanically flexible biomaterials and, if combined with stem cells, the survival rate of the transplanted stem cells. A better understanding of the mechanisms and drawbacks of these novel therapeutic approaches will help to guide the design of future TBI therapies.
Collapse
Affiliation(s)
- Sarah Aqel
- Medical Research Center, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Najlaa Al-Thani
- Research and Development Department, Barzan Holdings, Doha P.O. Box 7178, Qatar
| | - Mohammad Z. Haider
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Samar Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria 21544, Egypt;
| | - Asmaa A. Al Thani
- Biomedical Research Center and Department of Biomedical Sciences, College of Health Science, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA
| | - Abdullah A. Shaito
- Biomedical Research Center, Department of Biomedical Sciences at College of Health Sciences, College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
9
|
Song J, Zhang S, Du L, Gao C, Xie L, Shi Y, Su L, Ma Y, Ren S. Synthesis, characterization and application of oligomeric proanthocyanidin-rich dual network hydrogels. Sci Rep 2023; 13:17754. [PMID: 37853007 PMCID: PMC10584812 DOI: 10.1038/s41598-023-42921-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/16/2023] [Indexed: 10/20/2023] Open
Abstract
A structurally dense hydrogel, with strong hydrogen bonding networks, was formed from poly(vinyl alcohol), sodium alginate, and oligomeric proanthocyanidins, using a combination of freeze-thaw cycles and calcium ion cross-linking. The structure of the hydrogel was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Mechanical testing and thermogravimetric analysis showed that incorporation of proanthocyanidins enhanced both the mechanical properties and the thermal stability of the hydrogel. The hydrogel was also demonstrated to have excellent ultraviolet resistance and antioxidant properties. The hydrogel was further shown that this hydrogel is also capable of generating electrochemical reactions, which strongly suggests that this hydrogel has exciting potential in many fields.
Collapse
Affiliation(s)
- Jie Song
- Key Laboratory of Bio-Based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China
- College of Material Science and Engineering, Northeast Forestry University, Harbin, People's Republic of China, 150040
| | - Shuyu Zhang
- Key Laboratory of Bio-Based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China
- College of Material Science and Engineering, Northeast Forestry University, Harbin, People's Republic of China, 150040
| | - Liuping Du
- Key Laboratory of Bio-Based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China
- College of Material Science and Engineering, Northeast Forestry University, Harbin, People's Republic of China, 150040
| | - Chong Gao
- College of Material Science and Engineering, Northeast Forestry University, Harbin, People's Republic of China, 150040
| | - Longyue Xie
- College of Material Science and Engineering, Northeast Forestry University, Harbin, People's Republic of China, 150040
| | - Yu Shi
- College of Engineering and Technology, Northeast Forestry University, Harbin, People's Republic of China, 150040
| | - Ling Su
- Yantai Vocational College, Yantai City, People's Republic of China, 264670.
| | - Yanli Ma
- Key Laboratory of Bio-Based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China
- College of Material Science and Engineering, Northeast Forestry University, Harbin, People's Republic of China, 150040
| | - Shixue Ren
- Key Laboratory of Bio-Based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, People's Republic of China.
- College of Material Science and Engineering, Northeast Forestry University, Harbin, People's Republic of China, 150040.
| |
Collapse
|
10
|
Safronov AP, Kurilova NM, Adamova LV, Shklyar TF, Blyakhman FA, Zubarev AY. Hydrogels Based on Polyacrylamide and Calcium Alginate: Thermodynamic Compatibility of Interpenetrating Networks, Mechanical, and Electrical Properties. Biomimetics (Basel) 2023; 8:279. [PMID: 37504167 PMCID: PMC10377394 DOI: 10.3390/biomimetics8030279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
The synthesis and physicochemical properties of hydrogels with interpenetrated physical and chemical networks were considered in relation to their prospective application as biomimetic materials in biomedicine and bioengineering. The study was focused on combined hydrogels based on natural polysaccharide-calcium alginate (CaAlg) and a synthetic polymer-polyacrylamide (PAAm). The series of hydrogels with varying proportions among alginate and polyacrylamide have been synthesized, and their water uptake has been characterized depending on their composition. The equilibrium swelling and re-swelling in water after drying were considered. The compatibility of alginate and polyacrylamide in the combined blend was studied by the thermodynamic approach. It showed a controversial combination of negative enthalpy of mixing among PAAm and CaAlg with positive Gibbs energy of mixing. Mechanical and electrical properties of the combined gels with double networking were studied as relevant for their prospective use as scaffolds for tissue regeneration and working bodies in actuators. The storage modulus and the loss modulus were determined in the oscillatory compression mode as a function of proportions among natural and synthetic polymers. Both moduli substantially increased with the content of CaAlg and PAAm. The electrical (Donnan) potential of hydrogels was measured using the capillary electrode technique. The Donnan potential was negative at all compositions of hydrogels, and its absolute values increased with the content of CaAlg and PAAm.
