1
|
Subramanian SK, Joshi V, Kalra S, Adhikari S. Unveiling the fatigue life of NiTi endodontic files: An integrated computational-experimental study. J Mech Behav Biomed Mater 2024; 157:106657. [PMID: 39024733 DOI: 10.1016/j.jmbbm.2024.106657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Nickel-titanium (NiTi) rotary files used in root canal treatments experience fatigue and shear damage due to the complex curved geometries and operating conditions encountered within the root canal. This can lead to premature file fracture, causing severe complications. A comprehensive understanding of how different factors contribute to file damage is crucial for improving their functional life. This study investigates the combined effects of root canal curvature radius, file canal curvature, and rotational speed on the fatigue life and failure modes of NiTi endodontic files through an integrated computational and experimental approach. Advanced finite element simulations precisely replicating the dynamic motion of files inside curved canal geometries were conducted. Critical stress/strain values were extracted and incorporated into empirical fatigue models to predict the functional life of endodontic files. Extensive experiments with files rotated inside artificial curved canals at various canal curvatures and speeds provided validation. Increasing the canal curvature beyond 60∘ and shorter curvature radii below 5 mm dramatically reduced the functional life of the endodontic file, especially at rotational speeds over 360 rpm. The Coffin-Manson fatigue model based on strain amplitude showed the closest agreement with experiments. Shear stresses dominated damage at low canal curvatures, while the combined shear-fatigue loading effects were prominent at higher canal curvatures. This conclusive study elucidates how operational parameters like canal curvature radii, canal curvature, and rotational speed synergistically influence the fatigue damage processes in NiTi files. The findings offer valuable guidelines to optimize these factors, significantly extending the functional life of endodontic files and reducing the risk of intra-operative failures. The validated computational approach provides a powerful tool for virtual testing and estimation of the functional life of the new file designs before manufacturing.
Collapse
Affiliation(s)
| | - Vivek Joshi
- Department of Mechanical Engineering, Indian Institute of Technology Jammu, India.
| | - Sahil Kalra
- Department of Mechanical Engineering, Indian Institute of Technology Jammu, India.
| | - Sondipon Adhikari
- James Watt School of Engineering, The University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
2
|
Stoev YY, Uzunov TT, Stoyanova NS, Grozdanova-Uzunova RG, Kosturkov DN, Taneva IK. Mechanical properties of materials for 3D printed orthodontic retainers. Folia Med (Plovdiv) 2023; 65:986-992. [PMID: 38351789 DOI: 10.3897/folmed.65.e107299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/24/2023] [Indexed: 02/16/2024] Open
Abstract
AIM The purpose of this study was to compare the mechanical properties of materials used for orthodontic retainers made by direct 3D printing and thermoforming.
Collapse
|
3
|
Tribst JPM, Etoeharnowo L, Tadros M, Feilzer AJ, Werner A, Kleverlaan CJ, Dal Piva AMDO. The influence of pre-heating the restoration and luting agent on the flexural strength of indirect ceramic and composite restorations. Biomater Investig Dent 2023; 10:2279066. [PMID: 38979098 PMCID: PMC11229669 DOI: 10.1080/26415275.2023.2279066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/30/2023] [Indexed: 07/10/2024] Open
Abstract
Background This study investigated the impact of luting procedure and restoration thicknesses on the flexural strength of CAD/CAM restorations. Traditional luting agents have been questioned in favor of pre-heated resin composites or flowable composites. Materials and Methods 400 disc-shaped restorations (lithium disilicate [IPS e.max CAD] or resin composite [Tetric CAD, Ivoclar]) were cemented onto dentin analog discs using different procedures (n = 20): dual-curing resin cement (Panavia V5), light-curing resin cement (Panavia Veneer LC), pre-heated resin composite (Clearfil™ AP-X) with or without pre-heated restoration, and high-filled flowable composite (Clearfil Majesty™ Flow). The biaxial flexural strength was calculated. Results There were significant effects of material, thickness, and luting procedure on flexural strength (p < 0.001). Resin composite specimens exhibited lower flexural strength (90 MPa) compared to lithium disilicate specimens (571 MPa), with thicker restorations (338 MPa) being stronger than thinner ones (323 MPa). Light-curing cement showed the highest strength (408.8 MPa)A, followed by dual-curing cement (362 MPa)B, pre-heated cement with pre-heated composite (318 MPa)C, pre-heated composite (304 MPa)C, and flowable resin composite (259 MPa)D. The light-curing cement yielded similar results to the pre-heated resin composite associated or not with the pre-heated crown for the thicker lithium disilicate specimens, whereas for the thinner lithium disilicate specimens all luting procedures performed similarly. Thin resin composite discs showed higher flexural strength when luted with light-curing cement, whereas the luting procedure had less influence for the thicker restorations. Conclusion Luting procedures impact the flexural strength of CAD/CAM lithium disilicate and resin composite restorations. Pre-heated resin composite, with or without pre-heated restoration, can replace dual-curing cement. Nevertheless, light-curing cement is superior for resin composite and 1.5 mm lithium disilicate restorations.
