1
|
Castro-Jácome TP, Tovar-Pérez EG, Alcántara-Quintana LE. Optimization of enzymatic production of anti-skin aging biopeptides from white sorghum [ Sorghum bicolor (L) Moench] grain. Prep Biochem Biotechnol 2024:1-12. [PMID: 38949113 DOI: 10.1080/10826068.2024.2366994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Recently, kafirins from white sorghum [Sorghum bicolor (L) Moench] grain have shown promise as a source of biopeptides with anti-skin aging effects (anti-inflammatory, antioxidant, and inhibition of photoaging-associated enzymes). This study employed response surface methodology (RSM) to optimize the extraction and enzymatic hydrolysis of kafirins (KAF) for the production of peptides with anti-skin aging properties. The optimization of conditions (reaction time and enzyme/substrate ratio) for liquefaction with α-amylase and hydrolysis of KAF with alcalase was performed using 32 complete factorial designs. Subsequently, ultrafiltered peptide extracts were obtained with molecular weights of 1-3 kDa (KAF-UF3) and lower than 1 kDa (KAF-UF1), which mainly contain hydrophobic amino acids (proline, leucine, isoleucine, phenylalanine, and valine) and peptide fractions with molecular weights of 0.69, 1.14, and 1.87 kDa. Consequently, the peptide extracts protected immortalized human keratinocytes (HaCaT cells) from ultraviolet B radiation (UVB)-induced damage by preventing the decrease and/or restoring the activity of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px)]. Furthermore, KAF-UF3 and KAF-UF1 inhibited (20-29%) elastase and collagenase overactivity in UVB-exposed murine fibroblasts (3T3 cells). Thus, KAF-UF3 and KAF-UF1 exhibited behavior similar to that observed with glutathione (GSH), suggesting their potential as functional peptide ingredients in skincare products.
Collapse
Affiliation(s)
- Tania P Castro-Jácome
- Integral Food Research Laboratory, Tepic Institute of Technology, Tepic, Nayarit, Mexico
| | - Erik G Tovar-Pérez
- School of Engineering, Autonomous University of Queretaro, Amealco Campus, Amealco de Bonfil, Queretaro, Mexico
- Center of Applied Research in Biosystems (CARB-CIAB), Autonomous University of Queretaro, Amazcala Campus, El Marques, Queretaro, Mexico
| | - Luz E Alcántara-Quintana
- CONAHCYT - Cellular and Molecular Diagnosis Innovation Unit, Department of Innovation, Applied Science and Technology, San Luis Potosí Autonomous University, San Luis Potosi, S.L.P, Mexico
| |
Collapse
|
2
|
Elsafty O, Berkey CA, Dauskardt RH. Insights and mechanics-driven modeling of human cutaneous impact injuries. J Mech Behav Biomed Mater 2024; 153:106456. [PMID: 38442507 DOI: 10.1016/j.jmbbm.2024.106456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/03/2024] [Indexed: 03/07/2024]
Abstract
Cutaneous damage mechanisms related to dynamic fragment impacts are dependent on the impact angle, impact energy, and fragment characteristics including shape, volume, contact friction, and orientation. Understanding the cutaneous injury mechanism and its relationship to the fragment parameters is lacking compromising damage classification, treatment, and protection. Here we develop a high-fidelity dynamic mechanics-driven model for partial-thickness skin injuries and demonstrate the influence of fragment parameters on the injury mechanism and damage sequence. The model quantitatively predicts the wound shape, area, and depth into the skin layers for selected impact angles, kinetic energy density, and the fragment projectile type including shape and material. The detailed sequence of impact damage including epidermal tearing that occurs ahead of the fragments initial contact location, subsequent stripping of the epidermal/dermal junction, and crushing of the underlying dermis are revealed. We demonstrate that the fragment contact friction with skin plays a key role in redistributing impact energy affecting the extent of epidermal tearing and dermal crushing. Furthermore, projectile edges markedly affect injury severity dependent on the orientation of the edge during initial impact. The model provides a quantitative framework for understanding the detailed mechanisms of cutaneous damage and a basis for the design of protective equipment.