Collapse
Affiliation(s)
- Alexander P Safronov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia
- Institute of Electrophysics UB RAS, 620016 Ekaterinburg, Russia
| | - Nadezhda M Kurilova
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia
| | - Lidiya V Adamova
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia
| | - Tatyana F Shklyar
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia
- Department of Biomedical Physics and Engineering, Ural State Medical University, 620028 Ekaterinburg, Russia
| | - Felix A Blyakhman
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia
- Department of Biomedical Physics and Engineering, Ural State Medical University, 620028 Ekaterinburg, Russia
| | - Andrey Yu Zubarev
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia
| |
Collapse
|
11
|
Nascimento ATD, Mendes AX, Begeng JM, Duchi S, Stoddart PR, Quigley AF, Kapsa RMI, Ibbotson MR, Silva SM, Moulton SE. A tissue-engineered neural interface with photothermal functionality. Biomater Sci 2023. [PMID: 37194340 DOI: 10.1039/d3bm00139c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Neural interfaces are well-established as a tool to understand the behaviour of the nervous system via recording and stimulation of living neurons, as well as serving as neural prostheses. Conventional neural interfaces based on metals and carbon-based materials are generally optimised for high conductivity; however, a mechanical mismatch between the interface and the neural environment can significantly reduce long-term neuromodulation efficacy by causing an inflammatory response. This paper presents a soft composite material made of gelatin methacryloyl (GelMA) containing graphene oxide (GO) conjugated with gold nanorods (AuNRs). The soft hydrogel presents stiffness within the neural environment range of modulus below 5 kPa, while the AuNRs, when exposed to light in the near infrared range, provide a photothermal response that can be used to improve the spatial and temporal precision of neuromodulation. These favourable properties can be maintained at safer optical power levels when combined with electrical stimulation. In this paper we provide mechanical and biological characterization of the optical activity of the GO-AuNR composite hydrogel. The optical functionality of the material has been evaluated via photothermal stimulation of explanted rat retinal tissue. The outcomes achieved with this study encourage further investigation into optical and electrical costimulation parameters for a range of biomedical applications.
Collapse
Affiliation(s)
- Adriana Teixeira do Nascimento
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Alexandre Xavier Mendes
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - James M Begeng
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- National Vision Research Institute, The Australian College of Optometry, Carlton, VIC 3058, Australia
| | - Serena Duchi
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- Department of Surgery, University of Melbourne, St Vincent's Hospital, Melbourne, Victoria 3065, Australia
| | - Paul R Stoddart
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Anita F Quigley
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Victoria 3065, Australia
| | - Robert M I Kapsa
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Victoria 3065, Australia
| | - Michael R Ibbotson
- National Vision Research Institute, The Australian College of Optometry, Carlton, VIC 3058, Australia
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Saimon M Silva
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.
| |
Collapse
|
12
|
Shao M, Shi Z, Zhang X, Zhai B, Sun J. Synthesis and Properties of Biodegradable Hydrogel Based on Polysaccharide Wound Dressing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1358. [PMID: 36836988 PMCID: PMC9967607 DOI: 10.3390/ma16041358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The metabolic disorder of the wound microenvironment can lead to a series of serious symptoms, especially chronic wounds, which result in significant pain in patients. At present, there is no effective and widely used wound dressing. Therefore, it is important to develop new multifunctional wound dressings. Hydrogel is an ideal wound dressing for medical nursing because of its abilities to absorb exudate and maintain wound wetting, its excellent biocompatibility, and its ability to provide a moist environment for wound repair. Because of these features, hydrogel overcomes the shortcomings of traditional dressings. Therefore, hydrogel has high medical value and is widely studied. In this study, a biodegradable hydrogel based on polysaccharide was synthesized and used as a wound dressing. The swelling degree and degradability of hydrogel were characterized as the characteristics of the wound dressing. The results showed that the prepared hydrogel was degraded with trypsin and in the soil environment. Furthermore, the wound dressing can effectively inhibit the bacterial environment, promote the deposition of the collagen structure of the wound tissue, and accelerate the healing of the wound. The proposed hydrogel has value in practical medical nursing application.