Collapse
Affiliation(s)
- João Paulo Mendes Tribst
- Department of Reconstructive Oral Care, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, North Holland, the Netherlands
| | - Lilis Etoeharnowo
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, North Holland, the Netherlands
| | - Maril Tadros
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, North Holland, the Netherlands
| | - Albert J Feilzer
- Department of Reconstructive Oral Care, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, North Holland, the Netherlands
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, North Holland, the Netherlands
| | - Arie Werner
- Department of Reconstructive Oral Care, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, North Holland, the Netherlands
| | - Cornelis J Kleverlaan
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, North Holland, the Netherlands
| | - Amanda Maria de Oliveira Dal Piva
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, North Holland, the Netherlands
| |
Collapse
|
4
|
Pucci CR, Mafetano APVP, Borges ALS, de Andrade GS, Dal Piva AMDO, Kleverlaan CJ, Tribst JPM. Substrate Rigidity Effect on CAD/CAM Restorations at Different Thicknesses. Eur J Dent 2023; 17:1020-1028. [PMID: 36513340 PMCID: PMC10756807 DOI: 10.1055/s-0042-1757910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES This article evaluated the effect of substrates rigidities on the post-fatigue fracture resistance of adhesively cemented simplified restorations in lithium disilicate glass ceramic. METHODS Precrystalized computer-aided design/computer-aided manufacturing ceramic blocks were processed into disc-shaped specimens (n = 10, Ø = 10 mm), mimicking a simplified restoration at two thicknesses (0.5 and 1.0 mm). Thereafter, the discs were cemented onto different base substrates (dentin analogue [control], dentin analogue with a central core build-up of resin composite [RC], or glass ionomer cement [GIC]). The specimens were subjected to mechanical cycling in a chewing simulator (100 N, 1 × 106 cycles, 4 Hz) and then subjected to thermocycling aging (10,000 cycles, 5/37/55°C, 30 seconds). After the fatigue protocol, the specimens were loaded until failure (N) in a universal testing machine. Finite element analysis calculated the first principal stress at the center of the adhesive interface. RESULTS The results showed that "restoration thickness," "type of substrate," and their interaction were statistically significant (one-way analysis of variance; p < 0.001). Regardless the restoration thickness a higher fracture load was observed for specimens cemented to dentin analogue. Among the base materials, RC build-up presented the highest fracture load and lower stress magnitude for both restoration thicknesses in comparison with GIC build-up. The 0.5-mm restoration showed higher stress peak and lower fracture load when submitted to the compressive test. CONCLUSION More flexible base material reduces the fracture load and increases the stress magnitude of adhesively cemented lithium disilicate restorations regardless the ceramic thickness. Therefore, more rigid substrates are suggested to be used to prevent restoration mechanical failures.
