1
|
Dohm JC, Schmidt S, Puente Reyna AL, Richter B, Santana A, Grupp TM. Comparative Study of Zirconium Nitride Multilayer Coatings: Crystallinity, In Vitro Oxidation Behaviour and Tribological Properties Deposited via Sputtering and Arc Deposition. J Funct Biomater 2024; 15:223. [PMID: 39194662 DOI: 10.3390/jfb15080223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
This study aims to evaluate and compare the properties of a biomedical clinically established zirconium nitride (ZrN) multilayer coating prepared using two different techniques: pulsed magnetron sputtering and cathodic arc deposition. The investigation focuses on the crystalline structure, grain size, in-vitro oxidation behaviour and tribological performance of these two coating techniques. Experimental findings demonstrate that the sputter deposition process resulted in a distinct crystalline structure and smaller grain size compared to the arc deposition process. Furthermore, in vitro oxidation caused oxygen to penetrate the surface of the sputtered ZrN top layer to a depth of 700 nm compared to 280 nm in the case of the arc-deposited coating. Finally, tribological testing revealed the improved wear rate of the ZrN multilayer coating applied by sputter deposition.
Collapse
Affiliation(s)
- Julius C Dohm
- Research & Development, Aesculap AG, 78532 Tuttlingen, Germany
- Musculoskeletal University Center Munich (MUM), Department of Orthopaedic and Trauma Surgery, Ludwig Maximilians University Munich, Campus Grosshadern, 81377 Munich, Germany
| | - Susann Schmidt
- Department of Medical Engineering, IHI Ionbond AG, 4657 Dulliken, Switzerland
| | | | - Berna Richter
- Research & Development, Aesculap AG, 78532 Tuttlingen, Germany
| | - Antonio Santana
- Department of Medical Engineering, IHI Ionbond AG, 4657 Dulliken, Switzerland
| | - Thomas M Grupp
- Research & Development, Aesculap AG, 78532 Tuttlingen, Germany
- Musculoskeletal University Center Munich (MUM), Department of Orthopaedic and Trauma Surgery, Ludwig Maximilians University Munich, Campus Grosshadern, 81377 Munich, Germany
| |
Collapse
|
2
|
Szczęsny G, Kopec M, Politis DJ, Kowalewski ZL, Łazarski A, Szolc T. A Review on Biomaterials for Orthopaedic Surgery and Traumatology: From Past to Present. MATERIALS 2022; 15:ma15103622. [PMID: 35629649 PMCID: PMC9145924 DOI: 10.3390/ma15103622] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023]
Abstract
The principal features essential for the success of an orthopaedic implant are its shape, dimensional accuracy, and adequate mechanical properties. Unlike other manufactured products, chemical stability and toxicity are of increased importance due to the need for biocompatibility over an implants life which could span several years. Thus, the combination of mechanical and biological properties determines the clinical usefulness of biomaterials in orthopaedic and musculoskeletal trauma surgery. Materials commonly used for these applications include stainless steel, cobalt-chromium and titanium alloys, ceramics, polyethylene, and poly(methyl methacrylate) (PMMA) bone cement. This study reviews the properties of commonly used materials and the advantages and disadvantages of each, with special emphasis on the sensitivity, toxicity, irritancy, and possible mutagenic and teratogenic capabilities. In addition, the production and final finishing processes of implants are discussed. Finally, potential directions for future implant development are discussed, with an emphasis on developing advanced personalised implants, according to a patient’s stature and physical requirements.
Collapse
Affiliation(s)
- Grzegorz Szczęsny
- Department of Orthopaedic Surgery and Traumatology, Medical University, 4 Lindleya Str., 02-005 Warsaw, Poland; (G.S.); (A.Ł.)
| | - Mateusz Kopec
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B Pawińskiego Str., 02-106 Warsaw, Poland; (Z.L.K.); (T.S.)
- Correspondence:
| | - Denis J. Politis
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 20537, Cyprus;
| | - Zbigniew L. Kowalewski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B Pawińskiego Str., 02-106 Warsaw, Poland; (Z.L.K.); (T.S.)
| | - Adam Łazarski
- Department of Orthopaedic Surgery and Traumatology, Medical University, 4 Lindleya Str., 02-005 Warsaw, Poland; (G.S.); (A.Ł.)
| | - Tomasz Szolc
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B Pawińskiego Str., 02-106 Warsaw, Poland; (Z.L.K.); (T.S.)