Collapse
|
13
|
Kumar R, Parashar A. Atomistic simulations of pristine and nanoparticle reinforced hydrogels: A review. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2023. [DOI: 10.1002/wcms.1655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Raju Kumar
- Department of Mechanical and Industrial Engineering Indian Institute of Technology Roorkee Uttarakhand India
| | - Avinash Parashar
- Department of Mechanical and Industrial Engineering Indian Institute of Technology Roorkee Uttarakhand India
| |
Collapse
|
14
|
Cui J, Yu X, Shen Y, Sun B, Guo W, Liu M, Chen Y, Wang L, Zhou X, Shafiq M, Mo X. Electrospinning Inorganic Nanomaterials to Fabricate Bionanocomposites for Soft and Hard Tissue Repair. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:204. [PMID: 36616113 PMCID: PMC9823959 DOI: 10.3390/nano13010204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Tissue engineering (TE) has attracted the widespread attention of the research community as a method of producing patient-specific tissue constructs for the repair and replacement of injured tissues. To date, different types of scaffold materials have been developed for various tissues and organs. The choice of scaffold material should take into consideration whether the mechanical properties, biodegradability, biocompatibility, and bioresorbability meet the physiological properties of the tissues. Owing to their broad range of physico-chemical properties, inorganic materials can induce a series of biological responses as scaffold fillers, which render them a good alternative to scaffold materials for tissue engineering (TE). While it is of worth to further explore mechanistic insight into the use of inorganic nanomaterials for tissue repair, in this review, we mainly focused on the utilization forms and strategies for fabricating electrospun membranes containing inorganic components based on electrospinning technology. A particular emphasis has been placed on the biological advantages of incorporating inorganic materials along with organic materials as scaffold constituents for tissue repair. As well as widely exploited natural and synthetic polymers, inorganic nanomaterials offer an enticing platform to further modulate the properties of composite scaffolds, which may help further broaden the application prospect of scaffolds for TE.
Collapse
Affiliation(s)
- Jie Cui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yihong Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Binbin Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Wanxin Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Mingyue Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yujie Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Li Wang
- College of Science, Donghua University, Shanghai 201620, China
| | - Xingping Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Muhammad Shafiq
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
- Department of Biotechnology, Faculty of Science and Technology (FOST), University of Central Punjab (UCP), Lahore 54000, Pakistan
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
15
|
Li X, Zhang X, Yan R, Jia L. Structural design and impact resistance of three‐dimensional structure‐reinforced flexible polymer composites. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Xiangmian Li
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering Hebei University of Science and Technology Shijiazhuang China
| | - Xingteng Zhang
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering Hebei University of Science and Technology Shijiazhuang China
| | - Ruosi Yan
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering Hebei University of Science and Technology Shijiazhuang China
- Hebei Technology Innovation Center of Textile and Garment, School of Textile and Garment Hebei University of Science and Technology Shijiazhuang China
| | - Lixia Jia
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering Hebei University of Science and Technology Shijiazhuang China
- Hebei Technology Innovation Center of Textile and Garment, School of Textile and Garment Hebei University of Science and Technology Shijiazhuang China
| |
Collapse
|
16
|
Revete A, Aparicio A, Cisterna BA, Revete J, Luis L, Ibarra E, Segura González EA, Molino J, Reginensi D. Advancements in the Use of Hydrogels for Regenerative Medicine: Properties and Biomedical Applications. Int J Biomater 2022; 2022:3606765. [PMID: 36387956 PMCID: PMC9663251 DOI: 10.1155/2022/3606765] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/29/2022] [Accepted: 10/05/2022] [Indexed: 07/29/2023] Open
Abstract
Due to their particular water absorption capacity, hydrogels are the most widely used scaffolds in biomedical studies to regenerate damaged tissue. Hydrogels can be used in tissue engineering to design scaffolds for three-dimensional cell culture, providing a novel alternative to the traditional two-dimensional cell culture as hydrogels have a three-dimensional biomimetic structure. This material property is crucial in regenerative medicine, especially for the nervous system, since it is a highly complex and delicate structure. Hydrogels can move quickly within the human body without physically disturbing the environment and possess essential biocompatible properties, as well as the ability to form a mimetic scaffold in situ. Therefore, hydrogels are perfect candidates for biomedical applications. Hydrogels represent a potential alternative to regenerating tissue lost after removing a brain tumor and/or brain injuries. This reason presents them as an exciting alternative to highly complex human physiological problems, such as injuries to the central nervous system and neurodegenerative disease.