Collapse
Affiliation(s)
- César Rogério Pucci
- Department of Restorative Dentistry, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, Brazil
| | - Ana Paula Valente Pinho Mafetano
- Department of Restorative Dentistry, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, Brazil
| | - Alexandre Luiz Souto Borges
- Department of Restorative Dentistry, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, Brazil
| | | | - Amanda Maria de Oliveira Dal Piva
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Cornelis J. Kleverlaan
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - João Paulo Mendes Tribst
- Department of Oral Regenerative Medicine, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Falahchai M, Ghavami-Lahiji M, Rasaie V, Amin M, Neshandar Asli H. Comparison of mechanical properties, surface roughness, and color stability of 3D-printed and conventional heat-polymerizing denture base materials. J Prosthet Dent 2023; 130:266.e1-266.e8. [PMID: 37422420 DOI: 10.1016/j.prosdent.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/10/2023]
Abstract
STATEMENT OF PROBLEM Studies on the mechanical, optical, and surface properties of 3-dimensionally (3D) printed denture base materials are scarce, and those available have reported conflicting results. PURPOSE The purpose of this in vitro study was to compare the mechanical properties, surface roughness, and color stability of 3D-printed and conventional heat-polymerizing denture base materials. MATERIAL AND METHODS A total of 34 rectangular specimens (64×10×3.3 mm) were fabricated from each of the conventional (SR Triplex Hot; Ivoclar AG) and 3D-printed (Denta base; Asiga) denture base materials. All specimens underwent coffee thermocycling for 5000 cycles, and half in each group (n=17) were evaluated in terms of color parameters, color change (ΔE00), and surface roughness (Ra) before and after coffee thermocycling. The specimens then underwent a 3-point bend test. The remaining specimens in each group (n=17) underwent impact strength and Vickers hardness testing. Data were analyzed by the paired samples, independent samples, and Wilcoxon signed rank tests (α=.05). RESULTS The color change caused by coffee thermocycling in the 3D-printed group was higher than that in the conventional group (P<.001). Surface roughness significantly increased in both groups after coffee thermocycling (P<.001). The conventional group had higher surface roughness before coffee thermocycling, while the 3D-printed group had higher surface roughness after coffee thermocycling (P<.001). The flexural strength, flexural modulus, and surface hardness in the conventional group were significantly higher than those in the 3D-printed group (P<.001). However, the impact strength of the conventional group was lower than that of the 3D-printed group (P<.001). CONCLUSIONS The 3D-printed denture base material showed higher impact strength and surface roughness than the conventional heat-polymerizing acrylic resin. However, flexural strength and modulus, surface hardness, and color stability were lower in the 3D-printed group.
Collapse
Affiliation(s)
- Mehran Falahchai
- Associate Professor, Department of Prosthodontics, Dental Sciences Research Center, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehrsima Ghavami-Lahiji
- Associate Professor, Department of Prosthodontics, Dental Sciences Research Center, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran; Assistant Professor, Dental Sciences Research Center, Department of Restorative Dentistry, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Vanya Rasaie
- Researcher, Department of Prosthodontics, Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin
- Associate Professor, Department of Prosthodontics, Dental Sciences Research Center, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran; Assistant Professor, Dental Sciences Research Center, Department of Restorative Dentistry, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran; Graduate student, Dental Sciences Research Center, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamid Neshandar Asli
- Associate Professor, Department of Prosthodontics, Dental Sciences Research Center, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran; Assistant Professor, Dental Sciences Research Center, Department of Restorative Dentistry, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran; Professor, Department of Prosthodontics, Dental Sciences Research Center, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
6
|
Zamora-Mendoza L, Gushque F, Yanez S, Jara N, Álvarez-Barreto JF, Zamora-Ledezma C, Dahoumane SA, Alexis F. Plant Fibers as Composite Reinforcements for Biomedical Applications. Bioengineering (Basel) 2023; 10:804. [PMID: 37508831 PMCID: PMC10376539 DOI: 10.3390/bioengineering10070804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Plant fibers possess high strength, high fracture toughness and elasticity, and have proven useful because of their diversity, versatility, renewability, and sustainability. For biomedical applications, these natural fibers have been used as reinforcement for biocomposites to infer these hybrid biomaterials mechanical characteristics, such as stiffness, strength, and durability. The reinforced hybrid composites have been tested in structural and semi-structural biodevices for potential applications in orthopedics, prosthesis, tissue engineering, and wound dressings. This review introduces plant fibers, their properties and factors impacting them, in addition to their applications. Then, it discusses different methodologies used to prepare hybrid composites based on these widespread, renewable fibers and the unique properties that the obtained biomaterials possess. It also examines several examples of hybrid composites and their biomedical applications. Finally, the findings are summed up and some thoughts for future developments are provided. Overall, the focus of the present review lies in analyzing the design, requirements, and performance, and future developments of hybrid composites based on plant fibers.