Collapse
Affiliation(s)
- Omar Elsafty
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Christopher A Berkey
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Reinhold H Dauskardt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
3
|
Moreno-Flores O, Rausch MK, Tepole AB. The role of interface geometry and appendages on the mesoscale mechanics of the skin. Biomech Model Mechanobiol 2024; 23:553-568. [PMID: 38129671 DOI: 10.1007/s10237-023-01791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/29/2023] [Indexed: 12/23/2023]
Abstract
The skin is the largest organ in the human body and serves various functions, including mechanical protection and mechanosensation. Yet, even though skin's biomechanics are attributed to two main layers-epidermis and dermis-computational models have often treated this tissue as a thin homogeneous material or, when considering multiple layers, have ignored the most prominent heterogeneities of skin seen at the mesoscale. Here, we create finite element models of representative volume elements (RVEs) of skin, including the three-dimensional variation of the interface between the epidermis and dermis as well as considering the presence of hair follicles. The sinusoidal interface, which approximates the anatomical features known as Rete ridges, does not affect the homogenized mechanical response of the RVE but contributes to stress concentration, particularly at the valleys of the Rete ridges. The stress profile is three-dimensional due to the skin's anisotropy, leading to high-stress bands connecting the valleys of the Rete ridges through one type of saddle point. The peaks of the Rete ridges and the other class of saddle points of the sinusoidal surface form a second set of low-stress bands under equi-biaxial loading. Another prominent feature of the heterogeneous stress pattern is a switch in the stress jump across the interface, which becomes lower with respect to the flat interface at increasing deformations. These features are seen in both tension and shear loading. The RVE with the hair follicle showed strains concentrating at the epidermis adjacent to the hair follicle, the epithelial tissue surrounding the hair right below the epidermis, and the bulb or base region of the hair follicle. The regions of strain concentration near the hair follicle in equi-biaxial and shear loading align with the presence of distinct mechanoreceptors in the skin, except for the bulb or base region. This study highlights the importance of skin heterogeneities, particularly its potential mechanophysiological role in the sense of touch and the prevention of skin delamination.
Collapse
Affiliation(s)
- Omar Moreno-Flores
- School of Mechanical Engineering, Purdue University, AB Tepole, 585 Purdue Mall, West Lafayette, USA
| | - Manuel K Rausch
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, USA
| | - Adrian B Tepole
- School of Mechanical Engineering, Purdue University, AB Tepole, 585 Purdue Mall, West Lafayette, USA.
- Weldon School of Biomedical Eng, Purdue University, West Lafayette, USA.
| |
Collapse
|
4
|
Diosa JG, Moreno R, Chica EL, Buganza-Tepole A. Impact of Indenter Size and Microrelief Anisotropy on the Tribological Behavior of Human Skin. J Biomech Eng 2023; 145:101008. [PMID: 37382599 DOI: 10.1115/1.4062848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Everyday, we interact with screens, sensors, and many other devices through contact with the skin. Experimental efforts have increased our knowledge of skin tribology but are challenged by the fact that skin has a complex structure, undergoes finite deformations, has nonlinear material response, and has properties that vary with anatomical location, age, sex, and environmental conditions. Computational models are powerful tools to dissect the individual contribution of these variables to the overall frictional response. Here, we present a three-dimensional high-fidelity multilayer skin computational model including a detailed surface topography or skin microrelief. Four variables are explored: local coefficient of friction (COF), indenter size, mechanical properties of the stratum corneum, and displacement direction. The results indicate that the global COF depends nonlinearly on the local COF, implying a role for skin deformation on the friction response. The global COF is also influenced by the ratio of the indenter size to the microrelief features, with larger indenters smoothing out the role of skin topography. Changes in stiffness of the uppermost layer of skin associated with humidity have a substantial effect on both the contact area and the reaction forces, but the overall changes in the COF are small. Finally, for the microrelief tested, the response can be considered isotropic. We anticipate that this model and results will enable the design of materials and devices for a desired interaction against skin.