Collapse
Affiliation(s)
- Andrea Revete
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama City, Panama
| | - Andrea Aparicio
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
| | - Bruno A. Cisterna
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Javier Revete
- Experimentia S.A, Development of Innovative Strategies in Biomedicine and Sustainable Development, Panama, Panama
| | - Luis Luis
- Experimentia S.A, Development of Innovative Strategies in Biomedicine and Sustainable Development, Panama, Panama
| | - Ernesto Ibarra
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama City, Panama
| | | | - Jay Molino
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
| | - Diego Reginensi
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama City, Panama
- Integrative Neurobiology, School of Medicine, Universidad de Panama (UP), Panama, Panama
- Center for Biodiversity and Drug Discovery, INDICASAT-AIP, City of Knowledge, Panama, Panama
| |
Collapse
|
17
|
Zhao B, Zhao M, Sun H, Yang Y, Sun S, Yu H, He M, Sun Y, Cheng Y. Preparation and characterization of photo-oxidative dual-crosslinked chitosan/hyaluronic acid hydrogels. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Sriraveeroj N, Amornsakchai T, Sunintaboon P, Watthanaphanit A. Synergistic Reinforcement of Cellulose Microfibers from Pineapple Leaf and Ionic Cross-Linking on the Properties of Hydrogels. ACS OMEGA 2022; 7:25321-25328. [PMID: 35910183 PMCID: PMC9330245 DOI: 10.1021/acsomega.2c02221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Hydrogels contain a large amount of water; thus, they are jelly-like, soft, and fragile. Although hydrogels' stiffness and strength can be improved by introducing another network to form a double or interpenetrating network, these mechanical properties are still not enough as many applications demand even stiffer and stronger hydrogels. Different methods of reinforcing hydrogels have been proposed and published. In this research, cellulose microfiber isolated from pineapple leaf was used as the reinforcement for hydrogels. The reinforcing efficiency of the fiber was studied for both single and double networks through the compression test. Other properties such as morphology and swelling behavior of the reinforced hydrogels were also studied. A synergistic effect of the second network and the fiber on the reinforcement was observed. The improvement due to the effect of fiber loading of only 0.6 wt % was found to be as high as 150%. This is greater than that observed in some nanofiller systems. Thus, the fiber can be used as a green reinforcement for similar hydrogel systems.
Collapse
Affiliation(s)
- Nithinan Sriraveeroj
- Polymer
Science and Technology Program, Department of Chemistry and Center
of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand
| | - Taweechai Amornsakchai
- Polymer
Science and Technology Program, Department of Chemistry and Center
of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand
- Center
of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand
| | - Panya Sunintaboon
- Polymer
Science and Technology Program, Department of Chemistry and Center
of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand
| | - Anyarat Watthanaphanit
- Polymer
Science and Technology Program, Department of Chemistry and Center
of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand
| |
Collapse
|
19
|
Lin X, Zhao X, Xu C, Wang L, Xia Y. Progress in the mechanical enhancement of hydrogels: Fabrication strategies and underlying mechanisms. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xuan Lin
- State Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao China
| | - Xianwei Zhao
- State Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao China
| | - Chongzhi Xu
- State Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao China
| | - Lili Wang
- State Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao China
| | - Yanzhi Xia
- State Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao China
| |
Collapse
|
20
|
Akulo KA, Adali T, Moyo MTG, Bodamyali T. Intravitreal Injectable Hydrogels for Sustained Drug Delivery in Glaucoma Treatment and Therapy. Polymers (Basel) 2022; 14:polym14122359. [PMID: 35745935 PMCID: PMC9230531 DOI: 10.3390/polym14122359] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/11/2022] Open
Abstract
Glaucoma is extensively treated with topical eye drops containing drugs. However, the retention time of the loaded drugs and the in vivo bioavailability of the drugs are highly influenced before reaching the targeted area sufficiently, due to physiological and anatomical barriers of the eye, such as rapid nasolacrimal drainage. Poor intraocular penetration and frequent administration may also cause ocular cytotoxicity. A novel approach to overcome these drawbacks is the use of injectable hydrogels administered intravitreously for sustained drug delivery to the target site. These injectable hydrogels are used as nanocarriers to intimately interact with specific diseased ocular tissues to increase the therapeutic efficacy and drug bioavailability of the anti-glaucomic drugs. The human eye is very delicate, and is sensitive to contact with any foreign body material. However, natural biopolymers are non-reactive, biocompatible, biodegradable, and lack immunogenic and inflammatory responses to the host whenever they are incorporated in drug delivery systems. These favorable biomaterial properties have made them widely applicable in biomedical applications, with minimal adversity. This review highlights the importance of using natural biopolymer-based intravitreal hydrogel drug delivery systems for glaucoma treatment over conventional methods.