Collapse
Affiliation(s)
- Lizbeth Zamora-Mendoza
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Instituto de Microbiología, Institute for Energy and Materials, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Fernando Gushque
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Sabrina Yanez
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Nicole Jara
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - José F Álvarez-Barreto
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Instituto de Microbiología, Institute for Energy and Materials, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Camilo Zamora-Ledezma
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Si Amar Dahoumane
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Avenue Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| | - Frank Alexis
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Instituto de Microbiología, Institute for Energy and Materials, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| |
Collapse
|
7
|
Sulca Gonzales EL, López-Flores AI. [Flexural strength of conventional flowable, bulk fill flowable and highly filled flowable resin composites: in vitro study.]. REVISTA CIENTÍFICA ODONTOLÓGICA 2023; 11:e161. [PMID: 38288001 PMCID: PMC10809959 DOI: 10.21142/2523-2754-1103-2023-161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/04/2023] [Indexed: 01/31/2024] Open
Abstract
Objective To evaluate and compare the flexural strength of conventional flowable, bulk fill flowable and highly filled flowable resins. Materials and methods Thirty 2mm x 2mm x 25mm specimens of Tetric N-Flow (TNF), Filtek Bulk Fill Flowable Restorative (FBF) and Beautifil Flow Plus F00 (BFP) flowable resins were made up; they were distributed into three groups according to brand (n=10) and stored in distilled water for 24 hours at 37ºC. The 3-point bending test according to ISO 4049 was performed on a universal testing machine at a speed of 0.5 mm/min until fracture. The results were evaluated with Anova and Tukey tests. P<0.05. Results Statistically significant differences were found between the groups with a value of p=0.011. According to the statistical analysis, the groups that showed statistically significant differences were the BFP and TNF groups (p=0.015) and the BFP and FBF groups (p=0.035), while no statistically significant difference was found in the TNF and FBF groups. Conclusion The high-filled flowable resin presents better flexural strength compared to the conventional flowable and bulk fill flowable resins, while the conventional and bulk fill flowable resins have no statistically significant difference.
Collapse
Affiliation(s)
- Edith Liliana Sulca Gonzales
- División de Rehabilitación Oral, Carrera de Estomatología, Universidad Científica del Sur. Lima, Perú. , Universidad Científica del Sur División de Rehabilitación Oral Carrera de Estomatología Universidad Científica del Sur Lima Peru
| | - Ana Isabel López-Flores
- División de Rehabilitación Oral, Carrera de Estomatología, Universidad Científica del Sur. Lima, Perú. , Universidad Científica del Sur División de Rehabilitación Oral Carrera de Estomatología Universidad Científica del Sur Lima Peru
| |
Collapse
|
8
|
Sandmair MN, Kleber C, Ströbele DA, von See C. AFM Analysis of a Three-Point Flexure Tested, 3D Printing Definitive Restoration Material for Dentistry. J Funct Biomater 2023; 14:jfb14030152. [PMID: 36976076 PMCID: PMC10056548 DOI: 10.3390/jfb14030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Background: Three-dimensional printing is a rapidly developing technology across all industries. In medicine recent developments include 3D bioprinting, personalized medication and custom prosthetics and implants. To ensure safety and long-term usability in a clinical setting, it is essential to understand material specific properties. This study aims to analyze possible surface changes of a commercially available and approved DLP 3D printed definitive restoration material for dentistry after three-point flexure testing. Furthermore, this study explores whether Atomic Force Microscopy (AFM) is a feasible method for examination of 3D printed dental materials in general. This is a pilot study, as there are currently no studies that analyze 3D printed dental materials using an AFM. Methods: The present study consisted of a pretest followed by the main test. The resulting break force of the preliminary test was used to determine the force used in the main test. The main test consisted of atomic force microscopy (AFM) surface analysis of the test specimen followed by a three-point flexure procedure. After bending, the same specimen was analyzed with the AFM again, to observe possible surface changes. Results: The mean root mean square (RMS) roughness of the segments with the most stress was 20.27 nm (±5.16) before bending, while it was 26.48 nm (±6.67) afterward. The corresponding mean roughness (Ra) values were 16.05 nm (±4.25) and 21.19 nm (±5.71) Conclusions: Under three-point flexure testing, the surface roughness increased significantly. The p-value for RMS roughness was p = 0.003, while it was p = 0.006 for Ra. Furthermore, this study showed that AFM surface analysis is a suitable procedure to investigate surface changes in 3D printed dental materials.