Collapse
Affiliation(s)
- Juan G Diosa
- Department of Biomedical Engineering, Universidad CES, Medellín 050021, Colombia; Mechanical Engineering Department, Universidad de Antioquia, Medellín 050010, Colombia
| | - Ricardo Moreno
- Mechanical Engineering Department, Universidad de Antioquia, Medellín 050010, Colombia
| | - Edwin L Chica
- Mechanical Engineering Department, Universidad de Antioquia, Medellín 050010, Colombia
| | - Adrian Buganza-Tepole
- School of Mechanical Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
5
|
Hasköylü ME, Gökalsin B, Tornaci S, Sesal C, Öner ET. Exploring the potential of Halomonas levan and its derivatives as active ingredients in cosmeceutical and skin regenerating formulations. Int J Biol Macromol 2023; 240:124418. [PMID: 37080400 DOI: 10.1016/j.ijbiomac.2023.124418] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/22/2023]
Abstract
Demand on natural products that contain biological ingredients mimicking growth factors and cytokines made natural polysaccharides popular in pharmaceutical and cosmetic industries. Levan is the β-(2-6) linked, nontoxic, biocompatible, water-soluble, film former fructan polymer that has diverse applications in pharmacy and cosmeceutical industries with its moisturizing, whitening, anti-irritant, anti-aging and slimming activities. Driven by the limited reports on few structurally similar levan polymers, this study presents the first systematic investigation on the effects of structurally different extremophilic Halomonas levan polysaccharides on human skin epidermis cells. In-vitro experiments with microbially produced linear Halomonas levan (HL), its hydrolyzed, (hHL) and sulfonated (ShHL) derivatives as well as enzymatically produced branched levan (EL) revealed increased keratinocyte and fibroblast proliferation (113-118 %), improved skin barrier function through induced expressions of involucrin (2.0 and 6.43 fold changes for HL and EL) and filaggrin (1.74 and 3.89 fold changes for hHL and ShHL) genes and increased type I collagen (2.63 for ShHL) and hyaluronan synthase 3 (1.41 for HL) gene expressions together with fast wound healing ability within 24 h (100 %, HL) on 2D wound models clearly showed that HL and its derivatives have high potential to be used as natural active ingredients in cosmeceutical and skin regenerating formulations.
Collapse
Affiliation(s)
- Merve Erginer Hasköylü
- Istanbul University-Cerrahpaşa, Institute of Nanotechnology and Biotechnology, Istanbul, Turkey.
| | - Barış Gökalsin
- Marmara University, Department of Biology, Istanbul, Turkey
| | - Selay Tornaci
- IBSB, Marmara University, Department of Bioengineering, Istanbul, Turkey
| | - Cenk Sesal
- Marmara University, Department of Biology, Istanbul, Turkey
| | - Ebru Toksoy Öner
- IBSB, Marmara University, Department of Bioengineering, Istanbul, Turkey
| |
Collapse
|
6
|
Santoprete R, Hourblin V, Foucher A, Dufour O, Bernard D, Domanov Y, Querleux B, Potter A. Reduction of wrinkles: From a computational hypothesis to a clinical, instrumental, and biological proof. Skin Res Technol 2023; 29:e13267. [PMID: 36973988 PMCID: PMC10155799 DOI: 10.1111/srt.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 12/06/2022] [Indexed: 03/09/2023]
Abstract
BACKGROUND Facial wrinkles are clear markers of the aging process, being chronological, photo-induced, or reflecting repetitive facial expressions. The aim of this study is to provide new insights into the biophysical and biological mechanisms involved in the formation, prevention, or elimination of the expression wrinkles. MATERIALS AND METHODS We use a computational model to get a better understanding of the wrinkle mechanical behavior and evolution after skin softening and suggesting a possible antiaging mechanism. Then, we provide a clinical demonstration of the anti-wrinkle effect of a long-term application of a 20% glycerol in a moisturizer formula (GBM) versus its vehicle on crow's feet. Skin hydration, elasticity, and wrinkles visibility were evaluated by a combination of clinical and instrumental in vivo data, inverse finite element analysis, and proteomic data. RESULTS The computational model shows a predominantly compressive stress beneath the wrinkle and its significant decrease by the softening of stratum corneum. The associated clinical study confirmed a significant increase of skin hydration and elasticity as well as a decrease of wrinkle visibility after 2 and 4 months as application for both formulas; this effect being stronger for GBM. A softening effect on stratum corneum and dermis was also observed for the GBM. Furthermore, proteomic data revealed an effect of upregulation of four proteins associated with desquamation, cell-glycan extracellular interactions, and protein glycation/oxidation, functions related to the tissue mechanics and adhesion. CONCLUSIONS We provide an in vivo demonstration of the anti-ageing benefit of glycerol at high dose (20%) reflected by a cumulative skin surface softening effect. The use of high moisturizing potent formulations should bring additional performance to other conventional moisturizing formulations.