Collapse
Affiliation(s)
- Kassahun Alula Akulo
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Mersin 10, Lefkoşa 99138, Turkey; (K.A.A.); (M.T.G.M.)
- Tissue Engineering and Biomaterials Research Center, Near East University, Mersin 10, Lefkoşa 99138, Turkey
| | - Terin Adali
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Mersin 10, Lefkoşa 99138, Turkey; (K.A.A.); (M.T.G.M.)
- Tissue Engineering and Biomaterials Research Center, Near East University, Mersin 10, Lefkoşa 99138, Turkey
- Nanotechnology Research Center, Sabanci University SUNUM, Istanbul 34956, Turkey
- Correspondence:
| | - Mthabisi Talent George Moyo
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Mersin 10, Lefkoşa 99138, Turkey; (K.A.A.); (M.T.G.M.)
- Tissue Engineering and Biomaterials Research Center, Near East University, Mersin 10, Lefkoşa 99138, Turkey
| | - Tulin Bodamyali
- Department of Pathology, Faculty of Medicine, Girne American University, Mersin 10, Girne 99428, Turkey;
| |
Collapse
|
21
|
Ma J, Wang B, Shao H, Zhang S, Chen X, Li F, Liang W. Hydrogels for localized chemotherapy of liver cancer: a possible strategy for improved and safe liver cancer treatment. Drug Deliv 2022; 29:1457-1476. [PMID: 35532174 PMCID: PMC9090357 DOI: 10.1080/10717544.2022.2070299] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The systemic drug has historically been preferred for the treatment of the majority of pathological conditions, particularly liver cancer. Indeed, this mode of treatment is associated with adverse reactions, toxicity, off-target accumulation, and rapid hepatic and renal clearance. Numerous efforts have been made to design systemic therapeutic carriers to improve retention while decreasing side effects and clearance. Following systemic medication, local administration of therapeutic agents allows for higher 'effective' doses with fewer side effects, kidney accumulation, and clearance. Hydrogels are highly biocompatible and can be used for both imaging and therapy. Hydrogel-based drug delivery approach has fewer side effects than traditional chemotherapy and can deliver drugs to tumors for a longer time. The chemical and physical flexibility of hydrogels can be used to achieve disease-induced in situ accumulation as well as subsequent drug release and hydrogel-programmed degradation. Moreover, they can act as a biocompatible depot for localized chemotherapy when stimuli-responsive carriers are administrated. Herein, we summarize the design strategies of various hydrogels used for localized chemotherapy of liver cancer and their delivery routes, as well as recent research on smart hydrogels.
Collapse
Affiliation(s)
- Jianyong Ma
- Department of General Practice, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Bingzhu Wang
- Internal Medicine of Integrated Traditional Chinese and Western Medicine, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Haibin Shao
- Internal Medicine of Integrated Traditional Chinese and Western Medicine, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Songou Zhang
- College of Medicine, Shaoxing University, Shaoxing, China
| | - Xiaozhen Chen
- College of Medicine, Shaoxing University, Shaoxing, China
| | - Feize Li
- Internal Medicine of Integrated Traditional Chinese and Western Medicine, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
22
|
Yuan H, Li W, Song C, Huang R. An injectable supramolecular nanofiber-reinforced chitosan hydrogel with antibacterial and anti-inflammatory properties as potential carriers for drug delivery. Int J Biol Macromol 2022; 205:563-573. [PMID: 35149101 DOI: 10.1016/j.ijbiomac.2022.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/30/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023]
Abstract
The inherent weak mechanical strength of chitosan physical cross-linking hydrogels (CS hydrogels) limits their applications in biomaterials. Hence, puerarin (PUE) as a self-assembly active small molecule in herbal was introduced in CS hydrogels to fabricate CS/PUE18 composite hydrogels with interpenetrating network structure. The result of rheological measurement showed that storage modulus and loss modulus of CS/PUE18 composite hydrogels were improved by three orders of magnitude, indicating that the introduction of PUE significantly reinforced CS hydrogels. The results of SEM and BET measurement demonstrated that macromolecular chains of CS intertwined with nanofibers of PUE, which caused the network structure of CS/PUE18 composite hydrogels to become denser. XRD patterns and FT-IR spectra verified that the amino groups in CS formed hydrogen bonding with the hydroxyl groups in PUE. Degradation and swelling experiments showed that CS/PUE18 composite hydrogels have pH sensitivity. Moreover, CS/PUE18 composite hydrogels exhibited multi-functionality including injectability, thixotropy, cytocompatibility, antibacterial and anti-inflammatory properties. The release behavior of berberine chloride hydrate (BCH) and PUE from the resultant CS/PUE18 composite hydrogels have pH dependence. These results revealed that injectable CS/PUE18 composite hydrogels with dual antibacterial and anti-inflammatory properties could be potential delivery vehicles for sustained and controlled release.