Collapse
Affiliation(s)
- Maximilian N. Sandmair
- Research Center for Digital Technologies in Dentistry and CAD/CAM, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria
- Correspondence: (M.N.S.); (C.v.S.)
| | - Christoph Kleber
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria
| | - Dragan A. Ströbele
- Research Center for Digital Technologies in Dentistry and CAD/CAM, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria
| | - Constantin von See
- Research Center for Digital Technologies in Dentistry and CAD/CAM, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria
- Correspondence: (M.N.S.); (C.v.S.)
| |
Collapse
|
9
|
Trzaskowski M, Mańka-Malara K, Szczesio-Włodarczyk A, Sokołowski J, Kostrzewa-Janicka J, Mierzwińska-Nastalska E. Evaluation of Mechanical Properties of 3D-Printed Polymeric Materials for Possible Application in Mouthguards. Polymers (Basel) 2023; 15:898. [PMID: 36850182 PMCID: PMC9964375 DOI: 10.3390/polym15040898] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Custom mouthguards are used in various sports disciplines as a protection for teeth, temporomandibular joints, and soft tissues of the oral cavity from impact forces. The purpose of this research was to evaluate the mechanical properties of flexible polymeric 3D-printable materials and to select a material with the most favourable physical properties for making intraoral protectors. Four 3D-printable polymeric materials were selected for the evaluation: IMPRIMO LC IBT (Scheu-Dental, Iserlohn, Germany), Keyortho IBT (EnvisionTEC, Gladbeck, Germany), IBT (Formlabs, Somerville, MA, USA), and Ortho IBT (NextDent, Utrecht, Netherlands). A total of 176 samples (44 from each material) was 3D-printed using the stereolitography (SLA) technique. Tensile strength, flexural strength, notch-toughness, Shore hardness, sorption, and solubility tests were conducted. The materials were compared using a series of analyses of variance (one-way ANOVA) with Bonferroni post hoc tests. Statistical analyses were performed with the use of IBM SPSS Statistics 28.0.0 software (IBM, New York, NY, USA). Each material was assigned a score from 1 to 4 depending on the individual test results, and tests were given indexes according to the significance of the parameter in the mouthguard protective function. The number of points obtained by each material in each test was then multiplied by the test index, and the results were tabulated. The material with the highest result among the ones studied-most suitable for the application in mouthguard fabrication-was Keyortho IBT from EnvisionTEC.
Collapse
Affiliation(s)
- Maciej Trzaskowski
- Department of Prosthodontics, Medical University of Warsaw, ul. Binieckiego 6, 02-097 Warsaw, Poland
| | - Katarzyna Mańka-Malara
- Department of Prosthodontics, Medical University of Warsaw, ul. Binieckiego 6, 02-097 Warsaw, Poland
| | - Agata Szczesio-Włodarczyk
- University Laboratory of Materials Research, Medical University of Lodz, Pomorska 251, 92-216 Łódź, Poland
| | - Jerzy Sokołowski
- University Laboratory of Materials Research, Medical University of Lodz, Pomorska 251, 92-216 Łódź, Poland
| | - Jolanta Kostrzewa-Janicka
- Department of Prosthodontics, Medical University of Warsaw, ul. Binieckiego 6, 02-097 Warsaw, Poland
| | | |
Collapse
|
10
|
Zurowski W, Zepchlo J, Cep R, Cepova L, Rucki M, Krzysiak Z, Caban J, Samociuk W. The Effect of Powder and Emulsion Binders on the Tribological Properties of Particulate Filled Glass Fiber Reinforced Polymer Composites. Polymers (Basel) 2023; 15:polym15010245. [PMID: 36616593 PMCID: PMC9824028 DOI: 10.3390/polym15010245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023] Open
Abstract
Investigations into polymer composites are mainly focused on properties dependent on glass fiber reinforcement and particulate fillers. In the present study, the effect of the binder was examined. The specimens were produced with two types of epoxy resin, with similar numbers of glass mat layers and similar proportions of quartz powder added. However, one group was fabricated with an emulsion binder in the glass mats and another group with a powder binder. Attention was concentrated on the tribological properties of the as-prepared composites, though their strength was examined as well. The hardness of the Sikafloor matrix was found to be much more sensitive to the applied binder than that of the MC-DUR matrix. No direct correlation between the microhardness and the specific wear rate was observed and increasing the particulate filler proportion did not cause a direct increase of the specific wear rate. In particular, the highest specific wear rate, around 350 J/g, was reached for both matrices with a 1% quartz addition when the emulsion binder was applied, while in the case of the powder binder it was with 6% quartz with the MC-DUR matrix, and there was no quartz addition with the Sikafloor matrix. The highest microhardness, HV0.5 = 25, in turn, was reached for the mats with the emulsion binder in the Sikafloor matrix with an addition of 10% quartz powder, while the highest friction coefficient was exhibited in the composite with the MC-DUR matrix, when 1% of the quartz powder and the emulsion binder were applied.