Collapse
Affiliation(s)
| | | | - Aude Foucher
- L'Oréal Research & InnovationAulnay‐sous‐BoisFrance
| | | | | | | | | | - Anne Potter
- L'Oréal Research & InnovationAulnay‐sous‐BoisFrance
| |
Collapse
|
7
|
Ye C, Flament F, Wang Y, Sun H, Yang G, Jiang Y, Delaunay C, Saint-Leger D. Structural and Functional age-related changes in some facial signs of Chinese men. A Pilot study. Int J Cosmet Sci 2022; 44:530-541. [PMID: 35841376 DOI: 10.1111/ics.12802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To associate, on the same Chinese male subjects, changes in facial aging signs with some biomechanical skin properties. METHODS The severities of 20 facial aging signs of 219 differently aged Chinese men (20-65y) were graded in blind by trained experts through standardized photographs, using a referential skin Atlas dedicated to Asian men. On each subject, the mechanical properties were assessed on the cheek area (left or right at random) by the validated suction technique Cutometer®. Finally, the skin color parameters were assessed on images from VISIA-CR device. RESULTS Clinically speaking, the severity of almost all facial aging signs increases from 30y to 65y, in a linear like progression, whereas the 20-30y shows weak increases. Skin color shows slight but progressive decreases in Luminance and ITA, whereas the yellow and red components slightly increased between 40y and 65y. At the exception of skin firmness, the skin mechanical properties show a clear decline during the 30-50y period and plateau beyond. CONCLUSION The present study suggests that the 20-30y period, albeit more clinically "silent" than the other periods of age, seems to be an age-range during which early alterations of some dermal elements' onset. Deeper in vivo investigating techniques (Echography, Multiphotonic microscopy) are needed to confirm such hypothesis.
Collapse
Affiliation(s)
- Chengda Ye
- L'Oréal Research and Innovation, Shanghai, China
| | | | - Yang Wang
- L'Oréal Research and Innovation, Shanghai, China
| | - Hua Sun
- China-norm Quality Technical Service, Shanghai, China
| | | | - Yanwen Jiang
- China-norm Quality Technical Service, Shanghai, China
| | | | | |
Collapse
|
8
|
Mostafavi Yazdi SJ, Baqersad J. Mechanical modeling and characterization of human skin: A review. J Biomech 2021; 130:110864. [PMID: 34844034 DOI: 10.1016/j.jbiomech.2021.110864] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
This paper reviews the advances made in recent years on modeling approaches and experimental techniques to characterize the mechanical properties of human skin. The skin is the largest organ of the human body that has a complex multi-layered structure with different mechanical behaviors. The mechanical properties of human skin play an important role in distinguishing between healthy and unhealthy skin. Furthermore, knowing these mechanical properties enables computer simulation, skin research, clinical studies, as well as diagnosis and treatment monitoring of skin diseases. This paper reviews the recent efforts on modeling skin using linear, nonlinear, viscoelastic, and anisotropic materials. The work also focuses on aging effects, microstructure analysis, and non-invasive methods for skin testing. A detailed explanation of the skin structure and numerical models, such as finite element models, are discussed in this work. This work also compares different experimental methods that measure the mechanical properties of human skin. The work reviews the experimental results in the literature and shows how the mechanical properties of human skin vary with the skin sites, the layers, and the structure of human skin. The paper also discusses how state-of-the-art technology can advance skin research.
Collapse
Affiliation(s)
- Seyed Jamaleddin Mostafavi Yazdi
- NVH and Experimental Mechanics Laboratory, Department of Mechanical Engineering, Kettering University, 1700 University Ave, Flint, MI 48504, USA.
| | - Javad Baqersad
- NVH and Experimental Mechanics Laboratory, Department of Mechanical Engineering, Kettering University, 1700 University Ave, Flint, MI 48504, USA
| |
Collapse
|
9
|
Chavoshnejad P, Foroughi AH, Dhandapani N, German GK, Razavi MJ. Effect of collagen degradation on the mechanical behavior and wrinkling of skin. Phys Rev E 2021; 104:034406. [PMID: 34654184 DOI: 10.1103/physreve.104.034406] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/27/2021] [Indexed: 11/07/2022]
Abstract
Chronological skin aging is a complex process that is controlled by numerous intrinsic and extrinsic factors. One major factor is the gradual degradation of the dermal collagen fiber network. As a step toward understanding the mechanistic importance of dermal tissue in the process of aging, this study employs analytical and multiscale computational models to elucidate the effect of collagen fiber bundle disintegration on the mechanical properties and topography of skin. Here, human skin is modeled as a soft composite with an anisotropic dermal layer. The anisotropy of the tissue is governed by collagen fiber bundles with varying densities, average fiber alignments, and normalized alignment distributions. In all finite element models examined, collagen fiber bundle degradation results in progressive decreases in dermal and full-thickness composite stiffness. This reduction is more profound when collagen bundles align with the compression axis. Aged skin models with low collagen fiber bundle densities under compression exhibit notably smaller critical wrinkling strains and larger critical wavelengths than younger skin models, in agreement with in vivo wrinkling behavior with age. The propensity for skin wrinkling can be directly attributable to the degradation of collagen fiber bundles, a relationship that has previously been assumed but unsubstantiated. While linear-elastic analytical models fail to capture the postbuckling behavior in skin, nonlinear finite element models can predict the complex bifurcations of the compressed skin with different densities of collagen bundles.