Collapse
Affiliation(s)
- Hao Yuan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Wan Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Key Laboratory of Traditional Chinese Medicine Resource and Chemistry of Traditional Chinese Medicine in Hubei Province, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Chengwu Song
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Rongzeng Huang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
23
|
Bialik-Wąs K, Królicka E, Malina D. Impact of the Type of Crosslinking Agents on the Properties of Modified Sodium Alginate/Poly(vinyl Alcohol) Hydrogels. Molecules 2021; 26:2381. [PMID: 33921906 PMCID: PMC8072894 DOI: 10.3390/molecules26082381] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/23/2022] Open
Abstract
Here, we report on studies on the influence of different crosslinking methods (ionic and chemical) on the physicochemical (swelling ability and degradation in simulated body fluids), structural (FT-IR spectra analysis) and morphological (SEM analysis) properties of SA/PVA hydrogels containing active substances of natural origin. First, an aqueous extract of Echinacea purpurea was prepared using a Soxhlet apparatus. Next, a series of modified SA/PVA-based hydrogels were obtained through the chemical crosslinking method using poly(ethylene glycol) diacrylate (PEGDA, Mn = 700 g/mol) as a crosslinking agent and, additionally, the ionic reaction in the presence of a 5% w/v calcium chloride solution. The compositions of SA/PVA/E. purpurea-based hydrogels contained a polymer of natural origin-sodium alginate (SA, 1.5% solution)-and a synthetic polymer-poly(vinyl alcohol) (PVA, Mn = 72,000 g/mol, 10% solution)-in the ratio 2:1, and different amounts of the aqueous extract of E. purpurea-5, 10, 15 or 20% (v/v). Additionally, the release behavior of echinacoside from the polymeric matrix was evaluated in phosphate-buffered saline (PBS) at 37 °C. The results indicate that the type of the crosslinking method has a direct impact on the release profile. Consequently, it is possible to design a system that delivers an active substance in a way that depends on the application.
Collapse
Affiliation(s)
- Katarzyna Bialik-Wąs
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland;
| | - Ewelina Królicka
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland;
| | - Dagmara Malina
- Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland;
| |
Collapse
|
24
|
Mostakhdemin M, Nand A, Ramezani M. A novel assessment of microstructural and mechanical behaviour of bilayer silica-reinforced nanocomposite hydrogels as a candidate for artificial cartilage. J Mech Behav Biomed Mater 2021; 116:104333. [PMID: 33494020 DOI: 10.1016/j.jmbbm.2021.104333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 12/20/2022]
Abstract
The complex structure of healthy articular cartilage facilitates the joint withstanding the imposed pressures and retaining interstitial fluid to lessen stresses on its soft tissue, while easing the locomotion and minimising friction between cartilage mates. Avascular nature of this tissue results in unrecoverable damaged lesions and severe pain over time. Polymeric hydrogels are promising candidate materials for the replacement of the damaged cartilage. Hence, a tough bilayer nanocomposite acrylamide-acrylic acid hydrogel reinforced with silica nanoparticles (SNPs) was designed and synthesised. The mechanical characterisations showed a significant increase in compressive strength up to 1.4 MPa and doubled elastic modulus (240 kPa) by utilising only 0.6 wt% SNPs compared to the non-reinforced hydrogel. The optimum amounts of monomers and SNPs resulted in the compression of samples up to 85% strain without failure. Viscoelastic responses improved as the stress relaxation lessened to half in all nanocomposite hydrogels. Diffusion rate theory was applied, and the results showed to what extent elastic modulus results in an improvement in stress relaxation. The proposed hydrogel formulation exhibited the poroelastic relaxation occurred before viscoelastic relaxation at the time elapses under stress relaxation tests. SEM images showed uniform funnel-like porosity with 570 μm thick lubricious layer, which is an important feature to retain interstitial fluid. Energy-dispersive X-ray spectroscopy was conducted to characterise the elemental composition within the polymeric macrostructure.