Collapse
Affiliation(s)
- Wojciech Zurowski
- Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, ul. Stasieckiego 54, 26-600 Radom, Poland
| | | | - Robert Cep
- Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic
| | - Lenka Cepova
- Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic
| | - Miroslaw Rucki
- Institute of Mechanical Science, Vilnius Gediminas Technical University, J. Basanaviciaus Str. 28, LT-03224 Vilnius, Lithuania
- Correspondence: (M.R.); (W.S.)
| | - Zbigniew Krzysiak
- Faculty of Production Engineering, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
| | - Jacek Caban
- Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
| | - Waldemar Samociuk
- Faculty of Production Engineering, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
- Correspondence: (M.R.); (W.S.)
| |
Collapse
|
11
|
Dal Piva AMO, Tribst JPM, Borges ALS, Kleverlaan CJ, Feilzer AJ. The ability of mouthguards to protect veneered teeth: A
3D
finite element analysis. Dent Traumatol 2022; 39:191-199. [PMID: 36573913 DOI: 10.1111/edt.12812] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND/AIMS Professional and amateur athletes might have veneer restorations. The aim of this study was to investigate the protective effect of mouthguards on veneered anterior restorations. METHODS A nonlinear dynamic analysis was performed to simulate conditions during an impact with or without a custom-made mouthguard. Using a computer-aided design (CAD) software, a slice of a human maxilla was designed containing an upper right central incisor. The model was composed of mucosa, cortical bone, trabecular bone, periodontal ligament, dentin, enamel, and pulp tissue. The enamel was prepared (feather design), restored with an indirect veneer (1.0 mm thickness), and duplicated to simulate both conditions with or without a mouthguard (4 mm thickness). Both models were subdivided into finite elements using the computer-aided engineering (CAE) software. Frictionless contacts were used, and an impact was simulated in which a rigid sphere hit the model at 1 m s-1 . Fixation was defined at the base of the bone. The elastic modulus of the veneer was assessed by using five different restorative materials (resin composite, hybrid ceramic, zirconia-reinforced lithium silicate, lithium disilicate, and zirconia). Von Mises stress, minimal principal stress, and maximum principal stress (in MPa) were obtained and plotted for visual comparison. RESULTS Von-Mises results showed higher stress concentrations in the veneer's cervical labial region for models without a mouthguard. Observing the quantitative results for each model, the highest compressive (709 MPa) and tensile (58 MPa) stresses occurred in the situation without a mouthguard with a zirconia veneer, while the lowest occurred in resin composite veneer with a mouthguard (8 and 5 MPa). The mouthguard was able to reduce the stresses in the tooth structure and it also reduced the risk of fracture in all conditions. CONCLUSIONS Mouthguards were beneficial in reducing the effects of dental trauma regardless of the restorative material used to manufacture the indirect veneer, since they act by dampening the generated stresses during the trauma event. Equal impact stresses on a mouthguard will lead to higher stresses in veneered teeth with more rigid restorative materials leading to a less protective effect.