Collapse
Affiliation(s)
- Poorya Chavoshnejad
- Department of Mechanical Engineering, Binghamton University, State University of New York, New York 13902, USA
| | - Ali H Foroughi
- Department of Mechanical Engineering, Binghamton University, State University of New York, New York 13902, USA
| | - Niranjana Dhandapani
- Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, New York 13902, USA
| | - Guy K German
- Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, New York 13902, USA.,Department of Pharmaceutical Sciences, Binghamton University, State University of New York, Binghamton, New York 13902, USA
| | - Mir Jalil Razavi
- Department of Mechanical Engineering, Binghamton University, State University of New York, New York 13902, USA
| |
Collapse
|
10
|
Guissouma I, Hambli R, Rekik A, Hivet A. A multiscale four-layer finite element model to predict the effects of collagen fibers on skin behavior under tension. Proc Inst Mech Eng H 2021; 235:1274-1287. [PMID: 34278843 DOI: 10.1177/09544119211022059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human skin is a complex multilayered multiscale material that exhibits nonlinear and anisotropic mechanical behavior. It has been reported that its macroscopic behavior in terms of progression of wrinkles induced by aging is strongly dependent on its microscopic composition in terms of collagen fibers in the dermis layer. In the present work, a multiscale four-layer 2D finite element model of the skin was developed and implemented in Matlab code. The focus here was to investigate the effects of dermal collagen on the macroscopic mechanical behavior of the skin. The skin was modeled by a continuum model composed of four layers: the Stratum Corneum, the epidermis, the dermis, and the hypodermis. The geometry of the different layers of the skin was represented in a 2D model with their respective thicknesses and material properties taken from literature data. The macroscopic behavior of the dermis was modeled with a nonlinear multiscale approach based on a multiscale elastic model of collagen structure going from cross-linked molecules to the collagen fiber, combined with a Mori-Tanaka homogenization scheme. The model includes the nonlinear elasticity of the collagen fiber density, the fiber radius, the undulation, and the fiber orientation. An axial tension was applied incrementally to the lateral surfaces of the skin model. A parametric study was performed in order to investigate the effect of the collagen constituents on the macroscopic skin mechanical behavior in terms of the predicted macroscopic stress-strain curve of the skin. The results of the FE computations under uniaxial tension showed that the different layers undergo different strains, leading to a difference in the transversal deformation at the top surface. In addition, the parametric study revealed a strong correlation between macroscopic skin elasticity and its collagen structure.
Collapse
Affiliation(s)
- Ines Guissouma
- INSA CVL, LaMé, Univ. Orleans, Univ. Tours, Orléans, France
| | - Ridha Hambli
- INSA CVL, LaMé, Univ. Orleans, Univ. Tours, Orléans, France
| | - Amna Rekik
- INSA CVL, LaMé, Univ. Orleans, Univ. Tours, Orléans, France
| | - Audrey Hivet
- INSA CVL, LaMé, Univ. Orleans, Univ. Tours, Orléans, France
| |
Collapse
|
11
|
Diosa JG, Moreno R, Chica EL, Villarraga JA, Tepole AB. Changes in the three-dimensional microscale topography of human skin with aging impact its mechanical and tribological behavior. PLoS One 2021; 16:e0241533. [PMID: 34242217 PMCID: PMC8270165 DOI: 10.1371/journal.pone.0241533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/11/2021] [Indexed: 11/19/2022] Open
Abstract
Human skin enables interaction with diverse materials every day and at all times. The ability to grasp objects, feel textures, and perceive the environment depends on the mechanical behavior, complex structure, and microscale topography of human skin. At the same time, abrasive interactions, such as sometimes occur with prostheses or textiles, can damage the skin and impair its function. Previous theoretical and computational efforts have shown that skin's surface topography or microrelief is crucial for its tribological behavior. However, current understanding is limited to adult surface profiles and simplified two-dimensional simulations. Yet, the skin has a rich set of features in three dimensions, and the geometry of skin is known to change with aging. Here we create a numerical model of a dynamic indentation test to elucidate the effect of changes in microscale topography with aging on the skin's response under indentation and sliding contact with a spherical indenter. We create three different microrelief geometries representative of different ages based on experimental reports from the literature. We perform the indentation and sliding steps, and calculate the normal and tangential forces on the indenter as it moves in three distinct directions based on the characteristic skin lines. The model also evaluates the effect of varying the material parameters. Our results show that the microscale topography of the skin in three dimensions, together with the mechanical behavior of the skin layers, lead to distinctive trends on the stress and strain distribution. The major finding is the increasing role of anisotropy which emerges from the geometric changes seen with aging.