Collapse
Affiliation(s)
- Mohammad Mostakhdemin
- Department of Mechanical Engineering, Auckland University of Technology, Auckland, New Zealand.
| | - Ashveen Nand
- School of Environmental and Animal Sciences and School of Healthcare and Social Practice, Unitec Institute of Technology, Auckland, New Zealand
| | - Maziar Ramezani
- Department of Mechanical Engineering, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
25
|
Zhao X, Ding M, Xu C, Zhang X, Liu S, Lin X, Wang L, Xia Y. A self-reinforcing strategy enables the intimate interface for anisotropic alginate composite hydrogels. Carbohydr Polym 2021; 251:117054. [PMID: 33142606 DOI: 10.1016/j.carbpol.2020.117054] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022]
Abstract
Natural-derived hydrogels are expected as promising structural biomaterials, but the soft character severely limits their applications. Here, a facile yet effective strategy was developed to fabricate super-strong and tough alginate composite hydrogels via a self-reinforcing method. The strategy was based on the incorporation of alginate materials with distinctive anisotropic features (fibers, fabrics and aerogels) into the precursor solution of congeneric hydrogels, followed by the in situ ionic-crosslinking. Interestingly, triggered by the concentration difference, the cations-Ca2+ in reinforcing phase could diffuse into the interface and simultaneously chelate with alginate chains of both reinforcing phase and hydrogel matrix, acting as self-generating interfacial binders. Contributed by the intimate interface, the load was effectively transferred into the rigid reinforcing phase, and the hydrogels integrated them into a mechanical network. This research offers a new path to design the interface of polysaccharide composites without extra coupling agents.
Collapse
Affiliation(s)
- Xianwei Zhao
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Meichun Ding
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Chongzhi Xu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiansheng Zhang
- College of Textiles and Clothing, Research Center for Intelligent and Wearable Technology, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Shuo Liu
- College of Textiles and Clothing, Research Center for Intelligent and Wearable Technology, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Xuan Lin
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Lili Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yanzhi Xia
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
26
|
Khalesi H, Lu W, Nishinari K, Fang Y. New insights into food hydrogels with reinforced mechanical properties: A review on innovative strategies. Adv Colloid Interface Sci 2020; 285:102278. [PMID: 33010577 DOI: 10.1016/j.cis.2020.102278] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
Enhancement on the mechanical properties of hydrogels leads to a wider range of their applications in various fields. Therefore, there has been a great interest recently for developing new strategies to reinforce hydrogels. Moreover, food gels must be edible in terms of both raw materials and production. This paper reviews innovative techniques such as particle/fiber-reinforced hydrogel, double network, dual crosslinking, freeze-thaw cycles, physical conditioning and soaking methods to improve the mechanical properties of hydrogels. Additionally, their fundamental mechanisms, advantages and disadvantages have been discussed. Important biopolymers that have been employed for these strategies and also their potentials in food applications have been summarized. The general mechanism of these strategies is based on increasing the degree of crosslinking between interacting polymers in hydrogels. These links can be formed by adding fillers (oil droplets or fibers in filled gels) or cross-linkers (regarding double network and soaking method) and also by condensation or alignment of the biopolymers (freeze-thaw cycle and physical conditioning) in the gel network. The properties of particle/fiber-reinforced hydrogels extremely depend on the filler, gel matrix and the interaction between them. In freeze-thaw cycles and physical conditioning methods, it is possible to form new links in the gel network without adding any cross-linkers or fillers. It is expected that the utilization of gels will get broader and more varied in food industries by using these strategies.