Collapse
Affiliation(s)
- Amanda Maria O. Dal Piva
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA) Universiteit van Amsterdam and Vrije Universiteit Amsterdam the Netherlands
| | - João Paulo Mendes Tribst
- Department of Oral Regenerative Medicine, Academic Centre for Dentistry Amsterdam (ACTA) Universiteit van Amsterdam and Vrije Universiteit Amsterdam the Netherlands
| | - Alexandre Luiz S. Borges
- Applied Sciences to Oral Health (Restorative Dentistry) São Paulo State University (Unesp), Institute of Science and Technology São José dos Campos Brazil
| | - Cornelis J. Kleverlaan
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA) Universiteit van Amsterdam and Vrije Universiteit Amsterdam the Netherlands
| | - Albert J. Feilzer
- Department of Oral Regenerative Medicine, Academic Centre for Dentistry Amsterdam (ACTA) Universiteit van Amsterdam and Vrije Universiteit Amsterdam the Netherlands
| |
Collapse
|
12
|
Finite Element Analysis of an Implant-Supported FDP with Different Connector Heights. Symmetry (Basel) 2022. [DOI: 10.3390/sym14112334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
All-ceramic fixed dental prostheses (FDPs) tend to fracture in the connector areas, due to the concentration of tensile stresses. This study aimed to evaluate the role of connector height on the stress distribution of a posterior three-unit implant-supported all-ceramic FDP using finite element analysis (FEA). Two titanium dental implants, their abutments, screws, and a three-unit all-ceramic FDP were scanned using a micro-CT scanner. Three 3D models with altered distal connector heights (3, 4, and 5 mm) were generated and analyzed on ABAQUS FEA software. The maximum principal stress values in MPa observed for each model with different connector heights and their respective locations (MA = mesial abutment; DA = distal abutment; F = framework; V = veneer) were: 3 mm—219 (MA), 88 (DA), 11 (F), 16 (V); 4 mm—194 (MA), 82 (DA), 8 (F), 18 (V); 5 mm—194 (MA), 80 (DA), 8 (F), and 18 (V). All the assembled models demonstrated the peak stresses at the neck area on the mesial abutments. The connector height had a significant influence on the stress distribution of the prosthesis. The models with higher distal connectors (4 and 5 mm) had a lower and more uniform distribution of maximum principal stresses (except for the veneer layer) when compared with the model with the smallest distal connector.
Collapse
|
13
|
Niem T, Frankenberger R, Amend S, Wöstmann B, Krämer N. Damping Behaviour and Mechanical Properties of Restorative Materials for Primary Teeth. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7698. [PMID: 36363290 PMCID: PMC9656603 DOI: 10.3390/ma15217698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The energy dissipation capacity and damping ability of restorative materials used to restore deciduous teeth were assessed compared to common mechanical properties. Mechanical properties (flexural strength, modulus of elasticity, modulus of toughness) for Compoglass F, Dyract eXtra, SDR flow, Tetric Evo Ceram, Tetric Evo Ceram Bulk Fill, and Venus Diamond were determined using a 4-point bending test. Vickers hardness and Martens hardness, together with its plastic index (ηITdis), were recorded using instrumented indentation testing. Leeb hardness (HLD) and its deduced energy dissipation data (HLDdis) were likewise determined. The reliability of materials was assessed using Weibull analysis. For common mechanical properties, Venus Diamond always exhibited the significantly highest results and SDR flow the lowest, except for flexural strength. Independently determined damping parameters (modulus of toughness, HLDdis, ηITdis) invariably disclosed the highest values for SDR flow. Composite materials, including SDR flow, showed markedly higher reliabilities (Weibull modulus) than Compoglass F and Dyract eXtra. SDR flow showed pronounced energy dissipation and damping characteristics, making it the most promising material for a biomimetic restoration of viscoelastic dentin structures in deciduous teeth. Future developments in composite technology should implement improved resin structures that facilitate damping effects in artificial restorative materials.
Collapse
Affiliation(s)
- Thomas Niem
- Department of Prosthodontics, Medical Center for Dentistry, Justus Liebig University Giessen and University Hospital Giessen and Marburg, Campus Giessen, Schlangenzahl 14, 35392 Giessen, Germany
| | - Roland Frankenberger
- Department of Operative Dentistry, Endodontics and Pediatric Dentistry, Medical Center for Dentistry, University of Marburg and University Hospital Giessen and Marburg, Campus Marburg, Georg Voigt Strasse 3, 35039 Marburg, Germany
| | - Stefanie Amend
- Department of Paediatric Dentistry, Medical Centre for Dentistry, Justus Liebig University Giessen and University Hospital Giessen and Marburg, Campus Giessen, Schlangenzahl 14, 35392 Giessen, Germany
| | - Bernd Wöstmann
- Department of Prosthodontics, Medical Center for Dentistry, Justus Liebig University Giessen and University Hospital Giessen and Marburg, Campus Giessen, Schlangenzahl 14, 35392 Giessen, Germany
| | - Norbert Krämer
- Department of Paediatric Dentistry, Medical Centre for Dentistry, Justus Liebig University Giessen and University Hospital Giessen and Marburg, Campus Giessen, Schlangenzahl 14, 35392 Giessen, Germany
| |
Collapse
|