Collapse
Affiliation(s)
- Juan G. Diosa
- Mechanical Engineering Department, Universidad de Antioquia, Medellín, Colombia
| | - Ricardo Moreno
- Mechanical Engineering Department, Universidad de Antioquia, Medellín, Colombia
| | - Edwin L. Chica
- Mechanical Engineering Department, Universidad de Antioquia, Medellín, Colombia
| | - Junes A. Villarraga
- Mechanical Engineering Department, Universidad de Antioquia, Medellín, Colombia
| | - Adrian B. Tepole
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
12
|
Sachs D, Wahlsten A, Kozerke S, Restivo G, Mazza E. A biphasic multilayer computational model of human skin. Biomech Model Mechanobiol 2021; 20:969-982. [PMID: 33566274 PMCID: PMC8154831 DOI: 10.1007/s10237-021-01424-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 01/12/2021] [Indexed: 11/26/2022]
Abstract
The present study investigates the layer-specific mechanical behavior of human skin. Motivated by skin’s histology, a biphasic model is proposed which differentiates between epidermis, papillary and reticular dermis, and hypodermis. Inverse analysis of ex vivo tensile and in vivo suction experiments yields mechanical parameters for each layer and predicts a stiff reticular dermis and successively softer papillary dermis, epidermis and hypodermis. Layer-specific analysis of simulations underlines the dominating role of the reticular dermis in tensile loading. Furthermore, it shows that the observed out-of-plane deflection in ex vivo tensile tests is a direct consequence of the layered structure of skin. In in vivo suction experiments, the softer upper layers strongly influence the mechanical response, whose dissipative part is determined by interstitial fluid redistribution within the tissue. Magnetic resonance imaging-based visualization of skin deformation in suction experiments confirms the deformation pattern predicted by the multilayer model, showing a consistent decrease in dermal thickness for large probe opening diameters.
Collapse
Affiliation(s)
- David Sachs
- ETH Zurich, Institute for Mechanical Systems, Zürich, Switzerland
| | - Adam Wahlsten
- ETH Zurich, Institute for Mechanical Systems, Zürich, Switzerland
| | - Sebastian Kozerke
- University and ETH Zurich, Institute for Biomedical Engineering, Zürich, Switzerland
| | - Gaetana Restivo
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - Edoardo Mazza
- ETH Zurich, Institute for Mechanical Systems, Zürich, Switzerland
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, Experimental Continuum Mechanics, Dübendorf, Switzerland
| |
Collapse
|
13
|
Abstract
AbstractExpression wrinkles form over time due to repeated facial movements such as smiling and frowning. They have an imprint on facial skin in areas such as the corner of the eyes, where they take the form of crow’s feet, the forehead and the glabella, where they appear as frown lines, and around the mouth, as marionette lines. In the study presented here, we recruited two sets of volunteers. An older group of 57 volunteers aged 50 to 65 years, and a group of eight younger volunteers aged 21–35 who were the biological daughters of eight of the older volunteers. Using VISIA CR, we took images of the volunteers in relaxed, angry and smiling mode to assess similarities in expression wrinkle patterns. In addition, the older volunteers were split into a placebo group and an active group who applied a formulation of 4% of a cosmetic product containing the peptide diaminobutyroyl benzylamide diacetate (DABBA) for four weeks. Wrinkles were assessed by image analysis, expert grading and Primoslite measurements. Our study found striking similarities in the facial wrinkle patterns of mothers with relaxed faces and daughters with angry or smiling faces. We found a decrease in visible wrinkles in the group of older volunteers applying DABBA. We created a facial map for graded wrinkles showing these changes. Volunteers using the active formulation showed significantly less wrinkle area and length on the forehead when frowning compared to the placebo group (p < 0.05).
Collapse
|