Collapse
|
27
|
Bioinspired pH-sensitive riboflavin controlled-release alkaline hydrogels based on blue crab chitosan: Study of the effect of polymer characteristics. Int J Biol Macromol 2020; 152:1252-1264. [DOI: 10.1016/j.ijbiomac.2019.10.222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 12/26/2022]
|
28
|
Du H, Shi S, Liu W, Teng H, Piao M. Processing and modification of hydrogel and its application in emerging contaminant adsorption and in catalyst immobilization: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:12967-12994. [PMID: 32124301 DOI: 10.1007/s11356-020-08096-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Due to the wonderful property of hydrogels, they can provide a platform for a wide range of applications. Recently, there is a growing research interest in the development of potential hydrogel adsorbents in wastewater treatment due to their adsorption ability toward aqueous pollutants. It is important to prepare such a hydrogel that possesses appropriate robustness, adsorption capacity, and adsorption efficiency to meet the need of water treatment. In order to improve the property of hydrogels, much effort has been made by researchers to modify hydrogels, among which incorporating inorganic components into the polymeric networks is the most common method, which can reduce the product cost and simplify the preparation procedure. Not only can hydrogel be applied as adsorbent, but it also can be used as matrix for catalyst immobilization. In this review, the key advancement on the preparation and modification of hydrogels is discussed, with special emphasis on the introduction of inorganic materials into polymeric networks and consequential changes in the properties of mechanical strength, swelling, and adsorption. Besides, hydrogels used as adsorbents for removal of dyes and inorganic pollutants have been widely explored, but their use for adsorbing emerging contaminants from aqueous solution has not received much attention. Thus, this review is mainly focused on hydrogels' application in removing emerging contaminants by adsorption. Furthermore, hydrogels can be also applied in immobilizing catalysts, such as enzyme and photocatalyst, to remove pollutants completely and avoid secondary pollution, so their progress as catalyst matrix is overviewed.
Collapse
Affiliation(s)
- Hongxue Du
- Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, Jilin Normal University, Siping, China
- College of Environmental Science and Engineering, Jilin Normal University, 1301 Haifeng Road, Siping, 136000, China
| | - Shuyun Shi
- Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, Jilin Normal University, Siping, China
- College of Environmental Science and Engineering, Jilin Normal University, 1301 Haifeng Road, Siping, 136000, China
| | - Wei Liu
- Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, Jilin Normal University, Siping, China
- College of Environmental Science and Engineering, Jilin Normal University, 1301 Haifeng Road, Siping, 136000, China
| | - Honghui Teng
- Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, Jilin Normal University, Siping, China
- College of Environmental Science and Engineering, Jilin Normal University, 1301 Haifeng Road, Siping, 136000, China
| | - Mingyue Piao
- Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, Jilin Normal University, Siping, China.
- College of Environmental Science and Engineering, Jilin Normal University, 1301 Haifeng Road, Siping, 136000, China.
| |
Collapse
|
29
|
Khan M, Shah LA, Rehman T, Khan A, Iqbal A, Ullah M, Alam S. Synthesis of physically cross-linked gum Arabic-based polymer hydrogels with enhanced mechanical, load bearing and shape memory behavior. IRANIAN POLYMER JOURNAL 2020. [DOI: 10.1007/s13726-020-00801-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Huang Y, Shi F, Wang L, Yang Y, Khan BM, Cheong KL, Liu Y. Preparation and evaluation of Bletilla striata polysaccharide/carboxymethyl chitosan/Carbomer 940 hydrogel for wound healing. Int J Biol Macromol 2019; 132:729-737. [PMID: 30940589 DOI: 10.1016/j.ijbiomac.2019.03.157] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/12/2019] [Accepted: 03/22/2019] [Indexed: 12/13/2022]
Abstract
This study aims at developing an effective, safe and economic hydrogel, with wound healing ability, by making use of polysaccharides. Bletilla striata polysaccharide (Bsp) and the bioactive natural polymers, carboxymethyl chitosan (CMC), were physically blended with Carbomer 940 (CBM940) in order to promote gel-forming and improve water retention. FT-IR displayed hydrogen bonding between CBM940 and CMC played a role in physical gel formation. XRD showed broad and weak intensity peak of Bsp/CMC/CBM940 hydrogel. SEM, rheological measurement and water loss test revealed that the best hydrogel with optimum characteristics in relation to porous structure, elastic property and water retention could be obtained by mixing Bsp, CMC and CBM940 in a ratio of 4:1:1. In vitro studies proved that the Bsp/CMC/CBM940 hydrogel possessed blood compatibility. M293T cells viability was over 85% via MTT assay which revealed non-cytotoxicity. Hydroxyl radical scavenging property highly improved while Bsp combined with CMC. The full-thickness wound experiment illustrated 71.64 ± 6.64% and 83.80 ± 5.56% wound healing rates for Bsp4:CMC1:CBM9401 hydrogel on Day 7 and Day 14, respectively, which showed no significant differences (p > 0.05) in comparison to the positive control. Histological observation expressed epithelization, dense collagen fiber and neovascular formation in hydrogel group on Day 14. Bsp/CMC/CBM940 hydrogel can, hence, serve as an attractive candidate for healing wounds.
Collapse
Affiliation(s)
- Yingbei Huang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Fulin Shi
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Liming Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yu Yang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Bilal Muhammad Khan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China.
| |
Collapse
|