| |
Collapse
|
3
|
Design of Amorphous Carbon Coatings Using Gaussian Processes and Advanced Data Visualization. LUBRICANTS 2022. [DOI: 10.3390/lubricants10020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In recent years, an increasing number of machine learning applications in tribology and coating design have been reported. Motivated by this, this contribution highlights the use of Gaussian processes for the prediction of the resulting coating characteristics to enhance the design of amorphous carbon coatings. In this regard, by using Gaussian process regression (GPR) models, a visualization of the process map of available coating design is created. The training of the GPR models is based on the experimental results of a centrally composed full factorial 23 experimental design for the deposition of a‑C:H coatings on medical UHMWPE. In addition, different supervised machine learning (ML) models, such as Polynomial Regression (PR), Support Vector Machines (SVM) and Neural Networks (NN) are trained. All models are then used to predict the resulting indentation hardness of a complete statistical experimental design using the Box–Behnken design. The results are finally compared, with the GPR being of superior performance. The performance of the overall approach, in terms of quality and quantity of predictions as well as in terms of usage in visualization, is demonstrated using an initial dataset of 10 characterized amorphous carbon coatings on UHMWPE.
Collapse
|
4
|
Abstract
Titanium, stainless steel, and CoCrMo alloys are the most widely used biomaterials for orthopedic applications. The most common causes of orthopedic implant failure after implantation are infections, inflammatory response, least corrosion resistance, mismatch in elastic modulus, stress shielding, and excessive wear. To address the problems associated with implant materials, different modifications related to design, materials, and surface have been developed. Among the different methods, coating is an effective method to improve the performance of implant materials. In this article, a comprehensive review of recent studies has been carried out to summarize the impact of coating materials on metallic implants. The antibacterial characteristics, biodegradability, biocompatibility, corrosion behavior, and mechanical properties for performance evaluation are briefly summarized. Different effective coating techniques, coating materials, and additives have been summarized. The results are useful to produce the coating with optimized properties.
Collapse
|
5
|
Rothammer B, Neusser K, Marian M, Bartz M, Krauß S, Böhm T, Thiele S, Merle B, Detsch R, Wartzack S. Amorphous Carbon Coatings for Total Knee Replacements-Part I: Deposition, Cytocompatibility, Chemical and Mechanical Properties. Polymers (Basel) 2021; 13:1952. [PMID: 34208302 PMCID: PMC8231215 DOI: 10.3390/polym13121952] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022] Open
Abstract
Diamond-like carbon (DLC) coatings have the potential to reduce implant wear and thus to contribute to avoiding premature failure and increase service life of total knee replacements (TKAs). This two-part study addresses the development of such coatings for ultrahigh molecular weight polyethylene (UHMWPE) tibial inlays as well as cobalt-chromium-molybdenum (CoCr) and titanium (Ti64) alloy femoral components. While a detailed characterization of the tribological behavior is the subject of part II, part I focusses on the deposition of pure (a-C:H) and tungsten-doped hydrogen-containing amorphous carbon coatings (a-C:H:W) and the detailed characterization of their chemical, cytological, mechanical and adhesion behavior. The coatings are fabricated by physical vapor deposition (PVD) and display typical DLC morphology and composition, as verified by focused ion beam scanning electron microscopy and Raman spectroscopy. Their roughness is higher than that of the plain substrates. Initial screening with contact angle and surface tension as well as in vitro testing by indirect and direct application indicate favorable cytocompatibility. The DLC coatings feature excellent mechanical properties with a substantial enhancement of indentation hardness and elastic modulus ratios. The adhesion of the coatings as determined in modified scratch tests can be considered as sufficient for the use in TKAs.
Collapse
Affiliation(s)
- Benedict Rothammer
- Engineering Design, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Martensstr. 9, 91058 Erlangen, Germany; (K.N.); (M.M.); (M.B.); (S.W.)
| | - Kevin Neusser
- Engineering Design, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Martensstr. 9, 91058 Erlangen, Germany; (K.N.); (M.M.); (M.B.); (S.W.)
| | - Max Marian
- Engineering Design, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Martensstr. 9, 91058 Erlangen, Germany; (K.N.); (M.M.); (M.B.); (S.W.)
| | - Marcel Bartz
- Engineering Design, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Martensstr. 9, 91058 Erlangen, Germany; (K.N.); (M.M.); (M.B.); (S.W.)
| | - Sebastian Krauß
- Materials Science & Engineering, Institute I, Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany; (S.K.); (B.M.)
| | - Thomas Böhm
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy, Cauerstr. 1, 91058 Erlangen, Germany; (T.B.); (S.T.)
| | - Simon Thiele
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy, Cauerstr. 1, 91058 Erlangen, Germany; (T.B.); (S.T.)
- Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Egerlandstr. 3, 91058 Erlangen, Germany
| | - Benoit Merle
- Materials Science & Engineering, Institute I, Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany; (S.K.); (B.M.)
| | - Rainer Detsch
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Cauerstr. 6, 91058 Erlangen, Germany;
| | - Sandro Wartzack
- Engineering Design, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Martensstr. 9, 91058 Erlangen, Germany; (K.N.); (M.M.); (M.B.); (S.W.)
| |
Collapse
|
6
|
Hasemann G, Betke U, Krüger M, Walles H, Scheffler M. Refractory Metal Coated Alumina Foams as Support Material for Stem Cell and Fibroblasts Cultivation. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2813. [PMID: 34070481 PMCID: PMC8197475 DOI: 10.3390/ma14112813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 12/05/2022]
Abstract
Ceramics are widely used as implant materials; however, they are brittle and may emit particles when used in these applications. To overcome this disadvantage, alumina foams, which represent a 3D cellular structure comparable to that of human trabecular bone structures, were sputter coated with platinum, tantalum or titanium and modified with fibronectin or collagen type I, components of the extracellular matrix (ECM). To proof the cell material interaction, the unmodified and modified materials were cultured with (a) mesenchymal stem cells being a perfect indicator for biocompatibility and releasing important cytokines of the stem cell niche and (b) with fibroblasts characterized as mediators of inflammation and therefore an important cellular component of the foreign body reaction and inflammation after implantation. To optimize and compare the influence of metal surfaces on cellular behavior, planar glass substrates have been used. Identified biocompatible metal surface of platinum, titanium and tantalum were sputtered on ceramic foams modified with the above-mentioned ECM components to investigate cellular behavior in a 3D environment. The cellular alumina support was characterized with respect to its cellular/porous structure and niche accessibility and coating thickness of the refractory metals; the average cell size was 2.3 mm, the average size of the cell windows was 1.8 mm, and the total foam porosity was 91.4%. The Pt, Ti and Ta coatings were completely dense covering the entire alumina foam surface. The metals titanium and tantalum were colonized very well by the stem cells without a coating of ECM components, whereas the fibroblasts preferred components of the ECM on the alumina foam surface.
Collapse
Affiliation(s)
- Georg Hasemann
- Institute of Materials and Joining Technology, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany; (U.B.); (M.K.); (M.S.)
| | - Ulf Betke
- Institute of Materials and Joining Technology, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany; (U.B.); (M.K.); (M.S.)
| | - Manja Krüger
- Institute of Materials and Joining Technology, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany; (U.B.); (M.K.); (M.S.)
| | - Heike Walles
- Institute of Chemistry—Core Facility Tissue Engineering, Otto-von-Guericke-University Magdeburg, Pfaelzerstr. 2, 39106 Magdeburg, Germany;
| | - Michael Scheffler
- Institute of Materials and Joining Technology, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany; (U.B.); (M.K.); (M.S.)
| |
Collapse
|
7
|
Tsai CE, Hung J, Hu Y, Wang DY, Pilliar RM, Wang R. Improving fretting corrosion resistance of CoCrMo alloy with TiSiN and ZrN coatings for orthopedic applications. J Mech Behav Biomed Mater 2020; 114:104233. [PMID: 33302168 DOI: 10.1016/j.jmbbm.2020.104233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Total hip replacement is the most effective treatment for late stage osteoarthritis. However, adverse local tissue reactions (ALTRs) have been observed in patients with modular total hip implants. Although the detailed mechanisms of ALTRs are still unknown, fretting corrosion and the associated metal ion release from the CoCrMo femoral head at the modular junction has been reported to be a major factor. The purpose of this study is to increase the fretting corrosion resistance of the CoCrMo alloy and the associated metal ion release by applying hard coatings to the surface. Cathodic arc evaporation technique (arc-PVD) was used to deposit TiSiN and ZrN hard coatings on CoCrMo substrates. The morphology, chemical composition, crystal structures and residual stress of the coatings were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffractometry. Hardness, elastic modulus, and adhesion of the coatings were measured by nano-indentation, nano-scratch test, and the Rockwell C test. Fretting corrosion resistance tests of coated and uncoated CoCrMo discs against Ti6Al4V spheres were conducted on a four-station fretting testing machine in simulated body fluid at 1Hz for 1 million cycles. Post-fretting samples were analyzed for morphological changes, volume loss and metal ion release. Our analyses showed better surface finish and lower residual stress for ZrN coating, but higher hardness and better scratch resistance for TiSiN coating. Fretting results demonstrated substantial improvement in fretting corrosion resistance of CoCrMo with both coatings. ZrN and TiSiN decreased fretting volume loss by more than 10 times and 1000 times, respectively. Both coatings showed close to 90% decrease of Co ion release during fretting corrosion tests. Our results suggest that hard coating deposition on CoCrMo alloy can significantly improve its fretting corrosion resistance and could thus potentially alleviate ALTRs in metal hip implants.
Collapse
Affiliation(s)
- Chen-En Tsai
- Department of Materials Engineering, University of British Columbia, Vancouver, BC, Canada; Centre for Hip Health and Mobility, Vancouver, BC, Canada
| | - James Hung
- Aurora Scientific Corp., Richmond BC, Canada
| | - Youxin Hu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | | | - Robert M Pilliar
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Rizhi Wang
- Department of Materials Engineering, University of British Columbia, Vancouver, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada; Centre for Hip Health and Mobility, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Herbster M, Döring J, Nohava J, Lohmann CH, Halle T, Bertrand J. Retrieval study of commercially available knee implant coatings TiN, TiNbN and ZrN on TiAl6V4 and CoCr28Mo6. J Mech Behav Biomed Mater 2020; 112:104034. [PMID: 32871541 DOI: 10.1016/j.jmbbm.2020.104034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Coated implant components for total knee arthroplasties are primarily used for metal-sensitive patients and are offered by different manufacturers. However, there is only little knowledge with respect to their coating design and supposed superior tribological performance. Our aim was to compare retrieved coated implants by identifying present damages, critical factors influencing the coating durability and their correlation to the clinical performance. MATERIALS AND METHODS 28 retrieved knee endoprostheses from nine different manufacturers were analyzed for potential surface defects as well as the coating strategy for each manufacturer. The coating designs were investigated on preserved regions with regard to substrate and coating material, layer thickness and roughness using scanning electron microscopy and confocal microscopy. Furthermore, the mechanical properties and adhesive strength of the layer were evaluated by nanoindentation and scratch testing. The friction performance of the coatings against ultra-high molecular weight polyethylene (UHMWPE) was investigated in a tribological test. In addition, clinical data were collected and evaluated for all patients. RESULTS Our cohort of 28 retrieved knee endoprostheses exhibited different damage patterns in the articulating area with an incidence of 79% for discoloration and 21% for coating delamination. All coatings presented droplets, macropores and pinholes in preserved areas, which can be attributed to the coating and post-polishing processes. Interestingly, the adhesive strength was significantly increased by 60.4% for titanium nitride coatings on TiAl6V4 alloy in comparison to CoCr28Mo6 substrates. The friction behavior of titanium nitride coatings against UHMWPE is similar to uncoated CoCr28Mo6 alloy and lowest for the ZrN multi-layer coating with a reduction of 14%. DISCUSSION This study shows that manufacturing related coating deposition defects can cause wear due to adhesive failure and corrosion underneath the coating layers. Adhesive strength was identified as a critical factor for coating durability. Minor adhesive strength was present on CoCr28Mo6 cast alloy in comparison to good adhesion of Ti-based coatings on TiAl6V4 wrought alloy. Based on our findings, this is consistent to higher prevalence rates of CoCr28Mo6/TiNbN coatings for gross delamination and pitting damage with increasing implantation time.
Collapse
Affiliation(s)
- Maria Herbster
- Institute of Materials and Joining Technology, Otto-von-Guericke University, Magdeburg, Germany.
| | - Joachim Döring
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Christoph H Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Thorsten Halle
- Institute of Materials and Joining Technology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
9
|
Abstract
The “pulsed electron deposition” (PED) technique, in which a solid target material is ablated by a fast, high-energy electron beam, was initially developed two decades ago for the deposition of thin films of metal oxides for photovoltaics, spintronics, memories, and superconductivity, and dielectric polymer layers. Recently, PED has been proposed for use in the biomedical field for the fabrication of hard and soft coatings. The first biomedical application was the deposition of low wear zirconium oxide coatings on the bearing components in total joint replacement. Since then, several works have reported the manufacturing and characterization of coatings of hydroxyapatite, calcium phosphate substituted (CaP), biogenic CaP, bioglass, and antibacterial coatings on both hard (metallic or ceramic) and soft (plastic or elastomeric) substrates. Due to the growing interest in PED, the current maturity of the technology and the low cost compared to other commonly used physical vapor deposition techniques, the purpose of this work was to review the principles of operation, the main applications, and the future perspectives of PED technology in medicine.
Collapse
|